1
|
Mahakalkar B, Kumar V, Sudhakaran S, Thakral V, Vats S, Mandlik R, Deshmukh R, Sharma TR, Sonah H. Exploration of advanced omics tools and resources for the improvement of industrial oil crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112367. [PMID: 39746452 DOI: 10.1016/j.plantsci.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops are important for many sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops. Cutting-edge advancements have facilitated the efficient sequencing of genomes for key commercial oil crops. This breakthrough not only enhances our understanding of the genetic makeup of these crops but also empowers breeders with invaluable insights for targeted genetic manipulation and breeding programs. Moreover, integrating transcriptomics with genomic data has assisted in a new era of precision agriculture. This approach provides an in-depth understanding of molecular mechanisms involved in traits of interest, such as oil content, yield potential, and resistance to biotic and abiotic stresses. Proteomics methods are instrumental in deciphering the intricacies of protein structure, interactions, and function, while metabolomics and ionomics shed light on the intricate network of metabolites and ions within biological systems. Each omics discipline offers unique insights, and their integration holds the promise of enriching our understanding and furnishing invaluable insights for enhancing oil crops. This review delves into the efficacy and constraints of various omics approaches in the context of refining industrial oil crops. Moreover, it underscores the importance of multi-omics strategies and explores their convergence with genetic engineering techniques to cultivate superior oil crop varieties.
Collapse
Affiliation(s)
- Badal Mahakalkar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Virender Kumar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Sanskriti Vats
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej, Frederiksberg C, Denmark
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| |
Collapse
|
2
|
Laloum T, Carvalho SD, Martín G, Richardson DN, Cruz TMD, Carvalho RF, Stecca KL, Kinney AJ, Zeidler M, Barbosa ICR, Duque P. The SCL30a SR protein regulates ABA-dependent seed traits and germination under stress. PLANT, CELL & ENVIRONMENT 2023; 46:2112-2127. [PMID: 37098235 DOI: 10.1111/pce.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
SR proteins are conserved RNA-binding proteins best known as splicing regulators that have also been implicated in other steps of gene expression. Despite mounting evidence for a role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain poorly understood. Here we show that the plant-specific SCL30a SR protein negatively regulates ABA signaling to control seed traits and stress responses during germination in Arabidopsis. Transcriptome-wide analyses revealed that loss of SCL30a function barely affects splicing, but largely induces ABA-responsive gene expression and genes repressed during germination. Accordingly, scl30a mutant seeds display delayed germination and hypersensitivity to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA and salt stress sensitivity. An ABA biosynthesis inhibitor rescues the enhanced mutant seed stress sensitivity, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the gene promotes seed germination under stress by reducing sensitivity to the phytohormone. Our results reveal a new player in ABA-mediated control of early development and stress response.
Collapse
Affiliation(s)
- Tom Laloum
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | | | | - Kevin L Stecca
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Anthony J Kinney
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
3
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
4
|
Jing Y, Liu C, Liu B, Pei T, Zhan M, Li C, Wang D, Li P, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 confers apple drought tolerance by regulating energy metabolism and free amino acids production. TREE PHYSIOLOGY 2023; 43:154-168. [PMID: 35972799 DOI: 10.1093/treephys/tpac100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress limiting the growth and production of apple trees worldwide. The receptor-like kinase FERONIA is involved in plant growth, development and stress responses; however, the function of FERONIA in apple under drought stress remains unclear. Here, the FERONIA receptor kinase gene MdMRLK2 from apple (Malus domestica) was shown to encode a plasma membrane-localized transmembrane protein and was significantly induced by abscisic acid and drought treatments. 35S::MdMRLK2 apple plants showed less photosystem damage and higher photosynthetic rates compared with wild-type (WT) plants, after withholding water for 7 days. 35S::MdMRLK2 apple plants also had enhanced energy levels, activated caspase activity and more free amino acids, than the WT, under drought conditions. By performing yeast two-hybrid screening, glyceraldehyde-3-phosphate dehydrogenase and MdCYS4, a member of cystatin, were identified as MdMRLK2 interaction partners. Moreover, under drought conditions, the 35S::MdMRLK2 apple plants were characterized by higher abscisic acid (ABA) content. Overall, these findings demonstrated that MdMRLK2 regulates apple drought tolerance, probably via regulating levels of energetic matters, free amino acids and ABA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Cao Y, Jia S, Chen L, Zeng S, Zhao T, Karikari B. Identification of major genomic regions for soybean seed weight by genome-wide association study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:38. [PMID: 37313505 PMCID: PMC10248628 DOI: 10.1007/s11032-022-01310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The hundred-seed weight (HSW) is an important yield component and one of the principal breeding traits in soybean. More than 250 quantitative trait loci (QTL) for soybean HSW have been identified. However, most of them have a large genomic region or are environmentally sensitive, which provide limited information for improving the phenotype in marker-assisted selection (MAS) and identifying the candidate genes. Here, we utilized 281 soybean accessions with 58,112 single nucleotide polymorphisms (SNPs) to dissect the genetic basis of HSW in across years in the northern Shaanxi province of China through one single-locus (SL) and three multi-locus (ML) genome-wide association study (GWAS) models. As a result, one hundred and fifty-four SNPs were detected to be significantly associated with HSW in at least one environment via SL-GWAS model, and 27 of these 154 SNPs were detected in all (three) environments and located within 7 linkage disequilibrium (LD) block regions with the distance of each block ranged from 40 to 610 Kb. A total of 15 quantitative trait nucleotides (QTNs) were identified by three ML-GWAS models. Combined with the results of different GWAS models, the 7 LD block regions associated with HSW detected by SL-GWAS model could be verified directly or indirectly by the results of ML-GWAS models. Eleven candidate genes underlying the stable loci that may regulate seed weight in soybean were predicted. The significantly associated SNPs and the stable loci as well as predicted candidate genes may be of great importance for marker-assisted breeding, polymerization breeding, and gene discovery for HSW in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01310-y.
Collapse
Affiliation(s)
- Yongce Cao
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shihao Jia
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Liuxing Chen
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shunan Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute of Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, 00233 Tamale, Ghana
| |
Collapse
|
6
|
Spies FP, Raineri J, Miguel VN, Cho Y, Hong JC, Chan RL. The Arabidopsis transcription factors AtPHL1 and AtHB23 act together promoting carbohydrate transport from pedicel-silique nodes to seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111133. [PMID: 35067303 DOI: 10.1016/j.plantsci.2021.111133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Carbohydrates are produced in green tissues through photosynthesis and then transported to sink tissues. Carbon partitioning is a strategic process, fine regulated, involving specific sucrose transporters in each connecting tissue. Here we report that a screening of an Arabidopsis transcription factor (TF) library using the homeodomain-leucine zipper I member AtHB23 as bait, allowed identifying the TF AtPHL1 interacting with the former. An independent Y2H assay, and in planta by BiFC, confirmed such interaction. AtHB23 and AtPHL1 coexpressed in the pedicel-silique nodes and the funiculus. Mutant plants (phl1, and amiR23) showed a marked reduction of lipid content in seeds, although lipid composition did not change compared to the wild type. While protein and carbohydrate contents were not significantly different between mutants and control mature seeds, we observed a reduced carbohydrate content in mutant plants young siliques (7 days after pollination). Moreover, using a CFDA probe, we revealed an impaired transport to the seeds, and the gene encoding the carbohydrate transporters SWEET10 and SWEET11, usually expressed in connecting tissues, was repressed in the amiR23 and phl1 mutant plants. Altogether, the results indicated that AtHB23 and AtPHL1 act together, promoting sucrose transport, and the lack of any of them provoked a reduction in seeds lipid content.
Collapse
Affiliation(s)
- Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Virginia Natalí Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| | - Yuhan Cho
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Jong Chan Hong
- Division of Life Science, Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211-7310, USA.
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina.
| |
Collapse
|
7
|
Yee S, Rolland V, Reynolds KB, Shrestha P, Ma L, Singh SP, Vanhercke T, Petrie JR, El Tahchy A. Sesamum indicum Oleosin L improves oil packaging in Nicotiana benthamiana leaves. PLANT DIRECT 2021; 5:e343. [PMID: 34514289 PMCID: PMC8421512 DOI: 10.1002/pld3.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 08/09/2021] [Indexed: 05/27/2023]
Abstract
Plant oil production has been increasing continuously in the past decade. There has been significant investment in the production of high biomass plants with elevated oil content. We recently showed that the expression of Arabidopsis thaliana WRI1 and DGAT1 genes increase oil content by up to 15% in leaf dry weight tissue. However, triacylglycerols in leaf tissue are subject to degradation during senescence. In order to better package the oil, we expressed a series of lipid droplet proteins isolated from bacterial and plant sources in Nicotiana benthamiana leaf tissue. We observed further increases in leaf oil content of up to 2.3-fold when we co-expressed Sesamum indicum Oleosin L with AtWRI1 and AtDGAT1. Biochemical assays and lipid droplet visualization with confocal microscopy confirmed the increase in oil content and revealed a significant change in the size and abundance of lipid droplets.
Collapse
Affiliation(s)
- Suyan Yee
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
- Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Kyle B. Reynolds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Lina Ma
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Surinder P. Singh
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - James R. Petrie
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| |
Collapse
|
8
|
Zhang S, Hao D, Zhang S, Zhang D, Wang H, Du H, Kan G, Yu D. Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean. Mol Genet Genomics 2021; 296:91-102. [PMID: 33006666 DOI: 10.1007/s00438-020-01704-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
As a globally important legume crop, soybean provides excellent sources of protein and oil for human and livestock nutrition. Improving seed protein and oil contents has always been an important objective in soybean breeding. Water-soluble protein plays a significant role in the processing and efficacy of soybean protein. Here, a genome-wide association study (GWAS) of seed compositions (protein, oil, and water-soluble protein contents) was conducted using 211 diverse soybean accessions genotyped with a 355 K SoySNP array. Three, four, and five QTLs were identified related to the protein, oil, and water-soluble protein contents, respectively. Furthermore, five QTLs (qPC-15-1, qOC-8-1, qOC-12-1, qOC-20-1 and qWSPC-8-1) were detected in multiple environments. Analysis of the favorable alleles for oil and water-soluble protein contents showed that qOC-8-1 (qWSPC-8-1) exerted inverse effects on oil and water-soluble protein synthesis. Relative expression analysis suggested that Glyma.15G049200 in qPC-15-1 affects protein synthesis and Glyma.08G107800 in qOC-8-1 and qWSPC-8-1 might be involved in oil and water-soluble protein synthesis, producing opposite effects. The candidate genes and significant SNPs detected in the present study will allow a deeper understanding of the genetic basis for the regulation of protein, oil and water-soluble protein contents and provide important information that could be utilized in marker-assisted selection for soybean quality improvement.
Collapse
Affiliation(s)
- Shanshan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226000, China
| | - Shuyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450000, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiping Du
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Lando AP, Viana WG, Vale EM, Santos M, Silveira V, Steiner N. Cellular alteration and differential protein profile explain effects of GA 3 and ABA and their inhibitor on Trichocline catharinensis (Asteraceae) seed germination. PHYSIOLOGIA PLANTARUM 2020; 169:258-275. [PMID: 32065665 DOI: 10.1111/ppl.13076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Seed physiology of wild species has not been studied as deeply as that of domesticated crop species. Trichocline catharinensis (Asteraceae) is an endemic wildflower species from the high-altitude fields of southern Brazil. This species is of interest as a source of genes to improve cultivated Asteraceae because of its ornamental features, disease resistance and ability to tolerate drought and poor soil conditions. We studied the effects of abscisic acid (ABA) and gibberellic acid (GA3 ) and their inhibitors, fluridone (FLU) and paclobutrazol (PAC), on seed germination. We individually assessed ultrastructural changes and differential protein accumulation. The principal component analysis explained 69.66% of differential accumulation for 32 proteins at phase II of seed germination in response to hormone and inhibitor treatment. GA3 -imbibed seed germination (98.75%) resulted in increased protein accumulation to meet energy demand, redox regulation, and reserve metabolism activation. FLU-imbibed seeds showed a higher germination speed index as a consequence of metabolism activation. ABA-imbibed seeds (58.75%) showed osmotolerance and flattened cells in the hypocotyl-radicular axis, suggesting that ABA inhibits cell expansion. PAC-imbibed seeds remained at phase II for 300 h, and germination was suppressed (7.5%) because of the increased signaling proteins and halted reserve mobilization. Therefore, our findings provide insight into the behavior of Asteraceae non-dormant seed germination, which broadens our knowledge of seed germination in a wild and endemic plant species from a threatened ecosystem.
Collapse
Affiliation(s)
- Ana P Lando
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Willian G Viana
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ellen M Vale
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marisa Santos
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Neusa Steiner
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
10
|
Fukuda M, Mieda M, Sato R, Kinoshita S, Tomoyama T, Ferjani A, Maeshima M, Segami S. Lack of Vacuolar H + -Pyrophosphatase and Cytosolic Pyrophosphatases Causes Fatal Developmental Defects in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:655. [PMID: 32528505 PMCID: PMC7266078 DOI: 10.3389/fpls.2020.00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The cytosolic level of inorganic pyrophosphate (PPi) is finely regulated, with PPi hydrolyzed primarily by the vacuolar H+-pyrophosphatase (H+-PPase, VHP1/FUGU5/AVP1) and secondarily by five cytosolic soluble pyrophosphatases (sPPases; PPa1-PPa5) in Arabidopsis thaliana. Loss-of-function mutants of H+-PPase (fugu5s) have been reported to show atrophic phenotypes in their rosette leaves when nitrate is the sole nitrogen source in the culture medium. For this phenotype, two questions remain unanswered: why does atrophy depend on physical contact between shoots and the medium, and how does ammonium prevent such atrophy. To understand the mechanism driving this phenotype, we analyzed the growth and phenotypes of mutants on ammonium-free medium in detail. fugu5-1 showed cuticle defects, cell swelling, reduced β-glucan levels, and vein malformation in the leaves, suggesting cell wall weakening and cell lethality. Based on the observation in the double mutants fugu5-1 ppa1 and fugu5-1 ppa4 of more severe atrophy compared to fugu5-1, the nitrogen-dependent phenotype might be linked to PPi metabolism. To elucidate the role of ammonium in this process, we examined the fluctuations of sPPase mRNA levels and the possibility of alternative PPi-removing factors, such as other types of pyrophosphatase. First, we found that both the protein and mRNA levels of sPPases were unaffected by the nitrogen source. Second, to assess the influence of other PPi-removing factors, we examined the phenotypes of triple knockout mutants of H+-PPase and two sPPases on ammonium-containing medium. Both fugu5 ppa1 ppa2 and fugu5 ppa1 ppa4 had nearly lethal embryonic phenotypes, with the survivors showing striking dwarfism and abnormal morphology. Moreover, fugu5 ppa1+/- ppa4 showed severe atrophy at the leaf margins. The other triple mutants, fugu5 ppa1 ppa5 and fugu5 ppa2 ppa4, exhibited death of root hairs and were nearly sterile due to deformed pistils, respectively, even when grown on standard medium. Together, these results suggest that H+-PPase and sPPases act in concert to maintain PPi homeostasis, that the existence of other PPi removers is unlikely, and that ammonium may suppress the production of PPi during nitrogen metabolism rather than stimulating PPi hydrolysis.
Collapse
Affiliation(s)
- Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marika Mieda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
11
|
Zafar S, Li YL, Li NN, Zhu KM, Tan XL. Recent advances in enhancement of oil content in oilseed crops. J Biotechnol 2019; 301:35-44. [PMID: 31158409 DOI: 10.1016/j.jbiotec.2019.05.307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plant oils are very valuable agricultural commodity. The manipulation of seed oil composition to deliver enhanced fatty acid compositions, which are appropriate for feed or fuel, has always been a main objective of metabolic engineers. The last two decennary have been noticeable by numerous significant events in genetic engineering for identification of different gene targets to improve oil yield in oilseed crops. Particularly, genetic engineering approaches have presented major breakthrough in elevating oil content in oilseed crops such as Brassica napus and soybean. Additionally, current research efforts to explore the possibilities to modify the genetic expression of key regulators of oil accumulation along with biochemical studies to elucidate lipid biosynthesis will establish protocols to develop transgenic oilseed crops along much improved oil content. In this review, we describe current distinct genetic engineering approaches investigated by researchers for ameliorating oil content and its nutritional quality. Moreover, we will also discuss some auspicious and innovative approaches and challenges for engineering oil content to yield oil at much higher rate in oilseed crops.
Collapse
Affiliation(s)
- Sundus Zafar
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Nan-Nan Li
- School of Resource and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
12
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Li Z, Gao Y, Zhang Y, Lin C, Gong D, Guan Y, Hu J. Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1279. [PMID: 30356911 PMCID: PMC6190896 DOI: 10.3389/fpls.2018.01279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Seed germination is a complex process controlled by various mechanisms. To examine the potential contribution of reactive oxygen species (ROS) and gibberellin acid (GA) in regulating seed germination, diphenylene iodonium chloride (DPI) and uniconazole (Uni), as hydrogen peroxide (H2O2) and GA synthesis inhibitor, respectively, were exogenously applied on tobacco seeds using the seed priming method. Seed priming with DPI or Uni decreased germination percentage as compared with priming with H2O, especially the DPI + Uni combination. H2O2 and GA completely reversed the inhibition caused by DPI or Uni. The germination percentages with H2O2 + Uni and GA + DPI combinations kept the same level as with H2O. Meanwhile, GA or H2O2 increased GA content and deceased ABA content through corresponding gene expressions involving homeostasis and signal transduction. In addition, the activation of storage reserve mobilization and the enhancement of soluble sugar content and isocitrate lyase (ICL) activity were also induced by GA or H2O2. These results strongly suggested that H2O2 and GA were essential for tobacco seed germination and by downregulating the ABA/GA ratio and inducing reserve composition mobilization mutually promoted seed germination. Meanwhile, ICL activity was jointly enhanced by a lower ABA/GA ratio and a higher ROS concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
14
|
Segami S, Tomoyama T, Sakamoto S, Gunji S, Fukuda M, Kinoshita S, Mitsuda N, Ferjani A, Maeshima M. Vacuolar H +-Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively Regulate Pyrophosphate Levels in Arabidopsis thaliana. THE PLANT CELL 2018; 30:1040-1061. [PMID: 29691313 PMCID: PMC6002195 DOI: 10.1105/tpc.17.00911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Inorganic pyrophosphate (PPi) is a phosphate donor and energy source. Many metabolic reactions that generate PPi are suppressed by high levels of PPi. Here, we investigated how proper levels of cytosolic PPi are maintained, focusing on soluble pyrophosphatases (AtPPa1 to AtPPa5; hereafter PPa1 to PPa5) and vacuolar H+-pyrophosphatase (H+-PPase, AtVHP1/FUGU5) in Arabidopsis thaliana In planta, five PPa isozymes tagged with GFP were detected in the cytosol and nuclei. Immunochemical analyses revealed a high abundance of PPa1 and the absence of PPa3 in vegetative tissue. In addition, the heterologous expression of each PPa restored growth in a soluble PPase-defective yeast strain. Although the quadruple knockout mutant plant ppa1 ppa2 ppa4 ppa5 showed no obvious phenotypes, H+-PPase and PPa1 double mutants (fugu5 ppa1) exhibited significant phenotypes, including dwarfism, high PPi concentrations, ectopic starch accumulation, decreased cellulose and callose levels, and structural cell wall defects. Altered cell arrangements and weakened cell walls in the root tip were particularly evident in fugu5 ppa1 and were more severe than in fugu5 Our results indicate that H+-PPase is essential for maintaining adequate PPi levels and that the cytosolic PPa isozymes, particularly PPa1, prevent increases in PPi concentrations to toxic levels. We discuss fugu5 ppa1 phenotypes in relation to metabolic reactions and PPi homeostasis.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
15
|
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R. Review: "Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:11-19. [PMID: 29362089 DOI: 10.1016/j.plantsci.2017.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | | | - Lilián Gabriela Valencia-Turcotte
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | - Rogelio Rodríguez-Sotres
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| |
Collapse
|
16
|
Kim S, Lee SB, Han CS, Lim MN, Lee SE, Yoon IS, Hwang YS. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:20-29. [PMID: 28527335 DOI: 10.1016/j.jplph.2017.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes.
Collapse
Affiliation(s)
- Sol Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Soo-Bin Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Chae-Seong Han
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Mi-Na Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sung-Eun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - In Sun Yoon
- Molecular Breeding Division, Natural Academy of Agricultural Science, Rural, Development Adminstration, Suwon 441-857, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
17
|
Gutiérrez-Luna FM, Navarro de la Sancha E, Valencia-Turcotte LG, Vázquez-Santana S, Rodríguez-Sotres R. Evidence for a non-overlapping subcellular localization of the family I isoforms of soluble inorganic pyrophosphatase in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:229-242. [PMID: 27968992 DOI: 10.1016/j.plantsci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Pyrophosphate is a byproduct of macromolecular biosynthesis and its degradation gives a thermodynamic impulse to cell growth. Soluble inorganic pyrophosphatases (PPa) are present in all living cells, but in plants and other Eukaryotes membrane-bound H+-pumping pyrophosphatases may compete with these soluble counterparts for the substrate. In Arabidopsis thaliana there are six genes encoding for classic family I PPa isoforms, five cytoplasmic, and one considered to be organellar. Here, six transgenic stable A. thaliana lines, each expressing one of the PPa isoforms from this same plant species in fusion with a fluorescent protein, were obtained and analyzed under confocal and immunogold transmission electron microscopy. The results confirmed the cytoplasmic localization for isoforms 1-5, and showed an exclusive chloroplastic localization for isoform 6. In contrast to previous reports, the data presented here revealed a differential distribution pattern for the isoforms 1 and 5, in comparison to isoforms 2 and 3, and also the presence of isoform 4 in the intercellular space and cell wall, in addition to its presence in cytoplasm. To the best of our knowledge, this is the first report of a PPa family I protein localized in the intercellular space in plants.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Ernesto Navarro de la Sancha
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Lilián Gabriela Valencia-Turcotte
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Sonia Vázquez-Santana
- Departamento De Biología Comparada, Facultad De Ciencias, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico.
| |
Collapse
|
18
|
Bhattacharya S, Das N, Maiti MK. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:204-213. [PMID: 27314514 DOI: 10.1016/j.plaphy.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The production of vegetable oil in many countries of the world, including India has not been able to keep pace with the increasing requirement, leading to a very large gap in the demand-supply chain. Thus, there is an urgent need to increase the yield potential of the oilseed crops so as to enhance the storage lipid productivity. The present study describes a novel metabolic engineering ploy involving the constitutive down-regulation of endogenous ADP-glucose pyrophosphorylase (BjAGPase) enzyme and the seed-specific expression of WRINKLED1 transcription factor (AtWRI1) from Arabidopsis thaliana in Indian mustard (Brassica juncea) with an aim to divert the photosynthetically fixed carbon pool from starch to lipid synthesis in the seeds for the enhanced production of storage lipids in the seeds of transgenic mustard plants. The starch content, in both the vegetative leaf and developing seed tissues of the transgenic B. juncea lines exhibited a reduction by about 45-53% compared to the untransformed control, whereas the soluble sugar content was increased by 2.4 and 1.3-fold in the leaf and developing seed tissues, respectively. Consequently, the transgenic lines showed a significant enhancement in total seed lipid content ranging between 7.5 and 16.9%. The results indicate that the adopted metabolic engineering strategy was successful in significantly increasing the seed oil content. Therefore, findings of our research suggest that the metabolic engineering strategy adopted in this study for shifting the anabolic carbon flux from starch synthesis to lipid biosynthesis can be employed for increasing the storage lipid content of seeds in other plant species.
Collapse
Affiliation(s)
- Surajit Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Natasha Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
19
|
Xu Z, Li J, Guo X, Jin S, Zhang X. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Sci Rep 2016; 6:33342. [PMID: 27620452 PMCID: PMC5020431 DOI: 10.1038/srep33342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding.
Collapse
Affiliation(s)
- Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Jingwen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Xiaoping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Street, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF. A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. PLANT CELL REPORTS 2016; 35:1875-90. [PMID: 27251125 DOI: 10.1007/s00299-016-2002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 05/08/2023]
Abstract
The sunflower transcription factor HaWRKY10 stimulates reserves mobilization in Arabidopsis. Gene expression and enzymes activity assays indicated that lipolysis and gluconeogenesis were increased. Microarray results suggested a parallelism in sunflower. Germinating oilseeds converts stored lipids into sugars, and thereafter in metabolic energy that is used in seedling growth and establishment. During germination, the induced lipolysis linked to the glyoxylate pathway and gluconeogenesis produces sucrose, which is then transported to the embryo and driven through catabolic routes. Herein, we report that the sunflower transcription factor HaWRKY10 regulates carbon partitioning by reducing carbohydrate catabolism and increasing lipolysis and gluconeogenesis. HaWRKY10 was regulated by abscisic acid and gibberellins in the embryo leaves 48 h after seed imbibition and highly expressed during sunflower seed germination and seedling growth, concomitantly with lipid mobilization. Sunflower leaf disks overexpressing HaWRKY10 showed repressed expression of genes related to sucrose cleavage and glycolysis compared with controls. Moreover, HaWRKY10 constitutive expression in Arabidopsis seeds produced higher decrease in lipid reserves, whereas starch and sucrose were more preserved compared with wild type. Gene transcripts abundance and enzyme activities involved in stored lipid mobilization and gluconeogenesis increased more in transgenic than in wild type seeds 36 h after imbibition, whereas the negative regulator of lipid mobilization, ABI4, was repressed. Altogether, the results point out a functional parallelism between tissues and plant species, and reveal HaWRKY10 as a positive regulator of storage reserve mobilization in sunflower.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Karina F Ribichich
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina.
| |
Collapse
|
21
|
Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L, Feng L, Meyer K. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans. PLANT PHYSIOLOGY 2016; 171:878-93. [PMID: 27208257 PMCID: PMC4902613 DOI: 10.1104/pp.16.00315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/16/2016] [Indexed: 05/05/2023]
Abstract
Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.
Collapse
Affiliation(s)
| | - Bo Shen
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | | | | | | | | | | | | | | | | | - Lizhi Feng
- DuPont Pioneer, Johnston, Iowa 50131-1004
| | - Knut Meyer
- DuPont Pioneer, Johnston, Iowa 50131-1004
| |
Collapse
|
22
|
Zhang L, Wang SB, Li QG, Song J, Hao YQ, Zhou L, Zheng HQ, Dunwell JM, Zhang YM. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. PLoS One 2016; 11:e0154882. [PMID: 27159078 PMCID: PMC4861283 DOI: 10.1371/journal.pone.0154882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Shi-Bo Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People’s Republic of China
| | - Jian Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu-Qi Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Ling Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Institute of Biotechnology, Jiangsu Academy of Agricultural Science, Nanjing 210014, People’s Republic of China
| | - Huan-Quan Zheng
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AS, United Kingdom
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- * E-mail: ;
| |
Collapse
|
23
|
Tao Y, Lyu MJA, Zhu XG. Transcriptome comparisons shed light on the pre-condition and potential barrier for C4 photosynthesis evolution in eudicots. PLANT MOLECULAR BIOLOGY 2016; 91:193-209. [PMID: 26893123 DOI: 10.1007/s11103-016-0455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis evolved independently from C3 photosynthesis in more than 60 lineages. Most of the C4 lineages are clustered together in the order Poales and the order Caryophyllales while many other angiosperm orders do not have C4 species, suggesting the existence of biological pre-conditions in the ancestral C3 species that facilitate the evolution of C4 photosynthesis in these lineages. To explore pre-adaptations for C4 photosynthesis evolution, we classified C4 lineages into the C4-poor and the C4-rich groups based on the percentage of C4 species in different genera and conducted a comprehensive comparison on the transcriptomic changes between the non-C4 species from the C4-poor and the C4-rich groups. Results show that species in the C4-rich group showed higher expression of genes related to oxidoreductase activity, light reaction components, terpene synthesis, secondary cell synthesis, C4 cycle related genes and genes related to nucleotide metabolism and senescence. In contrast, C4-poor group showed up-regulation of a PEP/Pi translocator, genes related to signaling pathway, stress response, defense response and plant hormone metabolism (ethylene and brassinosteroid). The implications of these transcriptomic differences between the C4-rich and C4-poor groups to C4 evolution are discussed.
Collapse
Affiliation(s)
- Yimin Tao
- CAS-Key Laboratory for Computational Biology and State Key Laboratory for Hybrid Rice, Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- CAS-Key Laboratory for Computational Biology and State Key Laboratory for Hybrid Rice, Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Guang Zhu
- CAS-Key Laboratory for Computational Biology and State Key Laboratory for Hybrid Rice, Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
24
|
Chen S, Lei Y, Xu X, Huang J, Jiang H, Wang J, Cheng Z, Zhang J, Song Y, Liao B, Li Y. The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds. PLoS One 2015; 10:e0136170. [PMID: 26302041 PMCID: PMC4547709 DOI: 10.1371/journal.pone.0136170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and temporal-spatial expression of a peanut (Arachis hypogaea) AhLPAT2gene, showing that an increase in AhLPAT2 transcript levels was closely correlated with an increase in seed oil levels. However, the function of the enzyme encoded by the AhLPAT2 gene remains unclear. Here, we report that AhLPAT2 transcript levels were consistently higher in the seeds of a high-oil cultivar than in those of a low-oil cultivar across different seed developmental stages. Seed-specific overexpression of AhLPAT2 in Arabidopsis results in a higher percentage of oil in the seeds and greater-than-average seed weight in the transgenic plants compared with the wild-type plants, leading to a significant increase in total oil yield per plant. The total fatty acid (FA) content and the proportion of unsaturated FAs also increased. In the developing siliques of AhLPAT2-overexpressing plants, the expression levels of genes encoding crucial enzymes involved in de novo FA synthesis, acetyl-CoA subunit (AtBCCP2) and acyl carrier protein 1 (AtACP1) were elevated. AhLPAT2 overexpression also promoted the expression of several key genes related to TAG assembly, sucrose metabolism, and glycolysis. These results demonstrate that the expression of AhLPAT2 plays an important role in glycerolipid production in peanuts.
Collapse
Affiliation(s)
- Silong Chen
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yong Lei
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Xian Xu
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jiaquan Huang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
| | - Jin Wang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Zengshu Cheng
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Jianan Zhang
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Yahui Song
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Boshou Liao
- Key Laboratory of Biology and the Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the ChineseAcademy of Agricultural Sciences, Wuhan, China
- * E-mail: (BSL); (YRL)
| | - Yurong Li
- Hebei Provincial Laboratory of Crop Genetics and Breeding, Cereal and Oil Crop Institute, HebeiAcademy of Agricultural and Forestry Science, Shijiazhuang, China
- * E-mail: (BSL); (YRL)
| |
Collapse
|
25
|
Schwarte S, Wegner F, Havenstein K, Groth D, Steup M, Tiedemann R. Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2015; 87:489-519. [PMID: 25663508 DOI: 10.1007/s11103-015-0293-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts.
Collapse
Affiliation(s)
- Sandra Schwarte
- Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Building 26, 14476, Potsdam, Germany,
| | | | | | | | | | | |
Collapse
|
26
|
Hua S, Chen ZH, Zhang Y, Yu H, Lin B, Zhang D. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. BOTANICAL STUDIES 2014; 55:34. [PMID: 28510961 PMCID: PMC5432831 DOI: 10.1186/1999-3110-55-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/03/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Although the seed oil content in canola is a crucial quality determining trait, the regulatory mechanisms of its formation are not fully discovered. This study compared the silique and seed physiological characteristics including fresh and dry weight, seed oil content, chlorophyll content, and carbohydrate content in a high oil content line (HOCL) and a low oil content line (LOCL) of canola derived from a recombinant inbred line in 2010, 2011, and 2012. The aim of the investigation is to uncover the physiological regulation of silique and seed developmental events on seed oil content in canola. RESULTS On average, 83% and 86% of silique matter while 69% and 63% of seed matter was produced before 30 days after anthesis (DAA) in HOCL and LOCL, respectively, over three years. Furthermore, HOCL exhibited significantly higher fresh and dry matter at most developmental stages of siliques and seeds. From 20 DAA, lipids were deposited in the seed of HOCL significantly faster than that of LOCL, which was validated by transmission electron microscopy, showing that HOCL accumulates considerable more oil bodies in the seed cells. Markedly higher silique chlorophyll content was observed in HOCL consistently over the three consecutive years, implying a higher potential of photosynthetic capacity in siliques of HOCL. As a consequence, HOCL exhibited significantly higher content of fructose, glucose, sucrose, and starch mainly at 20 to 45 DAA, a key stage of seed lipid deposition. Moreover, seed sugar content was usually higher than silique indicating the importance of sugar transportation from siliques to seeds as substrate for lipid biosynthesis. The much lower silique cellulose content in HOCL was beneficial for lipid synthesis rather than consuming excessive carbohydrate for cell wall. CONCLUSIONS Superior physiological characteristics of siliques in HOCL showed advantage to produce more photosynthetic assimilates, which were highly correlated to seed oil contents.
Collapse
Affiliation(s)
- Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Zhong-Hua Chen
- School of Science and Health, University of Western Sydney, Penrith, 2751NSW Australia
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| | - Dongqing Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 P.R. China
| |
Collapse
|
27
|
O'Rourke JA, Bolon YT, Bucciarelli B, Vance CP. Legume genomics: understanding biology through DNA and RNA sequencing. ANNALS OF BOTANY 2014; 113:1107-20. [PMID: 24769535 PMCID: PMC4030821 DOI: 10.1093/aob/mcu072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The legume family (Leguminosae) consists of approx. 17 000 species. A few of these species, including, but not limited to, Phaseolus vulgaris, Cicer arietinum and Cajanus cajan, are important dietary components, providing protein for approx. 300 million people worldwide. Additional species, including soybean (Glycine max) and alfalfa (Medicago sativa), are important crops utilized mainly in animal feed. In addition, legumes are important contributors to biological nitrogen, forming symbiotic relationships with rhizobia to fix atmospheric N2 and providing up to 30 % of available nitrogen for the next season of crops. The application of high-throughput genomic technologies including genome sequencing projects, genome re-sequencing (DNA-seq) and transcriptome sequencing (RNA-seq) by the legume research community has provided major insights into genome evolution, genomic architecture and domestication. SCOPE AND CONCLUSIONS This review presents an overview of the current state of legume genomics and explores the role that next-generation sequencing technologies play in advancing legume genomics. The adoption of next-generation sequencing and implementation of associated bioinformatic tools has allowed researchers to turn each species of interest into their own model organism. To illustrate the power of next-generation sequencing, an in-depth overview of the transcriptomes of both soybean and white lupin (Lupinus albus) is provided. The soybean transcriptome focuses on analysing seed development in two near-isogenic lines, examining the role of transporters, oil biosynthesis and nitrogen utilization. The white lupin transcriptome analysis examines how phosphate deficiency alters gene expression patterns, inducing the formation of cluster roots. Such studies illustrate the power of next-generation sequencing and bioinformatic analyses in elucidating the gene networks underlying biological processes.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Yung-Tsi Bolon
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Bruna Bucciarelli
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Carroll P Vance
- United States Department of Agriculture, Agricultural Research Service, University of Minnesota, St. Paul, MN 55108, USA Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
28
|
Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. PLANT PHYSIOLOGY 2013; 162:1337-58. [PMID: 23735505 PMCID: PMC3707537 DOI: 10.1104/pp.113.220525] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Stéphane Dussert
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité, Adaptation et Développement des Plantes, BP 64501, 34394 Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. PLANT PHYSIOLOGY 2013. [PMID: 23735505 DOI: 10.2307/41943482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Stéphane Dussert
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité, Adaptation et Développement des Plantes, BP 64501, 34394 Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2013. [PMID: 23190163 DOI: 10.1111/pbi.12023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.
Collapse
|
32
|
Sreenivasulu N, Wobus U. Seed-development programs: a systems biology-based comparison between dicots and monocots. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:189-217. [PMID: 23451786 DOI: 10.1146/annurev-arplant-050312-120215] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seeds develop differently in dicots and monocots, especially with respect to the major storage organs. High-resolution transcriptome data have provided the first insights into the molecular networks and pathway interactions that function during the development of individual seed compartments. Here, we review mainly recent data obtained by systems biology-based approaches, which have allowed researchers to construct and model complex metabolic networks and fluxes and identify key limiting steps in seed development. Comparative coexpression network analyses define evolutionarily conservative (FUS3/ABI3/LEC1) and divergent (LEC2) networks in dicots and monocots. Finally, we discuss the determination of seed size--an important yield-related characteristic--as mediated by a number of processes (maternal and epigenetic factors, fine-tuned regulation of cell death in distinct seed compartments, and endosperm growth) and underlying genes defined through mutant analyses. Altogether, systems approaches can make important contributions toward a more complete and holistic knowledge of seed biology and thus support strategies for knowledge-based molecular breeding.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | |
Collapse
|
33
|
Stitt M. Progress in understanding and engineering primary plant metabolism. Curr Opin Biotechnol 2012; 24:229-38. [PMID: 23219183 DOI: 10.1016/j.copbio.2012.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 01/07/2023]
Abstract
The maximum yield of crop plants depends on the efficiency of conversion of sunlight into biomass. This review summarises recent models that estimate energy conversion efficiency for successive steps in photosynthesis and metabolism. Photorespiration was identified as a major reason for energy loss during photosynthesis and strategies to modify or suppress photorespiration are presented. Energy loss during the conversion of photosynthate to biomass is also large but cannot be modelled as precisely due to incomplete knowledge about pathways and turnover and maintenance costs. Recent research on pathways involved in metabolite transport and interconversion in different organs, and recent insights into energy requirements linked to the production, maintenance and turnover of the apparatus for cellular growth and repair processes are discussed.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14474 Potsdam-Golm, Germany.
| |
Collapse
|
34
|
Schwender J, Hay JO. Predictive modeling of biomass component tradeoffs in Brassica napus developing oilseeds based on in silico manipulation of storage metabolism. PLANT PHYSIOLOGY 2012; 160:1218-36. [PMID: 22984123 PMCID: PMC3490581 DOI: 10.1104/pp.112.203927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Seed oil content is a key agronomical trait, while the control of carbon allocation into different seed storage compounds is still poorly understood and hard to manipulate. Using bna572, a large-scale model of cellular metabolism in developing embryos of rapeseed (Brassica napus) oilseeds, we present an in silico approach for the analysis of carbon allocation into seed storage products. Optimal metabolic flux states were obtained by flux variability analysis based on minimization of the uptakes of substrates in the natural environment of the embryo. For a typical embryo biomass composition, flux sensitivities to changes in different storage components were derived. Upper and lower flux bounds of each reaction were categorized as oil or protein responsive. Among the most oil-responsive reactions were glycolytic reactions, while reactions related to mitochondrial ATP production were most protein responsive. To assess different biomass compositions, a tradeoff between the fractions of oil and protein was simulated. Based on flux-bound discontinuities and shadow prices along the tradeoff, three main metabolic phases with distinct pathway usage were identified. Transitions between the phases can be related to changing modes of the tricarboxylic acid cycle, reorganizing the usage of organic carbon and nitrogen sources for protein synthesis and acetyl-coenzyme A for cytosol-localized fatty acid elongation. The phase close to equal oil and protein fractions included an unexpected pathway bypassing α-ketoglutarate-oxidizing steps in the tricarboxylic acid cycle. The in vivo relevance of the findings is discussed based on literature on seed storage metabolism.
Collapse
Affiliation(s)
- Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | |
Collapse
|