1
|
Thiébaut N, Sarthou M, Richtmann L, Pergament Persson D, Ranjan A, Schloesser M, Boutet S, Rezende L, Clemens S, Verbruggen N, Hanikenne M. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. THE NEW PHYTOLOGIST 2025; 246:1796-1815. [PMID: 40165747 DOI: 10.1111/nph.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Zinc (Zn) excess negatively impacts primary root growth in Arabidopsis thaliana. Yet, the effects of Zn excess on specific growth processes in the root tip (RT) remain largely unexplored. Transcriptomics, ionomics, and metabolomics were used to examine the specific impact of Zn excess on the RT compared with the remaining root (RR). Zn excess exposure resulted in a shortened root apical meristem and elongation zone, with differentiation initiating closer to the tip of the root. Zn accumulated at a lower concentration in the RT than in the RR. This pattern was associated with lower expression of Zn homeostasis and iron (Fe) deficiency response genes. A distinct distribution of Zn and Fe in RT and RR was highlighted by laser ablation inductively coupled plasma-mass spectrometry analysis. Specialized tryptophan (Trp)-derived metabolism genes, typically associated with redox and biotic stress responses, were specifically upregulated in the RT upon Zn excess, among those Phytoalexin Deficient 3 (PAD3) encoding the last enzyme of camalexin synthesis. In the roots of wild-type seedlings, camalexin concentration increased by sixfold upon Zn excess, and a pad3 mutant displayed increased Zn sensitivity and an altered ionome. Our results indicate that distinct redox and iron homeostasis mechanisms are key elements of the response to Zn excess in the RT.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Manon Sarthou
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Ludwig Richtmann
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Alok Ranjan
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Stéphanie Boutet
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Lucas Rezende
- Hedera-22 SA, Boulevard du Rectorat 27b, B-4000, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
2
|
Yao Y, Zhou J, Wang J, Lei X, Jiang A, Sun Q. H3K36 methylation stamps transcription resistive to preserve development in plants. NATURE PLANTS 2025; 11:808-820. [PMID: 40164787 DOI: 10.1038/s41477-025-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Eukaryotic euchromatin is the less-compact chromatin and is modified by many histone modifications such as H3 lysine 36 methylation (H3K36me). Here we report a new chromatin state, 'transcription resistive', which is differentiated from activation and silencing. Transcription resistive is stamped by H3K36me with almost undetectable transcription activity but open-chromatin state, and occupies most documented plant essential genes. Mutating SDG8, previously known as the major H3K36 methyltransferase in Arabidopsis, surprisingly elevates 78.7% of H3K36me3-marked resistive loci, which accounts for 39.4% of the coding genome. Genetically, SDG8 prevents H3K36me activity of SDG4 at short and intronless genes to secure plant fertility, while it collaborates with other H3K36me methyltransferases on long and intron-rich genes. Together, our results reveal that SDG8 is the primary sensor that suppresses excessive H3K36me, and uncovered that 'transcription resistive' is a conserved H3K36me-stamped novel transcription state in plants, highlighting the regulatory diversities and biological significance of H3K36 methylation in eukaryotes.
Collapse
Affiliation(s)
- Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jiacheng Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Ju J, Yang J, Wei J, Yuan W, Li Y, Li D, Ling P, Ma Q, Wang C, Dai M, Su J. GhASHH1.A and GhASHH2.A Improve Tolerance to High and Low Temperatures and Accelerate the Flowering Response to Temperature in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:11321. [PMID: 39457102 PMCID: PMC11508336 DOI: 10.3390/ijms252011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The trithorax group (TrxG) complex is an important protein in the regulation of plant histone methylation. The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) gene family, as important family members of the TrxG complex, has been shown to regulate tolerance to abiotic stress and growth and development in many plants. In this study, we identified nine GhASH1s in upland cotton. Bioinformatics analysis revealed that GhASH1s contain a variety of cis-acting elements related to stress resistance and growth and development. The transcriptome expression profiles revealed that GhASHH1.A and GhASHH2.A genes expression were upregulated in flower organs and in response to external temperature stress. The results of virus-induced gene silencing (VIGS) indicated that GhASHH1.A and GhASHH2.A genes silencing reduced the ability of cotton to adapt to temperature stress and delayed the development of the flowering phenotype. We also showed that the silencing of these two target genes did not induce early flowering at high temperature (32 °C), suggesting that GhASHH1.A and GhASHH2.A might regulate cotton flowering in response to temperature. These findings provide genetic resources for future breeding of early-maturing and temperature-stress-tolerant cotton varieties.
Collapse
Affiliation(s)
- Jisheng Ju
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Junning Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Jiazhi Wei
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Wenmin Yuan
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Ying Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Dandan Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Pingjie Ling
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Maohua Dai
- Hebei Provincial Key Laboratory of Crop Drought Resistance Research, Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| |
Collapse
|
4
|
Haider S, Farrona S. Decoding histone 3 lysine methylation: Insights into seed germination and flowering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102598. [PMID: 38986392 DOI: 10.1016/j.pbi.2024.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.
Collapse
Affiliation(s)
- Saqlain Haider
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Sara Farrona
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Zanetti ME, Blanco F, Ferrari M, Ariel F, Benoit M, Niebel A, Crespi M. Epigenetic control during root development and symbiosis. PLANT PHYSIOLOGY 2024; 196:697-710. [PMID: 38865442 DOI: 10.1093/plphys/kiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Milagros Ferrari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina
| | - Matthias Benoit
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| |
Collapse
|
6
|
Wang Z, Fu W, Zhang X, Liusui Y, Saimi G, Zhao H, Zhang J, Guo Y. Identification of the Gossypium hirsutum SDG Gene Family and Functional Study of GhSDG59 in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1257. [PMID: 38732472 PMCID: PMC11085088 DOI: 10.3390/plants13091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
SET-domain group histone methyltransferases (SDGs) are known to play crucial roles in plant responses to abiotic stress. However, their specific function in cotton's response to drought stress has not been well understood. This study conducted a comprehensive analysis of the SDG gene family in Gossypium hirsutum, identifying a total of 82 SDG genes. An evolutionary analysis revealed that the SDG gene family can be divided into eight subgroups. The expression analysis shows that some GhSDG genes are preferentially expressed in specific tissues, indicating their involvement in cotton growth and development. The transcription level of some GhSDG genes is induced by PEG, with GhSDG59 showing significant upregulation upon polyethylene glycol (PEG) treatment. Quantitative polymerase chain reaction (qPCR) analysis showed that the accumulation of transcripts of the GhSDG59 gene was significantly upregulated under drought stress. Further functional studies using virus-induced gene silencing (VIGS) revealed that silencing GhSDG59 reduced cotton tolerance to drought stress. Under drought conditions, the proline content, superoxide dismutase (SOD) and peroxidase (POD) enzyme activities in the GhSDG59-silenced plants were significantly lower than in the control plants, while the malondialdehyde (MDA) content was significantly higher. Transcriptome sequencing showed that silencing the GhSDG59 gene led to significant changes in the expression levels of 1156 genes. The KEGG enrichment analysis revealed that these differentially expressed genes (DEGs) were mainly enriched in the carbon metabolism and the starch and sucrose metabolism pathways. The functional annotation analysis identified known drought-responsive genes, such as ERF, CIPK, and WRKY, among these DEGs. This indicates that GhSDG59 is involved in the drought-stress response in cotton by affecting the expression of genes related to the carbon metabolism and the starch and sucrose metabolism pathways, as well as known drought-responsive genes. This analysis provides valuable information for the functional genomic study of SDGs and highlights potential beneficial genes for genetic improvement and breeding in cotton.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingbo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, XinjiangNormal University, Urumqi 830017, China; (Z.W.); (W.F.); (X.Z.); (Y.L.); (G.S.); (H.Z.)
| | - Yanjun Guo
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, XinjiangNormal University, Urumqi 830017, China; (Z.W.); (W.F.); (X.Z.); (Y.L.); (G.S.); (H.Z.)
| |
Collapse
|
7
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
8
|
Shen X, Stührwohldt N, Lin C. The Research Process of PSK Biosynthesis, Signaling Transduction, and Potential Applications in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3075. [PMID: 37687322 PMCID: PMC10489974 DOI: 10.3390/plants12173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Phytosulfokine (PSK) is a disulfated pentapeptide that acts as a growth regulator to control plant growth and development as well as adaptability to biotic and abiotic stress. In the last three decades, PSK has drawn increasing attention due to its various functions. Preproproteins that have been tyrosine sulfonylated and then cleaved by specific enzymes contribute to mature PSK. To transfer a signal from the apoplast to the inner cells, the PSK peptide must bind to the PSK receptors (PSKR1 and PSKR2) at the cell surface. The precise mechanism of PSK signal transduction is still unknown, given that PSKR combines receptor and kinase activity with a capacity to bind calmodulin (CaM). The binding of PSK and PSKR stimulates an abundance of cGMP downstream from PSKR, further activating a cation-translocating unit composed of cyclic nucleotide-gated channel 17 (CNGC17), H+-ATPases AHA1 and AHA2, and BRI-associated receptor kinase 1 (BAK1). Recently, it has been revealed that posttranslational ubiquitination is closely related to the control of PSK and PSKR binding. To date, the majority of studies related to PSK have used Arabidopsis. Given that rapeseed and Arabidopsis share a close genetic relationship, the relevant knowledge obtained from Arabidopsis can be further applied to rapeseed.
Collapse
Affiliation(s)
- Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
9
|
Zhuang Z, Pan X, Zhang M, Liu Y, Huang C, Li Y, Hao L, Wang S. Set2 family regulates mycotoxin metabolism and virulence via H3K36 methylation in pathogenic fungus Aspergillus flavus. Virulence 2022; 13:1358-1378. [PMID: 35943142 PMCID: PMC9364737 DOI: 10.1080/21505594.2022.2101218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aspergillus flavus infects various crops with aflatoxins, and leads to aspergillosis opportunistically. Though H3K36 methylation plays an important role in fungal toxin metabolism and virulence, no data about the biological function of H3K36 methylation in A. flavus virulence has been reported. Our study showed that the Set2 histone methyltransferase family, AshA and SetB, involves in morphogenesis and mycotoxin anabolism by regulating related transcriptional factors, and they are important for fungal virulence to crops and animals. Western-blotting and double deletion analysis revealed that AshA mainly regulates H3K36me2, whereas SetB is mainly responsible for H3K36me3 in the nucleus. By construction of domain deletion A. flavus strain and point mutation strains by homologous recombination, the study revealed that SET domain is indispensable in mycotoxin anabolism and virulence of A. flavus, and N455 and V457 in it are the key amino acid residues. ChIP analysis inferred that the methyltransferase family controls fungal reproduction and regulates the production of AFB1 by directly regulating the production of the transcriptional factor genes, including wetA, steA, aflR and amylase, through H3K36 trimethylation in their chromatin fragments, based on which this study proposed that, by H3K36 trimethylation, this methyltransferase family controls AFB1 anabolism through transcriptional level and substrate utilization level. This study illuminates the epigenetic mechanism of the Set2 family in regulating fungal virulence and mycotoxin production, and provides new targets for controlling the virulence of the fungus A. flavus.
AUTHOR SUMMARY
The methylation of H3K36 plays an important role in the fungal secondary metabolism and virulence, but no data about the regulatory mechanism of H3K36 methylation in the virulence of A. flavus have been reported. Our study revealed that, in the histone methyltransferase Set2 family, AshA mainly catalyzes H3K36me2, and involves in the methylation of H3K36me1, and SetB mainly catalyzes H3K36me3 and H3K36me1. Through domain deletion and point mutation analysis, this study also revealed that the SET domain was critical for the normal biological function of the Set2 family and that N455 and V457 in the domain were critical for AshA. By ChIP-seq and ChIP-qPCR analysis, H3K36 was found to be trimethylation modified in the promotors and ORF positions of wetA, steA, aflR and the amylase gene (AFLA_084340), and further qRT-PCR results showed that these methylation modifications regulate the expression levels of these genes. According to the results of ChIP-seq analysis, we proposed that, by H3K36 trimethylation, this methyltransferase family controls the metabolism of mycotoxin through transcriptional level and substrate utilization level. All the results from this study showed that Set2 family is essential for fungal secondary metabolism and virulence, which lays a theoretical groundwork in the early prevention and treatment of A. flavus pollution, and also provides an effective strategy to fight against other pathogenic fungi.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaju Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuanzhong Huang
- Immuno-Oncology Laboratory of Fujian Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Li Y, Sun W, Wang Z, Wan C, Zhang J, Qi X, Zhang J. SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize ( Zea mays L.). Int J Mol Sci 2022; 23:ijms23137458. [PMID: 35806471 PMCID: PMC9267571 DOI: 10.3390/ijms23137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.
Collapse
Affiliation(s)
- Yongjian Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Chang Wan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Correspondence: (X.Q.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Correspondence: (X.Q.); (J.Z.)
| |
Collapse
|
11
|
Bossi F, Jin B, Lazarus E, Cartwright H, Dorone Y, Rhee SY. CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development 2022; 149:275423. [DOI: 10.1242/dev.200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.
Collapse
Affiliation(s)
- Flavia Bossi
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Benjamin Jin
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Elena Lazarus
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Heather Cartwright
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Yanniv Dorone
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
- Stanford University 2 Department of Biology , , Stanford, CA 94305, USA
| | - Seung Y. Rhee
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| |
Collapse
|
12
|
Hernández-Herrera P, Ugartechea-Chirino Y, Torres-Martínez HH, Arzola AV, Chairez-Veloz JE, García-Ponce B, Sánchez MDLP, Garay-Arroyo A, Álvarez-Buylla ER, Dubrovsky JG, Corkidi G. Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. PLANT PHYSIOLOGY 2022; 188:846-860. [PMID: 34791452 PMCID: PMC8825436 DOI: 10.1093/plphys/kiab530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 05/13/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.
Collapse
Affiliation(s)
- Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Yamel Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - José Eduardo Chairez-Veloz
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, C.P. 07350, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
13
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
14
|
Dubrovsky JG, Ivanov VB. The quiescent centre of the root apical meristem: conceptual developments from Clowes to modern times. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6687-6707. [PMID: 34161558 DOI: 10.1093/jxb/erab305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
In this review we discuss the concepts of the quiescent centre (QC) of the root apical meristem (RAM) and their change over time, from their formulation by F.A.L. Clowes to the present. This review is dedicated to the 100th anniversary of the birth of Clowes, and we present his short biography and a full bibliography of Clowes' work. Over time, the concept of the QC proved to be useful for the understanding of RAM organization and behaviour. We focus specifically on conceptual developments, from the organization of the QC to understanding its functions in RAM maintenance and activity, ranging from a model species, Arabidopsis thaliana, to crops. Concepts of initial cells, stem cells, and heterogeneity of the QC cells in the context of functional and structural stem cells are considered. We review the role of the QC in the context of cell flux in the RAM and the nature of quiescence of the QC cells. We discuss the origin of the QC and fluctuation of its size in ontogenesis and why the QC cells are more resistant to stress. Contemporary concepts of the organizer and stem cell niche are also considered. We also propose how the stem cell niche in the RAM can be defined in roots of a non-model species.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Victor B Ivanov
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Pardal R, Heidstra R. Root stem cell niche networks: it's complexed! Insights from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6727-6738. [PMID: 34173817 PMCID: PMC8513229 DOI: 10.1093/jxb/erab272] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/05/2021] [Indexed: 05/02/2023]
Abstract
The presence of two meristematic cell populations in the root and shoot apex allows plants to grow indefinitely. Due to its simple and predictable tissue organization, the Arabidopsis root apical meristem remains an ideal model to study mechanisms such as stem cell specification, asymmetric cell division, and differentiation in plants. The root stem cell niche consists of a quiescent organizing centre surrounded by mitotically active stem cells, which originate all root tissues. The transcription factors PLETHORA, SCARECROW, and WOX5 form signalling hubs that integrate multiple inputs from an increasing number of proteins implicated in the regulation of stem cell niche function. Recently, locally produced auxin was added to the list of important mobile factors in the stem cell niche. In addition, protein-protein interaction data elegantly demonstrate how parallel pathways can meet in a common objective. Here we discuss how multiple networks converge to specify and maintain the root stem cell niche.
Collapse
Affiliation(s)
- Renan Pardal
- Wageningen University & Research, Plant Sciences department, Plant Developmental Biology group, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Renze Heidstra
- Wageningen University & Research, Plant Sciences department, Plant Developmental Biology group, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
- Correspondence:
| |
Collapse
|
16
|
Ganguly P, Roy D, Das T, Kundu A, Cartieaux F, Ghosh Z, DasGupta M. The Natural Antisense Transcript DONE40 Derived from the lncRNA ENOD40 Locus Interacts with SET Domain Protein ASHR3 During Inception of Symbiosis in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1057-1070. [PMID: 33934615 DOI: 10.1094/mpmi-12-20-0357-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipan Roy
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Fabienne Cartieaux
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
17
|
Zhai H, Zhang X, You Y, Lin L, Zhou W, Li C. SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J 2020; 39:e105047. [PMID: 32926464 PMCID: PMC7560201 DOI: 10.15252/embj.2020105047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Proper regulation of homeotic gene expression is critical for stem cell fate in both plants and animals. In Arabidopsis thaliana, the WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in a group of root stem cell organizer cells called the quiescent center (QC) and plays a central role in QC specification. Here, we report that the SEUSS (SEU) protein, homologous to the animal LIM-domain binding (LDB) proteins, assembles a functional transcriptional complex that regulates WOX5 expression and QC specification. SEU is physically recruited to the WOX5 promoter by the master transcription factor SCARECROW. Subsequently, SEU physically recruits the SET domain methyltransferase SDG4 to the WOX5 promoter, thus activating WOX5 expression. Thus, analogous to its animal counterparts, SEU acts as a multi-adaptor protein that integrates the actions of genetic and epigenetic regulators into a concerted transcriptional program to control root stem cell organizer specification.
Collapse
Affiliation(s)
- Huawei Zhai
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyue Zhang
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanrong You
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Lihao Lin
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTai'anShandong ProvinceChina
| | - Wenkun Zhou
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- Frontier Science Center for Molecular Design and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanyou Li
- State Key Laboratory of Plant GenomicsNational Center for Plant Gene Research (Beijing)Institute of Genetics and Developmental BiologyInnovation Academy of Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
21
|
Cheng K, Xu Y, Yang C, Ouellette L, Niu L, Zhou X, Chu L, Zhuang F, Liu J, Wu H, Charron JB, Luo M. Histone tales: lysine methylation, a protagonist in Arabidopsis development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:793-807. [PMID: 31560751 DOI: 10.1093/jxb/erz435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Histone methylation plays a fundamental role in the epigenetic regulation of gene expression driven by developmental and environmental cues in plants, including Arabidopsis. Histone methyltransferases and demethylases act as 'writers' and 'erasers' of methylation at lysine and/or arginine residues of core histones, respectively. A third group of proteins, the 'readers', recognize and interpret the methylation marks. Emerging evidence confirms the crucial roles of histone methylation in multiple biological processes throughout the plant life cycle. In this review, we summarize the regulatory mechanisms of lysine methylation, especially at histone H3 tails, and focus on the recent advances regarding the roles of lysine methylation in Arabidopsis development, from seed performance to reproductive development, and in callus formation.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Luc Ouellette
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Longjian Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liutian Chu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhuang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Jean-Benoit Charron
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Machine Learning Enables High-Throughput Phenotyping for Analyses of the Genetic Architecture of Bulliform Cell Patterning in Maize. G3-GENES GENOMES GENETICS 2019; 9:4235-4243. [PMID: 31645422 PMCID: PMC6893188 DOI: 10.1534/g3.119.400757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bulliform cells comprise specialized cell types that develop on the adaxial (upper) surface of grass leaves, and are patterned to form linear rows along the proximodistal axis of the adult leaf blade. Bulliform cell patterning affects leaf angle and is presumed to function during leaf rolling, thereby reducing water loss during temperature extremes and drought. In this study, epidermal leaf impressions were collected from a genetically and anatomically diverse population of maize inbred lines. Subsequently, convolutional neural networks were employed to measure microscopic, bulliform cell-patterning phenotypes in high-throughput. A genome-wide association study, combined with RNAseq analyses of the bulliform cell ontogenic zone, identified candidate regulatory genes affecting bulliform cell column number and cell width. This study is the first to combine machine learning approaches, transcriptomics, and genomics to study bulliform cell patterning, and the first to utilize natural variation to investigate the genetic architecture of this microscopic trait. In addition, this study provides insight toward the improvement of macroscopic traits such as drought resistance and plant architecture in an agronomically important crop plant.
Collapse
|
23
|
Jones AR, Band LR, Murray JAH. Double or Nothing? Cell Division and Cell Size Control. TRENDS IN PLANT SCIENCE 2019; 24:1083-1093. [PMID: 31630972 DOI: 10.1016/j.tplants.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Size is a fundamental property that must be tightly regulated to ensure that cells and tissues function efficiently. Dynamic size control allows unicellular organisms to adapt to environmental changes, but cell size is also integral to multicellular development, affecting tissue size and structure. Despite clear evidence for homeostatic cell size maintenance, we are only now beginning to understand cell size regulation in the actively dividing meristematic tissues of higher plants. We discuss here how coupled advances in live cell imaging and modelling are uncovering dynamic mechanisms for size control mediated at the cellular level. We argue that integrated models of cell growth and division will be necessary to predict cell size and fully understand multicellular growth and development.
Collapse
Affiliation(s)
- Angharad R Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Leah R Band
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
24
|
Liu G, Yang W, Zhang X, Peng T, Zou Y, Zhang T, Wang H, Liu X, Tao LZ. Cystathionine beta-lyase is crucial for embryo patterning and the maintenance of root stem cell niche in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:536-555. [PMID: 31002461 DOI: 10.1111/tpj.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The growth and development of roots in plants depends on the specification and maintenance of the root apical meristem. Here, we report the identification of CBL, a gene required for embryo and root development in Arabidopsis, and encodes cystathionine beta-lyase (CBL), which catalyzes the penultimate step in methionine (Met) biosynthesis, and which also led to the discovery of a previous unknown, but crucial, metabolic contribution by the Met biosynthesis pathway. CBL is expressed in embryos and shows quiescent center (QC)-enriched expression pattern in the root. cbl mutant has impaired embryo patterning, defective root stem cell niche, stunted root growth, and reduces accumulation of the root master regulators PLETHORA1 (PLT1) and PLT2. Furthermore, mutation in CBL severely decreases abundance of several PIN-FORMED (PIN) proteins and impairs auxin-responsive gene expression in the root tip. cbl seedlings also exhibit global reduction in histone H3 Lys-4 trimethylation (H3K4me3) and DNA methylation. Importantly, mutation in CBL reduces the abundance of H3K4me3 modification in PLT1/2 genes and downregulates their expression. Overexpression of PLT2 partially rescues cbl root meristem defect, suggesting that CBL acts in part through PLT1/2. Moreover, exogenous supplementation of Met also restores the impaired QC activity and the root growth defects of cbl. Taken together, our results highlight the unique role of CBL to maintain the root stem cell niche by cooperative actions between Met biosynthesis and epigenetic modification of key developmental regulators.
Collapse
Affiliation(s)
- Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiyuan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Peng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
25
|
Chen DH, Huang Y, Jiang C, Si JP. Chromatin-Based Regulation of Plant Root Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1509. [PMID: 30386363 PMCID: PMC6198463 DOI: 10.3389/fpls.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Dong-Hong Chen
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | | | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- Jin-Ping Si
| |
Collapse
|
26
|
Berr A, Zhang X, Shen WH. [Reciprocity between active transcription and histone methylation]. Biol Aujourdhui 2017; 210:269-282. [PMID: 28327284 DOI: 10.1051/jbio/2017004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/08/2023]
Abstract
In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.
Collapse
|
27
|
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:41-53. [PMID: 27614255 DOI: 10.1016/j.pbi.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/17/2023]
Abstract
Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Un-Sa Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Morao AK, Bouyer D, Roudier F. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:27-34. [PMID: 27522467 DOI: 10.1016/j.pbi.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 05/04/2023]
Abstract
Plants are characterized by a remarkable phenotypic plasticity that meets the constraints of a sessile lifestyle and the need to adjust constantly to the environment. Recent studies have begun to reveal how chromatin dynamics participate in coordinating cell proliferation and differentiation in response to developmental cues as well as environmental fluctuations. In this review, we discuss the pivotal function of chromatin-based mechanisms in cell fate acquisition and maintenance, within as well as outside meristems. In particular, we highlight the emerging role of specific epigenomic factors and chromatin pathways in timing the activity of stem cells, counting cell divisions and positioning cell fate transitions by sensing phytohormone gradients.
Collapse
Affiliation(s)
- Ana Karina Morao
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France.
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France; Laboratoire de Reproduction et Développement des Plantes, Centre National de la Recherche Scientifique (CNRS) UMR5667, Institut National de la Recherche Agronomique (INRA) UMR879, Ecole Normale Supérieure de Lyon, Université Lyon 1 (UCBL), 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
29
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network. PLANT PHYSIOLOGY 2016; 170:1848-67. [PMID: 26754667 PMCID: PMC4775144 DOI: 10.1104/pp.15.01883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/07/2016] [Indexed: 05/20/2023]
Abstract
Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Matteo Dell'Acqua
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Mario Enrico Pè
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., D.H., F.C., J.D.B., B.S., S.M., H.N., D.I.); andInstitute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy (M.D., M.E.P.)
| |
Collapse
|
30
|
Nwasike C, Ewert S, Jovanovic S, Haider S, Mujtaba S. SET domain-mediated lysine methylation in lower organisms regulates growth and transcription in hosts. Ann N Y Acad Sci 2016; 1376:18-28. [PMID: 26919042 DOI: 10.1111/nyas.13017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain-mediated lysine methylation, one of the major epigenetic marks, has been found to regulate chromatin-mediated gene transcription. Published studies have established further that methylation is not restricted to nuclear proteins but is involved in many cellular processes, including growth, differentiation, immune regulation, and cancer progression. The biological complexity of lysine methylation emerges from its capacity to cause gene activation or gene repression owing to the specific position of methylated-lysine moieties on the chromatin. Accumulating evidence suggests that despite the absence of chromatin, viruses and prokaryotes also express SET proteins, although their functional roles remain relatively less investigated. One possibility could be that SET proteins in lower organisms have more than one biological function, for example, in regulating growth or in manipulating host transcription machinery in order to establish infection. Thus, elucidating the role of an SET protein in host-pathogen interactions requires a thorough understanding of their functions. This review discusses the biological role of lysine methylation in prokaryotes and lower eukaryotes, as well as the underlying structural complexity and functional diversity of SET proteins.
Collapse
Affiliation(s)
| | - Sinead Ewert
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Srdan Jovanovic
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London, United Kingdom.
| | - Shiraz Mujtaba
- City University of New York, Medgar Evers College, Brooklyn, New York.
| |
Collapse
|
31
|
Fisher AP, Sozzani R. Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:38-43. [PMID: 26707611 DOI: 10.1016/j.pbi.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Stem cells are the source of different cell types and tissues in all multicellular organisms. In plants, the balance between stem cell self-renewal and differentiation of their progeny is crucial for correct tissue and organ formation. How transcriptional programs precisely control stem cell maintenance and identity, and what are the regulatory programs influencing stem cell asymmetric cell division (ACD), are key questions that researchers have sought to address for the past decade. Successful efforts in genetic, molecular, and developmental biology, along with mathematical modeling, have identified some of the players involved in stem cell regulation. In this review, we will discuss several studies that characterized many of the genetic programs and molecular mechanisms regulating stem cell ACD and their identity in the Arabidopsis root. We will also highlight how the growing use of mathematical modeling provides a comprehensive and quantitative perspective on the design rules governing stem cell ACDs.
Collapse
Affiliation(s)
- Adam P Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
32
|
|