1
|
Liao TJ, Xiong HY, Sakuma S, Duan RJ. The development of hooded awns in barley: From ectopic Kap1 expression to yield potential. Gene 2025; 934:149036. [PMID: 39447708 DOI: 10.1016/j.gene.2024.149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn. However, in the lemma primordia of KNOX3 mutant (hooded awn), cells divide at various orientations without elongating, and they form hooded awns. This phenomenon is due to the upregulation of KNOX3 expression via insertion of a tandem direct duplication of 305 bp in the intron IV. Here, we summarize the development of barley hooded awn research in the following two aspects: on the one hand, the morphology, development of hooded awns, and the expression regulation of the KNOX3 gene. The latter includes ectopic expression of the KNOX3 gene, gene interactions among awn-related genes, the regulatory relationship between class I KNOX genes and hormones, as well as the influence of abiotic stresses. On the other hand, the potential performance of hooded awns in barley for yield breeding is discussed. Hooded awns have potential application value in forage, which could compensate for the disadvantage of the long straight awn in the barley straw used for feed in modern cultivars. In addition, the hooded awn produces ectopic meristems to develop complete florets, which is an interesting question and helps to understand the development, adaptation, and evolution of plant floral organs.
Collapse
Affiliation(s)
- Tian-Jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hui-Yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, 680-8553, Tottori, Japan
| | - Rui-Jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
2
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
3
|
Liao TJ, Huang T, Xiong HY, Duo JC, Ma JZ, Du MY, Duan RJ. Genome-wide identification, characterization, and evolutionary analysis of the barley TALE gene family and its expression profiles in response to exogenous hormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1421702. [PMID: 38993938 PMCID: PMC11236544 DOI: 10.3389/fpls.2024.1421702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Three-amino-loop-extension (TALE) family belongs to the homeobox gene superfamily and occurs widely in plants, playing a crucial role in regulating their growth and development. Currently, genome-wide analysis of the TALE family has been completed in many plants. However, the systematic identification and hormone response analysis of the TALE gene family in barley are still lacking. In this study, 21 TALE candidate genes were identified in barley, which can be divided into KNOX and BELL subfamilies. Barley TALE members in the same subfamily of the phylogenetic tree have analogically conserved motifs and gene structures, and segmental duplications are largely responsible for the expansion of the HvTALE family. Analysis of TALE orthologous and homologous gene pairs indicated that the HvTALE family has mainly undergone purifying selective pressure. Through spatial structure simulation, HvKNOX5-HvKNOX6 and HvKNOX5-HvBELL11 complexes are all formed through hydrogen bonding sites on both the KNOX2 and homeodomain (HD) domains of HvKNOX5, which may be essential for protein interactions among the HvTALE family members. Expression pattern analyses reveal the potential involvement of most HvTALE genes in responses to exogenous hormones. These results will lay the foundation for regulation and function analyses of the barley TALE gene family in plant growth and development by hormone regulation.
Collapse
Affiliation(s)
- Tian-jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Tao Huang
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Hui-yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jie-cuo Duo
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jian-zhi Ma
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Ming-yang Du
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Rui-jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
4
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
5
|
Peirats-Llobet M, Yi C, Liew L, Berkowitz O, Narsai R, Lewsey M, Whelan J. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 2023; 51:7798-7819. [PMID: 37351575 PMCID: PMC10450182 DOI: 10.1093/nar/gkad521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Research Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East Haizhou Road, Haining, Jiaxing, Zhejiang 314400, China
| |
Collapse
|
6
|
Yi W, Luan A, Liu C, Wu J, Zhang W, Zhong Z, Wang Z, Yang M, Chen C, He Y. Genome-wide identification, phylogeny, and expression analysis of GRF transcription factors in pineapple ( Ananas comosus). FRONTIERS IN PLANT SCIENCE 2023; 14:1159223. [PMID: 37123828 PMCID: PMC10140365 DOI: 10.3389/fpls.2023.1159223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Background Pineapple is the only commercially grown fruit crop in the Bromeliaceae family and has significant agricultural, industrial, economic, and ornamental value. GRF (growth-regulating factor) proteins are important transcription factors that have evolved in seed plants (embryophytes). They contain two conserved domains, QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys), and regulate multiple aspects of plant growth and stress response, including floral organ development, leaf growth, and hormone responses. The GRF family has been characterized in a number of plant species, but little is known about this family in pineapple and other bromeliads. Main discoveries We identified eight GRF transcription factor genes in pineapple, and phylogenetic analysis placed them into five subfamilies (I, III, IV, V, VI). Segmental duplication appeared to be the major contributor to expansion of the AcGRF family, and the family has undergone strong purifying selection during evolution. Relative to that of other gene families, the gene structure of the GRF family showed less conservation. Analysis of promoter cis-elements suggested that AcGRF genes are widely involved in plant growth and development. Transcriptome data and qRT-PCR results showed that, with the exception of AcGRF5, the AcGRFs were preferentially expressed in the early stage of floral organ development and AcGRF2 was strongly expressed in ovules. Gibberellin treatment significantly induced AcGRF7/8 expression, suggesting that these two genes may be involved in the molecular regulatory pathway by which gibberellin promotes pineapple fruit expansion. Conclusion AcGRF proteins appear to play a role in the regulation of floral organ development and the response to gibberellin. The information reported here provides a foundation for further study of the functions of AcGRF genes and the traits they regulate.
Collapse
Affiliation(s)
- Wen Yi
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jing Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziqin Zhong
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhengpeng Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingzhe Yang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chengjie Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Liu Y, Guo P, Wang J, Xu ZY. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1122-1145. [PMID: 36582168 DOI: 10.1111/tpj.16090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Zuo X, Xiang W, Li K, Liu Y, Zheng S, Khan A, Zhang D. MdGRF11, a growth-regulating factor, participates in the regulation of flowering time and interacts with MdTFL1/MdFT1 in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111339. [PMID: 35696931 DOI: 10.1016/j.plantsci.2022.111339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
GROWTH-REGULATING FACTORs (GRFs) are plant-specific transcription factors that play important roles in regulating plant growth, development, and tolerance to stresses. However, there has been no in-depth research on the GRF genes and their roles in apple. A total of sixteen GRF genes were identified in the apple genome (GDDH13 V1.1), that expressed differentially in various tissues, in which the highest expression levels were observed particularly in shoot tips and apical buds. Among MdGRFs, the MdGRF11 was cloned and further investigated. Overexpression of the MdGRF11 in Arabidopsis plants promoted flowering, root elongation and leaf size. Further investigation indicated that MdGRF11 interacts with key flower genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1). The transient assays demonstrated that MdGRF11 represses the expression of knotted-like homeobox (MdKNOX19). Furthermore, MdTFL1 can compete with MdFT1 for complex formation with MdGRF11 to regulate the expression of MdKNOX19. Taken together, our results suggest that MdGRF11 protein is involved in fine-tuning of the floral transition possibly through interaction with the MdFT1 and MdTFL1 proteins.
Collapse
Affiliation(s)
- Xiya Zuo
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Wen Xiang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Ke Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yu Liu
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Shangong Zheng
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling 712100, China.
| |
Collapse
|
9
|
Liu C, Huang R, Wang L, Liang G. Functional Identification of EjGIF1 in Arabidopsis and Preliminary Analysis of Its Regulatory Mechanisms in the Formation of Triploid Loquat Leaf Heterosis. FRONTIERS IN PLANT SCIENCE 2021; 11:612055. [PMID: 33510754 PMCID: PMC7835675 DOI: 10.3389/fpls.2020.612055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Although several results have been obtained in triploid loquat heterosis (i.e., leaf size of triploid loquat) studies in the past years, the underlying mechanisms of the heterosis are still largely unknown, especially the regulation effects of one specific gene on the corresponding morphology heterosis. In this study, we sought to further illustrate the regulatory mechanisms of one specific gene on the leaf size heterosis of triploid loquats. A leaf size development-related gene (EjGIF1) and its promoter were successfully cloned. Ectopic expression of EjGIF1 in Arabidopsis showed that the leaf size of transgenic plantlets was larger than that of WTs, and the transgenic plantlets had more leaves than WTs. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression level of EjGIF1 showed an AHP expression pattern in most of the hybrids, and this was consistent with our previous phenotype observations. Structure analysis of EjGIF1 promoter showed that there were significantly more light-responsive elements than other elements. To further ascertain the regulatory mechanisms of EjGIF1 on triploid loquat heterosis, the methylation levels of EjGIF1 promoter in different ploidy loquats were analyzed by using bisulfite sequencing. Surprisingly, the total methylation levels of EjGIF1 promoter in triploid showed a decreasing trend compared with the mid-parent value (MPV), and this was also consistent with the qRT-PCR results of EjGIF1. Taken together, our results suggested that EjGIF1 played an important role in promoting leaf size development of loquat, and demethylation of EjGIF1 promoter in triploid loquats caused EjGIF1 to exhibit over-dominance expression pattern and then further to promote leaf heterosis formation. In conclusion, EjGIF1 played an important role in the formation of triploid loquat leaf size heterosis.
Collapse
Affiliation(s)
- Chao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renwei Huang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Lingli Wang
- Technical Advice Station of Economic Crop, Chongqing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
11
|
Singh S, Geeta R, Das S. Comparative sequence analysis across Brassicaceae, regulatory diversity in KCS5 and KCS6 homologs from Arabidopsis thaliana and Brassica juncea, and intronic fragment as a negative transcriptional regulator. Gene Expr Patterns 2020; 38:119146. [PMID: 32947048 DOI: 10.1016/j.gep.2020.119146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022]
Abstract
Intra- and epicuticular-waxes primarily comprising of very long chain aliphatic lipid (VLCFA), terpenoids and secondary metabolites such as sterol and flavonoids played a major role in successful colonization of terrestrial ecosystem by aquatic plants and are thus considered as a key evolutionary innovation. The key rate limiting step of Fatty Acid (FA) biosynthesis of condensation/elongation are catalyzed by the enzyme, β-ketoacyl coenzyme A synthase (KCS), part of FAE (Fatty Acid Elongase) complex. KCS6 has been shown to be responsible for elongation using C22 fatty acid as substrate and is considered essential for synthesis of VLCFA for cuticular waxes. Earlier studies have established KCS5 as a close paralog of KCS6 in Arabidopsis thaliana, albeit with non-redundant function. We subsequently established segmental duplication responsible for origin of KCS6-KCS5 paralogy which is exclusive to Brassicaceae. In the present study, we aim to understand impact of duplication on regulatory diversification and evolution, through sequence and functional analysis of cis-regulatory element of KCS5 and KCS6. High level of sequence variation leading to conservation of only the proximal end of the promoter corresponding to the core promoter was observed among Brassicaceae members; such high diversity was also revealed when sliding window analysis revealed only two to three phylogenetic footprints. Profiling of transcription factor binding sites (TFBS) across Brassicaceae shows presence of light, hormone and stress responsive motifs; a few motifs involved in tissue specific expression (Skn-1; endosperm) were also detected. Functional characterization using transcriptional fusion constructs revealed regulatory diversification when promoter activity of homologs from A. thaliana and Brassica juncea were compared. When subjected to 5-Azacytidine, altered promoter activity was observed, implying role of DNA methylation in transcriptional regulation. Finally, investigation of the role of an 87 bp fragment from first intron that is retained in a splice variant, revealed it to be a transcriptional repressor. This is a first report on comparative sequence and functional analysis of transcriptional regulation of KCS5 and KCS6; further studies are required before manipulation of cuticular waxes as a strategy for mitigating stress.
Collapse
Affiliation(s)
- Swati Singh
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
12
|
Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MAB, Saibo NJM, Turchetto-Zolet AC, Margis-Pinheiro M. Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol 2020; 43:20200080. [PMID: 32706846 PMCID: PMC7380329 DOI: 10.1590/1678-4685-gmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Abstract - Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.
Collapse
Affiliation(s)
- Leila Spagnolo Fonini
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Pedro M Barros
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Caroline Cabreira-Cagliari
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Affonso Begossi Martins
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Nelson J M Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Lu Y, Meng Y, Zeng J, Luo Y, Feng Z, Bian L, Gao S. Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice. BMC PLANT BIOLOGY 2020; 20:200. [PMID: 32384927 PMCID: PMC7206744 DOI: 10.1186/s12870-020-02417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The interactions between Growth-regulating factors (GRFs) and GRF-Interacting Factors (GIFs) have been well demonstrated but it remains unclear whether different combinations of GRF and GIF play distinctive roles in the pathway downstream of the complex. RESULTS Here we showed that OsGRF1 and OsGIF1 synergistically regulate leaf growth in rice. The expression of OsGIF1 emerged in all tissues with much higher level while that of OsGRF1 appeared preferentially only in the stem tips containing shoot apical meristem (SAM) and younger leaves containing leaf primordium. Overexpression of an OsmiR396-resistant version of mOsGRF1 resulted in expanded leaves due to increased cell proliferation while knockdown of OsGRF1 displayed an opposite phenotype. Overexpression of OsGIF1 did not exhibit new phenotype while knockdown lines displayed pleiotropic growth defects including shrunken leaves. The crossed lines of mOsGRF1 overexpression and OsGIF1 knockdown still exhibited shrunk leaves, indicating that OsGIF1 is indispensable in leaf growth regulated by OsGRF1. The expression of OsGRF1 could be upregulated by gibberellins (GAs) and downregulated by various stresses while that of OsGIF1 could not. CONCLUSION Our results suggest that OsGIF1 is in an excessive expression in various tissues and play roles in various aspects of growth while OsGRF1 may specifically involve in leaf growth through titrating OsGIF1. Both internal and external conditions impacting leaf growth are likely via way of regulating the expression of OsGRF1.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jia Zeng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Ying Luo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Suyun Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
14
|
Liebsch D, Palatnik JF. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:31-42. [PMID: 31726426 DOI: 10.1016/j.pbi.2019.09.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 05/23/2023]
Abstract
Multicellular life relies on complex regulatory mechanisms ensuring proper growth and development. In plants, these mechanisms construct a body plan that is both reproducible, and highly flexible for adaptation to different environmental conditions. A crucial regulatory module - consisting of microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS (GIFs) - has been shown to control growth of multiple tissues and organs in a variety of species. Especially in the last few years, research has expanded our knowledge of miR396-GRF/GIF function to crops, where it affects agronomically important traits, and highlighted its role in coordinating growth with endogenous and environmental factors. Special properties make the miR396-GRF/GIF system highly efficient in growth regulation and a promising target for improving plant yield.
Collapse
Affiliation(s)
- Daniela Liebsch
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina.
| | - Javier F Palatnik
- IBR (Instituto de Biologia Molecular y Celular de Rosario), UNR/CONICET, Ocampo y Esmeralda s/n, 2000 Rosario, Argentina; Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
15
|
Jia P, Zhang C, Xing L, Li Y, Shah K, Zuo X, Zhang D, An N, Han M, Ren X. Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. FRONTIERS IN PLANT SCIENCE 2020; 11:128. [PMID: 32153621 PMCID: PMC7047289 DOI: 10.3389/fpls.2020.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 05/11/2023]
Abstract
Knotted1-like Homeobox (KNOX) proteins play important roles in regulating plant growth, development, and other biological processes. However, little information is available on the KNOX gene family in apple (Malus domestica Borkh.). In this study, 22 KNOX genes were identified in the apple genome. The gene structure, protein characteristics, and promoter region were characterized. The MdKNOX family members were divided into three classes based on their phylogenetic relationships. Quantitative real-time PCR analysis revealed that the majority of MdKNOX genes exhibited strongly preferential expression in buds and were significantly up-regulated during the flower induction period. The transcript levels of MdKNOX genes were responsive to treatments with flowering- and stress-related hormones. The putative upstream regulation factor MdGRF could directly bind to the promoter of MdKNOX15 and MdKNOX19, and inhibit their transcriptional activities, which were confirmed by yeast one-hybrid and dual-luciferase assays. The results provide an important foundation for future analysis of the regulation and functions of the MdKNOX gene family.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiya Zuo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| |
Collapse
|
16
|
Loh SC, Othman AS, Veera Singham G. Identification and characterization of jasmonic acid- and linolenic acid-mediated transcriptional regulation of secondary laticifer differentiation in Hevea brasiliensis. Sci Rep 2019; 9:14296. [PMID: 31586098 PMCID: PMC6778104 DOI: 10.1038/s41598-019-50800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.
Collapse
Affiliation(s)
- Swee Cheng Loh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Ahmad Sofiman Othman
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
17
|
Abstract
GROWTH-REGULATING FACTORs (GRFs) are sequence-specific DNA-binding transcription factors that regulate various aspects of plant growth and development. GRF proteins interact with a transcription cofactor, GRF-INTERACTING FACTOR (GIF), to form a functional transcriptional complex. For its activities, the GRF-GIF duo requires the SWITCH2/SUCROSE NONFERMENTING2 chromatin remodeling complex. One of the most conspicuous roles of the duo is conferring the meristematic potential on the proliferative and formative cells during organogenesis. GRF expression is post-transcriptionally down-regulated by microRNA396 (miR396), thus constructing the GRF-GIF-miR396 module and fine-tuning the duo’s action. Since the last comprehensive review articles were published over three years ago, many studies have added further insight into its action and elucidated new biological roles. The current review highlights recent advances in our understanding of how the GRF-GIF-miR396 module regulates plant growth and development. In addition, I revise the previous view on the evolutionary origin of the GRF gene family.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, School of Biological Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Yuan S, Zhao J, Li Z, Hu Q, Yuan N, Zhou M, Xia X, Noorai R, Saski C, Li S, Luo H. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. HORTICULTURE RESEARCH 2019; 6:48. [PMID: 31069081 PMCID: PMC6491569 DOI: 10.1038/s41438-019-0130-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/05/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
The conserved microRNA396 (miR396) is involved in plant growth, development, and abiotic stress response in multiple plant species through regulating its targets, Growth Regulating Factor (GRF) transcription factor genes. However, the role of miR396 has not yet been characterized in perennial monocot species. In addition, the molecular mechanism of miR396-mediated abiotic stress response remains unclear. To elucidate the role of miR396 in perennial monocot species, we generated transgenic creeping bentgrass (Agrostis stolonifera) overexpressing Osa-miR396c, a rice miRNA396 gene. Transgenic plants exhibited altered development, including less shoot and root biomass, shorter internodes, smaller leaf area, fewer leaf veins, and epidermis cells per unit area than those of WT controls. In addition, transgenics showed enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na+ exclusion during high salinity exposure. Four potential targets of miR396 were identified in creeping bentgrass and up-regulated in response to salt stress. RNA-seq analysis indicates that miR396-mediated salt stress tolerance requires the coordination of stress-related functional proteins (antioxidant enzymes and Na+/H+ antiporter) and regulatory proteins (transcription factors and protein kinases). This study establishes a miR396-associated molecular pathway to connect the upstream regulatory and downstream functional elements, and provides insight into the miRNA-mediated regulatory networks.
Collapse
Affiliation(s)
- Shuangrong Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Junming Zhao
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan China
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Xiaoxia Xia
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Rooksie Noorai
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Christopher Saski
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| |
Collapse
|
19
|
Koyama T. A hidden link between leaf development and senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:105-110. [PMID: 30348308 DOI: 10.1016/j.plantsci.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Leaf senescence is the final step of leaf development and is usually accompanied by visible color changes from green to yellow or brown. Unlike the senescence of the whole body of animals and unicellular organisms, which is often associated with death, leaf senescence in plants requires highly integrative processes towards cell death with nutrient recycling and storage. Since leaf senescence plays pivotal roles in the production of plant biomass and grain yield, the mechanisms of degradation and relocation of macromolecules as well as the regulation of signaling and biosynthetic pathways have received much attention. The importance of the plant hormone ethylene in the onset of leaf senescence has been clearly documented. However, research has increasingly demonstrated that the function of ethylene in the regulation of leaf senescence is dependent on leaf development. This review raises the issue of how ethylene requires developmental regulators and focuses on the developmental aspect of leaf senescence. It also emphasizes the remarkable impact that developmental regulators have on regulating the onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Bioorganic Research Institute Suntory Foundation for Life Sciences, Japan.
| |
Collapse
|
20
|
Schneider HM, Wojciechowski T, Postma JA, Brown KM, Lynch JP. Ethylene modulates root cortical senescence in barley. ANNALS OF BOTANY 2018; 122:95-105. [PMID: 29897390 PMCID: PMC6025243 DOI: 10.1093/aob/mcy059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Background and Aims Root cortical senescence (RCS) is a poorly understood phenomenon with implications for adaptation to edaphic stress. It was hypothesized that RCS in barley (Hordeum vulgare L.) is (1) accelerated by exogenous ethylene exposure; (2) accompanied by differential expression of ethylene synthesis and signalling genes; and (3) associated with differential expression of programmed cell death (PCD) genes. Methods Gene expression of root segments from four barley genotypes with and without RCS was evaluated using quantitative real-time PCR (qRT-PCR). The progression of RCS was manipulated with root zone ethylene and ethylene inhibitor applications. Key Results The results demonstrate that ethylene modulates RCS. Four genes related to ethylene synthesis and signalling were upregulated during RCS in optimal, low nitrogen and low phosphorus nutrient regimes. RCS was accelerated by root zone ethylene treatment, and this effect was reversed by an ethylene action inhibitor. Roots treated with exogenous ethylene had 35 and 46 % more cortical senescence compared with the control aeration treatment in seminal and nodal roots, respectively. RCS was correlated with expression of two genes related to programmed cell death (PCD). Conclusions The development of RCS is similar to root cortical aerenchyma formation with respect to ethylene modulation of the PCD process.
Collapse
Affiliation(s)
- Hannah M Schneider
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Tobias Wojciechowski
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
| | - Johannes A Postma
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften Pflanzenwissenschaften (IBG-2), Jülich, Germany
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
21
|
|
22
|
Barley Developmental Mutants: The High Road to Understand the Cereal Spike Morphology. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2134-2146. [PMID: 27107174 PMCID: PMC5095787 DOI: 10.1111/pbi.12569] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 05/18/2023]
Abstract
Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth-regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF-interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c-OsGRF4-OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement.
Collapse
Affiliation(s)
- Shuangcheng Li
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Fengyan Gao
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Kailong Xie
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Xiuhong Zeng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Ye Cao
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jing Zeng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhongshan He
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yun Ren
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Wenbo Li
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Lingxia Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
24
|
Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Do Choi Y, Kim JK. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance. PLANT PHYSIOLOGY 2016; 172:575-88. [PMID: 27382137 PMCID: PMC5074616 DOI: 10.1104/pp.16.00379] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 05/18/2023]
Abstract
Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis. Overexpression of OsERF71, either throughout the entire plant or specifically in roots, resulted in a drought resistance phenotype at the vegetative growth stage, indicating that overexpression in roots was sufficient to confer drought resistance. The root-specific overexpression was more effective in conferring drought resistance at the reproductive stage, such that grain yield was increased by 23% to 42% over wild-type plants or whole-body overexpressing transgenic lines under drought conditions. OsERF71 overexpression in roots elevated the expression levels of genes related to cell wall loosening and lignin biosynthetic genes, which correlated with changes in root structure, the formation of enlarged aerenchyma, and high lignification levels. Furthermore, OsERF71 was found to directly bind to the promoter of OsCINNAMOYL-COENZYME A REDUCTASE1, a key gene in lignin biosynthesis. These results indicate that the OsERF71-mediated drought resistance pathway recruits factors involved in cell wall modification to enable root morphological adaptations, thereby providing a mechanism for enhancing drought resistance.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Geupil Jang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Jin Seo Jeong
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Sun-Hwa Ha
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Yang Do Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea (D.-K.L., H.J., J.S.J., Y.S.K., J.-K.K.);Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea (G.J., Y.D.C.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea (S.-H.H.)
| |
Collapse
|
25
|
Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K, Corbineau F, Holdsworth MJ. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:40-50. [PMID: 25657015 PMCID: PMC5098238 DOI: 10.1111/pbi.12334] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 05/20/2023]
Abstract
Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Daniel J Gibbs
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Miriam Szurman-Zubrzycka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Arnd Korn
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Julietta Marquez
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - John King
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | | | - Francoise Corbineau
- Seed Biology Laboratory, UMR 7622 CNRS-UPMC, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
26
|
Zeng JK, Li X, Xu Q, Chen JY, Yin XR, Ferguson IB, Chen KS. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1325-34. [PMID: 25778106 DOI: 10.1111/pbi.12351] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/21/2014] [Accepted: 01/18/2015] [Indexed: 05/04/2023]
Abstract
Lignin biosynthesis is regulated by many transcription factors, such as those of the MYB and NAC families. However, the roles of AP2/ERF transcription factors in lignin biosynthesis have been rarely investigated. Eighteen EjAP2/ERF genes were isolated from loquat fruit (Eriobotrya japonica), which undergoes postharvest lignification during low temperature storage. Among these, expression of EjAP2-1, a transcriptional repressor, was negatively correlated with fruit lignification. The dual-luciferase assay indicated that EjAP2-1 could trans-repress activities of promoters of lignin biosynthesis genes from both Arabidopsis and loquat. However, EjAP2-1 did not interact with the target promoters (Ej4CL1). Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated protein-protein interactions between EjAP2-1 and lignin biosynthesis-related EjMYB1 and EjMYB2. Furthermore, repression effects on the Ej4CL1 promoter were observed with the combination of EjAP2-1 and EjMYB1 or EjMYB2, while EjAP2-1 with the EAR motif mutated (mEjAP2-1) lost such repression, although mEjAP2-1 still interacted with EjMYB protein. Based on these results, it is proposed that EjAP2-1 is an indirect transcriptional repressor on lignin biosynthesis, and the repression effects were manifested by EAR motifs and were conducted via protein-protein interaction with EjMYBs.
Collapse
Affiliation(s)
- Jiao-Ke Zeng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Qian Xu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Xue-Ren Yin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Ian B Ferguson
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kun-Song Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Kim JH, Tsukaya H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6093-107. [PMID: 26160584 DOI: 10.1093/jxb/erv349] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
28
|
Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. MOLECULAR PLANT 2015; 8:998-1010. [PMID: 25620770 DOI: 10.1016/j.molp.2015.01.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ushio Fujikura
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
29
|
Tavakol E, Okagaki R, Verderio G, Shariati J V, Hussien A, Bilgic H, Scanlon MJ, Todt NR, Close TJ, Druka A, Waugh R, Steuernagel B, Ariyadasa R, Himmelbach A, Stein N, Muehlbauer GJ, Rossini L. The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. PLANT PHYSIOLOGY 2015; 168:164-74. [PMID: 25818702 PMCID: PMC4424007 DOI: 10.1104/pp.114.252882] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/26/2015] [Indexed: 05/18/2023]
Abstract
Tillers are vegetative branches that develop from axillary buds located in the leaf axils at the base of many grasses. Genetic manipulation of tillering is a major objective in breeding for improved cereal yields and competition with weeds. Despite this, very little is known about the molecular genetic bases of tiller development in important Triticeae crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum). Recessive mutations at the barley Uniculme4 (Cul4) locus cause reduced tillering, deregulation of the number of axillary buds in an axil, and alterations in leaf proximal-distal patterning. We isolated the Cul4 gene by positional cloning and showed that it encodes a BROAD-COMPLEX, TRAMTRACK, BRIC-À-BRAC-ankyrin protein closely related to Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2. Morphological, histological, and in situ RNA expression analyses indicate that Cul4 acts at axil and leaf boundary regions to control axillary bud differentiation as well as the development of the ligule, which separates the distal blade and proximal sheath of the leaf. As, to our knowledge, the first functionally characterized BOP gene in monocots, Cul4 suggests the partial conservation of BOP gene function between dicots and monocots, while phylogenetic analyses highlight distinct evolutionary patterns in the two lineages.
Collapse
Affiliation(s)
- Elahe Tavakol
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Ron Okagaki
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Gabriele Verderio
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Vahid Shariati J
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Ahmed Hussien
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Hatice Bilgic
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Mike J Scanlon
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Natalie R Todt
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Timothy J Close
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Arnis Druka
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Robbie Waugh
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Burkhard Steuernagel
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Ruvini Ariyadasa
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Axel Himmelbach
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Nils Stein
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Gary J Muehlbauer
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| | - Laura Rossini
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, 20133 Milan, Italy (E.T., G.V., A.Hu., L.R.);Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran (E.T.);Department of Agronomy and Plant Genetics (R.O., H.B., G.J.M.) and Department of Plant Biology (G.J.M.), University of Minnesota, St. Paul, Minnesota 55108;Parco Tecnologico Padano, 26900 Lodi, Italy (V.S.J., L.R.);Department of Plant Biology, Cornell University, Ithaca, New York 14853 (M.J.S., N.R.T.);Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124 (T.J.C.);James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (A.D., R.W.); andLeibniz Institute of Plant Genetics and Crop Plant Research, 06466 Stadt Seeland, Germany (B.S., R.A., A.Hi., N.S.)
| |
Collapse
|
30
|
Šiukšta R, Vaitkūnienė V, Kaselytė G, Okockytė V, Žukauskaitė J, Žvingila D, Rančelis V. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D. ANNALS OF BOTANY 2015; 115:651-63. [PMID: 25660346 PMCID: PMC4343296 DOI: 10.1093/aob/mcu263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. METHODS The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. KEY RESULTS Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. CONCLUSIONS The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Virginija Vaitkūnienė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Greta Kaselytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vaiva Okockytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Justina Žukauskaitė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Donatas Žvingila
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vytautas Rančelis
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| |
Collapse
|
31
|
Aguilar-Martínez JA, Uchida N, Townsley B, West DA, Yanez A, Lynn N, Kimura S, Sinha N. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex. PLANT PHYSIOLOGY 2015; 167:424-42. [PMID: 25524441 PMCID: PMC4326739 DOI: 10.1104/pp.114.248625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Collapse
Affiliation(s)
- José Antonio Aguilar-Martínez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Naoyuki Uchida
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Donnelly Ann West
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Andrea Yanez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Nafeesa Lynn
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Seisuke Kimura
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| |
Collapse
|
32
|
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 2014; 15:702. [PMID: 25149281 PMCID: PMC4161901 DOI: 10.1186/1471-2164-15-702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 μM iron(III) nitrate nonahydrate) with iron deficient media (50 μM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.
Collapse
Affiliation(s)
- Adrienne N Moran Lauter
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Gregory A Peiffer
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Tengfei Yin
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Steven A Whitham
- />Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 USA
| | - Dianne Cook
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Randy C Shoemaker
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| | - Michelle A Graham
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
33
|
Kuijt SJ, Greco R, Agalou A, Shao J, ‘t Hoen CC, Övernäs E, Osnato M, Curiale S, Meynard D, van Gulik R, Maraschin SDF, Atallah M, de Kam RJ, Lamers GE, Guiderdoni E, Rossini L, Meijer AH, Ouwerkerk PB. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors. PLANT PHYSIOLOGY 2014; 164:1952-66. [PMID: 24532604 PMCID: PMC3982755 DOI: 10.1104/pp.113.222836] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/13/2014] [Indexed: 05/19/2023]
Abstract
KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:β-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants.
Collapse
Affiliation(s)
| | | | - Adamantia Agalou
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Jingxia Shao
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Corine C.J. ‘t Hoen
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | | - Michela Osnato
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Serena Curiale
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Donaldo Meynard
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Robert van Gulik
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Simone de Faria Maraschin
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | | | | - Gerda E.M. Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Emmanuel Guiderdoni
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Laura Rossini
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Annemarie H. Meijer
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | |
Collapse
|
34
|
Atwood SE, O'Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. Replication protein A subunit 3 and the iron efficiency response in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:213-34. [PMID: 23742135 DOI: 10.1111/pce.12147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/28/2013] [Indexed: 05/20/2023]
Abstract
In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.
Collapse
Affiliation(s)
- Sarah E Atwood
- Interdepartmental Genetics Program, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5411-28. [PMID: 24179097 DOI: 10.1093/jxb/ert333] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.
Collapse
Affiliation(s)
- Ryan Whitford
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Kebrom TH, Richards RA. Physiological perspectives of reduced tillering and stunting in the tiller inhibition (tin) mutant of wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:977-985. [PMID: 32481166 DOI: 10.1071/fp13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/17/2013] [Indexed: 06/11/2023]
Abstract
The number of tillers established in cereal crops far exceeds the number that end up being grain bearing at maturity. Improving the economy in tillering has been proposed to improve cereal yields in both favourable and unfavourable environments. The tiller inhibition mutant (tin) is potentially useful for breeding varieties with a greater economy of tillering. However, its tendency to stunting under long day and low temperatures has limited its use. Recently, the inhibition of tillering in tin has been linked to precocious development of solid basal internodes that compete for sucrose and possibly other resources with the growing tiller buds leading to their developmental arrest. Although the physiological basis of stunting in tin is unknown, both inhibition of tillering and stunting begin during the transition from vegetative to reproductive phase indicating a common physiological basis for both. In this review, we provide overall perspectives for the physiological basis of tiller inhibition and stunting in tin and suggest the direction of research in the future.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
37
|
Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Adani Nadir L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013; 14:460. [PMID: 23834507 PMCID: PMC3716973 DOI: 10.1186/1471-2164-14-460] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PBF. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. PLANT MOLECULAR BIOLOGY 2012; 80:571-85. [PMID: 23109182 DOI: 10.1007/s11103-012-9967-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/04/2012] [Indexed: 05/02/2023]
Abstract
Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Shuxin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. THE PLANT CELL 2012; 24:3393-405. [PMID: 22942381 PMCID: PMC3462639 DOI: 10.1105/tpc.112.100933] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) functions as a transcriptional activator that increases tolerance to osmotic and heat stresses; however, its expression also leads to growth retardation and reduced reproduction. To avoid these adverse effects, the expression of DREB2A is predicted to be tightly regulated. We identified a short promoter region of DREB2A that represses its expression under nonstress conditions. Yeast one-hybrid screening for interacting factors identified GROWTH-REGULATING FACTOR7 (GRF7). GRF7 bound to the DREB2A promoter and repressed its expression. In both artificial miRNA-silenced lines and a T-DNA insertion line of GRF7, DREB2A transcription was increased compared with the wild type under nonstress conditions. A previously undiscovered cis-element, GRF7-targeting cis-element (TGTCAGG), was identified as a target sequence of GRF7 in the short promoter region of DREB2A via electrophoretic mobility shift assays. Microarray analysis of GRF7 knockout plants showed that a large number of the upregulated genes in the mutant plants were also responsive to osmotic stress and/or abscisic acid. These results suggest that GRF7 functions as a repressor of a broad range of osmotic stress-responsive genes to prevent growth inhibition under normal conditions.
Collapse
Affiliation(s)
- June-Sik Kim
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Junya Mizoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kidokoro
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Jun Nakajima
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Nakashima
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Yuko Takiguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Youichi Kondou
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Minami Matsui
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Address correspondence to
| |
Collapse
|