1
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Garneau L, Beauregard PB, Roy S. Neighbours in nodules: the interactions between Frankia sp. ACN10a and non- Frankia nodular endophytes of alder. Can J Microbiol 2023; 69:88-102. [PMID: 36288608 DOI: 10.1139/cjm-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study, we report the in vitro interactions between Frankia sp. ACN10a and non-Frankia nodular endophytes (NFNE) isolated from alder. The supernatant of NFNE grown in nitrogen-replete medium had neutral or negative effects on Frankia growth; none had a stimulatory effect. Inhibitory effects were observed for supernatants of some NFNE, notably Micromonospora, Pseudomonas, Serratia and Stenotrophomonas isolates. However, some NFNE-Frankia coculture supernatants could stimulate Frankia growth when used as a culture medium supplement. This was observed for supernatants of Frankia cocultured with Microvirga and Streptomyces isolates. In nitrogen-limited conditions, cocultures of Frankia with some NFNE, including some rhizobia and Cytobacillus, resulted in higher total biomass than Frankia-only cultures, suggesting cooperation, while other NFNE were strongly antagonistic. Microscopic observation of cocultures also revealed compromised Frankia membrane integrity, and some differentiation into stress resistance-associated morphotypes such as sporangia and reproductive torulose hyphae (RTH). Furthermore, the coculture of Frankia with Serratia sp. isolates resulted in higher concentrations of the auxinic plant hormone indole-3-acetic acid and related indolic compounds in the culture supernatant. This study sheds new light on the breadth of microbial interactions that occur amongst bacteria that inhabit the understudied ecological niche of the alder nodule.
Collapse
Affiliation(s)
- Louis Garneau
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Pascale B Beauregard
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Sébastien Roy
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| |
Collapse
|
4
|
Garneau L, Beauregard PB, Roy S. Deciphering the role of non- Frankia nodular endophytes in alder through in vitro and genomic characterization. Can J Microbiol 2023; 69:72-87. [PMID: 36288604 DOI: 10.1139/cjm-2022-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endophytic bacterial populations are well-positioned to provide benefits to their host plants such as nutrient acquisition and plant hormone level manipulation. Actinorhizal plants such as alders are well known for their microbial symbioses that allow them to colonize harsh environments whether natural or anthropized. Although the nitrogen-fixing actinobacterium Frankia sp. is the main endophyte found in alder root nodules, other bacterial genera, whose roles remain poorly defined, inhabit this niche. In this study, we isolated a diverse panel of non-Frankia nodular endophytes (NFNE). Some NFNE were isolated from alders grown from surface-sterilized seeds and maintained in sterile conditions, suggesting these may have been seed-borne. In vitro testing of 24 NFNE revealed some possessed putative plant growth promotion traits. Their genomes were also sequenced to identify genes related to plant growth promotion traits. This study highlights the complexity of the alder nodular microbial community. It paves the way for further understanding of the biology of nodules and could help improve land reclamation practices that involve alders.
Collapse
Affiliation(s)
- Louis Garneau
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Pascale B Beauregard
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| | - Sébastien Roy
- Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1
| |
Collapse
|
5
|
Marconi M, Wabnik K. Shaping the Organ: A Biologist Guide to Quantitative Models of Plant Morphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:746183. [PMID: 34675952 PMCID: PMC8523991 DOI: 10.3389/fpls.2021.746183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Organ morphogenesis is the process of shape acquisition initiated with a small reservoir of undifferentiated cells. In plants, morphogenesis is a complex endeavor that comprises a large number of interacting elements, including mechanical stimuli, biochemical signaling, and genetic prerequisites. Because of the large body of data being produced by modern laboratories, solving this complexity requires the application of computational techniques and analyses. In the last two decades, computational models combined with wet-lab experiments have advanced our understanding of plant organ morphogenesis. Here, we provide a comprehensive review of the most important achievements in the field of computational plant morphodynamics. We present a brief history from the earliest attempts to describe plant forms using algorithmic pattern generation to the evolution of quantitative cell-based models fueled by increasing computational power. We then provide an overview of the most common types of "digital plant" paradigms, and demonstrate how models benefit from diverse techniques used to describe cell growth mechanics. Finally, we highlight the development of computational frameworks designed to resolve organ shape complexity through integration of mechanical, biochemical, and genetic cues into a quantitative standardized and user-friendly environment.
Collapse
Affiliation(s)
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
6
|
Recent Advances in Adventitious Root Formation in Chestnut. PLANTS 2020; 9:plants9111543. [PMID: 33187282 PMCID: PMC7698097 DOI: 10.3390/plants9111543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
The genus Castanea includes several tree species that are relevant because of their geographical extension and their multipurpose character, that includes nut and timber production. However, commercial exploitation of the trees is hindered by several factors, particularly by their limited regeneration ability. Regardless of recent advances, there exists a serious limitation for the propagation of elite genotypes of chestnut due to decline of rooting ability as the tree ages. In the present review, we summarize the research developed in this genus during the last three decades concerning the formation of adventitious roots (ARs). Focusing on cuttings and in vitro microshoots, we gather the information available on several species, particularly C. sativa, C. dentata and the hybrid C.sativa × C. crenata, and analyze the influence of several factors on the achievements of the applied protocols, including genotype, auxin treatment, light regime and rooting media. We also pay attention to the acclimation phase, as well as compile the information available about biochemical and molecular related aspects. Furthermore, we considerate promising biotechnological approaches that might enable the improvement of the current protocols.
Collapse
|
7
|
Dong W, Song Y. The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. Int J Mol Sci 2020; 21:E5926. [PMID: 32824698 PMCID: PMC7460597 DOI: 10.3390/ijms21165926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza-Rhizobium-legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
Collapse
Affiliation(s)
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
8
|
Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk HP, Tisa LS, Sangal V, Goodfellow M. Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia. Front Microbiol 2019; 10:1457. [PMID: 31333602 PMCID: PMC6624747 DOI: 10.3389/fmicb.2019.01457] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carlos Cortés-albayay
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
| | - Jean Franco Castro
- The Chilean Collection of Microbial Genetic Resources (CChRGM), Instituto de Investigaciones Agropecuarias (INIA) – Quilamapu, Chillán, Chile
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
- Laboratoire Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis S. Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Perrine-Walker F. Interactions of endoparasitic and ectoparasitic nematodes within the plant root system. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:295-303. [PMID: 32172739 DOI: 10.1071/fp18176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 05/27/2023]
Abstract
Root-knot and cyst nematodes have sophisticated mechanisms to invade their plant hosts to reprogram the plant developmental program to induce feeding structures essential for nematode survival and reproduction. This has a detrimental effect on the plant as this sedentary endoparasitic interaction affects the growth and yields of many crop plants. However, other migratory endoparasitic nematodes that do not establish root feeding sites are as aggressive on many crop plants. With new information gained from the genome and transcriptomes of the migratory endoparasitic nematode, Pratylenchus spp., this review compares the different lifestyles and the pathogenic interactions these nematodes have with their plant host. Pratylenchus spp. utilises a common arsenal of effectors involved in plant cell wall degradation and the manipulation of plant host innate immunity. The absence of specific cell reprogramming effector genes may explain its migratory endoparasitic lifestyle, making it relevant to pest management approaches in Australia.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Biomedical Building C81, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia. Email
| |
Collapse
|
10
|
Demina IV, Maity PJ, Nagchowdhury A, Ng JLP, van der Graaff E, Demchenko KN, Roitsch T, Mathesius U, Pawlowski K. Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1085. [PMID: 31608077 PMCID: PMC6773980 DOI: 10.3389/fpls.2019.01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/09/2019] [Indexed: 05/13/2023]
Abstract
Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Jason L. P. Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Eric van der Graaff
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Thomas Roitsch
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- *Correspondence: Katharina Pawlowski,
| |
Collapse
|
11
|
Hocher V, Ngom M, Carré-Mlouka A, Tisseyre P, Gherbi H, Svistoonoff S. Signalling in actinorhizal root nodule symbioses. Antonie van Leeuwenhoek 2018; 112:23-29. [PMID: 30306463 DOI: 10.1007/s10482-018-1182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 11/29/2022]
Abstract
Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.
Collapse
Affiliation(s)
- Valérie Hocher
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Mariama Ngom
- LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal
| | - Alyssa Carré-Mlouka
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France.,MCAM, UMR 7245 CNRS/MNHN, Sorbonne Universités, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Pierre Tisseyre
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Hassen Gherbi
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Sergio Svistoonoff
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France. .,LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal. .,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.
| |
Collapse
|
12
|
Furnholm T, Rehan M, Wishart J, Tisa LS. Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding. MICROBIOLOGY-SGM 2017; 163:472-487. [PMID: 28141503 DOI: 10.1099/mic.0.000439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.
Collapse
Affiliation(s)
- Teal Furnholm
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Medhat Rehan
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Genetics, College of Agriculture, Kafrelsheikh University, Egypt.,Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Jessica Wishart
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Louis S Tisa
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
13
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
14
|
Froussart E, Bonneau J, Franche C, Bogusz D. Recent advances in actinorhizal symbiosis signaling. PLANT MOLECULAR BIOLOGY 2016; 90:613-622. [PMID: 26873697 DOI: 10.1007/s11103-016-0450-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen and phosphorus availability are frequent limiting factors in plant growth and development. Certain bacteria and fungi form root endosymbiotic relationships with plants enabling them to exploit atmospheric nitrogen and soil phosphorus. The relationships between bacteria and plants include nitrogen-fixing Gram-negative proteobacteria called rhizobia that are able to interact with most leguminous plants (Fabaceae) but also with the non-legume Parasponia (Cannabaceae), and actinobacteria Frankia, which are able to interact with about 260 species collectively called actinorhizal plants. Fungi involved in the relationship with plants include Glomeromycota that form an arbuscular mycorrhizal (AM) association intracellularly within the roots of more than 80% of land plants. Increasing numbers of reports suggest that the rhizobial association with legumes has recycled part of the ancestral program used by most plants to interact with AM fungi. This review focuses on the most recent progress made in plant genetic control of root nodulation that occurs in non-legume actinorhizal plant species.
Collapse
Affiliation(s)
- Emilie Froussart
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Jocelyne Bonneau
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD-UM), Institut de Recherche pour le Développement (IRD), 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
15
|
Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 2016. [DOI: 10.1007/s13199-016-0390-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Geurts R, Xiao TT, Reinhold-Hurek B. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis? TRENDS IN PLANT SCIENCE 2016; 21:199-208. [PMID: 26850795 DOI: 10.1016/j.tplants.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/08/2023]
Abstract
Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutionary trajectory towards endosymbiosis is not complex. Here, we argue that microbe-induced cell divisions are a prerequisite for the entrance of diazotrophic prokaryotes into living plant cells. For rhizobia and Frankia bacteria, this is achieved by adapting the readout of the common symbiosis signalling pathway, such that cell divisions are induced. The common symbiosis signalling pathway is conserved in the plant kingdom and is required to establish an endosymbiosis with mycorrhizal fungi. We also discuss the adaptations that may have occurred that allowed nitrogen-fixing root nodule endosymbiosis.
Collapse
Affiliation(s)
- Rene Geurts
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands.
| | - Ting Ting Xiao
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interaction, Faculty 2, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
17
|
Brooks JM, Benson DR. Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration. Symbiosis 2016. [DOI: 10.1007/s13199-016-0379-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ng JLP, Perrine-Walker F, Wasson AP, Mathesius U. The Control of Auxin Transport in Parasitic and Symbiotic Root-Microbe Interactions. PLANTS (BASEL, SWITZERLAND) 2015; 4:606-43. [PMID: 27135343 PMCID: PMC4844411 DOI: 10.3390/plants4030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/13/2023]
Abstract
Most field-grown plants are surrounded by microbes, especially from the soil. Some of these, including bacteria, fungi and nematodes, specifically manipulate the growth and development of their plant hosts, primarily for the formation of structures housing the microbes in roots. These developmental processes require the correct localization of the phytohormone auxin, which is involved in the control of cell division, cell enlargement, organ development and defense, and is thus a likely target for microbes that infect and invade plants. Some microbes have the ability to directly synthesize auxin. Others produce specific signals that indirectly alter the accumulation of auxin in the plant by altering auxin transport. This review highlights root-microbe interactions in which auxin transport is known to be targeted by symbionts and parasites to manipulate the development of their host root system. We include case studies for parasitic root-nematode interactions, mycorrhizal symbioses as well as nitrogen fixing symbioses in actinorhizal and legume hosts. The mechanisms to achieve auxin transport control that have been studied in model organisms include the induction of plant flavonoids that indirectly alter auxin transport and the direct targeting of auxin transporters by nematode effectors. In most cases, detailed mechanisms of auxin transport control remain unknown.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| | | | | | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Building 134, Canberra ACT 2601, Australia.
| |
Collapse
|
19
|
Validation of candidate reference genes for qRT-PCR studies in symbiotic and non-symbiotic Casuarina glauca Sieb. ex Spreng. under salinity conditions. Symbiosis 2015. [DOI: 10.1007/s13199-015-0330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Champion A, Lucas M, Tromas A, Vaissayre V, Crabos A, Diédhiou I, Prodjinoto H, Moukouanga D, Pirolles E, Cissoko M, Bonneau J, Gherbi H, Franche C, Hocher V, Svistoonoff S, Laplaze L. Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation. PLANT PHYSIOLOGY 2015; 167:1149-57. [PMID: 25627215 PMCID: PMC4348781 DOI: 10.1104/pp.114.255307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses.
Collapse
Affiliation(s)
- Antony Champion
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Mikael Lucas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Alexandre Tromas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Virginie Vaissayre
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Amandine Crabos
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Issa Diédhiou
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hermann Prodjinoto
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Daniel Moukouanga
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Elodie Pirolles
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Maïmouna Cissoko
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Jocelyne Bonneau
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Hassen Gherbi
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Claudine Franche
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Valérie Hocher
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Sergio Svistoonoff
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Université Montpellier 2, F-34394 Montpellier cedex 5, France (A.C., M.L., A.T., V.V., A.C., I.D., H.P., D.M., E.P., J.B., H.G., C.F., V.H., S.S., L.L.); andLaboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (A.C., M.L., A.T., A.C., I.D., H.P., D.M., E.P., M.C., J.B., H.G., C.F., V.H., S.S., L.L.) and Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais des Recherches Agricoles/Université Cheikh Anta Diop (A.C., A.T., A.C., I.D., H.P., M.C., S.S., L.L.), Centre de Recherche de Bel Air, CP 18524 Dakar, Senegal
| |
Collapse
|
21
|
Baker E, Tang Y, Chu F, Tisa LS. Molecular responses of Frankia sp. strain QA3 to naphthalene. Can J Microbiol 2015; 61:281-92. [PMID: 25742598 DOI: 10.1139/cjm-2014-0786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments.
Collapse
Affiliation(s)
- Ethan Baker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | | | | | | |
Collapse
|
22
|
Furnholm TR, Tisa LS. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 2014; 15:1092. [PMID: 25495525 PMCID: PMC4531530 DOI: 10.1186/1471-2164-15-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils.
Collapse
Affiliation(s)
- Teal R Furnholm
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
23
|
Imanishi L, Perrine-Walker FM, Ndour A, Vayssières A, Conejero G, Lucas M, Champion A, Laplaze L, Wall L, Svistoonoff S. Role of auxin during intercellular infection of Discaria trinervis by Frankia. FRONTIERS IN PLANT SCIENCE 2014; 5:399. [PMID: 25191330 PMCID: PMC4139986 DOI: 10.3389/fpls.2014.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 05/07/2023]
Abstract
Nitrogen-fixing nodules induced by Frankia in the actinorhizal plant Discaria trinervis result from a primitive intercellular root invasion pathway that does not involve root hair deformation and infection threads. Here, we analyzed the role of auxin in this intercellular infection pathway at the molecular level and compared it with our previous work in the intracellular infected actinorhizal plant Casuarina glauca. Immunolocalisation experiments showed that auxin accumulated in Frankia-infected cells in both systems. We then characterized the expression of auxin transporters in D. trinervis nodules. No activation of the heterologous CgAUX1 promoter was detected in infected cells in D. trinervis. These results were confirmed with the endogenous D. trinervis gene, DtAUX1. However, DtAUX1 was expressed in the nodule meristem. Consistently, transgenic D. trinervis plants containing the auxin response marker DR5:VENUS showed expression of the reporter gene in the meristem. Immunolocalisation experiments using an antibody against the auxin efflux carrier PIN1, revealed the presence of this transporter in the plasma membrane of infected cells. Finally, we used in silico cellular models to analyse auxin fluxes in D. trinervis nodules. Our results point to the existence of divergent roles of auxin in intercellularly- and intracellularly-infected actinorhizal plants, an ancestral infection pathways leading to root nodule symbioses.
Collapse
Affiliation(s)
- Leandro Imanishi
- Laboratorio de Bioquímica Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesBernal, Argentina
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | | | - Adama Ndour
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Alice Vayssières
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | - Genevieve Conejero
- Institut National de la Recherche Agronomique, Plateforme PHIV, CiradMontpellier, France
| | - Mikaël Lucas
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
| | - Antony Champion
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Laurent Laplaze
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| | - Luis Wall
- Laboratorio de Bioquímica Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesBernal, Argentina
| | - Sergio Svistoonoff
- Groupe Rhizogenèse, Institut de Recherche pour le Développement, UMR DIADEMontpellier, France
- LAPSE and Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel-AirDakar, Senegal
| |
Collapse
|
24
|
Svistoonoff S, Hocher V, Gherbi H. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? CURRENT OPINION IN PLANT BIOLOGY 2014; 20:11-8. [PMID: 24691197 DOI: 10.1016/j.pbi.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 05/07/2023]
Abstract
Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | - Valérie Hocher
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Hassen Gherbi
- Institut de Recherche pour le Développement (IRD), Unité mixte de recherche DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport. Appl Microbiol Biotechnol 2014; 98:8005-15. [DOI: 10.1007/s00253-014-5849-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
26
|
Ghodhbane-Gtari F, Hezbri K, Ktari A, Sbissi I, Beauchemin N, Gtari M, Tisa LS. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:568549. [PMID: 24987692 PMCID: PMC4058466 DOI: 10.1155/2014/568549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022]
Abstract
Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | - Karima Hezbri
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
| | - Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
| | - Imed Sbissi
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
| | - Nicholas Beauchemin
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | - Louis S. Tisa
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| |
Collapse
|
27
|
Voß U, Bishopp A, Farcot E, Bennett MJ. Modelling hormonal response and development. TRENDS IN PLANT SCIENCE 2014; 19:311-9. [PMID: 24630843 PMCID: PMC4013931 DOI: 10.1016/j.tplants.2014.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 05/20/2023]
Abstract
As our knowledge of the complexity of hormone homeostasis, transport, perception, and response increases, and their outputs become less intuitive, modelling is set to become more important. Initial modelling efforts have focused on hormone transport and response pathways. However, we now need to move beyond the network scales and use multicellular and multiscale modelling approaches to predict emergent properties at different scales. Here we review some examples where such approaches have been successful, for example, auxin-cytokinin crosstalk regulating root vascular development or a study of lateral root emergence where an iterative cycle of modelling and experiments lead to the identification of an overlooked role for PIN3. Finally, we discuss some of the remaining biological and technical challenges.
Collapse
Affiliation(s)
- Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Etienne Farcot
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK; School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
28
|
Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 2014; 98:6125-35. [DOI: 10.1007/s00253-014-5665-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
29
|
Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP, Wilson MH, Yu L, Li W, Hijazi HI, Oh J, Pearce SP, Perez-Amador MA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman TC, Pridmore TP, Swarup R, King JR, Bennett MJ. Systems analysis of auxin transport in the Arabidopsis root apex. THE PLANT CELL 2014; 26:862-75. [PMID: 24632533 PMCID: PMC4001398 DOI: 10.1105/tpc.113.119495] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/06/2014] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin's shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
Collapse
Affiliation(s)
- Leah R. Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Darren M. Wells
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John A. Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Teodor Ghetiu
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Andrew P. French
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael P. Pound
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael H. Wilson
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Lei Yu
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Wenda Li
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Hussein I. Hijazi
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Jaesung Oh
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Simon P. Pearce
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Miguel A. Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Jeonga Yun
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Eric Kramer
- Physics Department, Bard College at Simon’s Rock, Great Barrington, Massachusetts 01230
| | - Jose M. Alonso
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Christophe Godin
- Virtual Plants Project Team, Unité Mixte de Recherche, Amélioration Génétique des Plantes Méditerranéennes et Tropicales, Institut National de Recherche en Informatique et en Automatique/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34095 Montpellier, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Developpement des Plantes, CNRS, INRA, Ecole Normale Supérieure Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69364 Lyon, France
| | - T. Charlie Hodgman
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Tony P. Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
30
|
Herrbach V, Remblière C, Gough C, Bensmihen S. Lateral root formation and patterning in Medicago truncatula. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:301-10. [PMID: 24148318 DOI: 10.1016/j.jplph.2013.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 05/08/2023]
Abstract
The plant root system is crucial for anchorage and nutrition, and has a major role in plant adaptation, as well as in interactions with soil micro-organisms. Despite the agronomical and ecological importance of legume plants, whose roots can interact symbiotically with soil bacteria called rhizobia that fix atmospheric dinitrogen, and the evidence that lateral root (LR) development programmes are intercepted and influenced by symbiotic organisms, very little is known concerning the cellular and molecular events governing LR development in legumes. To better understand the interconnections between LR formation and symbiotic processes triggered by rhizobia or symbiotic molecules such as lipo-chitooligosaccharides (LCOs), we first need a detailed description of LR development mechanisms in legumes. Using thin sections, we have described the cellular events leading to the formation of a new LR primordium (LRP) in Medicago truncatula, and divided them into seven stages prior to LR emergence. To monitor auxin accumulation we generated transgenic DR5:GUS and DR5:VENUS-N7 reporter lines of M. truncatula, and used them to analyze early stages of LR development. Interesting differences were observed for LR ontogeny compared to Arabidopsis thaliana. Notably, we observed endodermal and cortical contributions to LRP formation, and the associated DR5:GUS expression profile indicated that endodermal and cortical cell divisions were correlated with auxin accumulation. As described for A. thaliana, we observed a preferential zone for LR initiation at 4.45 mm from the root tip. Finally, we studied LR emergence and showed that a significant proportion of new LRP do not emerge straight away and could thus be an additional source of root plasticity. Our results shed new light on the patterning and early development of LRs in M. truncatula.
Collapse
Affiliation(s)
- Violaine Herrbach
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Céline Remblière
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Clare Gough
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
31
|
Demchenko KN, Voitsekhovskaja OV, Pawlowski K. Plasmodesmata without callose and calreticulin in higher plants - open channels for fast symplastic transport? FRONTIERS IN PLANT SCIENCE 2014; 5:74. [PMID: 24634671 PMCID: PMC3943419 DOI: 10.3389/fpls.2014.00074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/15/2014] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) represent membrane-lined channels that link adjacent plant cells across the cell wall. PD of higher plants contain a central tube of endoplasmic reticulum (ER) called desmotubule. Membrane and lumen proteins seem to be able to move through the desmotubule, but most transport processes through PD occur through the cytoplasmic annulus (Brunkard etal., 2013). Calreticulin (CRT), a highly conserved Ca(2+)-binding protein found in all multicellular eukaryotes, predominantly located in the ER, was shown to localize to PD, though not all PD accumulate CRT. In nitrogen-fixing actinorhizal root nodules of the Australian tree Casuarina glauca, the primary walls of infected cells containing the microsymbiont become lignified upon infection. TEM analysis of these nodules showed that during the differentiation of infected cells, PD connecting infected cells, and connecting infected and adjacent uninfected cells, were reduced in number as well as diameter (Schubert etal., 2013). In contrast with PD connecting young infected cells, and most PD connecting mature infected and adjacent uninfected cells, PD connecting mature infected cells did not accumulate CRT. Furthermore, as shown here, these PD were not associated with callose, and based on their diameter, they probably had lost their desmotubules. We speculate that either this is a slow path to PD degradation, or that the loss of callose accumulation and presumably also desmotubules leads to the PD becoming open channels and improves metabolite exchange between cells.
Collapse
Affiliation(s)
- Kirill N. Demchenko
- Komarov Botanical Institute, Russian Academy of SciencesSt. Petersburg, Russia
| | | | - Katharina Pawlowski
- Department of Ecology, Environment and Plant SciencesStockholm University, Stockholm, Sweden
- *Correspondence: Katharina Pawlowski, Department of Ecology, Environment and Plant Sciences, Stockholm University, Lilla Frescati, 106 91 Stockholm, Sweden e-mail:
| |
Collapse
|
32
|
Hill K, Porco S, Lobet G, Zappala S, Mooney S, Draye X, Bennett MJ. Root systems biology: integrative modeling across scales, from gene regulatory networks to the rhizosphere. PLANT PHYSIOLOGY 2013; 163:1487-503. [PMID: 24143806 PMCID: PMC3850195 DOI: 10.1104/pp.113.227215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 05/08/2023]
Abstract
Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment.
Collapse
Affiliation(s)
- Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | - Silvana Porco
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | - Guillaume Lobet
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | - Susan Zappala
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | - Sacha Mooney
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | - Xavier Draye
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom (K.H., S.P., S.Z., S.M., M.J.B.)
- PhytoSYSTEMS, Université de Liège, 4000 Liege, Belgium (G.L.); and
- Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium (X.D.)
| | | |
Collapse
|
33
|
Tisa LS, Beauchemin N, Gtari M, Sen A, Wall LG. What stories can the Frankia genomes start to tell us? J Biosci 2013; 38:719-26. [DOI: 10.1007/s12038-013-9364-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
|
35
|
Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. PLANT PHYSIOLOGY 2013; 162:2042-55. [PMID: 23796794 PMCID: PMC3729781 DOI: 10.1104/pp.113.220699] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 05/18/2023]
Abstract
Symbiotic root nodules in leguminous plants result from interaction between the plant and nitrogen-fixing rhizobia bacteria. There are two major types of legume nodules, determinate and indeterminate. Determinate nodules do not have a persistent meristem, while indeterminate nodules have a persistent meristem. Auxin is thought to play a role in the development of both these types of nodules. However, inhibition of rootward auxin transport at the site of nodule initiation is crucial for the development of indeterminate nodules but not determinate nodules. Using the synthetic auxin-responsive DR5 promoter in soybean (Glycine max), we show that there is relatively low auxin activity during determinate nodule initiation and that it is restricted to the nodule periphery subsequently during development. To examine if and what role auxin plays in determinate nodule development, we generated soybean composite plants with altered sensitivity to auxin. We overexpressed microRNA393 to silence the auxin receptor gene family, and these roots were hyposensitive to auxin. These roots nodulated normally, suggesting that only minimal/reduced auxin signaling is required for determinate nodule development. We overexpressed microRNA160 to silence a set of repressor auxin response factor transcription factors, and these roots were hypersensitive to auxin. These roots were not impaired in epidermal responses to rhizobia but had significantly reduced nodule primordium formation, suggesting that auxin hypersensitivity inhibits nodule development. These roots were also hyposensitive to cytokinin and had attenuated expression of key nodulation-associated transcription factors known to be regulated by cytokinin. We propose a regulatory feedback loop involving auxin and cytokinin during nodulation.
Collapse
Affiliation(s)
| | | | - Mathieu Baron
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Stéphanie Coppin
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Suresh Damodaran
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Sajag Adhikari
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | | | | | | |
Collapse
|
36
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
37
|
Olivares J, Bedmar EJ, Sanjuán J. Biological nitrogen fixation in the context of global change. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:486-494. [PMID: 23360457 DOI: 10.1094/mpmi-12-12-0293-cr] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.
Collapse
Affiliation(s)
- José Olivares
- Dpto. Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, Granada, Spain
| | | | | |
Collapse
|
38
|
Chen Y, Yordanov YS, Ma C, Strauss S, Busov VB. DR5 as a reporter system to study auxin response in Populus. PLANT CELL REPORTS 2013; 32:453-63. [PMID: 23283559 DOI: 10.1007/s00299-012-1378-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Collapse
Affiliation(s)
- Yiru Chen
- Michigan Technological University, School of Forest Research and Environmental Science, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
39
|
Suzaki T, Ito M, Kawaguchi M. Genetic basis of cytokinin and auxin functions during root nodule development. FRONTIERS IN PLANT SCIENCE 2013; 4:42. [PMID: 23483805 PMCID: PMC3593528 DOI: 10.3389/fpls.2013.00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 05/18/2023]
Abstract
The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS HISTIDINE KINASE 1 and M. truncatula CYTOKININ RESPONSE 1 have brought a greater understanding of how activation of cytokinin signaling is crucial to the initiation of nodule primordia. Recent studies have also started to shed light on the roles of auxin in the regulation of nodule development. Here, we review the history and recent progress of research into the roles of cytokinin and auxin, and their possible interactions, in nodule development.
Collapse
Affiliation(s)
- Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology OkazakiAichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), OkazakiAichi, Japan
- *Correspondence: Takuya Suzaki, Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan. e-mail:
| | - Momoyo Ito
- Division of Symbiotic Systems, National Institute for Basic Biology OkazakiAichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology OkazakiAichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), OkazakiAichi, Japan
| |
Collapse
|
40
|
Tromas A, Diagne N, Diedhiou I, Prodjinoto H, Cissoko M, Crabos A, Diouf D, Sy MO, Champion A, Laplaze L. Establishment of Actinorhizal Symbioses. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Pawlowski K, Demchenko KN. The diversity of actinorhizal symbiosis. PROTOPLASMA 2012; 249:967-79. [PMID: 22398987 DOI: 10.1007/s00709-012-0388-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/14/2012] [Indexed: 05/23/2023]
Abstract
Filamentous aerobic soil actinobacteria of the genus Frankia can induce the formation of nitrogen-fixing nodules on the roots of a diverse group of plants from eight dicotyledonous families, collectively called actinorhizal plants. Within nodules, Frankia can fix nitrogen while being hosted inside plant cells. Like in legume/rhizobia symbioses, bacteria can enter the plant root either intracellularly through an infection thread formed in a curled root hair, or intercellularly without root hair involvement, and the entry mechanism is determined by the host plant species. Nodule primordium formation is induced in the root pericycle as for lateral root primordia. Mature actinorhizal nodules are coralloid structures consisting of multiple lobes, each of which represents a modified lateral root without a root cap, a superficial periderm and with infected cells in the expanded cortex. In this review, an overview of nodule induction mechanisms and nodule structure is presented including comparisons with the corresponding mechanisms in legume symbioses.
Collapse
|
42
|
Band LR, Fozard JA, Godin C, Jensen OE, Pridmore T, Bennett MJ, King JR. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. THE PLANT CELL 2012; 24:3892-906. [PMID: 23110897 PMCID: PMC3517226 DOI: 10.1105/tpc.112.101550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/31/2012] [Accepted: 10/14/2012] [Indexed: 05/21/2023]
Abstract
Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.
Collapse
Affiliation(s)
- Leah R. Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John A. Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Christophe Godin
- Virtual Plants Institut National de Recherche en Informatique et en Automatique Project-Team, joint with Institut National de la Recherche Agronomique and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Montpellier cedex 5, France
| | - Oliver E. Jensen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
- School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tony Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
43
|
Abstract
The application of various microscopy methods such as luminescence microscopy, microspectrofluorimetry and laser-scanning confocal microscopy has been considered as an
approach to study the autofluorescence of plant living cells—from cell diagnostics up to modelling the cell-cell contacts and cell interactions with fluorescent biologically active substances. It bases on the direct observations of secretions released from allelopathic and medicinal species and the cell-donor interactions with cell-acceptors as biosensors (unicellular plant generative and vegetative microspores). Special attention was paid to the interactions with pigmented and fluorescing components of the secretions released by the cells-donors from plant species. Colored components of secretions are considered as histochemical dyes for the analysis of cellular mechanisms at the cell-cell contacts and modelling of cell-cell interactions. The fluorescence of plant biosensors was also recommended for the testing of natural plant excretions as medical drugs.
Collapse
|
44
|
Swarup R, Péret B. AUX/LAX family of auxin influx carriers-an overview. FRONTIERS IN PLANT SCIENCE 2012; 3:225. [PMID: 23087694 PMCID: PMC3475149 DOI: 10.3389/fpls.2012.00225] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/20/2012] [Indexed: 05/19/2023]
Abstract
Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid (IAA), the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers. Polarity of auxin movement is provided by asymmetric localization of auxin carriers (mainly PIN efflux carriers). PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP) family of proteins are major auxin efflux carriers whereas AUXIN1/LIKE-AUX1 (AUX/LAX) are major auxin influx carriers. Genetic and biochemical evidence show that each member of the AUX/LAX family is a functional auxin influx carrier and mediate auxin related developmental programmes in different organs and tissues. Of the four AUX/LAX genes, AUX1 regulates root gravitropism, root hair development and leaf phyllotaxy whereas LAX2 regulates vascular development in cotyledons. Both AUX1 and LAX3 have been implicated in lateral root (LR) development as well as apical hook formation whereas both AUX1 and LAX1 and possibly LAX2 are required for leaf phyllotactic patterning.
Collapse
Affiliation(s)
- Ranjan Swarup
- School of Biosciences and Centre for Plant Integrative Biology, University of NottinghamLoughborough, UK
- *Correspondence: Ranjan Swarup, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. e-mail:
| | - Benjamin Péret
- Laboratory of Plant Development Biology, SBVME/Institute for Biotechnology and Environmental Biology, CEA CadaracheSt. Paul lez Durance, France
| |
Collapse
|
45
|
Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 2011; 78:575-80. [PMID: 22101047 DOI: 10.1128/aem.06183-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.
Collapse
|
46
|
Imanishi L, Vayssières A, Franche C, Bogusz D, Wall L, Svistoonoff S. Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1317-24. [PMID: 21585269 DOI: 10.1094/mpmi-03-11-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.
Collapse
Affiliation(s)
- Leandro Imanishi
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Benson DR, Brooks JM, Huang Y, Bickhart DM, Mastronunzio JE. The biology of Frankia sp. strains in the post-genome era. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1310-1316. [PMID: 21848398 DOI: 10.1094/mpmi-06-11-0150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Progress in understanding symbiotic determinants involved in the N(2)-fixing actinorhizal plant symbioses has been slow but steady. Problems persist with studying the bacterial contributions to the symbiosis using traditional microbiological techniques. However, recent years have seen the emergence of several genomes from Frankia sp. strains and the development of techniques for manipulating plant gene expression. Approaches to understanding the bacterial side of the symbiosis have employed a range of techniques that reveal the proteomes and transcriptomes from both cultured and symbiotic frankiae. The picture beginning to emerge provides some perspective on the heterogeneity of frankial populations in both conditions. In general, frankial populations in root nodules seem to maintain a rather robust metabolism that includes nitrogen fixation and substantial biosynthesis and energy-generating pathways, along with a modified ammonium assimilation program. To date, particular bacterial genes have not been implicated in root nodule formation but some hypotheses are emerging with regard to how the plant and microorganism manage to coexist. In particular, frankiae seem to present a nonpathogenic presence to the plant that may have the effect of minimizing some plant defense responses. Future studies using high-throughput approaches will likely clarify the range of bacterial responses to symbiosis that will need to be understood in light of the more rapidly advancing work on the plant host.
Collapse
Affiliation(s)
- David R Benson
- Department of Molecular and Cell Biology, University of Connecticut, Stors, CT, USA.
| | | | | | | | | |
Collapse
|
48
|
Band LR, King JR. Multiscale modelling of auxin transport in the plant-root elongation zone. J Math Biol 2011; 65:743-85. [PMID: 22015980 DOI: 10.1007/s00285-011-0472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 08/17/2011] [Indexed: 01/02/2023]
Abstract
In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics.
Collapse
Affiliation(s)
- L R Band
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Nottingham LE12 5RD, UK.
| | | |
Collapse
|
49
|
Pawlowski K, Bogusz D, Ribeiro A, Berry AM. Progress on research on actinorhizal plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:633-638. [PMID: 32480917 DOI: 10.1071/fp11066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/10/2011] [Indexed: 06/11/2023]
Abstract
In recent years, our understanding of the plant side of actinorhizal symbioses has evolved rapidly. No homologues of the common nod genes from rhizobia were found in the three Frankia genomes published so far, which suggested that Nod factor-like molecules would not be used in the infection of actinorhizal plants by Frankia. However, work on chimeric transgenic plants indicated that Frankia Nod factor equivalents signal via the same transduction pathway as rhizobial Nod factors. The role of auxin in actinorhizal nodule formation differs from that in legume nodulation. Great progress has been made in the analysis of pathogenesis-related and stress-related gene expression in nodules. Research on nodule physiology has shown the structural and metabolic diversity of actinorhizal nodules from different phylogenetic branches. The onset of large-scale nodule transcriptome analysis in different actinorhizal systems will provide access to more information on the symbiosis and its evolution.
Collapse
Affiliation(s)
| | - Didier Bogusz
- Groupe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées, Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | - Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
50
|
Rashidi B, Mehrabi S, Demchenko K, Pawlowski K. The Casuarina glauca metallothionein I promoter in nodulated transgenic hairy roots of the actinorhizal plant Datisca glomerata. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:728-737. [PMID: 32480929 DOI: 10.1071/fp10216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/25/2011] [Indexed: 06/11/2023]
Abstract
The activity of the promoter of a metallothionein gene expressed in actinorhizal nodules of Casuarina glauca Sieber ex Spreng., CgMT1, has previously been analysed in Casaurinaceae and in tobacco (Nicotiana tabacum L.), Arabidopsis and rice. In all these plants, the promoter showed high activity in the root cortex and epidermis, making it a useful tool for the expression of transgenes. Therefore, its activity was now analysed in transgenic root systems of Datisca glomerata (C. Presl) Baill, an actinorhizal plant from a different phylogenetic group than C. glauca, using the same CgMT1::GUS fusion as in previous studies. However, in contrast with all other plant species examined previously, the CgMT1::GUS construct showed no activity at all in D. glomerata hairy roots: the expression pattern in nodules resembled that found in C. glauca nodules. This is probably due to the changed hormone balance in hairy roots since experiments on the CgMT1::GUS construct in transgenic Arabidopsis showed that CgMT1 promoter activity was repressed by auxin or cytokinin, respectively. Yet, in hairy roots of the model legume Lotus japonicus L. induced by the same Agrobacterium rhizogenes strain, the CgMT1 promoter was active in roots and not in nodules. These results indicate that although the expression of pRi T-DNA genes leads to changes in root hormone balance, these changes do not abolish the differences in phytohormone levels or sensitivity between plant species. Therefore, gene expression data obtained using transgenic hairy root systems have to be viewed with care, not only due to the disturbed hormone balance, but also because the effects of the pRI-T-DNA genes can differ between species.
Collapse
Affiliation(s)
- Behnoosh Rashidi
- Department of Botany, Stockholm University, 10691 Stockholm, Sweden
| | - Sara Mehrabi
- Department of Botany, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill Demchenko
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popov st. 2, 197376St Petersburg, Russia
| | | |
Collapse
|