1
|
Li X, Jiang Z, Zhang C, Cai K, Wang H, Pan W, Sun X, Gao Y, Xu K. Comparative genomics analysis provide insights into evolution and stress responses of Lhcb genes in Rosaceae fruit crops. BMC PLANT BIOLOGY 2023; 23:484. [PMID: 37817059 PMCID: PMC10566169 DOI: 10.1186/s12870-023-04438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Light-harvesting chlorophyll a/b b evelopment of higher plants and in response to abiotic stress. Previous works has demonstrated that that Lhcb genes were involved in the phytochrome regulation and responded to the different light and temperature conditions in Poaceae (such as maize). However, the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species. RESULTS In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca, 20 in Prunus armeniaca, 33 in Malus domestica 'Gala', 21 in Prunus persica, 33 in Rosa chinensis, 29 in Pyrus bretschneideri, 18 in Rubus occidentalis, 20 in Prunus mume, and 15 in Prunus salicina. Phylogenetic analysis revealed that the Lhcb gene family could be classified into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks in Ks values (0.1-0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis-acting elements in the 2000 bp promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demonstrated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature stress in Rosaceae species. CONCLUSIONS These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight the critical role of Lhcb in pear's response to low temperatures. The results obtained provide valuable insights for further investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further fruit tree breeding and improvement to cope with the current climate changes.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Chaofan Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hui Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Weiyi Pan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Yoon J, Cho LH, Tun W, Jeon JS, An G. Sucrose signaling in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110703. [PMID: 33288016 DOI: 10.1016/j.plantsci.2020.110703] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 05/27/2023]
Abstract
Sucrose controls various developmental and metabolic processes in plants. In this review, we evaluate whether sucrose could be a preferred signaling molecule that controls processes like carbohydrate metabolism, accumulation of storage proteins, sucrose transport, anthocyanin accumulation, and floral induction. We summarize putative sucrose-dependent signaling pathways. Sucrose, but not other sugars, stimulates the genes that encode ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase I, and UDP-glucose pyrophosphorylase in several species. The class-1 patatin promoter is induced under high sucrose conditions in potato (Solanum tuberosum). Exogenous sucrose reduces the loading of sucrose to the phloem by inhibiting the expression of the sucrose transporter and its protein activity in sugar beet (Beta vulgaris). Sucrose also influences a wide range of growth processes, including cell division, ribosome synthesis, cotyledon development, far-red light signaling, and tuber development. Floral induction is promoted by sucrose in several species. The molecular mechanisms by which sucrose functions as a signal are largely unknown. Sucrose enhances the expression of transcription factors such as AtWRKY20 and MYB75, which function upstream of the sucrose-responsive genes. Sucrose controls the expression of AtbZIP11 at the post-transcriptional level by the peptide encoded by uORF2. Sucrose levels affect translation of a group of mRNAs in Arabidopsis. Sucrose increases the activity of AGPase by posttranslational redox-modification. Sucrose interrupts the interaction between sucrose transporter SUT4 and cytochrome b5. In addition, the SNF-related protein kinase-1 appears to be involved in sucrose-dependent pathways by controlling sucrose synthase (SUS4) expression.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, South Korea
| | - Win Tun
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
3
|
Sun A, Yu B, Zhang Q, Peng Y, Yang J, Sun Y, Qin P, Jia T, Smeekens S, Teng S. MYC2-Activated TRICHOME BIREFRINGENCE-LIKE37 Acetylates Cell Walls and Enhances Herbivore Resistance. PLANT PHYSIOLOGY 2020; 184:1083-1096. [PMID: 32732351 PMCID: PMC7536677 DOI: 10.1104/pp.20.00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
O-Acetylation of polysaccharides predominantly modifies plant cell walls by changing the physicochemical properties and, consequently, the structure and function of the cell wall. Expression regulation and specific function of cell wall-acetylating enzymes remain to be fully understood. In this report, we cloned a previously identified stunted growth mutant named sucrose uncoupled1 (sun1) in Arabidopsis (Arabidopsis thaliana). SUN1 encodes a member of the TRICHOME BIREFRINGEN-LIKE family, AtTBL37 AtTBL37 is highly expressed in fast-growing plant tissues and encodes a Golgi apparatus-localized protein that regulates secondary cell wall thickening and acetylation. In sun1, jasmonate signaling and expression of downstream chemical defense genes, including VEGETATIVE STORAGE PROTEIN1 and BRANCHED-CHAIN AMINOTRANSFERASE4, are increased but, unexpectedly, sun1 is more susceptible to insect feeding. The central transcription factor in jasmonate signaling, MYC2, binds to and induces AtTBL37 expression. MYC2 also promotes the expression of many other TBLs Moreover, MYC activity enhances cell wall acetylation. Overexpression of AtTBL37 in the myc2-2 background reduces herbivore feeding. Our study highlights the role of O-acetylation in controlling plant cell wall properties, plant development, and herbivore defense.
Collapse
Affiliation(s)
- Aiqing Sun
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Qin
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Jia
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Siddiqui H, Sami F, Hayat S. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr Res 2019; 487:107884. [PMID: 31811968 DOI: 10.1016/j.carres.2019.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023]
Abstract
Sugars are metabolic substrates playing a part in modulating various processes in plants during different phases of development. Thus, modulating the sugar metabolism can have intense effects on the plant metabolism. Glucose is a soluble sugar, found throughout the plant kingdom. Apart from being a universal carbon source, glucose also operates as a signaling molecule modulating various metabolic processes in plants. From germination to senescence, wide range of processes in plants is regulated by glucose. The effect of glucose is found to be concentration dependent. Photosynthesis and its related attributes, respiration and nitrogen metabolism are influenced by glucose application. Endogenous content of glucose increases upon exposure of plant to various abiotic stresses and also when glucose is supplied exogenously. Glucose accumulation alleviates the damaging effects of stress by enhancing production of antioxidants and compounds similar to that of photosynthetic CO2 fixation which act as an osmoticum by maintaining osmotic pressure inside the cell, pH homeostasis regulator and reduce membrane permeability during stress. Glucose interaction with various phytohormones has also been discussed in this review.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
5
|
Larbat R, Robin C, Lillo C, Drengstig T, Ruoff P. Modeling the diversion of primary carbon flux into secondary metabolism under variable nitrate and light/dark conditions. J Theor Biol 2016; 402:144-57. [PMID: 27164436 DOI: 10.1016/j.jtbi.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/01/2023]
Abstract
In plants, the partitioning of carbon resources between growth and defense is detrimental for their development. From a metabolic viewpoint, growth is mainly related to primary metabolism including protein, amino acid and lipid synthesis, whereas defense is based notably on the biosynthesis of a myriad of secondary metabolites. Environmental factors, such as nitrate fertilization, impact the partitioning of carbon resources between growth and defense. Indeed, experimental data showed that a shortage in the nitrate fertilization resulted in a reduction of the plant growth, whereas some secondary metabolites involved in plant defense, such as phenolic compounds, accumulated. Interestingly, sucrose, a key molecule involved in the transport and partitioning of carbon resources, appeared to be under homeostatic control. Based on the inflow/outflow properties of sucrose homeostatic regulation we propose a global model on how the diversion of the primary carbon flux into the secondary phenolic pathways occurs at low nitrate concentrations. The model can account for the accumulation of starch during the light phase and the sucrose remobilization by starch degradation during the night. Day-length sensing mechanisms for variable light-dark regimes are discussed, showing that growth is proportional to the length of the light phase. The model can describe the complete starch consumption during the night for plants adapted to a certain light/dark regime when grown on sufficient nitrate and can account for an increased accumulation of starch observed under nitrate limitation.
Collapse
Affiliation(s)
- Romain Larbat
- INRA UMR 1121, Agronomie & Environnement Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121, Agronomie & Environnement Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Christophe Robin
- INRA UMR 1121, Agronomie & Environnement Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121, Agronomie & Environnement Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France
| | - Cathrine Lillo
- Centre for Organelle Research, University of Stavanger, Stavanger Innovation Park, Måltidets Hus, 4021 Stavanger, Norway
| | - Tormod Drengstig
- Department of Computer Science and Electrical Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research, University of Stavanger, Stavanger Innovation Park, Måltidets Hus, 4021 Stavanger, Norway.
| |
Collapse
|
6
|
McCarthy A, Chung M, Ivanov AG, Krol M, Inman M, Maxwell DP, Hüner NPA. An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:40-51. [PMID: 27302005 DOI: 10.1016/j.jplph.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/06/2023]
Abstract
An established cell suspension culture of Arabidopsis thaliana var. Landsberg erecta was grown in liquid media containing 0-15%(w/v) sucrose. Exponential growth rates of about 0.40d-1 were maintained between 1.5-6%(w/v) sucrose, which decreased to about 0.30d-1 between 6 and 15%(w/v) sucrose. Despite the presence of external sucrose, cells maintained a stay-green phenotype at 0-15% (w/v) sucrose. Sucrose stimulated transcript levels of genes involved in the chlorophyll biosynthetic pathway (ChlH, ChlI2, DVR). Although most of the genes associated with photosystem II and photosystem I reaction centers and light harvesting complexes as well as genes associated with the cytochrome b6f and the ATP synthase complexes were downregulated or remained unaffected by high sucrose, immunoblotting indicated that protein levels of PsaA, Lhcb2 and Rubisco per gram fresh weight changed minimallyon a Chl basis as a function of external sucrose concentration. The green cell culture was photosynthetically competent based on light-dependent, CO2-saturated rates of O2 evolution as well as Fv/Fm and P700 oxidation. Similar to Arabidopsis WT seedlings, the suspension cells etiolated in the dark and but remained green in the light. However, the exponential growth rate of the cell suspension cultures in the dark (0.45±0.07d-1) was comparable to that in the light (0.42±0.02d-1). High external sucrose levels induced feedback inhibition of photosynthesis as indicated by the increase in excitation pressure measured as a function of external sucrose concentration. Regardless, the cell suspension culture still maintained a stay-green phenotype in the light at sucrose concentrations from 0 to 15%(w/v) due, in part, to a stimulation of photoprotection through nonphotochemical quenching. The stay-green, sugar-insensitive phenotype of the cell suspension contrasted with the sugar-dependent, non-green phenotype of Arabidopsis Landsberg erecta WT seedlings grown at comparable external sucrose concentrations. It appears that the commonly used Arabidopsis thaliana var. Landsberg erecta cell suspension culture has undergone significant genetic change since its original generation in 1993. We suggest that this genetic alteration has inhibited the sucrose sensing/signaling pathway coupled with a stimulation of chlorophyll an accumulation in the light with minimal effects on the composition and function of its photosynthetic apparatus. Therefore, caution must be exercised in the interpretation of physiological and biochemical data obtained from experimental use of this culture in any comparison with wild-type Arabidopsis seedlings.
Collapse
Affiliation(s)
- Avery McCarthy
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Michelle Chung
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Alexander G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Marianna Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Michael Inman
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Denis P Maxwell
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7 Canada,.
| |
Collapse
|
7
|
Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nat Commun 2016; 7:11431. [PMID: 27150909 PMCID: PMC4859062 DOI: 10.1038/ncomms11431] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/23/2016] [Indexed: 02/08/2023] Open
Abstract
Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation. Retrograde signals from dysfunctional chloroplasts influence plant response to light. Here the authors show that the GUN1 retrograde signalling pathway acts antagonistically to the phytochrome-mediated red light perception pathway to control the expression of GLK1, a key transcriptional regulator of photomorphogenesis.
Collapse
|
8
|
Rabot A, Henry C, Ben Baaziz K, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S, Le Gourrierec J, Sakr S. Insight into the role of sugars in bud burst under light in the rose. PLANT & CELL PHYSIOLOGY 2012; 53:1068-82. [PMID: 22505690 DOI: 10.1093/pcp/pcs051] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst. Full-length cDNAs encoding two vacuolar invertases (RhVI1 and RhVI2) were isolated from buds. Unlike RhVI2, RhVI1 was preferentially expressed in bursting buds, and was up-regulated in buds of beheaded plants exposed to light. To assess the importance of sugars in this process, the expression of RhVI1 and RhVI2 and the total vacuolar invertase activity were further characterized in buds cultured in vitro on 100 mM sucrose or mannitol under light or in darkness for 48 h. Unlike mannitol, sucrose promoted the stimulatory effect of light on both RhVI1 expression and vacuolar invertase activity. This up-regulation of RhVI1 was rapid (after 6 h incubation) and was induced by as little as 10 mM sucrose or fructose. No effect of glucose was found. Interestingly, both 30 mM palatinose (a non-metabolizable sucrose analog) and 5 mM psicose (a non-metabolizable fructose analog) promoted the light-induced expression of RhVI1 and total vacuolar invertase activity. Sucrose, fructose, palatinose and psicose all promoted bursting of in vitro cultured buds under light. These findings indicate that soluble sugars contribute to the light effect on bud burst and vacuolar invertases, and can function as signaling entities.
Collapse
Affiliation(s)
- Amelie Rabot
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stewart JL, Maloof JN, Nemhauser JL. PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS One 2011; 6:e19894. [PMID: 21625438 PMCID: PMC3100310 DOI: 10.1371/journal.pone.0019894] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/14/2011] [Indexed: 11/17/2022] Open
Abstract
As photoautotrophs, plants can use both the form and amount of fixed carbon as a
measure of the light environment. In this study, we used a variety of approaches
to elucidate the role of exogenous sucrose in modifying seedling growth
dynamics. In addition to its known effects on germination, high-resolution
temporal analysis revealed that sucrose could extend the number of days plants
exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate
seedling height. In addition, sucrose changed the timing of daily growth maxima,
demonstrating that diel growth dynamics are more plastic than previously
suspected. Sucrose-dependent growth promotion required function of multiple
phytochrome-interacting factors (PIFs), and overexpression of
PIF5 led to growth dynamics similar to plants exposed to
sucrose. Consistent with this result, sucrose was found to increase levels of
PIF5 protein. PIFs have well-established roles as integrators of response to
light levels, time of day and phytohormone signaling. Our findings strongly
suggest that carbon availability can modify the known photomorphogenetic
signaling network.
Collapse
Affiliation(s)
- Jodi L Stewart
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | | | | |
Collapse
|
10
|
Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. THE PLANT CELL 2010; 22:3603-20. [PMID: 21075769 PMCID: PMC3015121 DOI: 10.1105/tpc.110.073833] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.
Collapse
Affiliation(s)
| | | | | | | | | | - Mechthild Tegeder
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236
| |
Collapse
|
11
|
Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. THE PLANT CELL 2009; 21:3535-53. [PMID: 19920208 PMCID: PMC2798328 DOI: 10.1105/tpc.109.070672] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/11/2009] [Accepted: 11/02/2009] [Indexed: 05/18/2023]
Abstract
Light signals perceived by the phytochromes induce the transition from skotomorphogenic to photomorphogenic development (deetiolation) in dark-germinated seedlings. Evidence that a quadruple mutant (pifq) lacking four phytochrome-interacting bHLH transcription factors (PIF1, 3, 4, and 5) is constitutively photomorphogenic in darkness establishes that these factors sustain the skotomorphogenic state. Moreover, photoactivated phytochromes bind to and induce rapid degradation of the PIFs, indicating that the photoreceptor reverses their constitutive activity upon light exposure, initiating photomorphogenesis. Here, to define the modes of transcriptional regulation and cellular development imposed by the PIFs, we performed expression profile and cytological analyses of pifq mutant and wild-type seedlings. Dark-grown mutant seedlings display cellular development that extensively phenocopies wild-type seedlings grown in light. Similarly, 80% of the gene expression changes elicited by the absence of the PIFs in dark-grown pifq seedlings are normally induced by prolonged light in wild-type seedlings. By comparing rapidly light-responsive genes in wild-type seedlings with those responding in darkness in the pifq mutant, we identified a subset, enriched in transcription factor-encoding genes, that are potential primary targets of PIF transcriptional regulation. Collectively, these data suggest that the transcriptional response elicited by light-induced PIF proteolysis is a major component of the mechanism by which the phytochromes pleiotropically regulate deetiolation and that at least some of the rapidly light-responsive genes may comprise a transcriptional network directly regulated by the PIF proteins.
Collapse
Affiliation(s)
- Pablo Leivar
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - James M. Tepperman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Elena Monte
- Department of Molecular Genetics, Center for Research in Agrigenomics (CRAG), Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Barcelona 08034, Spain
| | - Robert H. Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Tiffany L. Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- U.S. Department of Agriculture, Plant Gene Expression Center, Albany, California 94710
- Address correspondence to
| |
Collapse
|
12
|
Dekkers BJW, Schuurmans JAMJ, Smeekens SCM. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:151-67. [PMID: 18278579 PMCID: PMC2295253 DOI: 10.1007/s11103-008-9308-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 02/02/2008] [Indexed: 05/17/2023]
Abstract
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | |
Collapse
|
13
|
Energy Dissipation and Photoinhibition: A Continuum of Photoprotection. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Adams WW, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B. Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. PHOTOSYNTHESIS RESEARCH 2007; 94:455-66. [PMID: 17211580 DOI: 10.1007/s11120-006-9123-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/07/2006] [Indexed: 05/05/2023]
Abstract
The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly-growing, mesophytic annuals.
Collapse
Affiliation(s)
- William W Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kimura M, Manabe K, Abe T, Yoshida S, Matsui M, Yamamoto YY. Analysis of Hydrogen Peroxide-independent Expression of the High-light-inducible ELIP2 Gene with the Aid of the ELIP2 Promoter-Luciferase Fusion¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770668aohpeo2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Gupta AK, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 2006; 30:761-76. [PMID: 16388148 DOI: 10.1007/bf02703574] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca 2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.
Collapse
Affiliation(s)
- Anil K Gupta
- Department of Biochemistry and Chemistry, Punjab Agricultural University, Ludhiana 141 004, India.
| | | |
Collapse
|
17
|
Araya T, Noguchi K, Terashima I. Effects of Carbohydrate Accumulation on Photosynthesis Differ between Sink and Source Leaves of Phaseolus vulgaris L. ACTA ACUST UNITED AC 2006; 47:644-52. [PMID: 16540483 DOI: 10.1093/pcp/pcj033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulation of non-structural carbohydrate in leaves represses photosynthesis. However, the extent of repression should be different between sink leaves (sugar consumers) and source leaves (sugar exporters). We investigated the effects of carbohydrate accumulation on photosynthesis in the primary leaves of bean (Phaseolus vulgaris L.) during leaf expansion. To increase the carbohydrate content of the leaves, we supplied 20 mM sucrose solution to the roots for 5 d (sugar treatment). Plants supplied only with water and nutrients were used as controls. The carbohydrate contents, which are the sum of glucose, sucrose and starch, of the sugar-treated leaves were 1.5-3 times of those of the control leaves at all developmental stages. In the young sink leaves, the photosynthetic rate at saturating light and at an ambient CO2 concentration (A360) did not differ between the sugar-treated and control leaves. The A360 of sugar-treated source leaves gradually decreased relative to the control source leaves with leaf expansion. The initial slope of the A-Ci (CO2 concentration in the intercellular space) curve, and the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content per leaf area showed trends similar to that of A360. Differences in Amax between the treatments were slightly smaller than those in A360. These results indicate that the effect of carbohydrate accumulation on photosynthesis is significant in the source leaves, but not in the young sink leaves, and that the decrease in Rubisco content was the main cause of the carbohydrate repression of photosynthesis.
Collapse
Affiliation(s)
- Takao Araya
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Japan.
| | | | | |
Collapse
|
18
|
Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P. Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. JOURNAL OF PLANT RESEARCH 2006; 119:115-23. [PMID: 16463203 DOI: 10.1007/s10265-005-0251-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/31/2005] [Indexed: 05/06/2023]
Abstract
Sugar status regulates mechanisms controlling growth and development of plants. We studied the effects of sucrose at a genome-wide level in dark-grown 4-day-old Arabidopsis thaliana seedlings, identifying 797 genes strongly responsive to sucrose. Starting from the microarray analysis data, four up-regulated (At5g41670, At1g20950, At1g61800, and At2g28900) and four down-regulated (DIN6, At4g37220, At1g28330, and At1g74670) genes were chosen for further characterisation and as sugar sensing markers for in vivo analysis. The sugar modulation pattern of all eight genes was confirmed by real time RT-PCR analysis, revealing different concentration thresholds for sugar modulation. Finally, sugar-regulation of gene expression was demonstrated in vivo by using the starchless pgm mutant, which is unable to produce transitory starch. Sucrose-inducible genes are upregulated in pgm leaves at the end of a light treatment, when soluble sugars levels are higher than in the wild type. Conversely, sucrose-repressible genes show a higher expression at the end of the dark period in the mutant, when the levels of sugars in the leaf are lower. The results obtained indicate that the transcriptional response to exogenous sucrose allows the identification of genes displaying a pattern of expression in leaves compatible with their sugar-modulation in vivo.
Collapse
Affiliation(s)
- Silvia Gonzali
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 2006; 6:212-34. [PMID: 16463051 DOI: 10.1007/s10142-005-0014-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
A comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation. Many genes up-regulated during deacclimation were found to be down-regulated during cold acclimation, and vice versa. The genes up-regulated during deacclimation were classified into (1) regulatory proteins involved in further regulation of signal transduction and gene expression and (2) functional proteins involved in the recovery process from cold-stress-induced damages and plant growth. We also applied expression profiling studies to identify the key genes involved in the biosynthesis of carbohydrates and amino acids that are known to play important roles in cold acclimation. We compared genes that are regulated during deacclimation with those regulated during rehydration after dehydration to discuss the similarity and difference of each recovery process.
Collapse
Affiliation(s)
- Youko Oono
- Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. PLANT PHYSIOLOGY 2006. [PMID: 16384906 DOI: 10.1104/pp.105.072579.the] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating high levels of soluble sugars.
Collapse
Affiliation(s)
- Cinzia Solfanelli
- Department of Crop Plant Biology, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | |
Collapse
|
21
|
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:637-46. [PMID: 16384906 PMCID: PMC1361330 DOI: 10.1104/pp.105.072579] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 05/05/2023]
Abstract
Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating high levels of soluble sugars.
Collapse
Affiliation(s)
- Cinzia Solfanelli
- Department of Crop Plant Biology, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | |
Collapse
|
22
|
Kim BH, von Arnim AG. The early dark-response in Arabidopsis thaliana revealed by cDNA microarray analysis. PLANT MOLECULAR BIOLOGY 2006; 60:321-42. [PMID: 16514558 DOI: 10.1007/s11103-005-4211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 10/13/2005] [Indexed: 05/06/2023]
Abstract
Despite intense research on light responses in plants, the consequences of a simple shift from light to darkness remain poorly characterized. We have examined the transcriptome of Arabidopsis thaliana seedling leaves upon a shift from constant light to darkness for between 1 and 8 h, while excluding most effects associated with circadian oscillation. Expression clustering and gene ontology analyses identified about 790 responsive genes implicated in diverse cellular processes. Compared to the better-studied long-term dark adaptation response, the early response to darkness is partially overlapping yet clearly distinct, encompassing early transient, early sustained, and late response clusters. The repressor of photomorphogenesis, COP1 (constitutive photomorphogenic 1), is not a chief regulator of the early response to darkness, in contrast to its well-established role during long-term dark adaptation and etiolation. Only part of the early dark response can be understood as the opposite of the response following a dark-to-light transition and as a response to sugar deprivation. Bioinformatic comparisons with published microarray datasets further suggest that abscisic acid (ABA) signaling plays a prominent role in the early response to darkness, although this effect is not mediated by an increase in the ABA level. The potential basis for the co-regulation by darkness and ABA is discussed in light of sugar and redox signaling.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
23
|
Acevedo-Hernández GJ, León P, Herrera-Estrella LR. Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:506-19. [PMID: 16098105 DOI: 10.1111/j.1365-313x.2005.02468.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugars and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. Using conserved modular arrangement 5 (CMA5), a previously characterized minimal light-responsive unit, we show that in Arabidopsis thaliana this unit responds not only positively to light signals, but also negatively to sugars and ABA. The latter responses were found to be impaired in the abi4 mutant, indicating that ABSCISIC ACID INSENSITIVE-4 (ABI4) is a regulator involved in sugar and ABA repression of this minimal regulatory unit. Furthermore, we report a new sequence element conserved in several rbcS promoters, herewith named S-box, which is important for the sugar and ABA responsiveness of CMA5. This sequence corresponds to a putative ABI4-binding site, which is in fact bound by the Arabidopsis ABI4 protein in vitro. The S-box is closely associated with the G-box present in CMA5, and this association is conserved in the promoters of several RBCS genes. This phylogenetically conserved promoter feature probably reflects a common regulatory mechanism and identifies a point of convergence between light- and sugar-signaling pathways.
Collapse
Affiliation(s)
- Gustavo Javier Acevedo-Hernández
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional - Unidad Irapuato, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico
| | | | | |
Collapse
|
24
|
Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW. Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. PLANT PHYSIOLOGY 2004; 134:81-91. [PMID: 14684841 PMCID: PMC316289 DOI: 10.1104/pp.103.031674] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 09/16/2003] [Accepted: 10/17/2003] [Indexed: 05/18/2023]
Abstract
Sugars such as sucrose serve dual functions as transported carbohydrates in vascular plants and as signal molecules that regulate gene expression and plant development. Sugar-mediated signals indicate carbohydrate availability and regulate metabolism by co-coordinating sugar production and mobilization with sugar usage and storage. Analysis of mutants with altered responses to sucrose and glucose has shown that signaling pathways mediated by sugars and abscisic acid interact to regulate seedling development and gene expression. Using a novel screen for sugar-response mutants based on the activity of a luciferase reporter gene under the control of the sugar-inducible promoter of the ApL3 gene, we have isolated high sugar-response (hsr) mutants that exhibit elevated luciferase activity and ApL3 expression in response to low sugar concentrations. Our characterization of these hsr mutants suggests that they affect the regulation of sugar-induced and sugar-repressed processes controlling gene expression, growth, and development in Arabidopsis. In contrast to some other sugar-response mutants, they do not exhibit altered responses to ethylene or abscisic acid, suggesting that the hsr mutants may have a specifically increased sensitivity to sugars. Further characterization of the hsr mutants will lead to greater understanding of regulatory pathways involved in metabolite signaling.
Collapse
Affiliation(s)
- Margarete Baier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ransom-Hodgkins WD, Vaughn MW, Bush DR. Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter. PLANTA 2003; 217:483-489. [PMID: 14520575 DOI: 10.1007/s00425-003-1011-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Accepted: 02/08/2003] [Indexed: 05/24/2023]
Abstract
Assimilate partitioning refers to the systemic distribution of sugars and amino acids from sites of primary assimilation (source tissue) to import-dependent tissues and organs (sinks). One of the defining questions in this area is how plants balance source productivity with sink demand. Recent results from our laboratory showed that sucrose transport activity is directly proportional to the transcription rate of the phloem-specific proton-sucrose symporter BvSUT1 in Beta vulgaris L. Moreover, symporter gene transcription is regulated by sucrose levels in the leaf. Here we show that sucrose-dependent regulation of BvSUT1 transcription is mediated, at least in part, by a protein phosphorylation relay pathway. Protein phosphatase inhibitors decreased sucrose transport activity, symporter protein and mRNA abundance, and the relative transcription rate of the symporter gene. In contrast, protein kinase inhibitors had no effect or increased sucrose transport, protein and mRNA abundance, and transcription. Furthermore, pre-treating leaves with kinase inhibitors before feeding with sucrose blocked the sucrose-dependent decrease in symporter transcription and transport activity. The latter observation provides direct evidence for a protein phosphorylation cascade operating between the sucrose-sensor and the transcriptional regulator that controls BvSUT1 expression and, ultimately, phloem loading.
Collapse
Affiliation(s)
- Wendy D Ransom-Hodgkins
- Department of Plant Biology, 190 E.R. Madigan Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
27
|
Kimura M, Manabe K, Abe T, Yoshida S, Matsui M, Yamamoto YY. Analysis of hydrogen peroxide-independent expression of the high-light-inducible ELIP2 gene with the aid of the ELIP2 promoter-luciferase fusions. Photochem Photobiol 2003; 77:668-74. [PMID: 12870854 DOI: 10.1562/0031-8655(2003)077<0668:aohpeo>2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intense and excessive light triggers the evolution of reactive oxygen species in chloroplasts, and these have the potential to cause damage. However, plants are able to respond to light stress and protect the chloroplasts by various means, including transcriptional regulation at the nucleus. Activation of light stress-responsive genes is mediated via hydrogen peroxide-dependent and -independent pathways. In this study, we characterized the Early-Light-Inducible Protein 2 (ELIP2) promoter-luciferase gene fusion (ELIP2::LUC), which responds only to the hydrogen peroxide-independent pathway. Our results show that ELIP2::LUC is expressed under nonstressful conditions in green tissue containing juvenile and developing chloroplasts. Upon light stress, expression was activated in leaves with mature as well as developing chloroplasts. In contrast to another high-light-inducible gene, APX2, which responds to the hydrogen peroxide-dependent pathway, the activation of ELIP2::LUC was cell autonomous. The activation was suppressed by application of 3-(3,4)-dichlorophenyl-1,1-dimethylurea, an inhibitor of the reduction of plastoquinone, whereas 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, an inhibitor of the oxidation of plastoquinone, gave the contrasting effect, which may suggest that the redox state of the plastoquinone plays an important role in triggering the hydrogen peroxide-independent light stress signaling.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Plant Function Exploration Team, RIKEN Genomic Sciences Center, Tsurumi-Ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Martin T, Oswald O, Graham IA. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. PLANT PHYSIOLOGY 2002; 128:472-81. [PMID: 11842151 PMCID: PMC148910 DOI: 10.1104/pp.010475] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2001] [Revised: 09/25/2001] [Accepted: 10/30/2001] [Indexed: 05/18/2023]
Abstract
The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression.
Collapse
Affiliation(s)
- Thomas Martin
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
29
|
Martin T, Oswald O, Graham IA. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. PLANT PHYSIOLOGY 2002. [PMID: 11842151 DOI: 10.1104/pp.010475.contribution] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The objective of the current work was to establish the degree to which the effects of carbon and nitrogen availability on Arabidopsis seedling growth and development are due to these nutrients acting independently or together. Growth of seedlings on low (0.1 mM) nitrogen results in a significant reduction of seedling and cotyledon size, fresh weight, chlorophyll, and anthocyanin content but a slight increase in endogenous sugars. The addition of 100 mM sucrose (Suc) to the nitrogen-depleted growth media results in a further reduction in cotyledon size and chlorophyll content and an overall increase in anthocyanins and endogenous sugars. Storage lipid breakdown is almost completely blocked in seedlings grown on low nitrogen and 100 mM Suc and is significantly inhibited when seedlings are grown on either low nitrogen or high Suc. Carbohydrate repression of photosynthetic gene expression can only be observed under low nitrogen conditions. Low (0.1 mM) nitrogen in the absence of exogenous carbohydrate results in a significant decrease in chlorophyll a/b-binding protein and ribulose bisphosphate carboxylase small subunit gene transcript levels. Thus, carbon to nitrogen ratio rather than carbohydrate status alone appears to play the predominant role in regulating various aspects of seedling growth including storage reserve mobilization and photosynthetic gene expression.
Collapse
Affiliation(s)
- Thomas Martin
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
30
|
Foyer CH, Noctor G. Photosynthetic Nitrogen Assimilation: Inter-Pathway Control and Signaling. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2002. [DOI: 10.1007/0-306-48138-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Kimura M, Yoshizumi T, Manabe K, Yamamoto YY, Matsui M. Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes Cells 2001; 6:607-17. [PMID: 11473579 DOI: 10.1046/j.1365-2443.2001.00446.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND High (intense) light stress causes the formation of oxygen radicals in chloroplasts and has the potential to damage them. However, plants are able to respond to this stress and protect the chloroplasts by various means, including transcriptional regulation in the nucleus. Although the corresponding signalling pathway is largely unknown, the high light response in the expression of the Arabidopsis APX2 gene is reported to be mediated by hydrogen peroxide. RESULTS We characterized light stress signalling by analysing expression profiles of another high light-inducible gene of Arabidopsis, ELIP2, with the aid of an ELIP2 promoter-luciferase gene fusion. The established ELIP2:LUC transgenic Arabidopsis showed activation by high light, but not by hydrogen peroxide. On the other hand, the native ELIP2 gene as well as the APX2 gene was activated by the hydrogen peroxide. The activation of ELIP2:LUC by intense light was not inhibited by K252a but by okadaic acid. CONCLUSION The light stress signalling from the chloroplast to the nucleus is revealed to be mediated through at least two pathways: both hydrogen peroxide-dependent and -independent. The latter pathway is thought to be mediated by the protein phosphatase 2A/1 activity that is suppressed by okadaic acid.
Collapse
Affiliation(s)
- M Kimura
- Plant Function Exploration Team, RIKEN Genomic Sciences Center, Hirosawa 2-1, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
32
|
Hanson J, Johannesson H, Engström P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. PLANT MOLECULAR BIOLOGY 2001; 45:247-62. [PMID: 11292072 DOI: 10.1023/a:1006464907710] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ATHB13 is a new member of the homeodomain leucine zipper (HDZip) transcription factor family of Arabidopsis thaliana. Constitutive high-level expression of the ATHB13 cDNA in transgenic plants results in altered development of cotyledons and leaves, specifically in plants grown on media containing metabolizable sugars. Cotyledons and leaves of sugar-grown transgenic plants are more narrow and the junction between the petiole and the leaf blade less distinct, as compared to the wild type. High-level expression of ATHB13 affects cotyledon shape by inhibiting lateral expansion of epidermal cells in sugar-treated seedlings. Experiments with non-metabolizable sugars indicate that the alteration in leaf shape in the ATHB13 transgenics is mediated by sucrose sensing. ATHB13 further affects a subset of the gene expression responses of the wild-type plant to sugars. The expression of genes encoding beta-amylase and vegetative storage protein is induced to higher levels in response to sucrose in the transgenic plants as compared to the wild type. The expression of other sugar-regulated genes examined is unaffected by ATHB13. These data suggest that ATHB13 may be a component of the sucrose-signalling pathway, active close to the targets of the signal transduction.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins
- Carbohydrates/pharmacology
- Cloning, Molecular
- Cotyledon/drug effects
- Cotyledon/growth & development
- Cotyledon/ultrastructure
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Homeodomain Proteins/genetics
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Plant Leaves/drug effects
- Plant Leaves/growth & development
- Plant Proteins/genetics
- Plants, Genetically Modified/genetics
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sucrose/pharmacology
- beta-Amylase/genetics
Collapse
Affiliation(s)
- J Hanson
- Department of' Physiological Botany, Evolutionary Biology Center, Uppsala University, Sweden
| | | | | |
Collapse
|
33
|
Adams WW, Demmig-Adams B, Rosenstiel TN, Ebbert V. Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. PHOTOSYNTHESIS RESEARCH 2001; 67:51-62. [PMID: 16228316 DOI: 10.1023/a:1010688528773] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two very distinctive responses of photosynthesis to winter conditions have been identified. Mesophytic species that continue to exhibit growth during the winter typically exhibit higher maximal rates of photosynthesis during the winter or when grown at lower temperatures compared to individuals examined during the summer or when grown at warmer temperatures. In contrast, sclerophytic evergreen species growing in sun-exposed sites typically exhibit lower maximal rates of photosynthesis in the winter compared to the summer. On the other hand, shaded individuals of those same sclerophytic evergreen species exhibit similar or higher maximal rates of photosynthesis in the winter compared to the summer. Employment of the xanthophyll cycle in photoprotective energy dissipation exhibits similar characteristics in the two groups of plants (mesophytes and shade leaves of sclerophytic evergreens) that exhibit upregulation of photosynthesis during the winter. In both, zeaxanthin + antheraxanthin (Z + A) are retained and PS II remains primed for energy dissipation only on nights with subfreezing temperatures, and this becomes rapidly reversed upon exposure to increased temperatures. In contrast, Z + A are retained and PS II remains primed for energy dissipation over prolonged periods during the winter in sun leaves of sclerophytic evergreen species, and requires days of warming to become fully reversed. The rapid disengagement of this energy dissipation process in the mesophytes and shade sclerophytes apparently permits a rapid return to efficient photosynthesis and increased activity on warmer days during the winter. This may be associated with a decreasing opportunity for photosynthesis in source leaves relative to the demand for photosynthesis in the plant's sinks. In contrast, the sun-exposed sclerophytes - with a relatively high source to sink ratio - maintain PS II in a state primed for high levels of energy dissipation activity throughout much of the winter. Independent of whether photosynthesis was up- or downregulated, all species under all conditions exhibited higher levels of soluble carbohydrates during the winter compared to the summer. Thus downregulation of photosynthesis and of Photosystem II do not appear to limit carbohydrate accumulation under winter conditions. A possible signal communicating an altered source/sink balance, or that may be influencing the engagement of Z + A in energy dissipation, is phosphorylation of thylakoid proteins such as D1.
Collapse
Affiliation(s)
- W W Adams
- Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, CO, 80309-0334, USA,
| | | | | | | |
Collapse
|
34
|
Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:577-85. [PMID: 10972884 DOI: 10.1046/j.1365-313x.2000.00822.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for hexokinase, suggesting that SUN6 might play a role in hexokinase-dependent sugar responses. The SUN6 gene was cloned by transposon tagging and analysis showed it to be identical to the previously described ABSCISIC ACID INSENSITIVE-4 (ABI4) gene. Our analysis suggests the involvement of abscisic acid and components of the abscisic acid signal transduction cascade in a hexokinase-dependent sugar response pathway. During the plant life cycle, SUN6/ABI4 may be involved in controlling metabolite availability in an abscisic acid- and sugar-dependent way.
Collapse
Affiliation(s)
- C Huijser
- Department of Molecular Plant Physiology and; Department of Molecular Genetics, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Sugars have important signaling functions throughout all stages of the plant's life cycle. This review presents our current understanding of the different mechanisms of sugar sensing and sugar-induced signal transduction, including the experimental approaches used. In plants separate sensing systems are present for hexose and sucrose. Hexokinase-dependent and -independent hexose sensing systems can further be distinguished. There has been progress in understanding the signal transduction cascade by analyzing the function of the SNF1 kinase complex and the regulatory PRL1 protein. The role of sugar signaling in seed development and in seed germination is discussed, especially with respect to the various mechanisms by which sugar signaling controls gene expression. Finally, recent literature on interacting signal transduction cascades is discussed, with particular emphasis on the ethylene and ABA signal transduction pathways.
Collapse
Affiliation(s)
- Sjef Smeekens
- Department of Molecular Plant Physiology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands; e-mail:
| |
Collapse
|
36
|
Pego JV, Kortstee AJ, Huijser C, Smeekens SC. Photosynthesis, sugars and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:407-16. [PMID: 10938849 DOI: 10.1093/jexbot/51.suppl_1.407] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and signalling. An overview of these strategies has been included. Sugar-mediated regulation of gene expression is thought to require the hexokinase (HXK) protein. It has previously been shown that one such sugar, mannose, is capable of blocking germination in Arabidopsis. This inhibition is also mediated by HXK and occurs in the low millimolar concentration range. Here, the use of germination on mannose as an effective screening strategy for putative sugar sensing and signalling mutants is reported. T-DNA- and EMS-mutagenized collections were used to isolate 31 mannose-insensitive germination (mig) mutants. With the use of these mutants, a comparison between this screen and other existing sugar-sensing screens is presented.
Collapse
Affiliation(s)
- J V Pego
- University of Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Control of Photosynthesis, Allocation and Partitioning by Sugar Regulated Gene Expression. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/0-306-48137-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
38
|
Genoud T, Métraux JP. Crosstalk in plant cell signaling: structure and function of the genetic network. TRENDS IN PLANT SCIENCE 1999; 4:503-507. [PMID: 10562736 DOI: 10.1016/s1360-1385(99)01498-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell signaling integrates independent stimuli using connections between biochemical pathways. The sensory apparatus can be represented as a network, and the connections between pathways are termed crosstalk. Here, we describe several examples of crosstalk in plant biology. To formalize the network of signal transduction we evaluated the relevance of mechanistic models used in artificial intelligence. Although the perceptron model of neural networking provides a good description of the process, we suggest that Boolean networks should be used as a starting framework. The Boolean network model allows genetic data to be integrated into the logical network of connections deduced from DNA microarray data.
Collapse
Affiliation(s)
- T Genoud
- Département de Biologie, Université de Fribourg, Switzerland
| | | |
Collapse
|
39
|
Montgomery BL, Yeh KC, Crepeau MW, Lagarias JC. Modification of distinct aspects of photomorphogenesis via targeted expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. PLANT PHYSIOLOGY 1999; 121:629-39. [PMID: 10517855 PMCID: PMC59426 DOI: 10.1104/pp.121.2.629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phenotypic consequences of targeted expression of mammalian biliverdin IXalpha reductase (BVR), an enzyme that metabolically inactivates the linear tetrapyrrole precursors of the phytochrome chromophore, are addressed in this investigation. Through comparative phenotypic analyses of multiple plastid-targeted and cytosolic BVR transgenic Arabidopsis plant lines, we show that the subcellular localization of BVR affects distinct subsets of light-mediated and light-independent processes in plant growth and development. Regardless of its cellular localization, BVR suppresses the phytochrome-modulated responses of hypocotyl growth inhibition, sucrose-stimulated anthocyanin accumulation, and inhibition of floral initiation. By contrast, reduced protochlorophyll levels in dark-grown seedlings and fluence-rate-dependent reduction of chlorophyll occur only in transgenic plants in which BVR is targeted to plastids. Together with companion analyses of the phytochrome chromophore-deficient hy1 mutant, our results suggest a regulatory role for linear tetrapyrroles within the plastid compartment distinct from their assembly with apophytochromes in the cytosol.
Collapse
Affiliation(s)
- B L Montgomery
- Section of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
40
|
Short TW. Overexpression of Arabidopsis phytochrome B inhibits phytochrome A function in the presence of sucrose. PLANT PHYSIOLOGY 1999; 119:1497-506. [PMID: 10198109 PMCID: PMC32035 DOI: 10.1104/pp.119.4.1497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 01/04/1999] [Indexed: 05/19/2023]
Abstract
Overexpression of phytochrome B (phyB) in Arabidopsis has previously been demonstrated to result in dominant negative interference of phytochrome A (phyA)-mediated hypocotyl growth inhibition in far-red (FR) light. This phenomenon has been examined further in this study and has been found to be dependent on the FR fluence rate and on the availability of metabolizable sugars in the growth medium. Poorly metabolized sugars capable of activating the putative hexokinase sensory function were not effective in eliciting the phytochrome interference response. Overexpressed phyB lacking the chromophore-binding site was also effective at inhibiting the phyA response, especially at higher fluence rates of FR. Overexpressed phyB produces the dominant negative phenotype without any apparent effect on phyA abundance or degradation. It is possible that phyA and phyB interact with a common reaction partner but that either the energy state of the cell or a separate sugar-signaling mechanism modulates the phytochrome-signaling interactions.
Collapse
Affiliation(s)
- T W Short
- Biology Department, Queens College and the Graduate School of The City University of New York, Flushing, New York 11367, USA.
| |
Collapse
|
41
|
Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM. The dual function of sugar carriers. Transport and sugar sensing. THE PLANT CELL 1999; 11:707-26. [PMID: 10213788 PMCID: PMC144201 DOI: 10.1105/tpc.11.4.707] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- S Lalonde
- Center for Plant Molecular Biology (ZMBP), University of Tubingen, Auf der Morgenstelle 1, D-72076 Tubingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Pego JV, Weisbeek PJ, Smeekens SC. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. PLANT PHYSIOLOGY 1999; 119:1017-23. [PMID: 10069839 PMCID: PMC32082 DOI: 10.1104/pp.119.3.1017] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/1998] [Accepted: 12/03/1998] [Indexed: 05/18/2023]
Abstract
Low concentrations of the glucose (Glc) analog mannose (Man) inhibit germination of Arabidopsis seeds. Man is phosphorylated by hexokinase (HXK), but the absence of germination was not due to ATP or phosphate depletion. The addition of metabolizable sugars reversed the Man-mediated inhibition of germination. Carbohydrate-mediated regulation of gene expression involving a HXK-mediated pathway is known to be activated by Glc, Man, and other monosaccharides. Therefore, we investigated whether Man blocks germination through this system. By testing other Glc analogs, we found that 2-deoxyglucose, which, like Man, is phosphorylated by HXK, also blocked germination; no inhibition was observed with 6-deoxyglucose or 3-O-methylglucose, which are not substrates for HXK. Since these latter two sugars are taken up at a rate similar to that of Man, uptake is unlikely to be involved in the inhibition of germination. Furthermore, we show that mannoheptulose, a specific HXK inhibitor, restores germination of seeds grown in the presence of Man. We conclude that HXK is involved in the Man-mediated repression of germination of Arabidopsis seeds, possibly via energy depletion.
Collapse
Affiliation(s)
- J V Pego
- Department of Botanical Ecology and Evolutionary Biology, University of Utrecht. Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
43
|
Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:253-63. [PMID: 9721683 DOI: 10.1046/j.1365-313x.1998.00205.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis bZIP transcription factor gene ATB2 has been shown previously to be expressed in a light-regulated and tissue-specific way. Here we describe the precise localization of ATB2 expression, using transgenic lines containing an ATB2 promoter-GUS reporter gene construct. The observed expression pattern suggests a role for ATB2 in the control of processes associated with the transport or utilization of metabolites. Remarkably, expression of the ATB2-GUS reporter gene construct was specifically repressed by sucrose. Other sugars, such as glucose and fructose, alone or in combination, were ineffective. Repression was observed at external sucrose concentrations exceeding 25 mM. Transcript levels of both the endogenous ATB2 gene and the ATB2-GUS reporter gene were not repressed by sucrose, suggesting that sucrose affects mRNA translation. This translational regulation involves the ATB2 leader sequence because deletion of the leader resulted in loss of sucrose repression. Our results provide evidence for a sucrose-specific sugar sensing and signalling system in plants.
Collapse
Affiliation(s)
- F Rook
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The molecular details of sugar sensing and sugar-mediated signal transduction pathways are unclear but recent results suggest that hexokinase functions as an important plant sugar sensor in a way that is similar to that found in yeast. The use of mutants in Arabidopsis defective in specific signaling steps is of particular importance because these give access to the genes encoding components in the signaling pathways. In addition, the physiological analysis of such mutants may reveal the interaction of sugar-induced signaling pathways and those induced by other stimuli such as environmental or biotic stress.
Collapse
Affiliation(s)
- S Smeekens
- Molecular Plant Physiology Group, Department of Botanical Ecology, University of Utrecht, Padualaan 8, 584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Chiou TJ, Bush DR. Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci U S A 1998; 95:4784-8. [PMID: 9539816 PMCID: PMC22568 DOI: 10.1073/pnas.95.8.4784] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The proton-sucrose symporter mediates the key transport step in the resource distribution system that allows many plants to function as multicellular organisms. In the results reported here, we identify sucrose as a signaling molecule in a previously undescribed signal-transduction pathway that regulates the symporter. Sucrose symporter activity declined in plasma membrane vesicles isolated from leaves fed exogenous sucrose via the xylem transpiration stream. Symporter activity dropped to 35-50% of water controls when the leaves were fed 100 mM sucrose and to 20-25% of controls with 250 mM sucrose. In contrast, alanine symporter and glucose transporter activities did not change in response to sucrose treatments. Decreased sucrose symporter activity was detectable after 8 h and reached a maximum by 24 h. Kinetic analysis of transport activity showed a decrease in Vmax. RNA gel blot analysis revealed a decrease in symporter message levels, suggesting a drop in transcriptional activity or a decrease in mRNA stability. Control experiments showed that these responses were not the result of changing osmotic conditions. Equal molar concentrations of hexoses did not elicit the response, and mannoheptulose, a hexokinase inhibitor, did not block the sucrose effect. These data are consistent with a sucrose-specific response pathway that is not mediated by hexokinase as the sugar sensor. Sucrose-dependent changes in the sucrose symporter were reversible, suggesting this sucrose-sensing pathway can modulate transport activity as a function of changing sucrose concentrations in the leaf. These results demonstrate the existence of a signaling pathway that can control assimilate partitioning at the level of phloem translocation.
Collapse
Affiliation(s)
- T J Chiou
- Department of Plant Biology, U.S. Department of Agriculture-Agricultural Research Service, 190 Madigan Laboratories, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
46
|
Ishitani M, Xiong L, Stevenson B, Zhu JK. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. THE PLANT CELL 1997; 9:1935-49. [PMID: 9401119 PMCID: PMC157048 DOI: 10.1105/tpc.9.11.1935] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To dissect genetically the complex network of osmotic and cold stress signaling, we constructed lines of Arabidopsis plants displaying bioluminescence in response to low temperature, drought, salinity, and the phytohormone abscisic acid (ABA). This was achieved by introducing into Arabidopsis plants a chimeric gene construct consisting of the firefly luciferase coding sequence (LUC) under the control of the stress-responsive RD29A promoter. LUC activity in the transgenic plants, as assessed by using in vivo luminescence imaging, faithfully reports the expression of the endogenous RD29A gene. A large number of cos (for constitutive expression of osmotically responsive genes), los (for low expression of osmotically responsive genes), and hos (for high expression of osmotically responsive genes) mutants were identified by using a high-throughput luminescence imaging system. The los and hos mutants were grouped into 14 classes according to defects in their responses to one or a combination of stress and ABA signals. Based on the classes of mutants recovered, we propose a model for stress signaling in higher plants. Contrary to the current belief that ABA-dependent and ABA-independent stress signaling pathways act in a parallel manner, our data reveal that these pathways cross-talk and converge to activate stress gene expression.
Collapse
Affiliation(s)
- M Ishitani
- Department of Plant Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
47
|
Smeekens S, Rook F. Sugar Sensing and Sugar-Mediated Signal Transduction in Plants. PLANT PHYSIOLOGY 1997; 115:7-13. [PMID: 12223788 PMCID: PMC158454 DOI: 10.1104/pp.115.1.7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- S. Smeekens
- Department of Molecular Cell Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
48
|
Dijkwel PP, Huijser C, Weisbeek PJ, Chua NH, Smeekens SC. Sucrose control of phytochrome A signaling in Arabidopsis. THE PLANT CELL 1997; 9:583-95. [PMID: 9144963 PMCID: PMC156941 DOI: 10.1105/tpc.9.4.583] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The expression of the Arabidopsis plastocyanin (PC) gene is developmentally controlled and regulated by light. During seedling development, PC gene expression is transiently induced, and this induction can be repressed by sucrose. In transgenic seedlings carrying a PC promoter-luciferase fusion gene, the luciferase-induced in vivo luminescence was similarly repressed by sucrose. From a mutagenized population of such transgenic seedlings, we selected for mutant seedlings that displayed a high luminescence level when grown on a medium with 3% sucrose. This screening of mutants resulted in the isolation of several sucrose-uncoupled (sun) mutants showing reduced repression of luminescence by sucrose. Analysis of the sun mutants revealed that the accumulation of PC and chlorophyll a/b binding protein (CAB) mRNA was also sucrose uncoupled, although the extent of uncoupling varied. The effect of sucrose on far-red light high-irradiance responses was studied in wild-type, sun1, sun6, and sun7 seedlings. In wild-type seedlings, sucrose repressed the far-red light-induced cotyledon opening and inhibition of hypocotyl elongation. sun7 seedlings showed reduced repression of these responses. Sucrose also repressed the far-red light-induced block of greening in wild-type seedlings, and both sun6 and sun7 were affected in this response. The results provide evidence for a close interaction between sucrose and light signaling pathways. Moreover, the sun6 and sun7 mutants genetically identify separate branches of phytochrome A-dependent signal transduction pathways.
Collapse
Affiliation(s)
- P P Dijkwel
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|