1
|
Zhong K, Xu G, Shi J, Liu P, Tu A, Wu M, Liu J, Chen J, Yang J. NbPIRIN promotes the protease activity of papain-like cysteine protease NbRD21 to inhibit Chinese wheat mosaic virus infection. PLoS Pathog 2025; 21:e1013037. [PMID: 40173196 PMCID: PMC11978040 DOI: 10.1371/journal.ppat.1013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/08/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
Papain-like cysteine proteases (PLCPs) play critical roles in regulating plant immunity against a range of pathogens and a series of cysteine protease inhibitors have been identified, however, relatively little research has been done on proteins that enhance the protease activity of PLCPs. Here, we identified a protein named NbPIRIN, the silencing of NbPIRIN promotes Chinese wheat mosaic virus (CWMV) infection, whereas the transgenic overexpression of NbPIRIN inhibits CWMV infection in Nicotiana benthamiana. Furthermore, we found that NbPIRIN interacts with papain-like cysteine protease (NbRD21) and increases its protease activity. We demonstrated that the silencing of NbRD21 significantly increased host susceptibility to CWMV infection, whereas the transgenic overexpression of NbRD21 increased host resistance. Interestingly, CWMV CRP was found to interact with both NbPIRIN and NbRD21, thus interfering with the interaction between NbPIRIN and NbRD21 and subsequently inhibiting the protease activity of NbRD21. Since wheat is the natural host of CWMV, we identified TaPIRIN and TaRD21 and found that they had functions similar to those of NbPIRIN and NbRD21 in the CWMV response. These results reveal a previously unreported offensive and defensive strategy between plants and viruses.
Collapse
Affiliation(s)
- Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Gecheng Xu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jingjing Shi
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
3
|
Clark KJ, Feng C, Anchieta AG, Van Deynze A, Correll JC, Klosterman SJ. Dual transcriptional characterization of spinach and Peronospora effusa during resistant and susceptible race-cultivar interactions. BMC Genomics 2024; 25:937. [PMID: 39375608 PMCID: PMC11457348 DOI: 10.1186/s12864-024-10809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Spinach downy mildew, caused by the obligate oomycete pathogen, Peronospora effusa remains a major concern for spinach production. Disease control is predominantly based on development of resistant spinach cultivars. However, new races and novel isolates of the pathogen continue to emerge and overcome cultivar resistance. Currently there are 20 known races of P. effusa. Here we characterized the transcriptomes of spinach, Spinacia oleracea, and P. effusa during disease progression using the spinach cultivar Viroflay, the near isogenic lines NIL1 and NIL3, and P. effusa races, R13 and R19, at 24 h post inoculation and 6 days post inoculation. A total of 54 samples were collected and subjected to sequencing and transcriptomic analysis. RESULTS Differentially expressed gene (DEG) analysis in resistant spinach interactions of R13-NIL1 and R19-NIL3 revealed spinach DEGs from protein kinase-like and P-loop containing families, which have roles in plant defense. The homologous plant defense genes included but were not limited to, receptor-like protein kinases (Spiol0281C06495, Spiol06Chr21559 and Spiol06Chr24027), a BAK1 homolog (Spiol0223C05961), genes with leucine rich repeat motifs (Spiol04Chr08771, Spiol04Chr01972, Spiol05Chr26812, Spiol04Chr11049, Spiol0084S08137, Spiol03Chr20299) and ABC-transporters (Spiol02Chr28975, Spiol06Chr22112, Spiol06Chr03998 and Spiol04Chr09723). Additionally, analysis of the expression of eight homologous to previously reported downy mildew resistance genes revealed that some are differentially expressed during resistant reactions but not during susceptible reactions. Examination of P. effusa gene expression during infection of susceptible cultivars identified expressed genes present in R19 or R13 including predicted RxLR and Crinkler effector genes that may be responsible for race-specific virulence on NIL1 or NIL3 spinach hosts, respectively. CONCLUSIONS These findings deliver foundational insight to gene expression in both spinach and P. effusa during susceptible and resistant interactions and provide a library of candidate genes for further exploration and functional analysis. Such resources will be beneficial to spinach breeding efforts for disease resistance in addition to better understanding the virulence mechanisms of this obligate pathogen.
Collapse
Affiliation(s)
- Kelley J Clark
- Department of Agriculture, Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, USA
- Seed Biotechnology Center, Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - Chunda Feng
- Department of Agriculture, Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS, USA
- Department of Plant Pathology and Entomology, University of Arkansas, Fayetteville, AR, USA
| | - Amy G Anchieta
- Department of Agriculture, Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, Department of Plant Sciences, University of California-Davis, Davis, CA, USA
| | - James C Correll
- Department of Plant Pathology and Entomology, University of Arkansas, Fayetteville, AR, USA
| | - Steven J Klosterman
- Department of Agriculture, Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, USA.
| |
Collapse
|
4
|
Kourelis J, Schuster M, Demir F, Mattinson O, Krauter S, Kahlon PS, O’Grady R, Royston S, Bravo-Cazar AL, Mooney BC, Huesgen PF, Kamoun S, van der Hoorn RAL. Bioengineering secreted proteases converts divergent Rcr3 orthologs and paralogs into extracellular immune co-receptors. THE PLANT CELL 2024; 36:3260-3276. [PMID: 38923940 PMCID: PMC11371160 DOI: 10.1093/plcell/koae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Secreted immune proteases "Required for Cladosporium resistance-3" (Rcr3) and "Phytophthora-inhibited protease-1" (Pip1) of tomato (Solanum lycopersicum) are both inhibited by Avirulence-2 (Avr2) from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signaling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signaling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signaling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Fatih Demir
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Oliver Mattinson
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Sonja Krauter
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Parvinderdeep S Kahlon
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ruby O’Grady
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Samantha Royston
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ana Lucía Bravo-Cazar
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Brian C Mooney
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Pitter F Huesgen
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| |
Collapse
|
5
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Yu J, Yuan Q, Chen C, Xu T, Jiang Y, Hu W, Liao A, Zhang J, Le X, Li H, Wang X. A root-knot nematode effector targets the Arabidopsis cysteine protease RD21A for degradation to suppress plant defense and promote parasitism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1500-1515. [PMID: 38516730 DOI: 10.1111/tpj.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.
Collapse
Affiliation(s)
- Jiarong Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qing Yuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Wenjun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Aolin Liao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xiuhu Le
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
8
|
Li Q, Shao J, Luo M, Chen D, Tang D, Shi H. BRASSINOSTEROID-SIGNALING KINASE1 associates with and is required for cysteine protease RESPONSE TO DEHYDRATION 19-mediated disease resistance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112033. [PMID: 38354753 DOI: 10.1016/j.plantsci.2024.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The receptor-like cytoplasmic kinase BRASSINOSTEROID-SIGNALING KINASE1 (BSK1) interacts with pattern recognition receptor (PRR) FLAGELLIN SENSING2 (FLS2) and positively regulates plant innate immunity in Arabidopsis thaliana. However, the molecular components involved in BSK1-mediated immune signaling remain largely unknown. To further explore the molecular mechanism underlying BSK1-mediated disease resistance, we screened two cysteine proteases, RESPONSE TO DEHYDRATION 19 (RD19) and RD19-LIKE 2 (RDL2), as BSK1-binding partners. Overexpression of RD19, but not RDL2, displayed an autoimmune phenotype, presenting programmed cell death and enhanced resistance to multiple pathogens. Interestingly, RD19-mediated immune activation depends on BSK1, as knockout of BSK1 in RD19-overexpressing plants rescued their autoimmunity and abolished the increased resistance. Furthermore, we found that BSK1 plays a positive role in maintaining RD19 protein abundance in Arabidopsis. Our results provide new insights into BSK1-mediated immune signaling and reveal a potential mechanism by which BSK1 stabilizes RD19 to promote effective immune output.
Collapse
Affiliation(s)
- Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
9
|
Liu M, Wang F, He B, Hu J, Dai Y, Chen W, Yi M, Zhang H, Ye Y, Cui Z, Zheng X, Wang P, Xing W, Zhang Z. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast. NATURE PLANTS 2024; 10:618-632. [PMID: 38409290 PMCID: PMC11162578 DOI: 10.1038/s41477-024-01642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure-function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Fangfang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Mingxi Yi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Yonghao Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Zhongli Cui
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Ping Wang
- Departments of Microbiology, Immunology and Parasitology, and Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China.
| |
Collapse
|
10
|
Kumar P, Sharma R, Kumar K. A perspective on varied fungal virulence factors causing infection in host plants. Mol Biol Rep 2024; 51:392. [PMID: 38446264 DOI: 10.1007/s11033-024-09314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Pathogenic fungi and their spores are ubiquitously present and invade the tissues of higher living plants causing pathogenesis and inevitably death or retarded growth. A group of fungi kills its hosts and consume the dead tissues (necrotrophs), while others feed on living tissue (biotrophs) or combination of two (hemibiotrophs). A number of virulent factors is used by fungal pathogens to inhabit new hosts and cause illness. Fungal pathogens develop specialized structures for complete invasion into plant organs to regulate pathogenic growth. Virulence factors like effectors, mycotoxins, cell wall degrading enzymes and organic acids have varied roles depending on the infection strategy and assist the pathogens to possess control on living tissues of the plants. Infection strategies employed by fungi generally masks the plant defense mechanism, however necrotrophs are best known to harm plant tissues with their poisonous secretion. Interestingly, the effector chemicals released by Biotrophs reduce plant cell growth and regulate plant metabolism in their advantage causing no direct death. All these virulence tools cause huge loss to the agricultural product of pre- harvest crops and post-harvest yields causing low output leading to huge economic losses. This review focusses on comprehensive study of range of virulence factors of the pathogenic fungi responsible for their invasion inside the healthy tissues of plants. The compiled information would influence researchers to design antidote against all virulence factors of fungi relevant to their area of research which could pave way for protection against plant pathogenesis.
Collapse
Affiliation(s)
- Prince Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Rajani Sharma
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Kunal Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India.
| |
Collapse
|
11
|
Yuan W, Chen X, Du K, Jiang T, Li M, Cao Y, Li X, Doehlemann G, Fan Z, Zhou T. NIa-Pro of sugarcane mosaic virus targets Corn Cysteine Protease 1 (CCP1) to undermine salicylic acid-mediated defense in maize. PLoS Pathog 2024; 20:e1012086. [PMID: 38484013 DOI: 10.1371/journal.ppat.1012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Papain-like cysteine proteases (PLCPs) play pivotal roles in plant defense against pathogen invasions. While pathogens can secrete effectors to target and inhibit PLCP activities, the roles of PLCPs in plant-virus interactions and the mechanisms through which viruses neutralize PLCP activities remain largely uncharted. Here, we demonstrate that the expression and activity of a maize PLCP CCP1 (Corn Cysteine Protease), is upregulated following sugarcane mosaic virus (SCMV) infection. Transient silencing of CCP1 led to a reduction in PLCP activities, thereby promoting SCMV infection in maize. Furthermore, the knockdown of CCP1 resulted in diminished salicylic acid (SA) levels and suppressed expression of SA-responsive pathogenesis-related genes. This suggests that CCP1 plays a role in modulating the SA signaling pathway. Interestingly, NIa-Pro, the primary protease of SCMV, was found to interact with CCP1, subsequently inhibiting its protease activity. A specific motif within NIa-Pro termed the inhibitor motif was identified as essential for its interaction with CCP1 and the suppression of its activity. We have also discovered that the key amino acids responsible for the interaction between NIa-Pro and CCP1 are crucial for the virulence of SCMV. In conclusion, our findings offer compelling evidence that SCMV undermines maize defense mechanisms through the interaction of NIa-Pro with CCP1. Together, these findings shed a new light on the mechanism(s) controlling the arms races between virus and plant.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Kaitong Du
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tong Jiang
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, China
| | - Xiangdong Li
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne, Germany
| | - Zaifeng Fan
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tao Zhou
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
King FJ, Yuen ELH, Bozkurt TO. Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:220-226. [PMID: 37999635 DOI: 10.1094/mpmi-09-23-0122-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Freddie J King
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| | | | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, SW7 2AZ, U.K
| |
Collapse
|
13
|
Li C, Luo S, Feng L, Wang Q, Cheng J, Xie J, Lin Y, Fu Y, Jiang D, Chen T. Protist ubiquitin ligase effector PbE3-2 targets cysteine protease RD21A to impede plant immunity. PLANT PHYSIOLOGY 2024; 194:1764-1778. [PMID: 38035763 DOI: 10.1093/plphys/kiad603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Clubroot, caused by the soil-borne protist pathogen Plasmodiophora brassicae, is one of the most devastating diseases of Brassica oil and vegetable crops worldwide. Understanding the pathogen infection strategy is crucial for the development of disease control. However, because of its obligate biotrophic nature, the molecular mechanism by which this pathogen promotes infection remains largely unknown. P. brassicae E3 ubiquitin ligase 2 (PbE3-2) is a Really Interesting New Gene (RING)-type E3 ubiquitin ligase in P. brassicae with E3 ligase activity in vitro. Yeast (Saccharomyces cerevisiae) invertase assay and apoplast washing fluid extraction showed that PbE3-2 harbors a functional signal peptide. Overexpression of PbE3-2 in Arabidopsis (Arabidopsis thaliana) resulted in higher susceptibility to P. brassicae and decreases in chitin-triggered reactive oxygen species burst and expression of marker genes in salicylic acid signaling. PbE3-2 interacted with and ubiquitinated host cysteine protease RESPONSIVE TO DEHYDRATION 21A (RD21A) in vitro and in vivo. Mutant plants deficient in RD21A exhibited similar susceptibility and compromised immune responses as in PbE3-2 overexpression plants. We show that PbE3-2, which targets RD21A, is an important virulence factor for P. brassicae. Two other secretory RING-type E3 ubiquitin ligases in P. brassicae performed the same function as PbE3-2 and ubiquitinated RD21A. This study reveals a substantial virulence functional role of protist E3 ubiquitin ligases and demonstrates a mechanism by which protist E3 ubiquitin ligases degrade host immune-associated cysteine proteases to impede host immunity.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shaofeng Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
14
|
Liu P, Shi C, Liu S, Lei J, Lu Q, Hu H, Ren Y, Zhang N, Sun C, Chen L, Jiang Y, Feng L, Zhang T, Zhong K, Liu J, Zhang J, Zhang Z, Sun B, Chen J, Tang Y, Chen F, Yang J. A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nat Commun 2023; 14:7773. [PMID: 38012219 PMCID: PMC10682394 DOI: 10.1038/s41467-023-43643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410152, China
| | - Bingjian Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
15
|
Sarkar D, Majumder S, Giri K, Sabnam N. In silico characterization, molecular docking, and dynamic simulation of a novel fungal cell-death suppressing effector, MoRlpA as potential cathepsin B-like cysteine protease inhibitor during rice blast infection. J Biomol Struct Dyn 2023; 41:9039-9056. [PMID: 36345772 DOI: 10.1080/07391102.2022.2139763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
The blast fungus Magnaporthe oryzae is one of the most notorious pathogens affecting rice production worldwide. The cereal killer employs a special class of small secreted proteins called effectors to manipulate and perturb the host metabolism. In turn, the host plants trigger effector-triggered immunity (ETI) via localized cell death and hypersensitive response (HR). We have identified and characterized a novel secreted effector MoRlpA from M. oryzae by extensive in silico methods. The localization studies suggested that it is exclusively secreted in the host apoplasts. Interestingly, MoRlpA interacts with a protease, cathepsin B from rice with highest affinity. The 3D structural models of both the proteins were generated. Cathepsin B-like cysteine proteases are usually involved in programmed cell death (PCD) and autophagy in plants which lead to generation of HR upon infection. Our results suggest that MoRlpA interacts with rice cathepsin B-like cysteine protease and demolish the host counter-attack by suppressing cell death and HR during an active blast infection. This was further validated by molecular docking and molecular dynamic simulation analyses. The important residues involved in the rice-blast pathogen interactions were deciphered. Overall, this research highlights stable interactions between MoRlpA-OsCathB during rice blast pathogenesis and providing an insight into how this novel RlpA protease inhibitor-cum-effector modulates the host's apoplast to invade the host tissues and establish a successful infection. Thus, this research will help to develop potential fungicide to block the binding region of MoRlpA target so that the cryptic pathogen would be recognized by the host. HIGHLIGHTSFor the first time, a novel secreted effector protein, MoRlpA has been identified and characterised from M. oryzae in silicoMoRlpA contains a rare lipoprotein A-like DPBB domain which is often an enzymatic domain in other systemsMoRlpA as an apoplastic effector interacts with the rice protease OsCathB to suppress the cell death and hypersensitive response during rice blast infectionThe three-dimensional structures of both the MoRlpA and OsCathB proteins were predictedMoRlpA-OsCathB interactions were analysed by molecular docking and molecular dynamic simulation studiesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debrup Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
16
|
Xiong Y, Zhao D, Chen S, Yuan L, Zhang D, Wang H. Deciphering the underlying immune network of the potato defense response inhibition by Phytophthora infestans nuclear effector Pi07586 through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1269959. [PMID: 37810389 PMCID: PMC10556245 DOI: 10.3389/fpls.2023.1269959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Phytophthora infestans, a highly destructive plant oomycete pathogen, is responsible for causing late blight in potatoes worldwide. To successfully infect host cells and evade immunity, P. infestans secretes various effectors into host cells and exclusively targets the host nucleus. However, the precise mechanisms by which these effectors manipulate host gene expression and reprogram defenses remain poorly understood. In this study, we focused on a nuclear-targeted effector, Pi07586, which has been implicated in immune suppression. Quantitative real-time PCR (qRT-PCR) analysis showed Pi07586 was significant up-regulation during the early stages of infection. Agrobacterium-induced transient expression revealed that Pi07586 localized in the nucleus of leaf cells. Overexpression of Pi07586 resulted in increased leaf colonization by P. infestans. RNA-seq analysis revealed that Pi07586 effectively suppressed the expression of PR-1C-like and photosynthetic antenna protein genes. Furthermore, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis indicated that Pi07586 overexpression led to a substantial decrease in abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) levels, while not affecting salicylic acid (SA) and indole-3-acetic acid (IAA) production. These findings shed new light on the modulation of plant immunity by Pi07586 and enhance our understanding of the intricate relationship between P. infestans and host plants.
Collapse
Affiliation(s)
- Yumeng Xiong
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Di Zhao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Lan Yuan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Die Zhang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| |
Collapse
|
17
|
Liu Q, Zhang Y, Dong X, Zheng L, Zhou Y, Gao F. Integrated metabolomics and transcriptomics analysis reveals that the change of apoplast metabolites contributes to adaptation to winter freezing stress in Euonymus japonicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107924. [PMID: 37541019 DOI: 10.1016/j.plaphy.2023.107924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Euonymus japonicus, a common urban street tree, can withstand winter freezing stress in temperate regions. The apoplast is the space outside the plasma membrane, and the changes of metabolites in apoplast may be involved in plant adaptation to adverse environments. To reveal the molecular mechanism underlying the winter freezing stress tolerance in E. japonicus, the changes in physiological and biochemical indexes, apoplast metabolites, and gene expression in the leaves of E. japonicus in early autumn and winter were analyzed. A total of 300 differentially accumulated metabolites were identified in apoplast fluids in E. japonicus, which were mainly related to flavone and flavonol biosynthesis, and galactose metabolism, amino acid synthesis, and unsaturated fatty acid synthesis. Integrated metabolomics and transcriptomics analysis revealed that E. japonicus adjust apoplast metabolites including flavonoids such as quercetin and kaempferol, and oligosaccharides such as raffinose and stachyose, to adapt to winter freezing stress through gene expression regulation. In addition, the regulation of ABA and SA biosynthesis and signal transduction pathways, as well as the activation of the antioxidant enzymes, also played important roles in the adaptation to winter freezing stress in E. japonicus. The present study provided essential data for understanding the molecular mechanism underlying the adaptation to winter freezing stress in E. japonicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifang Zhang
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xue Dong
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
18
|
Kiselev A, Camborde L, Carballo LO, Kaschani F, Kaiser M, van der Hoorn RAL, Gaulin E. The root pathogen Aphanomyces euteiches secretes modular proteases in pea apoplast during host infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1140101. [PMID: 37051076 PMCID: PMC10084794 DOI: 10.3389/fpls.2023.1140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.
Collapse
Affiliation(s)
- Andrei Kiselev
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
19
|
Li Y, Liu P, Mei L, Jiang G, Lv Q, Zhai W, Li C. Knockout of a papain-like cysteine protease gene OCP enhances blast resistance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1065253. [PMID: 36531367 PMCID: PMC9749133 DOI: 10.3389/fpls.2022.1065253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Papain-like cysteine proteases (PLCPs) play an important role in the immune response of plants. In Arabidopsis, several homologous genes are known to be involved in defending against pathogens. However, the effects of PLCPs on diseases that afflict rice are largely unknown. In this study, we show that a PLCP, an oryzain alpha chain precursor (OCP), the ortholog of the Arabidopsis protease RD21 (responsive to dehydration 21), participates in regulating resistance to blast disease with a shorter lesion length characterizing the knockout lines (ocp-ko), generated via CRISPR/Cas9 technology. OCP was expressed in all rice tissues and mainly located in the cytoplasm. We prove that OCP, featuring cysteine protease activity, interacts with OsRACK1A (receptor for activated C kinase 1) and OsSNAP32 (synaptosome-associated protein of 32 kD) physically in vitro and in vivo, and they co-locate in the rice cytoplasm but cannot form a ternary complex. Many genes related to plant immunity were enriched in the ocp-ko1 line whose expression levels changed significantly. The expression of jasmonic acid (JA) and ethylene (ET) biosynthesis and regulatory genes were up-regulated, while that of auxin efflux transporters was down-regulated in ocp-ko1. Therefore, OCP negatively regulates blast resistance in rice by interacting with OsRACK1A or OsSNAP32 and influencing the expression profiles of many resistance-related genes. Moreover, OCP might be the cornerstone of blast resistance by suppressing the activation of JA and ET signaling pathways as well as promoting auxin signaling pathways. Our research provides a comprehensive resource of PLCPs for rice plants in defense against pathogens that is also of potential breeding value.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Le Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianwen Lv
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Izadi S, Jalali Javaran M, Rashidi Monfared S, Castilho A. Reteplase Fc-fusions produced in N. benthamiana are able to dissolve blood clots ex vivo. PLoS One 2021; 16:e0260796. [PMID: 34847186 PMCID: PMC8631678 DOI: 10.1371/journal.pone.0260796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombolytic and fibrinolytic therapies are effective treatments to dissolve blood clots in stroke therapy. Thrombolytic drugs activate plasminogen to its cleaved form plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The FDA-approved human tissue plasminogen activator Reteplase (rPA) is a non-glycosylated protein produced in E. coli. rPA is a deletion mutant of the wild-type Alteplase that benefits from an extended plasma half-life, reduced fibrin specificity and the ability to better penetrate into blood clots. Different methods have been proposed to improve the production of rPA. Here we show for the first time the transient expression in Nicotiana benthamiana of rPA fused to the immunoglobulin fragment crystallizable (Fc) domain on an IgG1, a strategy commonly used to improve the stability of therapeutic proteins. Despite our success on the expression and purification of dimeric rPA-Fc fusions, protein instability results in high amounts of Fc-derived degradation products. We hypothesize that the "Y"- shape of dimeric Fc fusions cause steric hindrance between protein domains and leads to physical instability. Indeed, mutations of critical residues in the Fc dimerization interface allowed the expression of fully stable rPA monomeric Fc-fusions. The ability of rPA-Fc to convert plasminogen into plasmin was demonstrated by plasminogen zymography and clot lysis assay shows that rPA-Fc is able to dissolve blood clots ex vivo. Finally, we addressed concerns with the plant-specific glycosylation by modulating rPA-Fc glycosylation towards serum-like structures including α2,6-sialylated and α1,6-core fucosylated N-glycans completely devoid of plant core fucose and xylose residues.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
- Faculty of Agriculture, Department of Plant Genetics and Breeding, Tarbiat Modares University, Tehran, Iran
| | - Mokhtar Jalali Javaran
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
22
|
Kang J, Gong P, Ge M, Sadeghnezhad E, Liu Z, Zhang M, Shangguan L, Fang J. "The PLCP gene family of grapevine (Vitis vinifera L.): characterization and differential expression in response to Plasmopara Viticola". BMC PLANT BIOLOGY 2021; 21:499. [PMID: 34717550 PMCID: PMC8556938 DOI: 10.1186/s12870-021-03279-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/19/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases, are structurally related to papain. The members belonging to PLCPs family contribute to plant immunity, senescence, and defense responses in plants. The PLCP gene family has been identified in Arabidopsis, rice, soybean, and cotton. However, no systematic analysis of PLCP genes has been undertaken in grapevine. Since Plasmopara viticola as a destructive pathogen could affect immunity of grapes in the field, we considered that the members belonged to PLCPs family could play a crucial role in defensive mechanisms or programmed cell death. We aimed to evaluate the role of PLCPs in 2 different varieties of grapevines and compared the changes of their expressions with the transcriptional data in response to P. viticola. RESULTS In this study, 23 grapevine PLCP (VvPLCP) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Numerous cis-acting elements related to plant development, hormone, and stress responses were identified in the promoter of the VvPLCP genes. Phylogenetic analysis grouped the VvPLCP genes into nine subgroups. The transcription of VvPLCP in different inoculation time points and varieties indicated that VvPLCP may have vital functions in grapevine defense against Plasmopara viticola. According to transcriptome data and qPCR analysis, we observed the increasing expression levels of VvRD21-1 at 72 h after inoculation in resistant variety, inferring that it was related to grape downy mildew resistance. Meanwhile, 3 genes including VvXBCP1, VvSAG12-1, and VvALP1 showed higher expression at 24 h after pathogen inoculation in the susceptible variety and might be related to the downy mildew phenotype. We nominated these four genes to function during hypersensitive response (HR) process, inferring that these genes could be associated with downy mildew resistance in grapes. CONCLUSIONS Our results provide the reference for functional studies of PLCP gene family, and highlight its functions in grapevine defense against P. viticola. The results help us to better understand the complexity of the PLCP gene family in plant immunity and provide valuable information for future functional characterization of specific genes in grapevine.
Collapse
Affiliation(s)
- Jun Kang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ehsan Sadeghnezhad
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengwei Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
23
|
Pérez-López E, Hossain MM, Wei Y, Todd CD, Bonham-Smith PC. A clubroot pathogen effector targets cruciferous cysteine proteases to suppress plant immunity. Virulence 2021; 12:2327-2340. [PMID: 34515618 PMCID: PMC8451464 DOI: 10.1080/21505594.2021.1968684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Plant pathogen effector proteins are key to pathogen virulence. In susceptible host Brassicas, the clubroot pathogen, Plasmodiophora brassicae, induces the production of nutrient-sink root galls, at the site of infection. Among a list of 32 P. brassiae effector candidates previously reported by our group, we identified SSPbP53 as a putative apoplastic cystatin-like protein highly expressed during the secondary infection. Here we found that SSPbP53 encoding gene is conserved among several P. brassicae pathotypes and that SSPbP53 is an apoplastic protein able to directly interact with and inhibit cruciferous papain-like cysteine proteases (PLCPs), specifically Arabidopsis XYLEM CYSTEINE PEPTIDASE 1 (AtXCP1). The severity of clubroot disease is greatly reduced in the Arabidopsis xcp1 null mutant (AtΔxcp1) after infection with P. brassicae resting spores, indicating that the interaction of P. brassicae SSPbP53 with XCP1 is important to clubroot susceptibility. SSPbP53 is the first cystatin-like effector identified and characterized for a plant pathogenic protist.
Collapse
Affiliation(s)
- Edel Pérez-López
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.,Department of Plant Sciences, University Laval, Criv, Quebec City, Canada
| | | | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
24
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
25
|
Passarge A, Demir F, Green K, Depotter JRL, Scott B, Huesgen PF, Doehlemann G, Misas Villamil JC. Host apoplastic cysteine protease activity is suppressed during the mutualistic association of Lolium perenne and Epichloë festucae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3410-3426. [PMID: 33630999 DOI: 10.1093/jxb/erab088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Plants secrete various defence-related proteins into the apoplast, including proteases. Papain-like cysteine proteases (PLCPs) are central components of the plant immune system. To overcome plant immunity and successfully colonize their hosts, several plant pathogens secrete effector proteins inhibiting plant PLCPs. We hypothesized that not only pathogens, but also mutualistic microorganisms interfere with PLCP-meditated plant defences to maintain endophytic colonization with their hosts. Epichloë festucae forms mutualistic associations with cool season grasses and produces a range of secondary metabolites that protect the host against herbivores. In this study, we performed a genome-wide identification of Lolium perenne PLCPs, analysed their evolutionary relationship, and classified them into nine PLCP subfamilies. Using activity-based protein profiling, we identified four active PLCPs in the apoplast of L. perenne leaves that are inhibited during endophyte interactions. We characterized the L. perenne cystatin LpCys1 for its inhibitory capacity against ryegrass PLCPs. LpCys1 abundance is not altered during the mutualistic interaction and it mainly inhibits LpCP2. However, since the activity of other L. perenne PLCPs is not sensitive to LpCys1, we propose that additional inhibitors, likely of fungal origin, are involved in the suppression of apoplastic PLCPs during E. festucae infection.
Collapse
Affiliation(s)
- Andrea Passarge
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
| | - Kimberly Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | | | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
26
|
Godson A, van der Hoorn RAL. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3381-3394. [PMID: 33462613 PMCID: PMC8042752 DOI: 10.1093/jxb/eraa602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.
Collapse
Affiliation(s)
- Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
27
|
Wang S, Xing R, Wang Y, Shu H, Fu S, Huang J, Paulus JK, Schuster M, Saunders DGO, Win J, Vleeshouwers V, Wang Y, Zheng X, van der Hoorn RAL, Dong S. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. THE NEW PHYTOLOGIST 2021; 229:3424-3439. [PMID: 33251609 DOI: 10.1111/nph.17120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongkang Xing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shenggui Fu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Diane G O Saunders
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Vivianne Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
28
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
29
|
Xiao C, Huang M, Gao J, Wang Z, Zhang D, Zhang Y, Yan L, Yu X, Li B, Shen Y. Comparative proteomics of three Chinese potato cultivars to improve understanding of potato molecular response to late blight disease. BMC Genomics 2020; 21:880. [PMID: 33297944 PMCID: PMC7727141 DOI: 10.1186/s12864-020-07286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Late blight disease (LBD) caused by the pathogen Phytophthora infestans (PI), is the most devastating disease limiting potato (Solanum tuberosum) production globally. Currently, this disease pathogen is re-emerging and appearing in new areas at a very high intensity. A better understanding of the natural defense mechanisms against PI in different potato cultivars especially at the protein level is still lacking. Therefore, to elucidate potato proteome response to PI, we investigated changes in the proteome and leaf morphology of three potato cultivars, namely; Favorita (FA), Mira (MA), and E-malingshu N0.14 (E14) infected with PI by using the iTRAQ-based quantitative proteomics analysis. Results A total of 3306 proteins were found in the three potato genotypes, and 2044 proteins were quantified. Cluster analysis revealed MA and E14 clustered together separately from FA. The protein profile and related functions revealed that the cultivars shared a typical hypersensitive response to PI, including induction of elicitors, oxidative burst, and suppression of photosynthesis in the potato leaves. Meanwhile, MA and E14 deployed additional specific response mechanism different from FA, involving high induction of protease inhibitors, serine/threonine kinases, terpenoid, hormone signaling, and transport, which contributed to MA tolerance of LBD. Furthermore, inductions of pathogenesis-related proteins, LRR receptor-like kinases, mitogen-activated protein kinase, WRKY transcription factors, jasmonic acid, and phenolic compounds mediate E14 resistance against LBD. These proteins were confirmed at the transcription level by a quantitative polymerase chain reaction and at the translation level by western-blot. Conclusions We found several proteins that were differentially abundant among the cultivars, that includes common and cultivar specific proteins which highlighted similarities and significant differences between FA, MA, and E14 in terms of their defense response to PI. Here the specific accumulation of mitogen-activated protein kinase, Serine/threonine kinases, WRKY transcription played a positive role in E14 immunity against PI. The candidate proteins identified reported in this study will form the basis of future studies and may improve our understanding of the molecular mechanisms of late blight disease resistance in potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07286-3.
Collapse
Affiliation(s)
- Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianhua Gao
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Zhen Wang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Denghong Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Yuanxue Zhang
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Lei Yan
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China.,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yanfen Shen
- Southern Potato Research Center of China, Enshi, 445000, Hubei, China. .,Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi, 445000, Hubei, China.
| |
Collapse
|
30
|
Zhang C, Fang H, Shi X, He F, Wang R, Fan J, Bai P, Wang J, Park C, Bellizzi M, Zhou X, Wang G, Ning Y. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2354-2363. [PMID: 32415911 PMCID: PMC7589341 DOI: 10.1111/pbi.13400] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 05/25/2023]
Abstract
Bowman-Birk trypsin inhibitors (BBIs) play important roles in animal and plant immunity, but how these protease inhibitors are involved in the immune system remains unclear. Here, we show that the rice (Oryza sativa) BBI protein APIP4 is a common target of a fungal effector and an NLR receptor for innate immunity. APIP4 exhibited trypsin inhibitor activity in vitro and in vivo. Knockout of APIP4 in rice enhanced susceptibility, and overexpression of APIP4 increased resistance to the fungal pathogen Magnaporthe oryzae. The M. oryzae effector AvrPiz-t interacted with APIP4 and suppressed APIP4 trypsin inhibitor activity. By contrast, the rice NLR protein Piz-t interacted with APIP4, enhancing APIP4 transcript and protein levels, and protease inhibitor activity. Our findings reveal a novel host defence mechanism in which a host protease inhibitor targeted by a fungal pathogen is protected by an NLR receptor.
Collapse
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Jiangbo Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Pengfei Bai
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Chan‐Ho Park
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Maria Bellizzi
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH43210USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
31
|
Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Xie Q, Yan J, Chu J, Ling HQ, Li Q, Miao J, Zhao B. Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5562-5576. [PMID: 32453812 DOI: 10.1093/jxb/eraa255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Plants can be simultaneously exposed to multiple stresses. The interplay of abiotic and biotic stresses may result in synergistic or antagonistic effects on plant development and health. Temporary drought stress can stimulate plant immunity; however, the molecular mechanism of drought-induced immunity is largely unknown. In this study, we demonstrate that cysteine protease RD21A is required for drought-induced immunity. Temporarily drought-treated wild-type Arabidopsis plants became more sensitive to the bacterial pathogen-associated molecular pattern flg22, triggering stomatal closure, which resulted in increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst-DC3000). Knocking out rd21a inhibited flg22-triggered stomatal closure and compromised the drought-induced immunity. Ubiquitin E3 ligase SINAT4 interacted with RD21A and promoted its degradation in vivo. The overexpression of SINAT4 also consistently compromised the drought-induced immunity to Pst-DC3000. A bacterial type III effector, AvrRxo1, interacted with both SINAT4 and RD21A, enhancing SINAT4 activity and promoting the degradation of RD21A in vivo. Therefore, RD21A could be a positive regulator of drought-induced immunity, which could be targeted by pathogen virulence effectors during pathogenesis.
Collapse
Affiliation(s)
- Yi Liu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunru Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qiang Cheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Danyu Kong
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Qian Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jiamin Miao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- College of Grassland, Gansu Agricultural University, Lanzhou, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
32
|
Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS, Paulus JK, van der Hoorn RAL. Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nat Commun 2020; 11:4393. [PMID: 32879321 PMCID: PMC7468133 DOI: 10.1038/s41467-020-18069-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Shivani Malik
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Oliver Mattinson
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Sonja Krauter
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Parvinderdeep S Kahlon
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Judith K Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK.
| |
Collapse
|
33
|
Paulus JK, Kourelis J, Ramasubramanian S, Homma F, Godson A, Hörger AC, Hong TN, Krahn D, Ossorio Carballo L, Wang S, Win J, Smoker M, Kamoun S, Dong S, van der Hoorn RAL. Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proc Natl Acad Sci U S A 2020; 117:17409-17417. [PMID: 32616567 PMCID: PMC7382257 DOI: 10.1073/pnas.1921101117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proteolytic cascades regulate immunity and development in animals, but these cascades in plants have not yet been reported. Here we report that the extracellular immune protease Rcr3 of tomato is activated by P69B and other subtilases (SBTs), revealing a proteolytic cascade regulating extracellular immunity in solanaceous plants. Rcr3 is a secreted papain-like Cys protease (PLCP) of tomato that acts both in basal resistance against late blight disease (Phytophthora infestans) and in gene-for-gene resistance against the fungal pathogen Cladosporium fulvum (syn. Passalora fulva) Despite the prevalent model that Rcr3-like proteases can activate themselves at low pH, we found that catalytically inactive proRcr3 mutant precursors are still processed into mature mRcr3 isoforms. ProRcr3 is processed by secreted P69B and other Asp-selective SBTs in solanaceous plants, providing robust immunity through SBT redundancy. The apoplastic effector EPI1 of P. infestans can block Rcr3 activation by inhibiting SBTs, suggesting that this effector promotes virulence indirectly by preventing the activation of Rcr3(-like) immune proteases. Rcr3 activation in Nicotiana benthamiana requires a SBT from a different subfamily, indicating that extracellular proteolytic cascades have evolved convergently in solanaceous plants or are very ancient in the plant kingdom. The frequent incidence of Asp residues in the cleavage region of Rcr3-like proteases in solanaceous plants indicates that activation of immune proteases by SBTs is a general mechanism, illuminating a proteolytic cascade that provides robust apoplastic immunity.
Collapse
Affiliation(s)
- Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Selva Ramasubramanian
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Felix Homma
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Anja C Hörger
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Tram Ngoc Hong
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Daniel Krahn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Shuaishuai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom;
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
34
|
Wang Y, Wang Y, Wang Y. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants. PLANT COMMUNICATIONS 2020; 1:100085. [PMID: 33367249 PMCID: PMC7748006 DOI: 10.1016/j.xplc.2020.100085] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
Plants associate with diverse microbes that exert beneficial, neutral, or pathogenic effects inside the host. During the initial stages of invasion, the plant apoplast constitutes a hospitable environment for invading microbes, providing both water and nutrients. In response to microbial infection, a number of secreted proteins from host cells accumulate in the apoplastic space, which is related to microbial association or colonization processes. However, the molecular mechanisms underlying plant modulation of the apoplast environment and how plant-secreted proteases are involved in pathogen resistance are still poorly understood. Recently, several studies have reported the roles of apoplastic proteases in plant resistance against bacteria, fungi, and oomycetes. On the other hand, microbe-secreted proteins directly and/or indirectly inhibit host-derived apoplastic proteases to promote infection. These findings illustrate the importance of apoplastic proteases in plant-microbe interactions. Therefore, understanding the protease-mediated apoplastic battle between hosts and pathogens is of fundamental importance for understanding plant-pathogen interactions. Here, we provide an overview of plant-microbe interactions in the apoplastic space. We define the apoplast, summarize the physical and chemical properties of these structures, and discuss the roles of plant apoplastic proteases and pathogen protease inhibitors in host-microbe interactions. Challenges and future perspectives for research into protease-mediated apoplastic interactions are discussed, which may facilitate the engineering of resistant crops.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Niño MC, Kang KK, Cho YG. Genome-wide transcriptional response of papain-like cysteine protease-mediated resistance against Xanthomonas oryzae pv. oryzae in rice. PLANT CELL REPORTS 2020; 39:457-472. [PMID: 31993730 DOI: 10.1007/s00299-019-02502-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
Transgenic rice overexpressing PLCP attenuated the virulence of Xanthomonas oryzae pv. oryzae through extensive activation of transduction signal and transcription activities that orchestrate downstream responses including the biosynthesis of secondary metabolites and up-regulation of several pathogenesis-related proteins. High-throughput transcriptome investigations of plant immunity highlight the complexity of gene networks leading to incompatible interaction with the pathogen. Accumulating findings implicate papain-like cysteine proteases (PLCPs) as a central hub in plant defense. While diverse roles of PLCPs in different pathosystems have become more evident, information on gene networks and signaling pathways necessary to orchestrate downstream responses are lacking. To understand the biological significance of cysteine protease against Xanthomonas oryzae pv. oryzae, PLCP overexpression and knockout rice lines were generated. The pathogenicity test revealed the attenuation of Xanthomonas oryzae pv. oryzae race K3a virulence in transgenic lines which is ascribed to high hydrogen peroxide and free salicylic acid accumulation. Next-generation sequencing of RNA from transgenic and wild-type plants identified 1597 combined differentially expressed genes, 1269 of which were exclusively regulated in the transgenic libraries. It was found that PLCP aids rice to circumvent infection through the extensive activation of transduction signal and transcription factors that orchestrate downstream responses, including up-regulation of multiple pathogenesis-related proteins and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Marjohn C Niño
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Center for Studies in Biotechnology, Cebu Technological University Barili Campus, 6036, Barili, Cebu, Philippines
| | - Kwon Kyoo Kang
- Department of Horticulture, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
36
|
Zhang Q, Li W, Yang J, Xu J, Meng Y, Shan W. Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:541-554. [PMID: 32077241 PMCID: PMC7060141 DOI: 10.1111/mpp.12915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiapeng Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
37
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
38
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
39
|
Jutras PV, Grosse‐Holz F, Kaschani F, Kaiser M, Michaud D, van der Hoorn RA. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1670-1678. [PMID: 30742730 PMCID: PMC6662110 DOI: 10.1111/pbi.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Co-expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity-based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain-like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar-processing enzyme and serine hydrolase activity. A robust concentration-dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin-PLCP interactions. Activity-based proteomics revealed that nine different Cathepsin-L/-F-like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin-B/-H-like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin-containing proteases from the Resistant-to-Desiccation-21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Department of Plant SciencesPlant Chemetics LaboratoryUniversity of OxfordOxfordUK
| | | | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuébecCanada
| | | |
Collapse
|
40
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
41
|
Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR, Hewezi T, Paulus J, van der Hoorn RA, Grundler FM, Siddique S, Lionetti V, Zabotina OA, Baum TJ. Re-targeting of a plant defense protease by a cyst nematode effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1000-1014. [PMID: 30801789 DOI: 10.1111/tpj.14295] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 05/29/2023]
Abstract
Plants mount defense responses during pathogen attacks, and robust host defense suppression by pathogen effector proteins is essential for infection success. 4E02 is an effector of the sugar beet cyst nematode Heterodera schachtii. Arabidopsis thaliana lines expressing the effector-coding sequence showed altered expression levels of defense response genes, as well as higher susceptibility to both the biotroph H. schachtii and the necrotroph Botrytis cinerea, indicating a potential suppression of defenses by 4E02. Yeast two-hybrid analyses showed that 4E02 targets A. thaliana vacuolar papain-like cysteine protease (PLCP) 'Responsive to Dehydration 21A' (RD21A), which has been shown to function in the plant defense response. Activity-based protein profiling analyses documented that the in planta presence of 4E02 does not impede enzymatic activity of RD21A. Instead, 4E02 mediates a re-localization of this protease from the vacuole to the nucleus and cytoplasm, which is likely to prevent the protease from performing its defense function and at the same time, brings it in contact with novel substrates. Yeast two-hybrid analyses showed that RD21A interacts with multiple host proteins including enzymes involved in defense responses as well as carbohydrate metabolism. In support of a role in carbohydrate metabolism of RD21A after its effector-mediated re-localization, we observed cell wall compositional changes in 4E02 expressing A. thaliana lines. Collectively, our study shows that 4E02 removes RD21A from its defense-inducing pathway and repurposes this enzyme by targeting the active protease to different cell compartments.
Collapse
Affiliation(s)
- Gennady V Pogorelko
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - William B Rutter
- USDA-ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Marion Hütten
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Judith Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Florian Mw Grundler
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185, Rome, Italy
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
42
|
Judelson HS, Ah-Fong AMV. Exchanges at the Plant-Oomycete Interface That Influence Disease. PLANT PHYSIOLOGY 2019; 179:1198-1211. [PMID: 30538168 PMCID: PMC6446794 DOI: 10.1104/pp.18.00979] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Molecular exchanges between plants and biotrophic, hemibiotrophic, and necrotrophic oomycetes affect disease progression.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| |
Collapse
|
43
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
44
|
Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X, Zhu L. Genome-Wide Identification of Papain-Like Cysteine Proteases in Gossypium hirsutum and Functional Characterization in Response to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:134. [PMID: 30842780 PMCID: PMC6391353 DOI: 10.3389/fpls.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 05/12/2023]
Abstract
Cotton, a natural fiber producing crop of huge importance, is often prone to attack of Verticillium dahliae. Papain-like cysteine proteases (PLCPs) constitute a large family in plants and were proposed to involve in plant defense against pathogen attack in a number of studies. However, there is no detailed characterization of PLCP genes in cotton against infection of V. dahliae. In this study, we carried out a genome-wide analysis in cotton and identified seventy-eight PLCPs, which were divided into nine subfamilies based on their evolution phylogeny: RD21 (responsive to desiccation 21), CEP (cysteine endopeptidase), XCP (xylem cysteine peptidase), XBCP3 (xylem bark cysteine peptidase 3), THI, SAG12 (senescence-associated gene 12), RD19 (responsive to desiccation 19), ALP (aleurain-like protease) and CTB (cathepsin B-like). Genes in each subfamily exhibit a similar structure and motif composition. The expression patterns of these genes in different organs were examined, and subfamily RD21 was the most abundant in these families. Expression profiles under abiotic stress showed that thirty-five PLCP genes were induced by multiple stresses. Further transcriptome analysis showed that sixteen PLCP genes were up-regulated in response to V. dahliae in cotton. Among those, GhRD21-7 showed a higher transcription level than most other PLCP genes. Additionally, over-expression of GhRD21-7 led to enhanced resistance and RNAi lines were more susceptible to V. dahliae in cotton. Our results provide valuable information for future functional genomic studies of PLCP gene family in cotton.
Collapse
|
45
|
Schulze Hüynck J, Kaschani F, van der Linde K, Ziemann S, Müller AN, Colby T, Kaiser M, Misas Villamil JC, Doehlemann G. Proteases Underground: Analysis of the Maize Root Apoplast Identifies Organ Specific Papain-Like Cysteine Protease Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:473. [PMID: 31114592 PMCID: PMC6503450 DOI: 10.3389/fpls.2019.00473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/28/2019] [Indexed: 05/14/2023]
Abstract
Plant proteases are key regulators of plant cell processes such as seed development, immune responses, senescence and programmed cell death (PCD). Apoplastic papain-like cysteine proteases (PL) are hubs in plant-microbe interactions and play an important role during abiotic stresses. The apoplast is a crucial interface for the interaction between plant and microbes. So far, apoplastic maize PL and their function have been mostly described for aerial parts. In this study, we focused on apoplastic PLCPs in the roots of maize plants. We have analyzed the phylogeny of maize PLCPs and investigated their protein abundance after salicylic acid (SA) treatment. Using activity-based protein profiling (ABPP) we have identified a novel root-specific PLCP belonging to the RD21-like subfamily, as well as three SA activated PLCPs. The root specific PLCP CP1C shares sequence and structural similarities to known CP1-like proteases. Biochemical analysis of recombinant CP1C revealed different substrate specificities and inhibitor affinities compared to the related proteases. This study characterized a root-specific PLCP and identifies differences between the SA-dependent activation of PLCPs in roots and leaves.
Collapse
Affiliation(s)
- Jan Schulze Hüynck
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
| | | | | | - Sebastian Ziemann
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
| | - André N. Müller
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Colby
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Markus Kaiser
- Institute of Chemical Biology, University of Duisburg-Essen, Essen, Germany
| | - Johana C. Misas Villamil
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
- *Correspondence: Johana C. Misas Villamil, Gunther Doehlemann,
| | - Gunther Doehlemann
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
- *Correspondence: Johana C. Misas Villamil, Gunther Doehlemann,
| |
Collapse
|
46
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
47
|
Sánchez-Vallet A, Fouché S, Fudal I, Hartmann FE, Soyer JL, Tellier A, Croll D. The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:21-40. [PMID: 29768136 DOI: 10.1146/annurev-phyto-080516-035303] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Filamentous pathogens, including fungi and oomycetes, pose major threats to global food security. Crop pathogens cause damage by secreting effectors that manipulate the host to the pathogen's advantage. Genes encoding such effectors are among the most rapidly evolving genes in pathogen genomes. Here, we review how the major characteristics of the emergence, function, and regulation of effector genes are tightly linked to the genomic compartments where these genes are located in pathogen genomes. The presence of repetitive elements in these compartments is associated with elevated rates of point mutations and sequence rearrangements with a major impact on effector diversification. The expression of many effectors converges on an epigenetic control mediated by the presence of repetitive elements. Population genomics analyses showed that rapidly evolving pathogens show high rates of turnover at effector loci and display a mosaic in effector presence-absence polymorphism among strains. We conclude that effective pathogen containment strategies require a thorough understanding of the effector genome biology and the pathogen's potential for rapid adaptation.
Collapse
Affiliation(s)
- Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, AgroParisTech, Université Paris-Sud, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
48
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
49
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
50
|
Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P, Shi J, Wang Y, Ancona V, van der Hoorn RAL, Wang N, Coaker G, Ma W. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat Commun 2018; 9:1718. [PMID: 29712915 PMCID: PMC5928222 DOI: 10.1038/s41467-018-04140-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/06/2018] [Indexed: 01/29/2023] Open
Abstract
The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.
Collapse
Affiliation(s)
- Kelley Clark
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | | | - Simon Schwizer
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, 33850, FL, USA
| | - Eva Hawara
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, 95616, CA, USA
| | - Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | - Liping Zeng
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University, Weslaco, 78599, TX, USA
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, 92521, CA, USA
| | - Jinxia Shi
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, 92521, CA, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University, Weslaco, 78599, TX, USA
| | | | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, 33850, FL, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, 95616, CA, USA.
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA. .,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|