1
|
Zhu Z, Trenner J, Delker C, Quint M. Tracing the Evolutionary History of the Temperature-Sensing Prion-like Domain in EARLY FLOWERING 3 Highlights the Uniqueness of AtELF3. Mol Biol Evol 2024; 41:msae205. [PMID: 39391982 PMCID: PMC11523139 DOI: 10.1093/molbev/msae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Plants have evolved mechanisms to anticipate and adjust their growth and development in response to environmental changes. Understanding the key regulators of plant performance is crucial to mitigate the negative influence of global climate change on crop production. EARLY FLOWERING 3 (ELF3) is one such regulator playing a critical role in the circadian clock and thermomorphogenesis. In Arabidopsis thaliana, ELF3 contains a prion-like domain (PrLD) that acts as a thermosensor, facilitating liquid-liquid phase separation at high ambient temperatures. To assess the conservation of this function across the plant kingdom, we traced the evolutionary emergence of ELF3, with a focus on the presence of PrLDs. We found that the PrLD, primarily influenced by the length of polyglutamine (polyQ) repeats, is most prominent in Brassicales. Analyzing 319 natural A. thaliana accessions, we confirmed the previously described wide range of polyQ length variation in AtELF3, but found it to be only weakly associated with geographic origin, climate conditions, and classic temperature-responsive phenotypes. Interestingly, similar polyQ length variation was not observed in several other investigated Bassicaceae species. Based on these findings, available prediction tools and limited experimental evidence, we conclude that the emergence of PrLD, and particularly polyQ length variation, is unlikely to be a key driver of environmental adaptation. Instead, it likely adds an additional layer to ELF3's role in thermomorphogenesis in A. thaliana, with its relevance in other species yet to be confirmed.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Praat M, Jiang Z, Earle J, Smeekens S, van Zanten M. Using a thermal gradient table to study plant temperature signalling and response across a temperature spectrum. PLANT METHODS 2024; 20:114. [PMID: 39075474 PMCID: PMC11285400 DOI: 10.1186/s13007-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.
Collapse
Affiliation(s)
- Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joe Earle
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Present address: Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Netherlands Plant Eco-Phenotyping Centre, Institute of Environmental Biology, Utrecht University, Padualaan 6, Utrecht, 3584CH, The Netherlands.
| |
Collapse
|
3
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
4
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
5
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
6
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
7
|
Casal JJ, Fankhauser C. Shade avoidance in the context of climate change. PLANT PHYSIOLOGY 2023; 191:1475-1491. [PMID: 36617439 PMCID: PMC10022646 DOI: 10.1093/plphys/kiad004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The Roles of Gibberellins in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1243. [PMID: 36986931 PMCID: PMC10051486 DOI: 10.3390/plants12061243] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and development are correlated with many aspects, including phytohormones, which have specific functions. However, the mechanism underlying the process has not been well elucidated. Gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development, including cell elongation, leaf expansion, leaf senescence, seed germination, and leafy head formation. The central genes involved in GA biosynthesis include GA20 oxidase genes (GA20oxs), GA3oxs, and GA2oxs, which correlate with bioactive GAs. The GA content and GA biosynthesis genes are affected by light, carbon availability, stresses, phytohormone crosstalk, and transcription factors (TFs) as well. However, GA is the main hormone associated with BR, ABA, SA, JA, cytokinin, and auxin, regulating a wide range of growth and developmental processes. DELLA proteins act as plant growth suppressors by inhibiting the elongation and proliferation of cells. GAs induce DELLA repressor protein degradation during the GA biosynthesis process to control several critical developmental processes by interacting with F-box, PIFS, ROS, SCLl3, and other proteins. Bioactive GA levels are inversely related to DELLA proteins, and a lack of DELLA function consequently activates GA responses. In this review, we summarized the diverse roles of GAs in plant development stages, with a focus on GA biosynthesis and signal transduction, to develop new insight and an understanding of the mechanisms underlying plant development.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Runxian Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| |
Collapse
|
9
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
10
|
Zhu T, van Zanten M, De Smet I. Wandering between hot and cold: temperature dose-dependent responses. TRENDS IN PLANT SCIENCE 2022; 27:1124-1133. [PMID: 35810070 DOI: 10.1016/j.tplants.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Plants in most natural habitats are exposed to a continuously changing environment, including fluctuating temperatures. Temperature variations can trigger acclimation or tolerance responses, depending on the severity of the signal. To guarantee food security under a changing climate, we need to fully understand how temperature response and tolerance are triggered and regulated. Here, we put forward the concept that responsiveness to temperature should be viewed in the context of dose-dependency. We discuss physiological, developmental, and molecular examples, predominantly from the model plant Arabidopsis thaliana, illustrating monophasic signaling responses across the physiological temperature gradient.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium.
| |
Collapse
|
11
|
Xu J, Wang JJ, Xue HW, Zhang GH. Leaf direction: Lamina joint development and environmental responses. PLANT, CELL & ENVIRONMENT 2021; 44:2441-2454. [PMID: 33866581 DOI: 10.1111/pce.14065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings. The degree of leaf bending depends on the morphology of the lamina joint, which connects the leaf and the sheath. In this review, we discuss cell morphology in different lamina joint tissues and describe the underlying genetic network that governs this morphology and thus regulates leaf direction. Furthermore, we focus on the mechanism by how environmental factors influence rice leaf angle. Our review provides a theoretical framework for the future genetic improvement of rice leaf orientation and plant architecture.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Jia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
12
|
Praat M, De Smet I, van Zanten M. Protein kinase and phosphatase control of plant temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab345. [PMID: 34283227 DOI: 10.1093/jxb/erab345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. Suboptimal high and low temperatures, and stressful extreme temperatures, induce adaptive mechanisms that allow optimal performance and survival, respectively. These processes have been extensively studied at the physiological, transcriptional and (epi)genetic level. Cellular temperature signalling cascades and tolerance mechanisms also involve post-translational modifications (PTMs), particularly protein phosphorylation. Many protein kinases are known to be involved in cold acclimation and heat stress responsiveness but research on the role and importance of kinases and phosphatases in triggering responses to mild changes in temperature such as thermomorphogenesis is inadequately understood. In this review, we summarize the current knowledge on the roles of kinases and phosphatases in plant temperature responses. We discuss how kinases can function over a range of temperatures in different signalling pathways and provide an outlook to the application of PTM-modifying factors for the development of thermotolerant crops.
Collapse
Affiliation(s)
- Myrthe Praat
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| |
Collapse
|
13
|
Ludwig W, Hayes S, Trenner J, Delker C, Quint M. On the evolution of plant thermomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab310. [PMID: 34190313 DOI: 10.1093/jxb/erab310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 05/16/2023]
Abstract
Plants have a remarkable capacity to acclimate to their environment. Acclimation is enabled to a large degree by phenotypic plasticity, the extent of which confers a selective advantage, especially in natural habitats. Certain key events in evolution triggered adaptive bursts necessary to cope with drastic environmental changes. One such event was the colonization of land 400-500 mya. Compared to most aquatic habitats, fluctuations in abiotic parameters became more pronounced, generating significant selection pressure. To endure these harsh conditions, plants needed to adapt their physiology and morphology and to increase the range of phenotypic plasticity. In addition to drought stress and high light, high temperatures and fluctuation thereof were among the biggest challenges faced by terrestrial plants. Thermomorphogenesis research has emerged as a new sub-discipline of the plant sciences and aims to understand how plants acclimate to elevated ambient temperatures through changes in architecture. While we have begun to understand how angiosperms sense and respond to elevated ambient temperature, very little is known about thermomorphogenesis in plant lineages with less complex body plans. It is unclear when thermomorphogenesis initially evolved and how this depended on morphological complexity. In this review, we take an evolutionary-physiological perspective and generate hypotheses about the emergence of thermomorphogenesis.
Collapse
Affiliation(s)
- Wenke Ludwig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Zanten MV, Ai H, Quint M. Plant thermotropism: an underexplored thermal engagement and avoidance strategy. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab209. [PMID: 33974686 DOI: 10.1093/jxb/erab209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Various strategies evolved in plants to adjust the position of organs relative to the prevailing temperature condition, which allows optimal plant growth and performance. Such responses are classically separated into nastic and tropic responses. During plant thermotropic responses, organs move towards (engage) or away (avoid) from a directional temperature cue. Despite thermotropism being a classic botanical concept, the underlying ecological function and molecular and biophysical mechanisms remain poorly understood to this day. This contrasts to the relatively well-studied thermonastic movements (hyponasty) of e.g., rosette leaves. In this review, we provide an update on the current knowledge on plant thermotropisms and propose directions for future research and application.
Collapse
Affiliation(s)
- Martijn van Zanten
- Martijn van Zanten, Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Haiyue Ai
- Haiyue Ai, Marcel Quint, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty -Heimann-Str. 5 06120 Halle (Saale), Germany
| | - Marcel Quint
- Haiyue Ai, Marcel Quint, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty -Heimann-Str. 5 06120 Halle (Saale), Germany
| |
Collapse
|
15
|
D E Lima CFF, Kleine-Vehn J, De Smet I, Feraru E. Getting to the Root of Belowground High Temperature Responses in Plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab202. [PMID: 33970267 DOI: 10.1093/jxb/erab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The environment is continuously challenging plants. As a response, plants use various coping strategies, such as adaptation of their growth. Thermomorphogenesis is a specific growth adaptation that promotes organ growth in response to moderately high temperature. This would eventually enable plants to cool down by dissipating the heat. Although well understood for shoot organs, the thermomorphogenesis response in roots only recently obtained increasing research attention. Accordingly, in the last few years, the hormonal responses and underlying molecular players important for root thermomorphogenesis were revealed. Other responses triggered by high temperature in the root encompass modifications of overall root architecture and interactions with the soil environment, with consequences on the whole plant. Here, we review the scientific knowledge and highlight the current understanding on roots responding to moderately high and extreme temperature.
Collapse
Affiliation(s)
- Cassio Flavio Fonseca D E Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
16
|
Manokari M, Priyadharshini S, Shekhawat MS. Micro-Structural Stability of Micropropagated Plants of Vitex negundo L. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 33858540 DOI: 10.1017/s1431927621000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Micropropagation techniques allow producing large numbers of clones of genetically identical plants. However, there is evidence of disorders in internal structures due to sophisticated in vitro conditions. Such variations are responsible for the mortality of plantlets in the field and cause huge loss to the tissue culture industry. Anatomical evaluation at different growth conditions allows for understanding structural repair of in vitro raised plantlets. Therefore, the present study was aimed to identify the structural changes that occurred in micropropagated plants of Vitex negundo under heterotrophic, photomixotrophic, and photoautotrophic conditions. To achieve this, structural variations were analyzed in the plantlets obtained from in vitro, greenhouse and field transferred stages using light microscopy. Underdeveloped dermal tissues, palisade cells, intercellular spaces, mechanical tissues, vascular bundles, and ground tissues were observed with the plants growing under in vitro conditions. The self-repairing of structural disorders and transitions in vegetative anatomy was observed during hardening under the greenhouse environment. Field transferred plantlets were characterized by well-developed internal anatomy. These findings showed that the micropropagated plantlets of V. negundo were well-adapted through a series of self-repairing the in vitro induced structural abnormalities at the subsequent stages of plant development.
Collapse
Affiliation(s)
- M Manokari
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
- Siddha Clinical Research Unit, Central Council for Research in Siddha, Palayamkottai600106, Tamil Nadu, India
| | - S Priyadharshini
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
| | - Mahipal S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry605008, India
| |
Collapse
|
17
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
18
|
Abstract
Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell-cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell-cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Andrea Paterlini
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1 LR, UK
| |
Collapse
|
19
|
Lippmann R, Babben S, Menger A, Delker C, Quint M. Development of Wild and Cultivated Plants under Global Warming Conditions. Curr Biol 2020; 29:R1326-R1338. [PMID: 31846685 DOI: 10.1016/j.cub.2019.10.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global warming is one of the most detrimental aspects of climate change, affecting plant growth and development across the entire life cycle. This Review explores how different stages of development are influenced by elevated temperature in both wild plants and crops. Starting from seed development and germination, global warming will influence morphological adjustments, termed thermomorphogenesis, and photosynthesis primarily during the vegetative phase, as well as flowering and reproductive development. Where applicable, we distinguish between moderately elevated temperatures that affect all stages of plant development and heat waves that often occur during the reproductive phase when they can have devastating consequences for fruit development. The parallel occurrence of elevated temperature with other abiotic and biotic stressors, particularly the combination of global warming and drought or increased pathogen pressure, will potentiate the challenges for both wild and cultivated plant species. The key components of the molecular networks underlying the physiological processes involved in thermal responses in the model plant Arabidopsis thaliana are highlighted. In crops, temperature-sensitive traits relevant for yield are illustrated for winter wheat (Triticum aestivum L.) and soybean (Glycine max L.), representing cultivated species adapted to temperate vs. warm climate zones, respectively. While the fate of wild plants depends on political agendas, plant breeding approaches informed by mechanistic understanding originating in basic science can enable the generation of climate change-resilient crops.
Collapse
Affiliation(s)
- Rebecca Lippmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anja Menger
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
20
|
Wang HQ, Liu P, Zhang JW, Zhao B, Ren BZ. Endogenous Hormones Inhibit Differentiation of Young Ears in Maize ( Zea mays L.) Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:533046. [PMID: 33193473 PMCID: PMC7642522 DOI: 10.3389/fpls.2020.533046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/06/2020] [Indexed: 05/10/2023]
Abstract
Global warming frequently leads to extreme temperatures, which pose a serious threat to the growth, development, and yield formation of crops such as maize. This study aimed to deeply explore the molecular mechanisms of young ear development under heat stress. We selected the heat-tolerant maize variety Zhengdan 958 (T) and heat-sensitive maize variety Xianyu 335 (S), and subjected them to heat stress in the V9 (9th leaf), V12 (12th leaf), and VT (tasseling) growth stages. We combined analysis of the maize phenotype with omics technology and physiological indicators to compare the differences in young ear morphology, total number of florets, floret fertilization rate, grain abortion rate, number of grains, and main metabolic pathways between plants subjected to heat stress and those left to develop normally. The results showed that after heat stress, the length and diameter of young ears, total number of florets, floret fertilization rate, and number of grains all decreased significantly, whereas the length of the undeveloped part at the top of the ear and grain abortion rate increased significantly. In addition, the differentially expressed genes (DEGs) in young ears were significantly enriched in the hormone signaling pathways. The endogenous hormone content in young ears exhibited different changes: zeatin (ZT) and zeatin riboside (ZR) decreased significantly, but gibberellin acid3 (GA3), gibberellin acid4 (GA4), and abscisic acid (ABA) increased significantly, in ears subjected to heat stress. In the heat-tolerant maize variety, the salicylic acid (SA), and jasmonic acid (JA) content in the vegetative growth stage also increased in ears subjected to heat stress, whereas the opposite effect was observed for the heat-sensitive variety. The changes in endogenous hormone content of young ears that were subjected to heat stress significantly affected ear development, resulting in a reduction in the number of differentiated florets, fertilized florets and grains, which ultimately reduced the maize yield.
Collapse
|
21
|
Wang Z, Cui D, Liu C, Zhao J, Liu J, Liu N, Tang D, Hu Y. TCP transcription factors interact with ZED1-related kinases as components of the temperature-regulated immunity. PLANT, CELL & ENVIRONMENT 2019; 42:2045-2056. [PMID: 30652316 DOI: 10.1111/pce.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
The elevation of ambient temperature generally inhibits plant immunity, but the molecular regulations of immunity by ambient temperature in plants are largely elusive. We previously reported that the Arabidopsis HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) mediate the temperature-sensitive immunity by inhibiting the transcription of SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1). Here, we further demonstrate that the nucleus-localized ZED1 and ZRKs facilitate such inhibitory role in associating with the TEOSINTE BRANCHED1, CYCLOIDEA AND PROLIFERATING CELL FACTOR (TCP) transcription factors. We show that some of TCP members could physically interact with ZRKs and are induced by elevated temperature. Disruption of TCPs leads to a mild autoimmune phenotype, whereas overexpression of the TCP15 could suppress the autoimmunity activated by the overexpressed SNC1 in the snc1-2. These findings demonstrate that the TCP transcription factors associate with nuclear ZRK as components of the temperature-regulated immunity, which discloses a possible molecular mechanism underlying the regulation of immunity by ambient temperature in plants.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dayong Cui
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Cheng Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingbo Zhao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Na Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- National Center for Plant Gene Research, Beijing, 100093, China
| |
Collapse
|
22
|
Park YJ, Lee HJ, Gil KE, Kim JY, Lee JH, Lee H, Cho HT, Vu LD, De Smet I, Park CM. Developmental Programming of Thermonastic Leaf Movement. PLANT PHYSIOLOGY 2019; 180:1185-1197. [PMID: 30948554 PMCID: PMC6548248 DOI: 10.1104/pp.19.00139] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Plants exhibit diverse polar behaviors in response to directional and nondirectional environmental signals, termed tropic and nastic movements, respectively. The ways in which plants incorporate directional information into tropic behaviors is well understood, but it is less well understood how nondirectional stimuli, such as ambient temperatures, specify the polarity of nastic behaviors. Here, we demonstrate that a developmentally programmed polarity of auxin flow underlies thermo-induced leaf hyponasty in Arabidopsis (Arabidopsis thaliana). In warm environments, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) stimulates auxin production in the leaf. This results in the accumulation of auxin in leaf petioles, where PIF4 directly activates a gene encoding the PINOID (PID) protein kinase. PID is involved in polarization of the auxin transporter PIN-FORMED3 to the outer membranes of petiole cells. Notably, the leaf polarity-determining ASYMMETRIC LEAVES1 (AS1) directs the induction of PID to occur predominantly in the abaxial petiole region. These observations indicate that the integration of PIF4-mediated auxin biosynthesis and polar transport, and the AS1-mediated developmental shaping of polar auxin flow, coordinate leaf thermonasty, which facilitates leaf cooling in warm environments. We believe that leaf thermonasty is a suitable model system for studying the developmental programming of environmental adaptation in plants.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience 2019; 8:giz056. [PMID: 31127811 PMCID: PMC6534809 DOI: 10.1093/gigascience/giz056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tracking and predicting the growth performance of plants in different environments is critical for predicting the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging technique novel to plant phenotyping called photometric stereo (PS). RESULTS We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes 221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full protocol is provided, including all software components and an additional test data set. CONCLUSIONS PS-Plant is a powerful new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.
Collapse
Affiliation(s)
- Gytis Bernotas
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Livia C T Scorza
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Mark F Hansen
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Ian J Hales
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Karen J Halliday
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Lyndon N Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Melvyn L Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
24
|
Jayawardena DM, Heckathorn SA, Bista DR, Boldt JK. Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth. PLANT, CELL & ENVIRONMENT 2019; 42:1247-1256. [PMID: 30472733 DOI: 10.1111/pce.13489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Limited evidence indicates that moderate leaf hyponasty can be induced by high temperatures or unnaturally high CO2 . Here, we report that the combination of warming plus elevated CO2 (eCO2 ) induces severe leaf hyponasty in tomato (Solanum lycopersicum L.). To characterize this phenomenon, tomato plants were grown at two levels of CO2 (400 vs. 700 ppm) and two temperature regimes (30 vs. 37°C) for 16-18 days. Leaf hyponasty increased dramatically with warming plus eCO2 but increased only slightly with either factor alone and was slowly reversible upon transfer to control treatments. Increases in leaf angle were not correlated with leaf temperature, leaf water stress, or heat-related damage to photosynthesis. However, steeper leaf angles were correlated with decreases in leaf area and biomass, which could be explained by decreased light interception and thus in situ photosynthesis, as leaves became more vertical. Petiole hyponasty and leaf-blade cupping were also observed with warming + eCO2 in marigold and soybean, respectively, which are compound-leaved species like tomato, but no such hyponasty was observed in sunflower and okra, which have simple leaves. If severe leaf hyponasty is common under eCO2 and warming, then this may have serious consequences for food production in the future.
Collapse
Affiliation(s)
| | | | - Deepesh Raj Bista
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA
| | - Jennifer Kay Boldt
- Agricultural Research Service, United States Department of Agriculture, Toledo, Ohio, USA
| |
Collapse
|
25
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
26
|
Feng L, Raza MA, Li Z, Chen Y, Khalid MHB, Du J, Liu W, Wu X, Song C, Yu L, Zhang Z, Yuan S, Yang W, Yang F. The Influence of Light Intensity and Leaf Movement on Photosynthesis Characteristics and Carbon Balance of Soybean. FRONTIERS IN PLANT SCIENCE 2019; 9:1952. [PMID: 30687355 PMCID: PMC6338029 DOI: 10.3389/fpls.2018.01952] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/14/2018] [Indexed: 05/02/2023]
Abstract
In intercropping systems shading conditions significantly impair the seed yield and quality of soybean, and rarely someone investigated the minimum amount of light requirement for soybean growth and development. Therefore, it is an urgent need to determine the threshold light intensity to ensure sustainable soybean production under these systems. An integrated approach combining morphology, physiology, biochemistry and genetic analysis was undertaken to study the light intensity effects on soybean growth and development. A pot experiment was set up in a growth chamber under increasing light intensity treatments of 100 (L100), 200 (L200), 300 (L300), 400 (L400), and 500 (L500) μmol m-2 s-1. Compared with L100, plant height, hypocotyl length, and abaxial leaf petiole angle were decreased, biomass, root:shoot ratio, and stem diameter were increased, extremum was almost observed in L400 and L500. Leaf petiole movement and leaf hyponasty in each treatment has presented a tendency to decrease the leaf angle from L500 to L100. In addition, the cytochrome content (Chl a, Chl b, Car), net photosynthetic rate, chlorophyll fluorescence values of F v/F m, F v ' / F m ' , ETR, ΦPSII, and qP were increased as the light intensity increased, and higher values were noted under L400. Leaf microstructure and chloroplast ultrastructure positively improved with increasing light intensity, and leaf-thickness, palisade, and spongy tissues-thickness were increased by 105, 90, and 370%, under L500 than L100. Moreover, the cross-sectional area of chloroplast (C) outer membrane and starch grains (S), and sectional area ratio (S:C) was highest under L400 and L500, respectively. Compared to L100, the content of starch granules increased by 35.5, 122.0, 157.6, and 145.5%, respectively in L400. The same trends were observed in the enzyme activity of sucrose-synthase, sucrose phosphate synthase, starch synthase, rubisco, phosphoenol pyruvate carboxykinase, and phosphoenol pyruvate phosphatase. Furthermore, sucrose synthesis-related genes were also up-regulated by increasing light intensity, and the highest seed yield and yield related parameters were recorded in the L400. Overall, these results suggested that 400 and 500 μmol m-2 s-1 is the optimum light intensity which positively changed the leaf orientation and adjusts leaf angle to perpendicular to coming light, consequently, soybean plants grow well under prevailing conditions.
Collapse
Affiliation(s)
- Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhongchuan Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yuankai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Muhammad Hayder Bin Khalid
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Chun Song
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Liang Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
27
|
|
28
|
Michaud O, Fiorucci AS, Xenarios I, Fankhauser C. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:7444-7449. [PMID: 28652343 PMCID: PMC5514730 DOI: 10.1073/pnas.1702276114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Competition for light triggers numerous developmental adaptations known as the "shade-avoidance syndrome" (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments.
Collapse
Affiliation(s)
- Olivier Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Fiorucci
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Swiss Institute of Bioinformatics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
29
|
Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K, Gogol-Döring A, Quint M, Delker C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC PLANT BIOLOGY 2017; 17:114. [PMID: 28683779 PMCID: PMC5501000 DOI: 10.1186/s12870-017-1068-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/25/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. RESULTS Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. CONCLUSION Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Collapse
Affiliation(s)
- Carla Ibañez
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany
| | - Tom Peterson
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Julia Bellstädt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Kathrin Denk
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
30
|
Walch-Liu P, Meyer RC, Altmann T, Forde BG. QTL analysis of the developmental response to L-glutamate in Arabidopsis roots and its genotype-by-environment interactions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2919-2931. [PMID: 28449076 PMCID: PMC5853333 DOI: 10.1093/jxb/erx132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/28/2017] [Indexed: 05/28/2023]
Abstract
Primary root growth in Arabidopsis and a number of other species has previously been shown to be remarkably sensitive to the presence of external glutamate, with glutamate signalling eliciting major changes in root architecture. Using two recombinant inbred lines from reciprocal crosses between Arabidopsis accessions C24 and Col-0, we have identified one large-effect quantitative trait locus (QTL), GluS1, and two minor QTLs, GluS2 and GluS3, which together accounted for 41% of the phenotypic variance in glutamate sensitivity. The presence of the GluS1 locus on chromosome 3 was confirmed using a set of C24/Col-0 isogenic lines. GluS1 was mapped to an interval between genes At3g44830-At3g46880. When QTL mapping was repeated under a range of environmental conditions, including temperature, shading and nitrate supply, a strong genotype-by-environment interaction in the controls for the glutamate response was identified. Major differences in the loci controlling this trait were found under different environmental conditions. Here we present evidence for the existence of loci on chromosomes 1 and 5 epistatically controlling the response of the GluS1 locus to variations in ambient temperature, between 20°C and 26°C. In addition, a locus on the long arm of chromosome 1 was found to play a major role in controlling the ability of external nitrate signals to antagonize the glutamate effect. We conclude that there are multiple loci controlling natural variation in glutamate sensitivity in Arabidopsis roots and that epistatic interactions play an important role in modulating glutamate sensitivity in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Pia Walch-Liu
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Molecular Genetics, Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Molecular Genetics, Gatersleben, Germany
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
31
|
Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA. UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Curr Biol 2016; 27:120-127. [PMID: 27989670 PMCID: PMC5226890 DOI: 10.1016/j.cub.2016.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
Small increases in ambient temperature can elicit striking effects on plant architecture, collectively termed thermomorphogenesis [1]. In Arabidopsis thaliana, these include marked stem elongation and leaf elevation, responses that have been predicted to enhance leaf cooling [2-5]. Thermomorphogenesis requires increased auxin biosynthesis, mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [6-8], and enhanced stability of the auxin co-receptor TIR1, involving HEAT SHOCK PROTEIN 90 (HSP90) [9]. High-temperature-mediated hypocotyl elongation additionally involves localized changes in auxin metabolism, mediated by the indole-3-acetic acid (IAA)-amido synthetase Gretchen Hagen 3 (GH3).17 [10]. Here we show that ultraviolet-B light (UV-B) perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) [11] strongly attenuates thermomorphogenesis via multiple mechanisms inhibiting PIF4 activity. Suppression of thermomorphogenesis involves UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1)-mediated repression of PIF4 transcript accumulation, reducing PIF4 abundance. UV-B also stabilizes the bHLH protein LONG HYPOCOTYL IN FAR RED (HFR1), which can bind to and inhibit PIF4 function. Collectively, our results demonstrate complex crosstalk between UV-B and high-temperature signaling. As plants grown in sunlight would most likely experience concomitant elevations in UV-B and ambient temperature, elucidating how these pathways are integrated is of key importance to the understanding of plant development in natural environments.
Collapse
Affiliation(s)
- Scott Hayes
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Plant Ecophysiology, Institute of Environmental Biology (IEB), Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ashutosh Sharma
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Donald P Fraser
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - C Kester Cragg-Barber
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleni Tavridou
- Department of Botany and Plant Biology, University of Geneva, Sciences III, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Keara A Franklin
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
32
|
Press MO, Lanctot A, Queitsch C. PIF4 and ELF3 Act Independently in Arabidopsis thaliana Thermoresponsive Flowering. PLoS One 2016; 11:e0161791. [PMID: 27564448 PMCID: PMC5001698 DOI: 10.1371/journal.pone.0161791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Plants have evolved elaborate mechanisms controlling developmental responses to environmental stimuli. A particularly important stimulus is temperature. Previous work has identified the interplay of PIF4 and ELF3 as a central circuit underlying thermal responses in Arabidopsis thaliana. However, thermal responses vary widely among strains, possibly offering mechanistic insights into the wiring of this circuit. ELF3 contains a polyglutamine (polyQ) tract that is crucial for ELF3 function and varies in length across strains. Here, we use transgenic analysis to test the hypothesis that natural polyQ variation in ELF3 is associated with the observed natural variation in thermomorphogenesis. We found little evidence that the polyQ tract plays a specific role in thermal responses beyond modulating general ELF3 function. Instead, we made the serendipitous discovery that ELF3 plays a crucial, PIF4-independent role in thermoresponsive flowering under conditions more likely to reflect field conditions. We present evidence that ELF3 acts through the photoperiodic pathway, pointing to a previously unknown symmetry between low and high ambient temperature responses. Moreover, in analyzing two strain backgrounds with different thermal responses, we demonstrate that responses may be shifted rather than fundamentally rewired across strains. Our findings tie together disparate observations into a coherent framework in which multiple pathways converge in accelerating flowering in response to temperature, with some such pathways modulated by photoperiod.
Collapse
Affiliation(s)
- Maximilian O. Press
- University of Washington Department of Genome Sciences, Seattle, United States of America
| | - Amy Lanctot
- University of Washington Molecular and Cellular Biology Program, University of Washington Department of Biology, Seattle, United States of America
| | - Christine Queitsch
- University of Washington Department of Genome Sciences, Seattle, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gray SB, Brady SM. Plant developmental responses to climate change. Dev Biol 2016; 419:64-77. [PMID: 27521050 DOI: 10.1016/j.ydbio.2016.07.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 07/31/2016] [Indexed: 02/02/2023]
Abstract
Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO2, most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO2 vary by cell type and by species. Variability also exists between C3 and C4 species in response to elevated CO2, especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO2. Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical.
Collapse
Affiliation(s)
- Sharon B Gray
- Department of Plant Biology, University of California, Davis, 2243 Life Sciences Addition, One Shields Avenue, Davis, CA 95616, USA.
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, 2243 Life Sciences Addition, One Shields Avenue, Davis, CA 95616, USA; Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW. Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. PLANT, CELL & ENVIRONMENT 2016; 39:1549-58. [PMID: 26832121 DOI: 10.1111/pce.12720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 05/25/2023]
Abstract
The plasticity of leaf form and function in European lines of Arabidopsis thaliana was evaluated in ecotypes from Sweden and Italy grown under contrasting (cool versus hot) temperature regimes. Although both ecotypes exhibited acclimatory adjustments, the Swedish ecotype exhibited more pronounced responses to the two contrasting temperature regimes in several characterized features. These responses included thicker leaves with higher capacities for photosynthesis, likely facilitated by a greater number of phloem cells per minor vein for the active loading and export of sugars, when grown under cool temperature as opposed to leaves with a higher vein density and a greater number of tracheary elements per minor vein, likely facilitating higher rates of transpirational water loss (and thus evaporative cooling), when grown under hot temperature with high water availability. In addition, only the Swedish ecotype exhibited reduced rosette growth and greater levels of foliar tocopherols under the hot growth temperature. These responses, and the greater responsiveness of the Swedish ecotype compared with the Italian ecotype, are discussed in the context of redox signalling networks and transcription factors, and the greater range of environmental conditions experienced by the Swedish versus the Italian ecotype during the growing season in their native habitats.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Christopher M Cohu
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Coleman A Wenzl
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA
| |
Collapse
|
35
|
Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J. Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2016; 210:564-76. [PMID: 26681345 DOI: 10.1111/nph.13799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/11/2015] [Indexed: 05/28/2023]
Abstract
The genetic basis of growth and development is often studied in constant laboratory environments; however, the environmental conditions that organisms experience in nature are often much more dynamic. We examined how daily temperature fluctuations, average temperature, day length and vernalization influence the flowering time of 59 genotypes of Arabidopsis thaliana with allelic perturbations known to affect flowering time. For a subset of genotypes, we also assessed treatment effects on morphology and growth. We identified 17 genotypes, many of which have high levels of the floral repressor FLOWERING LOCUS C (FLC), that bolted dramatically earlier in fluctuating - as opposed to constant - warm temperatures (mean = 22°C). This acceleration was not caused by transient VERNALIZATION INSENSITIVE 3-mediated vernalization, differential growth rates or exposure to high temperatures, and was not apparent when the average temperature was cool (mean = 12°C). Further, in constant temperatures, contrary to physiological expectations, these genotypes flowered more rapidly in cool than in warm environments. Fluctuating temperatures often reversed these responses, restoring faster bolting in warm conditions. Independently of bolting time, warm fluctuating temperature profiles also caused morphological changes associated with shade avoidance or 'high-temperature' phenotypes. Our results suggest that previous studies have overestimated the effect of the floral repressor FLC on flowering time by using constant temperature laboratory conditions.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Daniel E Runcie
- Department of Evolution and Ecology, University of California at Davis, Davis, CA, 95616, USA
| | - Amity M Wilczek
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Deep Springs College, Big Pine, CA, 93513, USA
| | - Martha D Cooper
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Judith L Roe
- Department of Biology, University of Maine at Presque Isle, Presque Isle, ME, 04769, USA
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Johanna Schmitt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
- Deep Springs College, Big Pine, CA, 93513, USA
| |
Collapse
|
36
|
Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2187-203. [PMID: 26869705 PMCID: PMC4825126 DOI: 10.1104/pp.15.00997] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Willem Kruijer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Frank Becker
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - André Kuhn
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Henri van de Geest
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Jaap Buntjer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Timo Doeswijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - José Guerra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Joost J B Keurentjes
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| |
Collapse
|
37
|
Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M. Molecular and genetic control of plant thermomorphogenesis. NATURE PLANTS 2016; 2:15190. [PMID: 27250752 DOI: 10.1038/nplants.2015.190] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/03/2015] [Indexed: 05/19/2023]
Abstract
Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.
Collapse
Affiliation(s)
- Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann Strasse 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann Strasse 5, 06120 Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Philip A Wigge
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Karen J Halliday
- Synthetic and Systems Biology (SynthSys), University of Edinburgh, CH Waddington Building, Mayfield Road, Edinburgh EH9 3JD, United Kingdom
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
38
|
Sanchez-Bermejo E, Zhu W, Tasset C, Eimer H, Sureshkumar S, Singh R, Sundaramoorthi V, Colling L, Balasubramanian S. Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis. PLANT PHYSIOLOGY 2015; 169. [PMID: 26195568 PMCID: PMC4577429 DOI: 10.1104/pp.15.00942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wild strains of Arabidopsis (Arabidopsis thaliana) exhibit extensive natural variation in a wide variety of traits, including response to environmental changes. Ambient temperature is one of the major external factors that modulates plant growth and development. Here, we analyze the genetic architecture of natural variation in thermal responses of Arabidopsis. Exploiting wild accessions and recombinant inbred lines, we reveal extensive phenotypic variation in response to ambient temperature in distinct developmental traits such as hypocotyl elongation, root elongation, and flowering time. We show that variation in thermal response differs between traits, suggesting that the individual phenotypes do not capture all the variation associated with thermal response. Genome-wide association studies and quantitative trait locus analyses reveal that multiple rare alleles contribute to the genetic architecture of variation in thermal response. We identify at least 20 genomic regions that are associated with variation in thermal response. Further characterizations of temperature sensitivity quantitative trait loci that are shared between traits reveal a role for the blue-light receptor CRYPTOCHROME2 (CRY2) in thermosensory growth responses. We show the accession Cape Verde Islands is less sensitive to changes in ambient temperature, and through transgenic analysis, we demonstrate that allelic variation at CRY2 underlies this temperature insensitivity across several traits. Transgenic analyses suggest that the allelic effects of CRY2 on thermal response are dependent on genetic background suggestive of the presence of modifiers. In addition, our results indicate that complex light and temperature interactions, in a background-dependent manner, govern growth responses in Arabidopsis.
Collapse
Affiliation(s)
| | - Wangsheng Zhu
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Celine Tasset
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Hannes Eimer
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Rupali Singh
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Luana Colling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
39
|
Polko JK, van Rooij JA, Vanneste S, Pierik R, Ammerlaan AMH, Vergeer-van Eijk MH, McLoughlin F, Gühl K, Van Isterdael G, Voesenek LACJ, Millenaar FF, Beeckman T, Peeters AJM, Marée AFM, van Zanten M. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:194-208. [PMID: 26041787 PMCID: PMC4577382 DOI: 10.1104/pp.15.00343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.
Collapse
Affiliation(s)
- Joanna K Polko
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Jop A van Rooij
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Steffen Vanneste
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Ankie M H Ammerlaan
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Marleen H Vergeer-van Eijk
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Fionn McLoughlin
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Kerstin Gühl
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Gert Van Isterdael
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Frank F Millenaar
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Tom Beeckman
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Anton J M Peeters
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Athanasius F M Marée
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology (J.K.P., R.P., A.M.H.A., M.H.V.-v.E., F.M., K.G., L.A.C.J.V., F.F.M., A.J.M.P., M.v.Z.), and Theoretical Biology and Bioinformatics (J.A.v.R.), Utrecht University, 3584 CH Utrecht, The Netherlands;Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.A.v.R., A.F.M.M.);Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.V., G.V.I., T.B.)
| |
Collapse
|
40
|
Raschke A, Ibañez C, Ullrich KK, Anwer MU, Becker S, Glöckner A, Trenner J, Denk K, Saal B, Sun X, Ni M, Davis SJ, Delker C, Quint M. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC PLANT BIOLOGY 2015; 15:197. [PMID: 26269119 PMCID: PMC4535396 DOI: 10.1186/s12870-015-0566-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/02/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis. RESULTS We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth. CONCLUSIONS In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.
Collapse
Affiliation(s)
- Anja Raschke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Carla Ibañez
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Kristian Karsten Ullrich
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Muhammad Usman Anwer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| | - Sebastian Becker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Annemarie Glöckner
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Jana Trenner
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Kathrin Denk
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Bernhard Saal
- PlantaServ GmbH, Erdinger Straße 82a, 85356, Freising, Germany.
| | - Xiaodong Sun
- Department of Plant Biology, University of Minnesota Twin Cities, Saint Paul, MN, USA.
| | - Min Ni
- Department of Plant Biology, University of Minnesota Twin Cities, Saint Paul, MN, USA.
| | - Seth Jon Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Carolin Delker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
| | - Marcel Quint
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty--Heimann-Str. 5, Halle (Saale), 06120, Germany.
| |
Collapse
|
41
|
Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 2015; 5:10533. [PMID: 26013835 PMCID: PMC4444972 DOI: 10.1038/srep10533] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/23/2015] [Indexed: 11/25/2022] Open
Abstract
Environmental stress causes membrane damage in plants. Lipid studies are required to understand the adaptation of plants to climate change. Here, LC-MS-based lipidomic and microarray transcriptome analyses were carried out to elucidate the effect of short-term heat stress on the Arabidopsis thaliana leaf membrane. Vegetative plants were subjected to high temperatures for one day, and then grown under normal conditions. Sixty-six detected glycerolipid species were classified according to patterns of compositional change by Spearman’s correlation coefficient. Triacylglycerols, 36:4- and 36:5-monogalactosyldiacylglycerol, 34:2- and 36:2-digalactosyldiacylglycerol, 34:1-, 36:1- and 36:6-phosphatidylcholine, and 34:1-phosphatidylethanolamine increased by the stress and immediately decreased during recovery. The relative amount of one triacylglycerol species (54:9) containing α-linolenic acid (18:3) increased under heat stress. These results suggest that heat stress in Arabidopsis leaves induces an increase in triacylglycerol levels, which functions as an intermediate of lipid turnover, and results in a decrease in membrane polyunsaturated fatty acids. Microarray data revealed candidate genes responsible for the observed metabolic changes.
Collapse
|
42
|
Shu W, Liu Y, Guo Y, Zhou H, Zhang J, Zhao S, Lu M. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments. FRONTIERS IN PLANT SCIENCE 2015; 6:719. [PMID: 26442033 PMCID: PMC4585115 DOI: 10.3389/fpls.2015.00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/20/2015] [Indexed: 05/03/2023]
Abstract
The plant hormone auxin is a central regulator of plant growth. TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) is a component of the E3 ubiquitin ligase complex SCF(TIR1/AFB) and acts as an auxin co-receptor for nuclear auxin signaling. The SCF(TIR1/AFB)-proteasome machinery plays a central regulatory role in development-related gene transcription. Populus trichocarpa, as a model tree, has a unique fast-growth trait to which auxin signaling may contribute. However, no systematic analyses of the genome organization, gene structure, and expression of TIR1-like genes have been undertaken in this woody model plant. In this study, we identified a total of eight TIR1 genes in the Populus genome that are phylogenetically clustered into four subgroups, PtrFBL1/PtrFBL2, PtrFBL3/PtrFBL4, PtrFBL5/PtrFBL6, and PtrFBL7/PtrFBL8, representing four paralogous pairs. In addition, the gene structure and motif composition were relatively conserved in each paralogous pair and all of the PtrFBL members were localized in the nucleus. Different sets of PtrFBLs were strongly expressed in the leaves, stems, roots, cambial zones, and immature xylem of Populus. Interestingly, PtrFBL1 and 7 were expressed mainly in vascular and cambial tissues, respectively, indicating their potential but different roles in wood formation. Furthermore, Populus FBLs responded differentially upon exposure to various stresses. Finally, over-expression studies indicated a role of FBL1 in poplar stem growth and response to drought stress. Collectively, these observations lay the foundation for further investigations into the potential roles of PtrFBL genes in tree growth and development.
Collapse
Affiliation(s)
- Wenbo Shu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Yinghua Guo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- *Correspondence: Shutang Zhao, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Mengzhu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Mengzhu Lu, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
43
|
The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 2014; 9:1983-9. [PMID: 25533339 DOI: 10.1016/j.celrep.2014.11.043] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/30/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the de-etiolated 1 (DET1)-constitutive photomorphogenic 1 (COP1)-elongated hypocotyl 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.
Collapse
|
44
|
Cerný M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1641-55. [PMID: 24393122 DOI: 10.1111/pce.12270] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants must sense environmental conditions and adjust their growth and development processes accordingly, through adaptive responses regulated by various internal factors, including hormones. A key environmental factor is temperature, but temperature-sensing mechanisms are not fully understood despite intense research. We investigated proteomic responses to temperature shocks (15 min cold or heat treatments) with and without exogenous applications of cytokinin in Arabidopsis. Image and mass spectrometric analysis of the two-dimensionally separated proteins detected 139 differentially regulated spots, in which 148 proteins were identified, most of which have not been previously linked to temperature perception. More than 70% of the temperature-shock response proteins were modulated by cytokinin, mostly in a similar manner as heat shock. Data mining of previous transcriptomic datasets supported extensive interactions between temperature and cytokinin signalling. The biological significance of this finding was tested by assaying an independent growth response of Arabidopsis seedlings to heat stress: hypocotyl elongation. This response was strongly inhibited in mutants with deficiencies in cytokinin signalling or endogenous cytokinin levels. Thus, cytokinins may directly participate in heat signalling in plants. Finally, large proportions of both temperature-shock and cytokinin responsive proteomes co-localize to the chloroplast, which might therefore host a substantial proportion of the temperature response machinery.
Collapse
Affiliation(s)
- Martin Cerný
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i and CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Wigge PA. Ambient temperature signalling in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:661-6. [PMID: 24021869 DOI: 10.1016/j.pbi.2013.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 05/19/2023]
Abstract
Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field.
Collapse
Affiliation(s)
- Philip A Wigge
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge CB2 1LR, United Kingdom.
| |
Collapse
|
46
|
Karayekov E, Sellaro R, Legris M, Yanovsky MJ, Casal JJ. Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. THE PLANT CELL 2013; 25:2892-906. [PMID: 23933882 PMCID: PMC3784587 DOI: 10.1105/tpc.113.114306] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of pseudo-response regulator7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of late elongated hypocotyl (LHY) and circadian clock associated1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of phytochrome interacting FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of constitutive photomorphogenic1 (COP1) and increased the abundance of its target elongated hypocotyl5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability.
Collapse
Affiliation(s)
- Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
| | - Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
| | - Marcelo J. Yanovsky
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
| | - Jorge J. Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
- Address correspondence to
| |
Collapse
|
47
|
Bridge LJ, Franklin KA, Homer ME. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. J R Soc Interface 2013; 10:20130326. [PMID: 23720538 DOI: 10.1098/rsif.2013.0326] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity.
Collapse
Affiliation(s)
- L J Bridge
- Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
48
|
Patel D, Basu M, Hayes S, Majláth I, Hetherington FM, Tschaplinski TJ, Franklin KA. Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:980-992. [PMID: 23199031 DOI: 10.1111/tpj.12088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 05/28/2023]
Abstract
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far-red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR-mediated increases in leaf area, with reduced low R:FR-mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor-like kinase ERECTA.
Collapse
Affiliation(s)
- Dhaval Patel
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Proveniers MCG, van Zanten M. High temperature acclimation through PIF4 signaling. TRENDS IN PLANT SCIENCE 2013; 18:59-64. [PMID: 23040086 DOI: 10.1016/j.tplants.2012.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 05/03/2023]
Abstract
Ambient temperature has direct consequences for plant functioning. Many plant species are able to adjust reproductive timing and development to optimize fitness to changes in ambient temperatures. Understanding the molecular networks of how plants cope with high temperatures is essential to counteract the effects of global warming and to secure future crop productivity. Several recent papers reported that Arabidopsis thaliana responses to changing light conditions and high temperature, and their underlying signaling mechanisms are highly similar and involve the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4). In this opinion article we discuss the mechanisms of PIF4-mediated acclimation to increased ambient temperature with focus on timing of flowering and morphological acclimation.
Collapse
Affiliation(s)
- Marcel C G Proveniers
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
50
|
|