1
|
Gong X, Qi K, Zhao L, Xie Z, Pan J, Yan X, Shiratake K, Zhang S, Tao S. PbAGL7-PbNAC47-PbMYB73 complex coordinately regulates PbC3H1 and PbHCT17 to promote the lignin biosynthesis in stone cells of pear fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1933-1953. [PMID: 39446773 DOI: 10.1111/tpj.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Lignification of the cell wall in pear (Pyrus) fruit results in the formation of stone cells, which affects the texture and quality of the fruit. However, it is still unclear that how different transcription factors (TFs) work together to coordinate the synthesis and deposition of lignin. Here, we examined the transcriptome of pear varieties with different stone cell contents and found a key TF (PbAGL7) that can promote the increase of stone cell contents and secondary cell wall thicknesses. In addition, PbAGL7 can facilitate the expression level of lignin biosynthesis-related genes and accelerate the lignin biosynthesis in pear fruit and Arabidopsis. However, PbAGL7 did not directly bind to the promoters of PbC3H1 and PbHCT17 which are crucial genes involved in lignin biosynthesis. On the other hand, yeast two-hybrid (Y2H) library showed that PbNAC47 and PbMYB73 interacted with PbAGL7 in the nucleus. PbNAC47 and PbMYB73 also increased the stone cell and lignin contents, and upregulated the expressions of PbC3H1 and PbHCT17 by binding to the SNBE and AC elements, respectively. Moreover, PbNAC47 also interacted with PbMYB73 to form PbAGL7-PbNAC47-PbMYB73 complex. This complex significantly activated the expression levels of PbC3H1 and PbHCT17 and promoted lignin biosynthesis to form stone cells in pear fruit. Overall, our study provides new insights into the molecular mechanism of TFs that coordinately regulate the stone cell formation in pear fruit and extend our knowledge to understand cell wall lignification in plants.
Collapse
Affiliation(s)
- Xin Gong
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Kaijie Qi
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Pan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Shaoling Zhang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Jiang C, Lyu K, Zeng S, Wang X, Chen X. A Combined Metabolome and Transcriptome Reveals the Lignin Metabolic Pathway during the Developmental Stages of Peel Coloration in the 'Xinyu' Pear. Int J Mol Sci 2024; 25:7481. [PMID: 39000588 PMCID: PMC11242026 DOI: 10.3390/ijms25137481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Sand pear is the main cultivated pear species in China, and brown peel is a unique feature of sand pear. The formation of brown peel is related to the activity of the cork layer, of which lignin is an important component. The formation of brown peel is intimately associated with the biosynthesis and accumulation of lignin; however, the regulatory mechanism of lignin biosynthesis in pear peel remains unclear. In this study, we used a newly bred sand pear cultivar 'Xinyu' as the material to investigate the biosynthesis and accumulation of lignin at nine developmental stages using metabolomic and transcriptomic methods. Our results showed that the 30 days after flowering (DAF) to 50DAF were the key periods of lignin accumulation according to data analysis from the assays of lignin measurement, scanning electron microscope (SEM) observation, metabolomics, and transcriptomics. Through weighted gene co-expression network analysis (WGCNA), positively correlated modules with lignin were identified. A total of nine difference lignin components were identified and 148 differentially expressed genes (DEGs), including 10 structural genes (PAL1, C4H, two 4CL genes, HCT, CSE, two COMT genes, and two CCR genes) and MYB, NAC, ERF, and TCP transcription factor genes were involved in lignin metabolism. An analysis of RT-qPCR confirmed that these DEGs were involved in the biosynthesis and regulation of lignin. These findings further help us understand the mechanisms of lignin biosynthesis and provide a theoretical basis for peel color control and quality improvement in pear breeding and cultivation.
Collapse
Affiliation(s)
- Cuicui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Keliang Lyu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shaomin Zeng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiao'an Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaoming Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
3
|
Li XY, Li ZF, Zhang XL, Yang MQ, Wu PQ, Huang MJ, Huang HQ. Adaptation mechanism of three Impatiens species to different habitats based on stem morphology, lignin and MYB4 gene. BMC PLANT BIOLOGY 2024; 24:453. [PMID: 38789944 PMCID: PMC11127381 DOI: 10.1186/s12870-024-05115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.
Collapse
Affiliation(s)
- Xin-Yi Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Ze-Feng Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Xiao-Li Zhang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Meng-Qing Yang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Pei-Qing Wu
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Mei-Juan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| | - Hai-Quan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| |
Collapse
|
4
|
Daldoul S, Hanzouli F, Boubakri H, Nick P, Mliki A, Gargouri M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. PROTOPLASMA 2024; 261:447-462. [PMID: 37963978 DOI: 10.1007/s00709-023-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Transcriptional regulatory networks are pivotal components of plant's response to salt stress. However, plant adaptation strategies varied as a function of stress intensity, which is mainly modulated by climate change. Here, we determined the gene regulatory networks based on transcription factor (TF) TF_gene co-expression, using two transcriptomic data sets generated from the salt-tolerant "Tebaba" roots either treated with 50 mM NaCl (mild stress) or 150 mM NaCl (severe stress). The analysis of these regulatory networks identified specific TFs as key regulatory hubs as evidenced by their multiple interactions with different target genes related to stress response. Indeed, under mild stress, NAC and bHLH TFs were identified as central hubs regulating nitrogen storage process. Moreover, HSF TFs were revealed as a regulatory hub regulating various aspects of cellular metabolism including flavonoid biosynthesis, protein processing, phenylpropanoid metabolism, galactose metabolism, and heat shock proteins. These processes are essentially linked to short-term acclimatization under mild salt stress. This was further consolidated by the protein-protein interaction (PPI) network analysis showing structural and plant growth adjustment. Conversely, under severe salt stress, dramatic metabolic changes were observed leading to novel TF members including MYB family as regulatory hubs controlling isoflavonoid biosynthesis, oxidative stress response, abscisic acid signaling pathway, and proteolysis. The PPI network analysis also revealed deeper stress defense changes aiming to restore plant metabolic homeostasis when facing severe salt stress. Overall, both the gene co-expression and PPI network provided valuable insights on key transcription factor hubs that can be employed as candidates for future genetic crop engineering programs.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| | - Faouzia Hanzouli
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University Tunis El-Manar, El Manar II, 2092, Tunis, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, B.P 901, 2050, Hammam-Lif, Tunisia
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP. 901, Hammam-Lif, Tunisia.
| |
Collapse
|
5
|
Lv S, Lin Z, Shen J, Luo L, Xu Q, Li L, Gui J. OsTCP19 coordinates inhibition of lignin biosynthesis and promotion of cellulose biosynthesis to modify lodging resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:123-136. [PMID: 37724960 DOI: 10.1093/jxb/erad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Lignin and cellulose are two essential elements of plant secondary cell walls that shape the mechanical characteristics of the culm to prevent lodging. However, how the regulation of the lignin and cellulose composition is combined to achieve optimal mechanical characteristics is unclear. Here, we show that increasing OsTCP19 expression in rice coordinately repressed lignin biosynthesis and promoted cellulose biosynthesis, resulting in enhanced lodging resistance. In contrast, repression of OsTCP19 coordinately promoted lignin biosynthesis and inhibited cellulose biosynthesis, leading to greater susceptibility to lodging. We found that OsTCP19 binds to the promoters of both MYB108 and MYB103L to increase their expression, with the former being responsible for repressing lignin biosynthesis and the latter for promoting cellulose biosynthesis. Moreover, up-regulation of OsTCP19 in fibers improved grain yield and lodging resistance. Thus, our results identify the OsTCP19-OsMYB108/OsMYB103L module as a key regulator of lignin and cellulose production in rice, and open up the possibility for precisely manipulating lignin-cellulose composition to improve culm mechanical properties for lodging resistance.
Collapse
Affiliation(s)
- Siwei Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zengshun Lin
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingguo Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Robertson SM, Wilkins O. Spatially resolved gene regulatory networks in Asian rice (Oryza sativa cv. Nipponbare) leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:269-281. [PMID: 37390084 DOI: 10.1111/tpj.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Transcriptome profiles in plants are heterogenous at every level of morphological organization. Even within organs, cells of the same type can have different patterns of gene expression depending on where they are positioned within tissues. This heterogeneity is associated with non-uniform distribution of biological processes within organs. The regulatory mechanisms that establish and sustain the spatial heterogeneity are unknown. Here, we identify regulatory modules that support functional specialization of different parts of Oryza sativa cv. Nipponbare leaves by leveraging transcriptome data, transcription factor binding motifs and global gene regulatory network prediction algorithms. We generated a global gene regulatory network in which we identified six regulatory modules that were active in different parts of the leaf. The regulatory modules were enriched for genes involved in spatially relevant biological processes, such as cell wall deposition, environmental sensing and photosynthesis. Strikingly, more than 86.9% of genes in the network were regulated by members of only five transcription factor families. We also generated targeted regulatory networks for the large MYB and bZIP/bHLH families to identify interactions that were masked in the global prediction. This analysis will provide a baseline for future single cell and array-based spatial transcriptome studies and for studying responses to environmental stress and demonstrates the extent to which seven coarse spatial transcriptome analysis can provide insight into the regulatory mechanisms supporting functional specialization within leaves.
Collapse
Affiliation(s)
- Sean M Robertson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, R3T 2N2, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
8
|
Schilbert HM, Holzenkamp K, Viehöver P, Holtgräwe D, Möllers C. Homoeologous non-reciprocal translocation explains a major QTL for seed lignin content in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:172. [PMID: 37439815 PMCID: PMC10345078 DOI: 10.1007/s00122-023-04407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
A homoeologous non-reciprocal translocation was identified in the major QTL for seed lignin content in the low lignin line SGDH14. The lignin biosynthetic gene PAL4 was deleted. Oilseed rape is a major oil crop and a valuable protein source for animal and human nutrition. Lignin is a non-digestible, major component of the seed coat with negative effect on sensory quality, bioavailability and usage of oilseed rape's protein. Hence, seed lignin reduction is of economic and nutritional importance. In this study, the major QTL for reduced lignin content found on chromosome C05 in the DH population SGDH14 x Express 617 was further examined. SGDH14 had lower seed lignin content than Express 617. Harvested seeds from a F2 population of the same cross were additionally field tested and used for seed quality analysis. The F2 population showed a bimodal distribution for seed lignin content. F2 plants with low lignin content had thinner seed coats compared to high lignin lines. Both groups showed a dark seed colour with a slightly lighter colour in the low lignin group indicating that a low lignin content is not necessarily associated with yellow seed colour. Mapping of genomic long-reads from SGDH14 against the Express 617 genome assembly revealed a homoeologous non-reciprocal translocation (HNRT) in the confidence interval of the major QTL for lignin content. A homologous A05 region is duplicated and replaced the C05 region in SGDH14. As consequence several genes located in the C05 region were lost in SGDH14. Thus, a HNRT was identified in the major QTL region for reduced lignin content in the low lignin line SGDH14. The most promising candidate gene related to lignin biosynthesis on C05, PAL4, was deleted.
Collapse
Affiliation(s)
- Hanna Marie Schilbert
- Genetics and Genomics of Plants, CeBiTec and Faculty of Biology, Bielefeld University, Bielefeld, Germany.
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| | - Karin Holzenkamp
- Department of Crop Sciences, Division of Crop Plant Genetics, Georg-August-University, Göttingen, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, CeBiTec and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christian Möllers
- Department of Crop Sciences, Division of Crop Plant Genetics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
9
|
Kanda Y, Shinya T, Maeda S, Mujiono K, Hojo Y, Tomita K, Okada K, Kamakura T, Galis I, Mori M. BSR1, a Rice Receptor-like Cytoplasmic Kinase, Positively Regulates Defense Responses to Herbivory. Int J Mol Sci 2023; 24:10395. [PMID: 37373546 DOI: 10.3390/ijms241210395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda 75119, Indonesia
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keisuke Tomita
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
10
|
Zhao XW, Wang Q, Wang D, Guo W, Hu MX, Liu YL, Zhou GK, Chai GH, Zhao ST, Lu MZ. PagERF81 regulates lignin biosynthesis and xylem cell differentiation in poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1134-1146. [PMID: 36647609 DOI: 10.1111/jipb.13453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/15/2023] [Indexed: 05/13/2023]
Abstract
Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.
Collapse
Affiliation(s)
- Xin-Wei Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, 271000, China
| | - Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gong-Ke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guo-Hua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
11
|
Zhou L, Zawaira A, Lu Q, Yang B, Li J. Transcriptome analysis reveals defense-related genes and pathways during dodder (Cuscuta australis) parasitism on white clover (Trifolium repens). Front Genet 2023; 14:1106936. [PMID: 37007956 PMCID: PMC10060986 DOI: 10.3389/fgene.2023.1106936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dodders (Cuscuta australis R. Br.) are holo-parasitic stem angiosperms with an extensive host range that have significant ecological and economic potential impact on the ecosystem and the agricultural system. However, how the host plant responds to this biotic stress remains mostly unexplored. To identify the defense-related genes and the pathways in white clover (Trifolium repens L.) induced by dodder parasitism, we performed a comparative transcriptome analysis of the leaf and root tissues from white clover with and without dodder infection by high throughput sequencing. We identified 1,329 and 3,271 differentially expressed genes (DEGs) in the leaf and root tissues, respectively. Functional enrichment analysis revealed that plant-pathogen interaction, plant hormone signal transduction, and phenylpropanoid biosynthesis pathways were significantly enriched. Eight WRKY, six AP2/ERF, four bHLH, three bZIP, three MYB, and three NAC transcription factors showed a close relationship with lignin synthesis-related genes, which defended white clover against dodder parasitism. Real-time quantitative PCR (RT-qPCR) for nine DEGs, further validated the data obtained from transcriptome sequencing. Our results provide new insights into understanding the complex regulatory network behind these parasite-host plant interactions.
Collapse
Affiliation(s)
- Li Zhou
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Alexander Zawaira
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Qiuwei Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Beifen Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- *Correspondence: Junmin Li,
| |
Collapse
|
12
|
Transcriptome analysis identifies differentially expressed genes involved in lignin biosynthesis in barley. Int J Biol Macromol 2023; 236:123940. [PMID: 36894063 DOI: 10.1016/j.ijbiomac.2023.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Lignin is an essential metabolite for plant growth but negatively affects the quality of forage barley. Genetic modification of quality traits to improve the forage digestibility requires an understanding of the molecular mechanism of lignin biosynthesis. RNA-Seq was used to quantify transcripts differentially expressed among leaf, stem and spike tissues from two barley genotypes. A total of 13,172 differentially expressed genes (DEGs) were identified, of which much more up-regulated DEGs were detected from the contrasting groups of leaf vs spike (L-S) and stem vs spike (S-S), and down-regulated DEGs were dominant in the group of stem vs leaf (S-L). 47 DEGs were successfully annotated to the monolignol pathway and six of them were candidate genes regulating the lignin biosynthesis. The qRT-PCR assay verified the expression profiles of the six candidate genes. Among them, four genes might positively regulate the lignin biosynthesis during forage barley development in terms of the consistency of their expression levels and changes of lignin content among the tissues, while the other two genes may have the reverse effects. These findings provide target genes for further investigations on molecular regulatory mechanisms of lignin biosynthesis and genetic resources for improvement of forage quality in barley molecular breeding programme.
Collapse
|
13
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
14
|
Kim SH, Yoon J, Kim H, Lee SJ, Kim T, Kang K, Paek NC. OsMYB7 determines leaf angle at the late developmental stage of lamina joints in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1167202. [PMID: 37123839 PMCID: PMC10140434 DOI: 10.3389/fpls.2023.1167202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Leaf angle shapes plant architecture, allowing for optimal light interception to maximize photosynthesis and yield, and therefore is a crucial agronomic trait. Here, we show that the rice (Oryza sativa L.) R2R3-type MYB transcription factor OsMYB7 determines leaf angle in a developmental stage-specific manner. OsMYB7-overexpressing lines produced wide-angled leaves and osmyb7 knockout mutants exhibited erect leaves. This phenotype was restricted to the lamina joints at the late developmental stage. In agreement with these observations, OsMYB7 was preferentially expressed in the lamina joints of post-mature leaves. Since OsMYB7 homologs are transcriptional repressors of lignin biosynthesis, we examined whether OsMYB7 might inhibit thickening of secondary cell walls. Although OsMYB7 repressed lignin biosynthesis, it enhanced thickening of sclerenchyma cell walls by elevating cellulose contents at the lamina joints. Furthermore, we found that OsMYB7 affects endogenous auxin levels in lamina joints, and the adaxial cells of lamina joints in OsMYB7-overexpressing lines and osmyb7 knockout mutants exhibited enhanced and reduced elongation, respectively, compared to the wild type. These results suggest that OsMYB7 promotes leaf inclination partially through decreasing free auxin levels and promoting cell elongation at the adaxial side of lamina joints.
Collapse
Affiliation(s)
- Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hanna Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Taehoon Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Nam-Chon Paek,
| |
Collapse
|
15
|
Chen L, Dou P, Li L, Chen Y, Yang H. Transcriptome-wide analysis reveals core transcriptional regulators associated with culm development and variation in Dendrocalamus sinicus, the strongest woody bamboo in the world. Heliyon 2022; 8:e12600. [PMID: 36593818 PMCID: PMC9803789 DOI: 10.1016/j.heliyon.2022.e12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Transcription factors (TFs) play indispensable roles in plant development and stress responses. As the largest woody bamboo species in the world, Dendrocalamus sinicus is endemic to Yunnan Province, China, and possesses two natural variants characterized by culm shape, namely straight or bent culms. Understanding the transcriptional regulation network of D. sinicus provides a unique opportunity to clarify the growth and development characteristics of woody bamboos. In this study, 10,236 TF transcripts belonging to 57 families were identified from transcriptome data of two variants at different developmental stages, from which we constructed a transcriptional regulatory network and unigene-coding protein-TFs interactive network of culm development for this attractive species. Gene function enrichment analysis revealed that hormone signaling and MAPK signaling pathways were two most enriched pathways in TF-regulated network. Based on PPI analysis, 50 genes interacting with nine TFs were screened as the core regulation components related to culm development. Of them, 18 synergistic genes of seven TFs, including nuclear cap-binding protein subunit 1, transcription factor GTE9-like, and ATP-dependent DNA helicase DDX11 isoform X1, involved in culm-shape variation. Most of these genes would interact with MYB, C3H, and ARF transcription factors. Six members with two each from ARF, C3H, and MYB transcription factor families and six key interacting genes (IAA3, IAA19, leucine-tRNA ligase, nuclear cap-binding protein subunit 1, elongation factor 2, and coiled-coil domain-containing protein 94) cooperate with these transcription factors were differentially expressed at development stage of young culms, and were validated by quantitative PCR. Our results represent a crucial step towards understanding the regulatory mechanisms of TFs involved in culm development and variation of D. sinicus.
Collapse
Affiliation(s)
- Lingna Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming 650233, PR China,College of Life Science, Xinjiang Normal University, Xinyi Road, Shayibake District, Urumqi 830054, PR China
| | - Peitong Dou
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming 650233, PR China
| | - Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming 650233, PR China
| | - Yongkun Chen
- College of Life Science, Xinjiang Normal University, Xinyi Road, Shayibake District, Urumqi 830054, PR China,Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Xinyi Road, Shayibake District, Urumqi 830054, PR China,Corresponding author.
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Bailongsi, Panlong District, Kunming 650233, PR China,Corresponding author.
| |
Collapse
|
16
|
Li Y, Liao B, Wang Y, Luo H, Wang S, Li C, Song W, Zhang K, Yang B, Lu S, Zhang B, Li Y. Transcriptome and metabolome analyses provide insights into the relevance of pericarp thickness variations in Camellia drupifera and Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1016475. [PMID: 36388553 PMCID: PMC9647060 DOI: 10.3389/fpls.2022.1016475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Camellia fruit is a woody edible oil source with a recalcitrant pericarp, which increases processing costs. However, the relevance of pericarp thickness variations in Camellia species remains unclear. Therefore, this study aimed to identify pericarp differences at the metabolic and transcription levels between thick-pericarp Camellia drupifera BG and thin-pericarp Camellia oleifera SG. Forty differentially accumulated metabolites were screened through non-targeted UHPLC-Q-TOF MS-based metabolite profiling. S-lignin was prominently upregulated in BG compared with SG, contributing to the thick pericarp of BG. KEGG enrichment and coexpression network analysis showed 29 differentially expressed genes associated with the lignin biosynthetic pathway, including 21 genes encoding catalysts and 8 encoding transcription factors. Nine upregulated genes encoding catalysts potentially led to S-lignin accumulation in BG pericarp, and transcription factors NAC and MYB were possibly involved in major transcriptional regulatory mechanisms. Conventional growth-related factors WRKYs and AP2/ERFs were positively associated while pathogenesis-related proteins MLP328 and NCS2 were negatively associated with S-lignin content. Thus, Camellia balances growth and defense possibly by altering lignin biosynthesis. The results of this study may guide the genetic modifications of C. drupifera to optimize its growth-defense balance and improve seed accessibility.
Collapse
Affiliation(s)
- Yongjuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Boyong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huihua Luo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shimin Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Caiqin Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenpei Song
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kunchang Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Boqun Yang
- State-owned Xiaokeng Forest Farm in Qujiang District of Shaoguan City, Shaoguan, China
| | - Shaoqiang Lu
- State-owned Xiaokeng Forest Farm in Qujiang District of Shaoguan City, Shaoguan, China
| | - Bipei Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
17
|
Yang Y, Shi J, Chen L, Xiao W, Yu J. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111256. [PMID: 35696901 DOI: 10.1016/j.plantsci.2022.111256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
The aerial surfaces of plants are covered by a layer of cuticular wax that is composed of long-chain hydrocarbon compounds for protection against adverse environmental conditions. The current study identified a maize (Zea mays L.) APETALA2/ethylene-responsive element-binding protein (AP2/EREBP)-type transcription factor, ZmEREB46. Ectopic expression of ZmEREB46 in Arabidopsis increased the accumulation of epicuticular wax on the leaves and enhanced the drought tolerance of plants. The amounts of C24/C32 fatty acids, C32/C34 aldehydes, C32/C34 1-alcohols and C31 alkanes in zmereb46 (ZmEREB46 knockout mutant) leaves were reduced. The amount of leaf total epicuticular wax decreased approximately 50% in zmereb46. Compared to wild-type LH244 leaves, the cuticle permeability of zmereb46 leaves was increased, which resulted from decreased epicuticular wax load and a thinner cuticle layer. ZmEREB46 had transcriptional activation activity and directly bound to promoter regions of ZmCER2, ZmCER3.2 and ZmKCS1. The zmereb46 seedlings also exhibited reduced drought tolerance. These results, and the observations in ZmEREB46-overexpressing lines, suggest that ZmEREB46 is involved in cuticular metabolism by influencing the biosynthesis of very-long-chain waxes and participates in the cutin biosynthesis pathway. These results are helpful to further analyze the regulatory network of wax accumulation in maize.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; China Tobacco Jiangsu Industry CO., Ltd, Jiangsu 210011, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhan Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; Chengdu Shishi High School, Sichuan 610052, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Payyavula RS, Badmi R, Jawdy SS, Rodriguez M, Gunter L, Sykes RW, Winkeler KA, Collins CM, Rottmann WH, Chen J, Yang X, Tuskan GA, Kalluri UC. Biomass formation and sugar release efficiency of Populus modified by altered expression of a NAC transcription factor. PLANT DIRECT 2022; 6:e419. [PMID: 35979037 PMCID: PMC9373907 DOI: 10.1002/pld3.419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Woody biomass is an important feedstock for biofuel production. Manipulation of wood properties that enable efficient conversion of biomass to biofuel reduces cost of biofuel production. Wood cell wall composition is regulated at several levels that involve expression of transcription factors such as wood-/secondary cell wall-associated NAC domains (WND or SND). In Arabidopsis thaliana, SND1 regulates cell wall composition through activation of its down-stream targets such as MYBs. The functional aspects of SND1 homologs in the woody Populus have been studied through transgenic manipulation. In this study, we investigated the role of PdWND1B, Populus SND1 sequence ortholog, in wood formation using transgenic manipulation through over-expression or silencing under the control of a vascular-specific 4-coumarate-CoA ligase (4CL) promoter. As compared with control plants, PdWND1B-RNAi plants were shorter in height, with significantly reduced stem diameter and dry biomass, whereas there were no significant differences in growth and productivity of PdWND1B over-expression plants. Conversely, PdWND1B over-expression lines showed a significant reduction in cellulose and increase in lignin content, whereas there was no significant impact on lignin content of downregulated lines. Stem carbohydrate composition analysis revealed a decrease in glucose, mannose, arabinose, and galactose, but an increase in xylose in the over-expression lines. Transcriptome analysis revealed upregulation of several downstream transcription factors and secondary cell wall related structural genes in the PdWND1B over-expression lines, partly explaining the observed phenotypic changes in cell wall chemistry. Relative to the control, glucose release efficiency and ethanol production from stem biomass was significantly reduced in over-expression lines. Our results show that PdWND1B is an important factor determining biomass productivity, cell wall chemistry and its conversion to biofuels in Populus.
Collapse
Affiliation(s)
- Raja S. Payyavula
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Raghuram Badmi
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Sara S. Jawdy
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Miguel Rodriguez
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Lee Gunter
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Robert W. Sykes
- The Biosciences CenterNational Renewable Energy LaboratoryGoldenColoradoUSA
| | | | | | | | - Jin‐Gui Chen
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Xiaohan Yang
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Gerald A Tuskan
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Udaya C. Kalluri
- BioEnergy Science Centre, Center for Bioenergy Innovation and Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
19
|
Zhang Y, Liu Y, Wang X, Wang R, Chen X, Wang S, Wei H, Wei Z. PtrWOX13A Promotes Wood Formation and Bioactive Gibberellins Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2022; 13:835035. [PMID: 35837467 PMCID: PMC9274204 DOI: 10.3389/fpls.2022.835035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
WUSCHEL-related homeobox (WOX) genes are plant-specific transcription factors (TFs) involved in multiple processes of plant development. However, there have hitherto no studies on the WOX TFs involved in secondary cell wall (SCW) formation been reported. In this study, we identified a Populus trichocarpa WOX gene, PtrWOX13A, which was predominantly expressed in SCW, and then characterized its functions through generating PtrWOX13A overexpression poplar transgenic lines; these lines exhibited not only significantly enhanced growth potential, but also remarkably increased SCW thicknesses, fiber lengths, and lignin and hemicellulose contents. However, no obvious change in cellulose content was observed. We revealed that PtrWOX13A directly activated its target genes through binding to two cis-elements, ATTGATTG and TTAATSS, in their promoter regions. The fact that PtrWOX13A responded to the exogenous GAs implies that it is responsive to GA homeostasis caused by GA inactivation and activation genes (e.g., PtrGA20ox4, PtrGA2ox1, and PtrGA3ox1), which were regulated by PtrWOX13A directly or indirectly. Since the master switch gene of SCW formation, PtrWND6A, and lignin biosynthesis regulator, MYB28, significantly increased in PtrWOX13A transgenic lines, we proposed that PtrWOX13A, as a higher hierarchy TF, participated in SCW formation through controlling the genes that are components of the known hierarchical transcription regulation network of poplar SCW formation, and simultaneously triggering a gibberellin-mediated signaling cascade. The discovery of PtrWOX13A predominantly expressed in SCW and its regulatory functions in the poplar wood formation has important implications for improving the wood quality of trees via genetic engineering.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueying Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuebing Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
20
|
Bres C, Petit J, Reynoud N, Brocard L, Marion D, Lahaye M, Bakan B, Rothan C. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. MOLECULAR HORTICULTURE 2022; 2:14. [PMID: 37789465 PMCID: PMC10515250 DOI: 10.1186/s43897-022-00035-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/03/2022] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model for studying plant cuticle because of its thick cuticle covering and embedding the epidermal cells of the fruit. In this study, we screened an EMS mutant collection of the miniature tomato cultivar Micro-Tom for fruit cracking mutants and found a mutant displaying a glossy fruit phenotype. By using an established mapping-by-sequencing strategy, we identified the causal mutation in the SlSHN2 transcription factor that is specifically expressed in outer epidermis of growing fruit. The point mutation in the shn2 mutant introduces a K to N amino acid change in the highly conserved 'mm' domain of SHN proteins. The cuticle from shn2 fruit showed a ~ fivefold reduction in cutin while abundance and composition of waxes were barely affected. In addition to alterations in cuticle thickness and properties, epidermal patterning and polysaccharide composition of the cuticle were changed. RNAseq analysis further highlighted the altered expression of hundreds of genes in the fruit exocarp of shn2, including genes associated with cuticle and cell wall formation, hormone signaling and response, and transcriptional regulation. In conclusion, we showed that a point mutation in the transcriptional regulator SlSHN2 causes major changes in fruit cuticle formation and its coordination with epidermal patterning.
Collapse
Affiliation(s)
- Cécile Bres
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Johann Petit
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France
| | - Nicolas Reynoud
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000, Bordeaux, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Marc Lahaye
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, INRAE, BP71627, 44316, Nantes Cedex 3, France
| | - Christophe Rothan
- UMR 1332 BFP, INRAE, Université de Bordeaux, 33140, Villenave d'Ornon, France.
- INRA, UMR 1332 Biologie du Fruit Et Pathologie, 71 Av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
21
|
Zhang H, Wang Y, Tan J, Weng Y. Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber, Cucumis sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2101-2119. [PMID: 35524817 DOI: 10.1007/s00122-022-04100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Fruit skin netting in cucumber (Cucumis sativus) is associated with important fruit quality attributes. Two simply inherited genes H (Heavy netting) and Rs (Russet skin) control skin netting, but their molecular basis is unknown. Here, we reported map-based cloning and functional characterization of the candidate gene for the Rs locus that encodes CsSHINE1 (CsSHN1), an AP2 domain containing ethylene-responsive transcription factor protein. Comparative phenotypic analysis in near-isogenic lines revealed that fruit with netted skin had different epidermal structures from that with smooth skin including thicker cuticles, smaller, palisade-shaped epidermal and sub-epidermal cells with heavily suberized and lignified cell walls, higher peroxidase activities, which suggests multiple functions of CsSHN1 in regulating fruit skin netting and epidermal cell patterning. Among three representative cucumber inbred lines, three haplotypes at three polymorphic sites were identified inside CsSHN1: a functional copy in Gy14 (wild type) with light fruit skin netting, a copy number variant with two tandemly arrayed functional copies in WI7120 with heavy skin netting, and a loss-of-function copy in 9930 with smooth skin. The expression level of CsSHN1 in fruit exocarp of three lines was positively correlated with the skin netting intensity. Comparative analysis between cucumber and melon revealed conserved and divergent genetic mechanisms underlying fruit skin netting/reticulation that may reflect the different selection histories in the two crops. A discussion was made on genetic basis of fruit skin netting in the context of natural and artificial selections of fruit quality-related epidermal features during cucumber breeding.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 10000, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Ren M, Zhang Y, Wang R, Liu Y, Li M, Wang X, Chen X, Luan X, Zhang H, Wei H, Yang C, Wei Z. PtrHAT22, as a higher hierarchy regulator, coordinately regulates secondary cell wall component biosynthesis in Populus trichocarpa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111170. [PMID: 35151454 DOI: 10.1016/j.plantsci.2021.111170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) II transcription factors (TFs) have been reported to play vital roles in diverse biological processes of plants. However, it remains unclear whether HD-Zip II TFs regulate secondary cell wall (SCW) in woody plants. In this study, we performed the functional characterization of a Populus trichocarpa HD-Zip II TF, PtrHAT22, which encodes a nuclear localized transcription repressor predominantly expressing in secondary developing tissues. Overexpression of PtrHAT22 showed arrested growths, including reduced heights and diameters above the ground, small leaves, and decreased biomass. Meanwhile, the contents of lignin, cellulose, and thickness of SCW significantly decreased, whilst the content of hemicellulose obviously increased in PtrHAT22 transgenic poplar. The expressions of some wood-associated TFs and structural genes significantly changed accordingly with the alternations of SCW characteristics in PtrHAT22 transgenic poplar. Furthermore, PtrHAT22 directly repressed the promoter activities of PtrMYB20, PtrMYB28, and PtrCOMT2, and bind two cis-acting elements that were specifically enriched in their promoter regions. Taken together, our results suggested that PtrHAT22, as a higher hierarchy TF like PtrWNDs, exerted coordination regulation of poplar SCW component biosynthesis through directly and indirectly regulating structural genes and different hierarchy TFs of SCW formation network.
Collapse
Affiliation(s)
- Mengxuan Ren
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Yang Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, PR China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Meiliang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Xueying Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Xuebing Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Xue Luan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang, Harbin, 150040, PR China.
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, 100091, PR China.
| |
Collapse
|
23
|
Aubry E, Hoffmann B, Vilaine F, Gilard F, Klemens PAW, Guérard F, Gakière B, Neuhaus HE, Bellini C, Dinant S, Le Hir R. A vacuolar hexose transport is required for xylem development in the inflorescence stem. PLANT PHYSIOLOGY 2022; 188:1229-1247. [PMID: 34865141 PMCID: PMC8825465 DOI: 10.1093/plphys/kiab551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Beate Hoffmann
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Patrick A W Klemens
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Florence Guérard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
24
|
Motto M, Sahay S. Energy plants (crops): potential natural and future designer plants. HANDBOOK OF BIOFUELS 2022:73-114. [DOI: 10.1016/b978-0-12-822810-4.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Xin A, Herburger K. Precursor biosynthesis regulation of lignin, suberin and cutin. PROTOPLASMA 2021; 258:1171-1178. [PMID: 34120228 DOI: 10.1007/s00709-021-01676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix of plants can contain the hydrophobic biopolymers lignin, suberin and/or cutin, which provide mechanical strength and limit water loss and pathogen invasion. Due to their remarkable chemical resistance, these polymers have a high potential in various biotechnological applications and can replace petrol-based resources, for example, in the packing industry. However, despite the importance of these polymers, the regulation of their precursor biosynthesis is far from being fully understood. This is particularly true for suberin and cutin, which hinders efforts to engineer their formation in plants and produce customised biopolymers. This review brings attention to knowledge gaps in the current research and highlights some of the most recent findings on transcription factors that regulate lignin, suberin and cutin precursor biosynthesis. Finally, we also briefly discuss how some of the remaining knowledge gaps can be closed.
Collapse
Affiliation(s)
- Anzhou Xin
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| |
Collapse
|
26
|
Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2021; 21:246. [PMID: 34051742 PMCID: PMC8164251 DOI: 10.1186/s12870-021-03030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.
Collapse
Affiliation(s)
- Yiran Ding
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shizhou Yu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guizhou, 550008, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Mathan J, Singh A, Ranjan A. Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4355-4372. [PMID: 33587747 DOI: 10.1093/jxb/erab066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Source-sink relationships are key to overall crop performance. Detailed understanding of the factors that determine source-sink dynamics is imperative for the balance of biomass and grain yield in crop plants. We investigated the differences in source-sink relationships between a cultivated rice, Oryza sativa cv. Nipponbare, and a wild rice, Oryza australiensis, which show striking differences in biomass and grain yield. Oryza australiensis, which accumulates a higher biomass, not only showed higher photosynthesis per unit leaf area but also exported more sucrose from leaves compared with Nipponbare. However, grain features and sugar content suggested limited sucrose mobilization to grains in the wild rice due to vasculature and sucrose transporter functions. Low cell wall invertase activity and high sucrose synthase cleavage activity followed by higher expression of cellulose synthase genes in O. australiensis stem indicated that it utilized photosynthates preferentially for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, source-sink relationships favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, vascular features, sucrose transport, and functions of sugar metabolic enzymes explained the differences in source-sink relationships between Nipponbare and O. australiensis.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anuradha Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
28
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
29
|
Yi JW, Wang Y, Ma XS, Zhang JQ, Zhao ML, Huang XM, Li JG, Hu GB, Wang HC. LcERF2 modulates cell wall metabolism by directly targeting a UDP-glucose-4-epimerase gene to regulate pedicel development and fruit abscission of litchi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:801-816. [PMID: 33595139 DOI: 10.1111/tpj.15201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the biochemical and molecular basis of premature abscission in fruit crops should help develop strategies to enhance fruit set and yield. Here, we report that LcERF2 contributes to differential abscission rates and responses to ethylene in Litchi chinensis (litchi). Reduced LcERF2 expression in litchi was observed to reduce fruit abscission, concurrent with enhanced pedicel growth and increased levels of hexoses, particularly galactose, as well as pectin abundance in the cell wall. Ecoptic expression of LcERF2 in Arabidopsis thaliana caused enhanced petal abscission, together with retarded plant growth and reduced pedicel galactose and pectin contents. Transcriptome analysis indicated that LcERF2 modulates the expression of genes involved in cell wall modification. Yeast one-hybrid, dual-luciferase reporter and electrophoretic mobility shift assays all demonstrated that a UDP-glucose-4-epimerase gene (LcUGE) was the direct downstream target of LcERF2. This result was further supported by a significant reduction in the expression of the A. thaliana homolog AtUGE2-4 in response to LcERF2 overexpression. Significantly reduced pedicel diameter and enhanced litchi fruit abscission were observed in response to LcUGE silencing. We conclude that LcERF2 mediates fruit abscission by orchestrating cell wall metabolism, and thus pedicel growth, in part by repressing the expression of LcUGE.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiao-Sha Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jie-Qiong Zhang
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| | - Ming-Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| |
Collapse
|
30
|
Shi J, Zhang Q, Yan X, Zhang D, Zhou Q, Shen Y, Anupol N, Wang X, Bao M, Larkin RM, Luo H, Ning G. A conservative pathway for coordination of cell wall biosynthesis and cell cycle progression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:630-648. [PMID: 33547692 DOI: 10.1111/tpj.15187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunxia Zhang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Yan
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Zhou
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxiao Shen
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nachaisin Anupol
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuqing Wang
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634-0318, USA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Nakata MT, Sakamoto S, Nuoendagula, Kajita S, Mitsuda N. Fiber Cell-Specific Expression of the VP16-Fused Ethylene Response Factor 41 Protein Increases Biomass Yield and Alters Lignin Composition. FRONTIERS IN PLANT SCIENCE 2021; 12:654655. [PMID: 33995450 PMCID: PMC8121085 DOI: 10.3389/fpls.2021.654655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2024]
Abstract
Arabidopsis thaliana transcription factors belonging to the ERFIIId and ERFIIIe subclade (ERFIIId/e) of the APETALA 2/ethylene response factor (AP2/ERF) family enhance primary cell wall (PCW) formation. These transcription factors activate expression of genes encoding PCW-type cellulose synthase (CESA) subunits and other genes for PCW biosynthesis. In this study, we show that fiber-specific expression of ERF035-VP16 and ERF041-VP16, which are VP16-fused proteins of ERFIIId/e members, promote cell wall thickening in a wild-type background with a concomitant increase of alcohol insoluble residues (cell wall content) per fresh weight (FW) and monosaccharides related to the PCW without affecting plant growth. Furthermore, in the ERF041-VP16 lines, the total amount of lignin and the syringyl (S)/guaiacyl (G) ratio decreased, and the enzymatic saccharification yield of glucose from cellulose per fresh weight improved. In these lines, PCW-type CESA genes were upregulated and ferulate 5-hydropxylase1 (F5H1), which is necessary for production of the S unit lignin, was downregulated. In addition, various changes in the expression levels of transcription factors regulating secondary cell wall (SCW) formation were observed. In conclusion, fiber cell-specific ERF041-VP16 improves biomass yield, increases PCW components, and alters lignin composition and deposition and may be suitable for use in future molecular breeding programs of biomass crops.
Collapse
Affiliation(s)
- Miyuki T. Nakata
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology (TUAT), Koganei, Japan
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology (TUAT), Koganei, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
32
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
33
|
Ren M, Zhang Y, Liu C, Liu Y, Tian S, Cheng H, Zhang H, Wei H, Wei Z. Characterization of a High Hierarchical Regulator, PtrGATA12, Functioning in Differentially Regulating Secondary Wall Component Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:657787. [PMID: 33968111 PMCID: PMC8096934 DOI: 10.3389/fpls.2021.657787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/01/2021] [Indexed: 05/16/2023]
Abstract
In plants, GATA transcription factors (TFs) have been reported to play vital roles in to a wide range of biological processes. To date, there is still no report about the involvement and functions of woody plant GATA TFs in wood formation. In this study, we described the functional characterization of a Populus trichocarpa GATA TF, PtrGATA12, which encodes a nuclear-localized transcriptional activator predominantly expressing in developing xylem tissues. Overexpression of PtrGATA12 not only inhibited growths of most phenotypic traits and biomass accumulation, but also altered the expressions of some master TFs and pathway genes involved in secondary cell wall (SCW) and programmed cell death, leading to alternated SCW components and breaking forces of stems of transgenic lines. The significant changes occurred in the contents of hemicellulose and lignin and SCW thicknesses of fiber and vessel that increased by 13.5 and 10.8%, and 20.83 and 11.83%, respectively. Furthermore, PtrGATA12 bound directly to the promoters of a battery of TFs and pathway genes and activated them; the binding sites include two cis-acting elements that were specifically enriched in their promoter regions. Taken together, our results suggest PtrGATA12, as a higher hierarchical TF on the top of PtrWND6A, PtrWND6B, PtrMYB152, and PtrMYB21, exert a coordinated regulation of SCW components biosynthesis pathways through directly and indirectly controlling master TFs, middle-level TFs, and further downstream pathway genes of the currently known hierarchical transcription network that governs SCW formation.
Collapse
Affiliation(s)
- Mengxuan Ren
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Cong Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuanghui Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - He Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Zhigang Wei
- Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Zhigang Wei,
| |
Collapse
|
34
|
Simões MS, Ferreira SS, Grandis A, Rencoret J, Persson S, Floh EIS, Ferraz A, del Río JC, Buckeridge MS, Cesarino I. Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. FRONTIERS IN PLANT SCIENCE 2020; 11:617020. [PMID: 33469464 PMCID: PMC7814504 DOI: 10.3389/fpls.2020.617020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/01/2020] [Indexed: 05/06/2023]
Abstract
Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks. Here, we establish a xylogenic culture as a model system to study SCW deposition in sugarcane; the first of its kind in a C4 grass species. We used auxin and brassinolide to differentiate sugarcane suspension cells into tracheary elements, which showed metaxylem-like reticulate or pitted SCW patterning. The differentiation led to increased lignin levels, mainly caused by S-lignin units, and a rise in p-coumarate, leading to increased p-coumarate:ferulate ratios. RNAseq analysis revealed massive transcriptional reprogramming during differentiation, with upregulation of genes associated with cell wall biogenesis and phenylpropanoid metabolism and downregulation of genes related to cell division and primary metabolism. To better understand the differentiation process, we constructed regulatory networks of transcription factors and SCW-related genes based on co-expression analyses. Accordingly, we found multiple regulatory modules that may underpin SCW deposition in sugarcane. Our results provide important insights and resources to identify biotechnological strategies for sugarcane biomass optimization.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Grandis
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| |
Collapse
|
35
|
McGarry RC, Rao X, Li Q, van der Knaap E, Ayre BG. SINGLE FLOWER TRUSS and SELF-PRUNING signal developmental and metabolic networks to guide cotton architectures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5911-5923. [PMID: 32744621 DOI: 10.1093/jxb/eraa338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Patterns of indeterminate and determinate growth specify plant architecture and influence crop productivity. In cotton (Gossypium hirsutum), SINGLE FLOWER TRUSS (SFT) stimulates the transition to flowering and determinate growth, while its closely related antagonist SELF-PRUNING (SP) maintains meristems in indeterminate states to favor vegetative growth. Overexpressing GhSFT while simultaneously silencing GhSP produces highly determinate cotton with reduced foliage and synchronous fruiting. These findings suggest that GhSFT, GhSP, and genes in these signaling networks hold promise for enhancing 'annualized' growth patterns and improving cotton productivity and management. To identify the molecular programs underlying cotton growth habits, we used comparative co-expression networks, differential gene expression, and phenotypic analyses in cotton varieties expressing altered levels of GhSFT or GhSP. Using multiple cotton and tomato datasets, we identified diverse genetic modules highly correlated with SFT or SP orthologs which shared related Gene Ontologies in different crop species. Notably, altering GhSFT or GhSP levels in cotton affected the expression of genes regulating meristem fate and metabolic pathways. Further phenotypic analyses of gene products involved in photosynthesis, secondary metabolism, and cell wall biosynthesis showed that early changes in GhSFT and GhSP levels profoundly impacted later development in distal tissues. Identifying the molecular underpinnings of GhSFT and GhSP activities emphasizes their broad actions in regulating cotton architecture.
Collapse
Affiliation(s)
- Roisin C McGarry
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
- College of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Li
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
36
|
Sharma P, Sharma S, Ramakrishna G, Srivastava H, Gaikwad K. A comprehensive review on leguminous galactomannans: structural analysis, functional properties, biosynthesis process and industrial applications. Crit Rev Food Sci Nutr 2020; 62:443-465. [DOI: 10.1080/10408398.2020.1819196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Priya Sharma
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - Sandhya Sharma
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - G. Ramakrishna
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| |
Collapse
|
37
|
Wang R, Liu C, Li Q, Chen Z, Sun S, Wang X. Spatiotemporal Resolved Leaf Angle Establishment Improves Rice Grain Yield via Controlling Population Density. iScience 2020; 23:101489. [PMID: 32898833 PMCID: PMC7486458 DOI: 10.1016/j.isci.2020.101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022] Open
Abstract
Leaf angle is mainly determined by the lamina joint (LJ) and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors (TFs) determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle and that the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms of how the cytological dynamics of LJ determined leaf erectness and served as a valuable resource to remodel rice architecture for high yield by controlling population density.
Collapse
Affiliation(s)
- Rongna Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Qinzhong Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhina Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| |
Collapse
|
38
|
Zhang J, Yin XR, Li H, Xu M, Zhang MX, Li SJ, Liu XF, Shi YN, Grierson D, Chen KS. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3172-3184. [PMID: 32072171 PMCID: PMC7475177 DOI: 10.1093/jxb/eraa085] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/15/2020] [Indexed: 05/07/2023]
Abstract
Flesh lignification is a specific chilling response that causes deterioration in the quality of stored red-fleshed loquat fruit (Eribotrya japonica) and is one aspect of wider chilling injury. APETALA2/ETHLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors are important regulators of plant low-temperature responses and lignin biosynthesis. In this study, the expression and action of 27 AP2/ERF genes from the red-fleshed loquat cultivar 'Luoyangqing' were investigated in order to identify transcription factors regulating low-temperature-induced lignification. EjERF27, EjERF30, EjERF36, and EjERF39 were significantly induced by storage at 0 °C but inhibited by a low-temperature conditioning treatment (pre-storage at 5 °C for 6 days before storage at 0 °C, which reduces low-temperature-induced lignification), and their transcript levels positively correlated with flesh lignification. A dual-luciferase assay indicated that EjERF39 could transactivate the promoter of the lignin biosynthetic gene Ej4CL1, and an electrophoretic mobility shift assay confirmed that EjERF39 recognizes the DRE element in the promoter region of Ej4CL1. Furthermore, the combination of EjERF39 and the previously characterized EjMYB8 synergistically transactivated the Ej4CL1 promoter, and both transcription factors showed expression patterns correlated with lignification in postharvest treatments and red-fleshed 'Luoyangqing' and white-fleshed 'Ninghaibai' cultivars with different lignification responses. Bimolecular fluorescence complementation and luciferase complementation imaging assays confirmed direct protein-protein interaction between EjERF39 and EjMYB8. These data indicate that EjERF39 is a novel cold-responsive transcriptional activator of Ej4CL1 that forms a synergistic activator complex with EjMYB8 and contributes to loquat fruit lignification at low temperatures.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- School of Horticulture and Plant Protection, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xue-ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Heng Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Meng-xue Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Shao-jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yan-na Shi
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Kun-song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Correspondence:
| |
Collapse
|
39
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
40
|
Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, Vahala J, Delhomme N, Kangasjärvi J, Eder M, Felten J, Tuominen H. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. THE NEW PHYTOLOGIST 2019; 224:1585-1599. [PMID: 31125440 DOI: 10.1111/nph.15960] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/19/2019] [Indexed: 05/14/2023]
Abstract
Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.
Collapse
Affiliation(s)
- Bernard Wessels
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Carolin Seyfferth
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| | - Thomas Vain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187, Sweden
| | - Jorma Vahala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Judith Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden
| |
Collapse
|
41
|
Diniz AL, Ferreira SS, Ten-Caten F, Margarido GRA, Dos Santos JM, Barbosa GVDS, Carneiro MS, Souza GM. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol J 2019; 17:1404-1414. [PMID: 31871586 PMCID: PMC6906722 DOI: 10.1016/j.csbj.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
Sugarcane is one of the most sustainable energy crops among cultivated crops presenting the highest tonnage of cultivated plants. Its high productivity of sugar, bioethanol and bioelectricity make it a promising green alternative to petroleum. Furthermore, the myriad of products that can be derived from sugarcane biomass has been driving breeding programs towards varieties with a higher yield of fiber and a more vigorous and sustainable performance: the energy cane. Here we provide an overview of the energy cane including plant description, breeding efforts, types, and end-uses. In addition, we describe recently published genomic resources for the development of this crop, discuss current knowledge of cell wall metabolism, bioinformatic tools and databases available for the community.
Collapse
Affiliation(s)
- Augusto L Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Sávio S Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo 05508-090, SP, Brazil
| | - Felipe Ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Gabriel R A Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - João M Dos Santos
- Departamento de Fitotecnia e Fitossanidade, Centro de Ciências Agrárias, Universidade Federal de Alagoas, BR 104 Norte, km 85, Rio Largo 571000-000, AL, Brazil
| | - Geraldo V de S Barbosa
- Departamento de Fitotecnia e Fitossanidade, Centro de Ciências Agrárias, Universidade Federal de Alagoas, BR 104 Norte, km 85, Rio Largo 571000-000, AL, Brazil
| | - Monalisa S Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera km 174, Araras 13600-970, SP, Brazil
| | - Glaucia M Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
42
|
Su X, Zhao Y, Wang H, Li G, Cheng X, Jin Q, Cai Y. Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd.) and functional identification of PbCCR1 in lignin biosynthesis. BMC PLANT BIOLOGY 2019; 19:417. [PMID: 31604417 PMCID: PMC6788021 DOI: 10.1186/s12870-019-2046-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND The content of stone cells and lignin is one of the key factors affecting the quality of pear fruit. In a previous study, we determined the developmental regularity of stone cells and lignin in 'Dangshan Su' pear fruit 15-145 days after pollination (DAP). However, the development of fruit stone cells and lignin before 15 DAP has not been heavily researched. RESULTS In this study, we found that primordial stone cells began to appear at 7 DAP and that the fruit had formed a large number of stone cells at 15 DAP. Subsequently, transcriptome sequencing was performed on fruits at 0, 7, and 15 DAP and identified 3834 (0 vs. 7 DAP), 4049 (7 vs. 15 DAP) and 5763 (0 vs. 15 DAP) DEGs. During the 7-15 DAP period, a large number of key enzyme genes essential for lignin biosynthesis are gradually up-regulated, and their expression pattern is consistent with the accumulation of lignin in this period. Further analysis found that the biosynthesis of S-type lignin in 'Dangshan Su' pear does not depend on the catalytic activity of PbSAD but is primarily generated by the catalytic activity of caffeoyl-CoA through CCoAOMT, CCR, F5H, and CAD. We cloned PbCCR1, 2 and analysed their functions in Chinese white pear lignin biosynthesis. PbCCR1 and 2 have a degree of functional redundancy; both demonstrate the ability to participate in lignin biosynthesis. However, PbCCR1 may be the major gene for lignin biosynthesis, while PbCCR2 has little effect on lignin biosynthesis. CONCLUSIONS Our results revealed that 'Dangshan Su' pear began to form a large number of stone cells and produce lignin after 7 DAP and mainly accumulated materials from 0 to 7 DAP. PbCCR1 is mainly involved in the biosynthesis of lignin in 'Dangshan Su' pear and plays a positive role in lignin biosynthesis.
Collapse
Affiliation(s)
- Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yu Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Han Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui China
| |
Collapse
|
43
|
Li X, Liu N, Sun Y, Wang P, Ge X, Pei Y, Liu D, Ma X, Li F, Hou Y. The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways. BMC PLANT BIOLOGY 2019; 19:379. [PMID: 31455203 PMCID: PMC6712776 DOI: 10.1186/s12870-019-1888-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Metabolic pathways are interconnected and yet relatively independent. Genes involved in metabolic modules are required for the modules to run. Study of the relationships between genes and metabolic modules improves the understanding of metabolic pathways in plants. The WIN transcription factor activates the cuticle biosynthesis pathway and promotes cuticle biosynthesis. The relationship between the WIN transcription factor and other metabolic pathways is unknown. Our aim was to determine the relationships between the main genes involved in cuticle biosynthesis and those involved in other metabolic pathways. We did this by cloning a cotton WIN gene, GhWIN2, and studying its influence on other pathways. RESULTS As with other WIN genes, GhWIN2 regulated expression of cuticle biosynthesis-related genes, and promoted cuticle formation. Silencing of GhWIN2 resulted in enhanced resistance to Verticillium dahliae, caused by increased content of salicylic acid (SA). Moreover, silencing of GhWIN2 suppressed expression of jasmonic acid (JA) biosynthesis-related genes and content. GhWIN2 positively regulated the fatty acid biosynthesis pathway upstream of the JA biosynthesis pathway. Silencing of GhWIN2 reduced the content of stearic acid, a JA biosynthesis precursor. CONCLUSIONS GhWIN2 not only regulated the cuticle biosynthesis pathway, but also positively influenced JA biosynthesis and negatively influenced SA biosynthesis.
Collapse
Affiliation(s)
- Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Di Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| |
Collapse
|
44
|
Abstract
NACs (NAM, ATAF1/2, and CUC2) are plant-specific transcription factors that play diverse roles in various plant developmental processes. In this study, we identified the NAC gene family in birch (Betula pendula) and further analyzed the function of BpNACs. Phylogenetic analysis reveals that the 114 BpNACs can be divided into seven subfamilies. We investigated the expression levels of these BpNACs in different tissues of birch including roots, xylem, leaves, and flowers, and the results showed that the BpNACs seem to be expressed higher in xylem and roots than leaves and flowers. In addition to tissue-specific expression analysis, we investigated the expression of BpNACs under low-temperature stress. A total of 21 BpNACs were differentially expressed under low-temperature stress, of which 17 were up-regulated, and four were down-regulated. Using the gene expression data, we reconstructed the gene co-expression network for the 21 low-temperature-responsive BpNACs. In conclusion, our results provide insight into the evolution of NAC genes in the B. pendula genome, and provide a basis for understanding the molecular mechanism for BpNAC-mediated cold responses in birch.
Collapse
|
45
|
Xu M, Li SJ, Liu XF, Yin XR, Grierson D, Chen KS. Ternary complex EjbHLH1-EjMYB2-EjAP2-1 retards low temperature-induced flesh lignification in loquat fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:731-737. [PMID: 31059995 DOI: 10.1016/j.plaphy.2019.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
Many transcription factors (TFs), including NACs and MYBs, are involved in regulation of lignin biosynthesis during plant development and in responses to biotic and abiotic stresses. The lignin biosynthesis gene Ej4CL1 has been identified as a target for cold-induced TFs. We isolated a bHLH gene from loquat, EjbHLH1, the expression of which was negatively correlated with cold-induced fruit lignification. During low temperature storage (0 °C), EjbHLH1 transcripts were stable but accumulated during low-temperature conditioning (LTC) treatment, an acclimation process that reduces lignification during subsequent storage at 0 °C. Dual luciferase assays showed EjbHLH1 could repress Ej4CL1 promoter, but yeast one hybrid assay indicated EjbHLH1 is not able to bind to the Ej4CL1 promoter. Bimolecular fluorescence complementation (BIFC) indicated that EjbHLH1 could interact with EjAP2-1 and EjMYB2, two previously characterized fruit lignification related transcription factors and firefly luciferase complementation imaging assay indicated EjbHLH1, EjMYB2 and EjAP2-1 could form a ternary complex which enhanced repression of transcription from the Ej4CL1 promoter, reducing lignification at 0 °C.
Collapse
Affiliation(s)
- Meng Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Shao-Jia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Kun-Song Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
46
|
Xu M, Zhang MX, Shi YN, Liu XF, Li X, Grierson D, Chen KS. EjHAT1 Participates in Heat Alleviation of Loquat Fruit Lignification by Suppressing the Promoter Activity of Key Lignin Monomer Synthesis Gene EjCAD5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5204-5211. [PMID: 30998337 DOI: 10.1021/acs.jafc.9b00641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Texture attributes such as firmness and lignification are important for fruit quality. Lignification has been widely studied in model plants and energy crops, but fruit lignification has rarely been investigated, despite having an adverse effect on fruit quality and consumer preference. Chilling-induced loquat fruit lignification that occurs after harvest can be alleviated by heat treatment (HT) applied prior to low temperature storage. Enzyme activity assay showed that HT treatment could retard the low temperature-induced increase in cinnamyl alcohol dehydrogenase (CAD) activity. Transcript analysis and substrate activity assays of recombinant CAD proteins highlighted the key role of EjCAD5 in chilling-induced lignin biosynthesis. A novel homeobox-leucine zipper protein ( EjHAT1) was identified as a negative regulator of EjCAD5. Therefore, the effect of HT treatment on lignification may be partially due to the suppression of the EjCAD5 promoter activity by EjHAT1.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences , University of Nottingham , Sutton Bonington Campus , Loughborough , LE12 5RD , United Kingdom
| | | |
Collapse
|
47
|
Jia N, Liu J, Tan P, Sun Y, Lv Y, Liu J, Sun J, Huang Y, Lu J, Jin N, Li M, Md Sharif Uddin Imam K, Xin F, Fan B. Citrus sinensis MYB Transcription Factor CsMYB85 Induce Fruit Juice Sac Lignification Through Interaction With Other CsMYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2019; 10:213. [PMID: 30873196 PMCID: PMC6401657 DOI: 10.3389/fpls.2019.00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/07/2019] [Indexed: 05/06/2023]
Abstract
Varieties of Citrus are commercially important fruits that are cultivated worldwide and are valued for being highly nutritious and having an appealing flavor. Lignification of citrus fruit juice sacs is a serious physiological disorder that occurs during postharvest storage, for which the underlying transcriptional regulatory mechanisms remain unclear. In this study, we identified and isolated a candidate MYB transcription factor, CsMYB85, that is involved in the regulation of lignin biosynthesis in Citrus sinensis, which has homologs in Arabidopsis and other plants. We found that during juice sac lignification, CsMYB85 expression levels increase significantly, and therefore, suspected that this gene may control lignin biosynthesis during the lignification process. Our results indicated that CsMYB85 binds the CsMYB330 promoter, regulates its expression, and interacts with CsMYB308 in transgenic yeast and tobacco. A transient expression assay indicated that Cs4CL1 expression levels and lignin content significantly increased in fruit juice sacs overexpressing CsMYB85. At4CL1 expression levels and lignin content were also significantly increased in Arabidopsis overexpressing CsMYB85. We accordingly present convincing evidence for the participation of the CsMYB85 transcription factor in fruit juice sac lignification, and thereby provide new insights into the transcriptional regulation of this process in citrus fruits.
Collapse
Affiliation(s)
- Ning Jia
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiqin Liu
- Qinhuangdao Customs, Hebei Qinhuangdao, Qinhuangdao, China
| | - Penghui Tan
- Turfgrass Research Institute, Beijing Forestry University, Beijing, China
| | - Yufeng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuemeng Lv
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jia Lu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
48
|
Zhao K, Lin F, Romero-Gamboa SP, Saha P, Goh HJ, An G, Jung KH, Hazen SP, Bartley LE. Rice Genome-Scale Network Integration Reveals Transcriptional Regulators of Grass Cell Wall Synthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:1275. [PMID: 31681374 PMCID: PMC6813959 DOI: 10.3389/fpls.2019.01275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/12/2019] [Indexed: 05/07/2023]
Abstract
Grasses have evolved distinct cell wall composition and patterning relative to dicotyledonous plants. However, despite the importance of this plant family, transcriptional regulation of its cell wall biosynthesis is poorly understood. To identify grass cell wall-associated transcription factors, we constructed the Rice Combined mutual Ranked Network (RCRN). The RCRN covers >90% of annotated rice (Oryza sativa) genes, is high quality, and includes most grass-specific cell wall genes, such as mixed-linkage glucan synthases and hydroxycinnamoyl acyltransferases. Comparing the RCRN and an equivalent Arabidopsis network suggests that grass orthologs of most genetically verified eudicot cell wall regulators also control this process in grasses, but some transcription factors vary significantly in network connectivity between these divergent species. Reverse genetics, yeast-one-hybrid, and protoplast-based assays reveal that OsMYB61a activates a grass-specific acyltransferase promoter, which confirms network predictions and supports grass-specific cell wall synthesis genes being incorporated into conserved regulatory circuits. In addition, 10 of 15 tested transcription factors, including six novel Wall-Associated regulators (WAP1, WACH1, WAHL1, WADH1, OsMYB13a, and OsMYB13b), alter abundance of cell wall-related transcripts when transiently expressed. The results highlight the quality of the RCRN for examining rice biology, provide insight into the evolution of cell wall regulation, and identify network nodes and edges that are possible leads for improving cell wall composition.
Collapse
Affiliation(s)
- Kangmei Zhao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Fan Lin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | | | - Prasenjit Saha
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Hyung-Jung Goh
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Samuel P. Hazen
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- *Correspondence: Laura E. Bartley,
| |
Collapse
|
49
|
Saelim L, Akiyoshi N, Tan TT, Ihara A, Yamaguchi M, Hirano K, Matsuoka M, Demura T, Ohtani M. Arabidopsis Group IIId ERF proteins positively regulate primary cell wall-type CESA genes. JOURNAL OF PLANT RESEARCH 2019; 132:117-129. [PMID: 30478480 DOI: 10.1007/s10265-018-1074-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/21/2018] [Indexed: 05/22/2023]
Abstract
The cell wall determines morphology and the environmental responses of plant cells. The primary cell wall (PCW) is produced during cell division and expansion, determining the cell shape and volume. After cell expansion, specific types of plant cells produce a lignified wall, known as a secondary cell wall (SCW). We functionally analyzed Group IIId Arabidopsis AP2/EREBP genes, namely ERF34, ERF35, ERF38, and ERF39, which are homologs of a rice ERF gene previously proposed to be related to SCW biosynthesis. Expression analysis revealed that these four genes are expressed in regions related to cell division and/or cell differentiation in seedlings (i.e., shoot apical meristems, the primordia of leaves and lateral roots, trichomes, and central cylinder of primary roots) and flowers (i.e., vascular tissues of floral organs and replums and/or valve margins of pistils). Overexpression of ERF genes significantly upregulated PCW-type, but not SCW-type, CESA genes encoding cellulose synthase catalytic subunits in Arabidopsis seedlings. Transient co-expression reporter analysis indicated that ERF35, ERF38, and ERF39 possess transcriptional activator activity, and that ERF34, ERF35, ERF38, and ERF39 upregulated the promoter activity of CESA1, a PCW-type CESA gene, through the DRECRTCOREAT elements, the core cis-acting elements known to be recognized by AP2/ERF proteins. Together, our findings show that Group IIId ERF genes are positive transcriptional regulators of PCW-type CESA genes in Arabidopsis and are possibly involved in modulating cellulose biosynthesis in response to developmental requirements and environmental stimuli.
Collapse
Affiliation(s)
- Laddawan Saelim
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Nobuhiro Akiyoshi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tian Tian Tan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ayumi Ihara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masatoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
50
|
Andrade LM, Peixoto-Junior RF, Ribeiro RV, Nóbile PM, Brito MS, Marchiori PER, Carlin SD, Martins APB, Goldman MHS, Llerena JPP, Fregonesi C, Perecin D, Nebó JFCDO, Figueira A, Benatti TR, da Silva J, Mazzafera P, Creste S. Biomass Accumulation and Cell Wall Structure of Rice Plants Overexpressing a Dirigent-Jacalin of Sugarcane ( ShDJ) Under Varying Conditions of Water Availability. FRONTIERS IN PLANT SCIENCE 2019; 10:65. [PMID: 30815002 PMCID: PMC6381051 DOI: 10.3389/fpls.2019.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 05/03/2023]
Abstract
A sugarcane gene encoding a dirigent-jacalin, ShDJ, was induced under drought stress. To elucidate its biological function, we integrated a ShDJ-overexpression construction into the rice Nipponbare genome via Agrobacterium-mediated transformation. Two transgenic lines with a single copy gene in T0 were selected and evaluated in both the T1 and T4 generations. Transgenic lines had drastically improved survival rate under water deficit conditions, at rates close to 100%, while WT did not survive. Besides, transgenic lines had improved biomass production and higher tillering under water deficit conditions compared with WT plants. Reduced pectin and hemicellulose contents were observed in transgenic lines compared with wild-type plants under both well-watered and water deficit conditions, whereas cellulose content was unchanged in line #17 and reduced in line #29 under conditions of low water availability. Changes in lignin content under water deficit were only observed in line #17. However, improvements in saccharification were found in both transgenic lines along with changes in the expression of OsNTS1/2 and OsMYB58/63 secondary cell wall biosynthesis genes. ShDJ-overexpression up-regulated the expression of the OsbZIP23, OsGRAS23, OsP5CS, and OsLea3 genes in rice stems under well-watered conditions. Taken together, our data suggest that ShDJ has the potential for improving drought tolerance, plant biomass accumulation, and saccharification efficiency.
Collapse
Affiliation(s)
- Larissa Mara Andrade
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Fávero Peixoto-Junior
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Michael Santos Brito
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Paulo Eduardo Ribeiro Marchiori
- Instituto Agronômico (IAC), Centro de Ecofisiologia e Biofísica, Campinas, Brazil
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | | | - Alexandre Palma Boer Martins
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Dilermando Perecin
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | | | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), University of São Paulo, Piracicaba, Brazil
| | | | - Jorge da Silva
- Texas A&M Agrilife Research & Extension Center, Weslaco, TX, United States
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- *Correspondence: Silvana Creste,
| |
Collapse
|