1
|
Zer H, Ben‐Ami AZ, Keren N. Static and dynamic acclimation mechanisms to extreme light intensities in Hedera helix (Ivy) plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70217. [PMID: 40231843 PMCID: PMC11998634 DOI: 10.1111/ppl.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Under natural conditions, plants face the need to acclimate to widely varying light intensities to optimize photosynthetic efficiency and minimize photodamage. Studying the mechanisms underlying these acclimation processes is essential for understanding plant productivity and resilience under fluctuating environmental conditions. This study aimed to investigate static and dynamic acclimation mechanisms in Hedera helix (Ivy) plants under two extreme light conditions spanning the range of their adaptive abilities, deep shade (LL, ~5 μmol photons m-2 s-1) to full sunlight (HL, ~2000 μmol photons m-2 s-1), focusing on their structural and functional acclimation. LL and HL plants were examined for their leaf structure, chlorophyll and carotenoid contents, and photosynthetic protein levels. Dynamic responses were evaluated through chlorophyll fluorescence spectroscopy, measuring the effective photosynthetic unit size (σ) and the capacity for non-photochemical quenching (NPQ). HL plants exhibited a ~ 78% lower chlorophyll contents as compared to LL and increased chlorophyll a/b ratios. The carotenoid content of HL plants was ~94% lower, while the PsbS content increased fivefold. These results may indicate a smaller HL effective antenna size. However, σ fast fluorescence kinetics analysis indicated the opposite. NPQ analysis demonstrated that both compositions of the photosynthetic systems supported the ability to quench access energy. HL plants had a large dynamic range for NPQ and faster on/off kinetics. Our finding suggests massive changes in the organization of the photosynthetic apparatus. These modifications preserve a large dynamic range for reacting to light intensity under both conditions.
Collapse
Affiliation(s)
- Hagit Zer
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| | - Ayelet Zion Ben‐Ami
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| | - Nir Keren
- Department of plant and Environmental StudiesInstitute of Life Sciences, The Hebrew University of JerusalemJerusalem
| |
Collapse
|
2
|
Gao Y, Stein M, Oshana L, Zhao W, Matsubara S, Stich B. Exploring natural genetic variation in photosynthesis-related traits of barley in the field. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4904-4925. [PMID: 38700102 PMCID: PMC11523619 DOI: 10.1093/jxb/erae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
Optimizing photosynthesis is considered an important strategy for improving crop yields to ensure food security. To evaluate the potential of using photosynthesis-related parameters in crop breeding programs, we measured chlorophyll fluorescence along with growth-related and morphological traits of 23 barley inbred lines across different developmental stages in field conditions. The photosynthesis-related parameters were highly variable, changing with light intensity and developmental progression of plants. Yet, the variation in photosystem II quantum yield observed among the inbred lines in the field largely reflected the variation in CO2 assimilation properties in controlled climate chamber conditions, confirming that the chlorophyll fluorescence-based technique can provide proxy parameters of photosynthesis to explore genetic variation under field conditions. Heritability (H2) of the photosynthesis-related parameters in the field ranged from 0.16 for the quantum yield of non-photochemical quenching to 0.78 for the fraction of open photosystem II center. Two parameters, the maximum photosystem II efficiency in the light-adapted state (H2=0.58) and the total non-photochemical quenching (H2=0.53), showed significant positive and negative correlations, respectively, with yield-related traits (dry weight per plant and net straw weight) in the barley inbred lines. These results indicate the possibility of improving crop yield through optimizing photosynthetic light use efficiency by conventional breeding programs.
Collapse
Affiliation(s)
- Yanrong Gao
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Merle Stein
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Lilian Oshana
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Wenxia Zhao
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
- Xinjiang Seed Industry Development Center of China, Urumqi, China
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Sanitz, Germany
| |
Collapse
|
3
|
Huang P, El‐Soda M, Wolinska KW, Zhao K, Davila Olivas NH, van Loon JJA, Dicke M, Aarts MGM. Genome-wide association analysis reveals genes controlling an antagonistic effect of biotic and osmotic stress on Arabidopsis thaliana growth. MOLECULAR PLANT PATHOLOGY 2024; 25:e13436. [PMID: 38460112 PMCID: PMC10924621 DOI: 10.1111/mpp.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/11/2024]
Abstract
While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.
Collapse
Affiliation(s)
- Pingping Huang
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Shenzhen SinoPlant Biotech LtdDapeng Marine Organism Industrial Park, Gongye Ave, Dapeng District518000ShenzhenChina.
| | - Mohamed El‐Soda
- Department of Genetics, Faculty of AgricultureCairo UniversityGizaEgypt
| | | | - Kaige Zhao
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
College of Horticulture and ForestryHuazhong Agriculture UniversityNanhu Road, Hongshan District430070WuhanChina.
| | - Nelson H. Davila Olivas
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
- Present address:
BASF Vegetables SeedsNapoleonsweg 152Nunhem6083 ABNetherlands.
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
4
|
Xu J, Zhao X, Zhong Y, Qu T, Sun B, Zhang H, Hou C, Zhang Z, Tang X, Wang Y. Acclimation of intertidal macroalgae Ulva prolifera to UVB radiation: the important role of alternative oxidase. BMC PLANT BIOLOGY 2024; 24:143. [PMID: 38413873 PMCID: PMC10900725 DOI: 10.1186/s12870-024-04762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Solar radiation is primarily composed of ultraviolet radiation (UVR, 200 - 400 nm) and photosynthetically active radiation (PAR, 400 - 700 nm). Ultraviolet-B (UVB) radiation accounts for only a small proportion of sunlight, and it is the primary cause of plant photodamage. The use of chlorofluorocarbons (CFCs) as refrigerants caused serious ozone depletion in the 1980s, and this had led to an increase in UVB. Although CFC emissions have significantly decreased in recent years, UVB radiation still remains at a high intensity. UVB radiation increase is an important factor that influences plant physiological processes. Ulva prolifera, a type of macroalga found in the intertidal zone, is intermittently exposed to UVB. Alternative oxidase (AOX) plays an important role in plants under stresses. This research examines the changes in AOX activity and the relationships among AOX, photosynthesis, and reactive oxygen species (ROS) homeostasis in U. prolifera under changes in UVB and photosynthetically active radiation (PAR). RESULTS UVB was the main component of solar radiation impacting the typical intertidal green macroalgae U. prolifera. AOX was found to be important during the process of photosynthesis optimization of U. prolifera due to a synergistic effect with non-photochemical quenching (NPQ) under UVB radiation. AOX and glycolate oxidase (GO) worked together to achieve NADPH homeostasis to achieve photosynthesis optimization under changes in PAR + UVB. The synergism of AOX with superoxide dismutase (SOD) and catalase (CAT) was important during the process of ROS homeostasis under PAR + UVB. CONCLUSIONS AOX plays an important role in the process of photosynthesis optimization and ROS homeostasis in U. prolifera under UVB radiation. This study provides further insights into the response of intertidal macroalgae to solar light changes.
Collapse
Grants
- No. LSKJ202203605 Laoshan Laboratory
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
Collapse
Affiliation(s)
- Jinhui Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinyu Zhao
- Laoshan Laboratory, 1 Wenhai Road, Qingdao, 266237, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Baixue Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 1 Daxue Road, Jinan, 250000, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhipeng Zhang
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin, 300456, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
5
|
Muino JM, Großmann C, Kleine T, Kaufmann K. Natural genetic variation in GLK1-mediated photosynthetic acclimation in response to light. BMC PLANT BIOLOGY 2024; 24:87. [PMID: 38311744 PMCID: PMC10840168 DOI: 10.1186/s12870-024-04741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
- Current Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Christopher Großmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Munich, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
6
|
Taylor SH. Phenotyping photosynthesis: yes we can. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:659-662. [PMID: 38307516 PMCID: PMC10837009 DOI: 10.1093/jxb/erad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Keller B, Soto J, Steier A, Portilla-Benavides AE, Raatz B, Studer B, Walter A, Muller O, Urban MO. 2024. Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. Journal of Experimental Botany 75, 901–916.
Collapse
Affiliation(s)
- Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
7
|
Abd El-Wahab MMH, Abdel-Lattif H, Emara KS, Mosalam M, Aljabri M, El-Soda M. Identifying SNP markers associated with distinctness, uniformity, and stability testing in Egyptian fenugreek genotypes. PLoS One 2023; 18:e0291527. [PMID: 37729256 PMCID: PMC10511133 DOI: 10.1371/journal.pone.0291527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Distinctness, uniformity, and stability (DUS) test is the legal requirement in crop breeding to grant the intellectual property right for new varieties by evaluating their morphological characteristics across environments. On the other hand, molecular markers accurately identify genetic variations and validate the purity of the cultivars. Therefore, genomic DUS can improve the efficiency of traditional DUS testing. In this study, 112 Egyptian fenugreek genotypes were grown in Egypt at two locations: Wadi El-Natrun (Wadi), El-Beheira Governorate, with salty and sandy soil, and Giza, Giza governorate, with loamy clay soil. Twelve traits were measured, of which four showed a high correlation above 0.94 over the two locations. We observed significant genotype-by-location interactions (GxL) for seed yield, as it was superior in Wadi, with few overlapping genotypes with Giza. We attribute this superiority in Wadi to the maternal habitat, as most genotypes grew in governorates with newly reclaimed salty and sandy soil. As a first step toward genomic DUS, we performed an association study, and out of 38,142 SNPs, we identified 39 SNPs demonstrating conditional neutrality and four showing pleiotropic effects. Forty additional SNPs overlapped between both locations, each showing a similar impact on the associated trait. Our findings highlight the importance of GxL in validating the effect of each SNP to make better decisions about its suitability in the marker-assisted breeding program and demonstrate its potential use in registering new plant varieties.
Collapse
Affiliation(s)
| | - Hashim Abdel-Lattif
- Department of Agronomy, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Kh. S. Emara
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed Mosalam
- Department of Biotechnology, Faculty of Agriculture, Heliopolis University, Cairo, Egypt
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Meyer RC, Weigelt-Fischer K, Tschiersch H, Topali G, Altschmied L, Heuermann MC, Knoch D, Kuhlmann M, Zhao Y, Altmann T. Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5341-5362. [PMID: 37306093 DOI: 10.1093/jxb/erad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/10/2023] [Indexed: 06/13/2023]
Abstract
Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Georgia Topali
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| |
Collapse
|
9
|
Driever SM, Mossink L, Ocaña DN, Kaiser E. A simple system for phenotyping of plant transpiration and stomatal conductance response to drought. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111626. [PMID: 36738936 DOI: 10.1016/j.plantsci.2023.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plant breeding for increased crop water use efficiency or drought stress resistance requires methods to quickly assess the transpiration rate (E) and stomatal conductance (gs) of a large number of individual plants. Several methods to measure E and gs exist, each of which has its own advantages and shortcomings. To add to this toolbox, we developed a method that uses whole-plant thermal imaging in a controlled environment, where aerial humidity is changed rapidly to induce changes in E that are reflected in changes in leaf temperature. This approach is based on a simplified energy balance equation, without the need for a reference material or complicated calculations. To test this concept, we built a double-sided, perforated, open-top plexiglass chamber that was supplied with air at a high flow rate (35 L min-1) and whose relative humidity (RH) could be switched rapidly. Measurements included air and leaf temperature as well as RH. Using several well-watered and drought stressed genotypes of Arabidopsis thaliana that were exposed to multiple cycles in RH (30-50 % and back), we showed that leaf temperature as measured in our system correlated well with E and gs measured in a commercial gas exchange system. Our results demonstrate that, at least within a given species, the differences in leaf temperature under several RH can be used as a proxy for E and gs. Given that this method is fairly quick, noninvasive and remote, we envision that it could be upscaled for work within rapid plant phenotyping systems.
Collapse
Affiliation(s)
- Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Leon Mossink
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Diego Nuñez Ocaña
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Garassino F, Wijfjes RY, Boesten R, Reyes Marquez F, Becker FFM, Clapero V, van den Hatert I, Holmer R, Schranz ME, Harbinson J, de Ridder D, Smit S, Aarts MGM. The genome sequence of Hirschfeldia incana, a new Brassicaceae model to improve photosynthetic light-use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1298-1315. [PMID: 36239071 PMCID: PMC10100226 DOI: 10.1111/tpj.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.
Collapse
Affiliation(s)
| | - Raúl Y. Wijfjes
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
- Present address:
Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - René Boesten
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | | | - Frank F. M. Becker
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | - Vittoria Clapero
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Max Planck Institute for Molecular Plant PhysiologyGolmGermany
| | | | - Rens Holmer
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenNetherlands
| | - Jeremy Harbinson
- Laboratory of BiophysicsWageningen University & ResearchWageningenNetherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
12
|
Improving
C
3
photosynthesis by exploiting natural genetic variation:
Hirschfeldia incana
as a model species. Food Energy Secur 2022. [DOI: 10.1002/fes3.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Ortiz D, Salas-Fernandez MG. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3251-3267. [PMID: 34791180 PMCID: PMC9126735 DOI: 10.1093/jxb/erab502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Drought stress causes crop yield losses worldwide. Sorghum is a C4 species tolerant to moderate drought stress, and its extensive natural variation for photosynthetic traits under water-limiting conditions can be exploited for developing cultivars with enhanced stress tolerance. The objective of this study was to discover genes/genomic regions that control the sorghum photosynthetic capacity under pre-anthesis water-limiting conditions. We performed a genome-wide association study for seven photosynthetic gas exchange and chlorophyll fluorescence traits during three periods of contrasting soil volumetric water content (VWC): control (30% VWC), drought (15% VWC), and recovery (30% VWC). Water stress was imposed with an automated irrigation system that generated a controlled dry-down period for all plants, to perform an unbiased genotypic comparison. A total of 60 genomic regions were associated with natural variation in one or more photosynthetic traits in a particular treatment or with derived variables. We identified 33 promising candidate genes with predicted functions related to stress signaling, oxidative stress protection, hormonal response to stress, and dehydration protection. Our results provide new knowledge about the natural variation and genetic control of sorghum photosynthetic response to drought with the ultimate goal of improving its adaptation and productivity under water stress scenarios.
Collapse
Affiliation(s)
- Diego Ortiz
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Instituto Nacional de Tecnologia Agropecuaria, Manfredi, Cordoba 5988, Argentina
| | | |
Collapse
|
14
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
15
|
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. THE PLANT CELL 2022; 34:557-578. [PMID: 34623442 PMCID: PMC8774053 DOI: 10.1093/plcell/koab251] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/05/2021] [Indexed: 05/31/2023]
Abstract
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Kaan Koper
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Hao Tong
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Maeda
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
16
|
Inoue T, Yamada Y, Noguchi K. Growth temperature affects O 2 consumption rates and plasticity of respiratory flux to support shoot growth at various growth temperatures. PLANT, CELL & ENVIRONMENT 2022; 45:133-146. [PMID: 34719799 DOI: 10.1111/pce.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.
Collapse
Affiliation(s)
- Tomomi Inoue
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Yusuke Yamada
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ko Noguchi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
17
|
Song Q, Van Rie J, Den Boer B, Galle A, Zhao H, Chang T, He Z, Zhu XG. Diurnal and Seasonal Variations of Photosynthetic Energy Conversion Efficiency of Field Grown Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:817654. [PMID: 35283909 PMCID: PMC8914475 DOI: 10.3389/fpls.2022.817654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 05/22/2023]
Abstract
Improving canopy photosynthetic light use efficiency and energy conversion efficiency (ε c ) is a major option to increase crop yield potential. However, so far, the diurnal and seasonal variations of canopy light use efficiency (LUE) and ε c are largely unknown due to the lack of an efficient method to estimate ε c in a high temporal resolution. Here we quantified the dynamic changes of crop canopy LUE and ε c during a day and a growing season with the canopy gas exchange method. A response curve of whole-plant carbon dioxide (CO2) flux to incident photosynthetically active radiation (PAR) was further used to calculate ε c and LUE at a high temporal resolution. Results show that the LUE of two wheat cultivars with different canopy architectures at five stages varies between 0.01 to about 0.05 mol CO2 mol-1 photon, with the LUE being higher under medium PAR. Throughout the growing season, the ε c varies from 0.5 to 3.7% (11-80% of the maximal ε c for C3 plants) with incident PAR identified as a major factor controlling variation of ε c . The estimated average ε c from tillering to grain filling stages was about 2.17%, i.e., 47.2% of the theoretical maximal. The estimated season-averaged radiation use efficiency (RUE) was 1.5-1.7 g MJ-1, which was similar to the estimated RUE based on biomass harvesting. The large variations of LUE and ε c imply a great opportunity to improve canopy photosynthesis for greater wheat biomass and yield potential.
Collapse
Affiliation(s)
- Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeroen Van Rie
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Bart Den Boer
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Alexander Galle
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Honglong Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tiangen Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xin-Guang Zhu,
| |
Collapse
|
18
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Alvarez-Fernandez R, Penfold CA, Galvez-Valdivieso G, Exposito-Rodriguez M, Stallard EJ, Bowden L, Moore JD, Mead A, Davey PA, Matthews JSA, Beynon J, Buchanan-Wollaston V, Wild DL, Lawson T, Bechtold U, Denby KJ, Mullineaux PM. Time-series transcriptomics reveals a BBX32-directed control of acclimation to high light in mature Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1363-1386. [PMID: 34160110 DOI: 10.1111/tpj.15384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ellie J Stallard
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Laura Bowden
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Jonathan D Moore
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Andrew Mead
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Phillip A Davey
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jim Beynon
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | | | - David L Wild
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
20
|
Drown MK, DeLiberto AN, Ehrlich MA, Crawford DL, Oleksiak MF. Interindividual plasticity in metabolic and thermal tolerance traits from populations subjected to recent anthropogenic heating. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210440. [PMID: 34295527 PMCID: PMC8292749 DOI: 10.1098/rsos.210440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 05/05/2023]
Abstract
To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CTmax) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CTmax, the interindividual variation in acclimation response (log2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12-28°C versus 28-12°C). CTmax and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CTmax at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.
Collapse
Affiliation(s)
- Melissa K. Drown
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Amanda N. DeLiberto
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Moritz A. Ehrlich
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
21
|
Leschevin M, Marcelo P, Ismael M, San-Clemente H, Jamet E, Rayon C, Pageau K. A Tandem Mass Tags (TMTs) labeling approach highlights differences between the shoot proteome of two Arabidopsis thaliana ecotypes, Col-0 and Ws. Proteomics 2021; 21:e2000293. [PMID: 33891803 DOI: 10.1002/pmic.202000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Arabidopsis has become a powerful model to study morphogenesis, plant growth, development but also plant response to environmental conditions. Over 1000 Arabidopsis genomes are available and show natural genetic variations. Among them, the main reference accessions Wassilewskija (Ws) and Columbia (Col-0), originally growing at contrasted altitudes and temperatures, are widely studied, but data contributing to their molecular phenotyping are still scarce. A global quantitative proteomics approach using isobaric stable isotope labeling (Tandem Mass Tags, TMT) was performed on Ws and Col-0. Plants have been hydroponically grown at 16 h/8 h (light/dark cycle) at 23°C day/19°C night for three weeks. A TMT labeling of the proteins extracted from their shoots has been performed and showed a differential pattern of protein abundance between them. These results have allowed identifying several proteins families possibly involved in the differential responses observed for Ws and Col-0 during plant development and upon environmental changes. In particular, Ws and Col-0 mainly differ in photosynthesis, cell wall-related proteins, plant defense/stress, ROS scavenging enzymes/redox homeostasis and DNA/RNA binding/transcription/translation/protein folding.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | | | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
22
|
Montes N, Cobos A, Gil-Valle M, Caro E, Pagán I. Arabidopsis thaliana Genes Associated with Cucumber mosaic virus Virulence and Their Link to Virus Seed Transmission. Microorganisms 2021; 9:692. [PMID: 33801693 PMCID: PMC8067046 DOI: 10.3390/microorganisms9040692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Virulence, the effect of pathogen infection on progeny production, is a major determinant of host and pathogen fitness as it affects host fecundity and pathogen transmission. In plant-virus interactions, ample evidence indicates that virulence is genetically controlled by both partners. However, the host genetic determinants are poorly understood. Through a genome-wide association study (GWAS) of 154 Arabidopsis thaliana genotypes infected by Cucumber mosaic virus (CMV), we identified eight host genes associated with virulence, most of them involved in response to biotic stresses and in cell wall biogenesis in plant reproductive structures. Given that virulence is a main determinant of the efficiency of plant virus seed transmission, we explored the link between this trait and the genetic regulation of virulence. Our results suggest that the same functions that control virulence are also important for CMV transmission through seeds. In sum, this work provides evidence of a novel role for some previously known plant defense genes and for the cell wall metabolism in plant virus interactions.
Collapse
Affiliation(s)
- Nuria Montes
- Unidad de Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, 28003 Madrid, Spain;
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| |
Collapse
|
23
|
Yavari N, Tripathi R, Wu BS, MacPherson S, Singh J, Lefsrud M. The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS One 2021; 16:e0247380. [PMID: 33661984 PMCID: PMC7932170 DOI: 10.1371/journal.pone.0247380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| | - Rajiv Tripathi
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| |
Collapse
|
24
|
Rees H, Joynson R, Brown JKM, Hall A. Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions. PLANT, CELL & ENVIRONMENT 2021; 44:807-820. [PMID: 33179278 PMCID: PMC7986795 DOI: 10.1111/pce.13941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
Circadian clocks have evolved to resonate with external day and night cycles. However, these entrainment signals are not consistent everywhere and vary with latitude, climate and seasonality. This leads to divergent selection for clocks which are locally adapted. To investigate the genetic basis for this circadian variation, we used a delayed fluorescence imaging assay to screen 191 naturally occurring Swedish Arabidopsis accessions for their circadian phenotypes. We demonstrate that the period length co-varies with both geography and population sub-structure. Several candidate loci linked to period, phase and relative amplitude error (RAE) were revealed by genome-wide association mapping and candidate genes were investigated using TDNA mutants. We show that natural variation in a single non-synonymous substitution within COR28 is associated with a long-period and late-flowering phenotype similar to that seen in TDNA knock-out mutants. COR28 is a known coordinator of flowering time, freezing tolerance and the circadian clock; all of which may form selective pressure gradients across Sweden. We demonstrate the effect of the COR28-58S SNP in increasing period length through a co-segregation analysis. Finally, we show that period phenotypic tails remain diverged under lower temperatures and follow a distinctive "arrow-shaped" trend indicative of selection for a cold-biased temperature compensation response.
Collapse
Affiliation(s)
- Hannah Rees
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
- Institute of Integrative Biology, University of LiverpoolLiverpoolUK
| | - Ryan Joynson
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
| | | | - Anthony Hall
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
| |
Collapse
|
25
|
Farooq M, van Dijk ADJ, Nijveen H, Aarts MGM, Kruijer W, Nguyen TP, Mansoor S, de Ridder D. Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Front Genet 2021; 11:609117. [PMID: 33552126 PMCID: PMC7855462 DOI: 10.3389/fgene.2020.609117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
Prediction of growth-related complex traits is highly important for crop breeding. Photosynthesis efficiency and biomass are direct indicators of overall plant performance and therefore even minor improvements in these traits can result in significant breeding gains. Crop breeding for complex traits has been revolutionized by technological developments in genomics and phenomics. Capitalizing on the growing availability of genomics data, genome-wide marker-based prediction models allow for efficient selection of the best parents for the next generation without the need for phenotypic information. Until now such models mostly predict the phenotype directly from the genotype and fail to make use of relevant biological knowledge. It is an open question to what extent the use of such biological knowledge is beneficial for improving genomic prediction accuracy and reliability. In this study, we explored the use of publicly available biological information for genomic prediction of photosynthetic light use efficiency (Φ PSII ) and projected leaf area (PLA) in Arabidopsis thaliana. To explore the use of various types of knowledge, we mapped genomic polymorphisms to Gene Ontology (GO) terms and transcriptomics-based gene clusters, and applied these in a Genomic Feature Best Linear Unbiased Predictor (GFBLUP) model, which is an extension to the traditional Genomic BLUP (GBLUP) benchmark. Our results suggest that incorporation of prior biological knowledge can improve genomic prediction accuracy for both Φ PSII and PLA. The improvement achieved depends on the trait, type of knowledge and trait heritability. Moreover, transcriptomics offers complementary evidence to the Gene Ontology for improvement when used to define functional groups of genes. In conclusion, prior knowledge about trait-specific groups of genes can be directly translated into improved genomic prediction.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
- Molecular Virology and Gene Silencing Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Punjab, Pakistan
| | - Aalt D. J. van Dijk
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
- Biometris, Wageningen University, Wageningen, Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University, Wageningen, Netherlands
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Lab, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Punjab, Pakistan
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
26
|
Prinzenberg AE, Campos‐Dominguez L, Kruijer W, Harbinson J, Aarts MGM. Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. PLANT, CELL & ENVIRONMENT 2020; 43:2000-2013. [PMID: 32495939 PMCID: PMC7497054 DOI: 10.1111/pce.13811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 05/18/2023]
Abstract
Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII ) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light.
Collapse
Affiliation(s)
- Aina E. Prinzenberg
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Plant BreedingWageningen University and ResearchPO Box 386Wageningen6700 AJThe Netherlands
| | - Lucia Campos‐Dominguez
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUnited Kingdom
| | - Willem Kruijer
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of BiophysicsWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| |
Collapse
|
27
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
28
|
Morales A, Kaiser E. Photosynthetic Acclimation to Fluctuating Irradiance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:268. [PMID: 32265952 PMCID: PMC7105707 DOI: 10.3389/fpls.2020.00268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
Unlike the short-term responses of photosynthesis to fluctuating irradiance, the long-term response (i.e., acclimation) at the chloroplast, leaf, and plant level has received less attention so far. The ability of plants to acclimate to irradiance fluctuations and the speed at which this acclimation occurs are potential limitations to plant growth under field conditions, and therefore this process deserves closer study. In the first section of this review, we look at the sources of natural irradiance fluctuations, their effects on short-term photosynthesis, and the interaction of these effects with circadian rhythms. This is followed by an overview of the mechanisms that are involved in acclimation to fluctuating (or changes of) irradiance. We highlight the chain of events leading to acclimation: retrograde signaling, systemic acquired acclimation (SAA), gene transcription, and changes in protein abundance. We also review how fluctuating irradiance is applied in experiments and highlight the fact that they are significantly slower than natural fluctuations in the field, although the technology to achieve realistic fluctuations exists. Finally, we review published data on the effects of growing plants under fluctuating irradiance on different plant traits, across studies, spatial scales, and species. We show that, when plants are grown under fluctuating irradiance, the chlorophyll a/b ratio and plant biomass decrease, specific leaf area increases, and photosynthetic capacity as well as root/shoot ratio are, on average, unaffected.
Collapse
Affiliation(s)
- Alejandro Morales
- Centre for Crop Systems Analysis, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
29
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
30
|
Kaiser E, Walther D, Armbruster U. Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E316. [PMID: 32138234 PMCID: PMC7154909 DOI: 10.3390/plants9030316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/03/2022]
Abstract
The capacity of photoautotrophs to fix carbon depends on the efficiency of the conversion of light energy into chemical potential by photosynthesis. In nature, light input into photosynthesis can change very rapidly and dramatically. To analyze how genetic variation in Arabidopsis thaliana affects photosynthesis and growth under dynamic light conditions, 36 randomly chosen natural accessions were grown under uniform and fluctuating light intensities. After 14 days of growth under uniform or fluctuating light regimes, maximum photosystem II quantum efficiency (Fv/Fm) was determined, photosystem II operating efficiency (ΦPSII) and non-photochemical quenching (NPQ) were measured in low light, and projected leaf area (PLA) as well as the number of visible leaves were estimated. Our data show that ΦPSII and PLA were decreased and NPQ was increased, while Fv/Fm and number of visible leaves were unaffected, in most accessions grown under fluctuating compared to uniform light. There were large changes between accessions for most of these parameters, which, however, were not correlated with genomic variation. Fast growing accessions under uniform light showed the largest growth reductions under fluctuating light, which correlated strongly with a reduction in ΦPSII, suggesting that, under fluctuating light, photosynthesis controls growth and not vice versa.
Collapse
Affiliation(s)
- Elias Kaiser
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany;
- Horticulture and Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany;
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany;
| |
Collapse
|
31
|
Tsai YC, Chen KC, Cheng TS, Lee C, Lin SH, Tung CW. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC PLANT BIOLOGY 2019; 19:403. [PMID: 31519149 PMCID: PMC6743182 DOI: 10.1186/s12870-019-1983-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. Plants can sense when growing conditions are not favorable and trigger an internal response at an early stage before showing external symptoms. When a high amount of salt enters the plant cell, the membrane system and function of thylakoids in chloroplasts could be destroyed and affect photosynthetic performance if the salt concentration is not regulated to optimal values. Oryza species have salt-tolerant and salt-sensitive genotypes; however, very few studies have investigated the genetic architecture responsible for photosynthetic efficiency under salinity stress in cultivated rice. RESULTS We used an imaging-based chlorophyll fluorometer to monitor eight rice varieties that showed different salt tolerance levels for four consecutive days under control and salt conditions. An analysis of the changes in chlorophyll fluorescence parameters clearly showed the maximum quantum efficiency of PSII in sensitive varieties was significantly reduced after NaCl treatment when compared to tolerant varieties. A panel of 232 diverse rice accessions was then analyzed for chlorophyll fluorescence under salt conditions, the results showed that chlorophyll fluorescence parameters such as F0 and NPQ were higher in Japonica subspecies, ΦPSII of Indica varieties was higher than that in other subgroups, which suggested that the variation in photosynthetic efficiency was extensively regulated under salt treatment in diverse cultivated rice. Two significant regions on chromosome 5 were identified to associate with the fraction of open PSII centers (qL) and the minimum chlorophyll fluorescence (F0). These regions harbored genes related to senescence, chloroplast biogenesis and response to salt stress are of interest for future functional characterization to determine their roles in regulating photosynthesis. CONCLUSIONS Rice plant is very sensitive to salinity stress, especially at young seedling stage. Our work identified the distribution pattern of chlorophyll fluorescence parameters in seedlings leaf and their correlations with salt tolerance level in a diverse gene pool. We also revealed the complexity of the genetic architecture regulating rice seedling photosynthetic performance under salinity stress, the germplasm analyzed in this study and the associated genetic information could be utilized in rice breeding program.
Collapse
Affiliation(s)
- Yu-Chang Tsai
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Kuan-Chuan Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Tung-Shan Cheng
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chuan Lee
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Shih-Hung Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617 Taiwan
| |
Collapse
|
32
|
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk AD, Immink RG. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:316-328. [PMID: 30903633 PMCID: PMC6767503 DOI: 10.1111/tpj.14326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
Members of the Arabidopsis thaliana TCP transcription factor (TF) family affect plant growth and development. We systematically quantified the effect of mutagenizing single or multiple TCP TFs and how altered vegetative growth or branching influences final seed yield. We monitored rosette growth over time and branching patterns and seed yield characteristics at the end of the lifecycle. Subsequently, an approach was developed to disentangle vegetative growth and to determine possible effects on seed yield. Analysis of growth parameters showed all investigated tcp mutants to be affected in certain growth aspects compared with wild-type plants, highlighting the importance of TCP TFs in plant development. Furthermore, we found evidence that all class II TCPs are involved in axillary branch outgrowth, either as inhibitors (BRANCHED-like genes) or enhancers (JAW- and TCP5-like genes). Comprehensive phenotyping of plants mutant for single or multiple TCP TFs reveals that the proposed opposite functions of class I and class II TCPs in plant growth needs revision and shows complex interactions between closely related TCP genes instead of full genetic redundancy. In various instances, the alterations in vegetative growth or in branching patterns result into negative trade-off effects on seed yield that were missed in previous studies, showing the importance of comprehensive and quantitative phenotyping.
Collapse
Affiliation(s)
- Sam W. van Es
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
- Present address:
Department of Plant PhysiologyUmeå Plant Science CentreUmeå University90187UmeåSweden
| | | | - Sylvia R. Silveira
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratório de Biotecnologia VegetalCentro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaSPCEP 13416‐000Brazil
| | - Gerco C. Angenent
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| | - Aalt D.J. van Dijk
- BiometrisWageningen University and Research6708 PBWageningenThe Netherlands
- BioinformaticsWageningen University and Research6708 PBWageningenThe Netherlands
| | - Richard G.H. Immink
- BioscienceWageningen Plant ResearchWageningen University and Research6708 PBWageningenThe Netherlands
- Laboratory of Molecular BiologyWageningen University and Research6708 PBWageningenThe Netherlands
| |
Collapse
|
33
|
Rungrat T, Almonte AA, Cheng R, Gollan PJ, Stuart T, Aro E, Borevitz JO, Pogson B, Wilson PB. A Genome-Wide Association Study of Non-Photochemical Quenching in response to local seasonal climates in Arabidopsis thaliana. PLANT DIRECT 2019; 3:e00138. [PMID: 31276082 PMCID: PMC6603398 DOI: 10.1002/pld3.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 05/10/2023]
Abstract
Field-grown plants have variable exposure to sunlight as a result of shifting cloud-cover, seasonal changes, canopy shading, and other environmental factors. As a result, they need to have developed a method for dissipating excess energy obtained from periodic excessive sunlight exposure. Non-photochemical quenching (NPQ) dissipates excess energy as heat, however, the physical and molecular genetic mechanics of NPQ variation are not understood. In this study, we investigated the genetic loci involved in NPQ by first growing different Arabidopsis thaliana accessions in local and seasonal climate conditions, then measured their NPQ kinetics through development by chlorophyll fluorescence. We used genome-wide association studies (GWAS) to identify 15 significant quantitative trait loci (QTL) for a range of photosynthetic traits, including a QTL co-located with known NPQ gene PSBS (AT1G44575). We found there were large alternative regulatory segments between the PSBS promoter regions of the functional haplotypes and a significant difference in PsbS protein concentration. These findings parallel studies in rice showing recurrent regulatory evolution of this gene. The variation in the PSBS promoter and the changes underlying other QTLs could give insight to allow manipulations of NPQ in crops to improve their photosynthetic efficiency and yield.
Collapse
Affiliation(s)
- Tepsuda Rungrat
- Faculty of Agriculture, Natural resources and EnvironmentNaresuan UniversityPhitsanulokThailand
- ARC Centre of Excellence for Plant Energy BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Andrew A. Almonte
- ARC Centre of Excellence for Plant Energy BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Riyan Cheng
- Department of PsychiatryUniversity of California San DiegoLa JollaCalifornia
| | - Peter J. Gollan
- Faculty of Engineering and ScienceUniversity of TurkuTurkuFinland
| | - Tim Stuart
- ARC Centre of Excellence for Plant Energy BiologyUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Eva‐Mari Aro
- Faculty of Engineering and ScienceUniversity of TurkuTurkuFinland
| | - Justin O. Borevitz
- ARC Centre of Excellence for Plant Energy BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Barry Pogson
- ARC Centre of Excellence for Plant Energy BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Pip B. Wilson
- ARC Centre of Excellence for Plant Energy BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
34
|
Cohen I, Rapaport T, Chalifa-Caspi V, Rachmilevitch S. Synergistic effects of abiotic stresses in plants: a case study of nitrogen limitation and saturating light intensity in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2019; 165:755-767. [PMID: 29786859 DOI: 10.1111/ppl.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 05/27/2023]
Abstract
Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the present study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity and the abundance of proteins involved in carbon assimilation and antioxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light (HL) intensity conditions (i.e. single stress). The underlying mechanisms for the increased growth in conditions of HL and sufficient nitrogen were a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions shifts plants from growth to survival by displaying anthocyanin accumulation and an increased number of proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants development from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors.
Collapse
Affiliation(s)
- Itay Cohen
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Tal Rapaport
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shimon Rachmilevitch
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| |
Collapse
|
35
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
36
|
van Bezouw RFHM, Keurentjes JJB, Harbinson J, Aarts MGM. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:112-133. [PMID: 30548574 PMCID: PMC6850172 DOI: 10.1111/tpj.14190] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/18/2023]
Abstract
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High-throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis-related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio-engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype-to-gene identification pipeline.
Collapse
Affiliation(s)
- Roel F. H. M. van Bezouw
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| |
Collapse
|
37
|
Folta KM. Breeding new varieties for controlled environments. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:6-12. [PMID: 0 DOI: 10.1111/plb.12914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 05/15/2023]
Abstract
Agricultural production in controlled environments is increasingly feasible, and may play an important role in providing nutrition and choice to growing urban centres. New technologies in lighting, ventilation, robotics and irrigation are just a few of the innovations that enable production of high-value specialty crops outside of a traditional field setting. However, despite all of the advances in the hardware within the plant factory operation, innovation of the most complex machine has been neglected - the plant itself. Indoor agricultural operations typically rely on legacy varieties, plants selected and bred for field conditions. In the field, phenotypic stability is paramount, as production must be consistent in an unpredictable and changing environment. However, the controlled environment affords focus on different breeding priorities as environmental flux, pests, pathogens and post-harvest quality are less formidable barriers to production. On the contrary, breeding for controlled environments shifts the focus to a completely different set of plant traits, such as rapid growth, performance in low light environments and active manipulation of plant stature. Instead of breeding for phenotypic stability, plants may be bred to maximise genetic plasticity, allowing specific traits to be presented as a function of the quality of the ambient light spectrum. In this scenario plant varieties may be grown with optimal size, supporting a focus on consumer traits like flavour or accumulation of health-related compounds. Gene editing may be a central technology in the production of designer plants for controlled environments. This review considers the opportunity for breeding for controlled environments, with a focus on a revision of priorities for controlled-environment breeders.
Collapse
Affiliation(s)
- K M Folta
- Horticultural Sciences Department, 1251 Fifield Hall, University of Florida, Gainesville, FL, USA
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Yarkhunova Y, Guadagno CR, Rubin MJ, Davis SJ, Ewers BE, Weinig C. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:2518-2529. [PMID: 29664141 DOI: 10.1111/pce.13216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock regulates many aspects of leaf gas supply and biochemical demand for CO2 , and is hypothesized to improve plant performance. Yet the extent to which the clock may regulate the efficiency of photosystem II (PSII) and photoprotective mechanisms such as heat dissipation is less explored. Based on measurements of chlorophyll a fluorescence, we estimated the maximum efficiency of PSII in light (Fv'/Fm') and heat dissipation by nonphotochemical quenching (NPQ). We further dissected total NPQ into its main components, qE (pH-dependent quenching), qT (state-transition quenching), and qI (quenching related to photoinhibition), in clock mutant genotypes of Arabidopsis thaliana, the cognate wild-type genotypes, and a panel of recombinant inbred lines expressing quantitative variation in clock period. Compared with mutants with altered clock function, we observed that wild-type genotypes with clock period lengths of approximately 24 hr had both higher levels of Fv'/Fm', indicative of improved PSII function, and reduced NPQ, suggestive of lower stress on PSII light harvesting complexes. In the recombinant inbred lines, genetic variances were significant for Fv'/Fm' and all 3 components of NPQ, with qE explaining the greatest proportion of NPQ. Bivariate tests of association and structural equation models of hierarchical trait relationships showed that quantitative clock variation was empirically associated with Fv'/Fm' and NPQ, with qE mediating the relationship with gas exchange. The results demonstrate significant segregating variation for all photoprotective components, and suggest the adaptive significance of the clock may partly derive from its regulation of the light reactions of photosynthesis and of photoprotective mechanisms.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Carmela R Guadagno
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
39
|
Tomeo NJ, Rosenthal DM. Photorespiration differs among Arabidopsis thaliana ecotypes and is correlated with photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5191-5204. [PMID: 30053111 PMCID: PMC6184796 DOI: 10.1093/jxb/ery274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/16/2018] [Indexed: 05/19/2023]
Abstract
A greater understanding of natural variation in photosynthesis will inform strategies for crop improvement by revealing overlooked opportunities. We use Arabidopsis thaliana ecotypes as a model system to assess (i) how photosynthesis and photorespiration covary and (ii) how mesophyll conductance influences water use efficiency (WUE). Phenotypic variation in photorespiratory CO2 efflux was correlated with assimilation rates and two metrics of photosynthetic capacity (i.e. VCmax and Jmax); however, genetic correlations were not detected between photosynthesis and photorespiration. We found standing genetic variation-as broad-sense heritability-for most photosynthetic traits, including photorespiration. Genetic correlation between photosynthetic electron transport and carboxylation capacities indicates that these traits are genetically constrained. Winter ecotypes had greater mesophyll conductance, maximum carboxylation capacity, maximum electron transport capacity, and leaf structural robustness when compared with spring ecotypes. Stomatal conductance varied little in winter ecotypes, leading to a positive correlation between integrated WUE and mesophyll conductance. Thus, variation in mesophyll conductance can modulate WUE among A. thaliana ecotypes without a significant loss in assimilation. Genetic correlations between traits supplying energy and carbon to the Calvin-Benson cycle are consistent with biochemical models, suggesting that selection on either of these traits would improve all of them. Similarly, the lack of a genetic correlation between photosynthesis and photorespiration suggests that the positive scaling of these two traits can be broken.
Collapse
Affiliation(s)
- Nicholas J Tomeo
- Ohio University, Department of Environmental and Plant Biology, Athens, OH, USA
| | - David M Rosenthal
- Ohio University, Department of Environmental and Plant Biology, Athens, OH, USA
| |
Collapse
|
40
|
Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. PHYSIOLOGIA PLANTARUM 2018; 164:163-175. [PMID: 29314007 DOI: 10.1111/ppl.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/02/2018] [Indexed: 05/28/2023]
Abstract
Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.
Collapse
Affiliation(s)
- Aina E Prinzenberg
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
| | - Sjaak van Heusden
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Plant Breeding, Wageningen University and Research, P.O. Box 386, Wageningen 6700 AJ, The Netherlands
| |
Collapse
|
41
|
van Rooijen R, Harbinson J, Aarts MGM. Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipid-remodeling and heat-shock genes. PLANT DIRECT 2018; 2:e00069. [PMID: 31245733 PMCID: PMC6508758 DOI: 10.1002/pld3.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 05/11/2023]
Abstract
Plants have evolved several mechanisms for sensing increased irradiance, involving signal perception by photoreceptors (cryptochromes), and subsequent biochemical (reactive oxygen species, ROS) and metabolic clues to transmit the signals. This results in the increased expression of heat-shock response genes and of the transcription factor LONG HYPOCOTYL 5 (HY5, mediated by the cryptochrome photoreceptor 1, CRY1). Here, we show the existence of another response pathway in Arabidopsis. This pathway evokes the SPX1-mediated expression activation of the transcription factor PHR1 and leads to the expression of several galactolipid biosynthesis genes. Gene expression analysis of accessions Col-0, Ga-0, and Ts-1, showed activated expression of the SPX1/PHR1-mediated gene expression activation pathway acting on galactolipids biosynthesis genes in both Ga-0 and Col-0, but not in Ts-1. The activation of the SPX1/PHR1-mediated response pathway can be associated with lower photosynthesis efficiency in Ts-1, compared to Col-0 and Ga-0. Besides the accession-associated activation of the SPX1/PHR1-mediated response pathway, comparing gene expression in the accessions showed stronger activation of several heat responsive genes in Ga-0, and the opposite in Ts-1, when compared to Col-0, in line with the differences in their efficiency of photosynthesis. We conclude that natural variation in activation of both heat responsive genes and of galactolipids biosynthesis genes contribute to the variation in photosynthesis efficiency in response to irradiance increase.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Laboratory of GeneticsWageningen University and ResearchWageningenThe Netherlands
- Horticulture and Product PhysiologyWageningen University and ResearchWageningenThe Netherlands
- Present address:
Cluster of Excellence on Plant ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
42
|
Kaiser E, Matsubara S, Harbinson J, Heuvelink E, Marcelis LFM. Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. PHYSIOLOGIA PLANTARUM 2018; 162:506-517. [PMID: 29125181 DOI: 10.1111/ppl.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Accepted: 10/29/2017] [Indexed: 05/23/2023]
Abstract
Plants in natural environments are often exposed to fluctuations in light intensity, and leaf-level acclimation to light may be affected by those fluctuations. Concurrently, leaves acclimated to a given light climate can become progressively shaded as new leaves emerge and grow above them. Acclimation to shade alters characteristics such as photosynthetic capacity. To investigate the interaction of fluctuating light and progressive shading, we exposed three-week old tomato (Solanum lycopersicum) plants to either lightflecks or constant light intensities. Lightflecks of 20 s length and 1000 μmol m-2 s-1 peak intensity were applied every 5 min for 16 h per day, for 3 weeks. Lightfleck and constant light treatments received identical daily light sums (15.2 mol m-2 day-1 ). Photosynthesis was monitored in leaves 2 and 4 (counting from the bottom) during canopy development throughout the experiment. Several dynamic and steady-state characteristics of photosynthesis became enhanced by fluctuating light when leaves were partially shaded by the upper canopy, but much less so when they were fully exposed to lightflecks. This was the case for CO2 -saturated photosynthesis rates in leaves 2 and 4 growing under lightflecks 14 days into the treatment period. Also, leaf 2 of plants in the lightfleck treatment showed significantly faster rates of photosynthetic induction when exposed to a stepwise change in light intensity on day 15. As the plants grew larger and these leaves became increasingly shaded, acclimation of leaf-level photosynthesis to lightflecks disappeared. These results highlight continuous acclimation of leaf photosynthesis to changing light conditions inside developing canopies.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
43
|
de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A. The genetic architecture of photosynthesis and plant growth-related traits in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:327-341. [PMID: 29044606 DOI: 10.1111/pce.13084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 05/22/2023]
Abstract
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.
Collapse
Affiliation(s)
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | | | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Dimitrios Fanourakis
- Department of Viticulture, Floriculture, Vegetable Crops and Plant Protection, GR, 71307, Heraklion, Greece
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
- Forschungszentrum Jülich, IBG-2 Plant Sciences, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Leonardo Lopes Bhering
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Plant & Agribiosiences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC, 09606070, São Bernardo do Campo, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Rühle T, Reiter B, Leister D. Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:55. [PMID: 29472935 PMCID: PMC5810273 DOI: 10.3389/fpls.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 05/12/2023]
Abstract
Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
45
|
Dillon S, Quentin A, Ivković M, Furbank RT, Pinkard E. Photosynthetic variation and responsiveness to CO2 in a widespread riparian tree. PLoS One 2018; 13:e0189635. [PMID: 29293528 PMCID: PMC5749701 DOI: 10.1371/journal.pone.0189635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 12/03/2022] Open
Abstract
Phenotypic responses to rising CO2 will have consequences for the productivity and management of the world's forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (φ). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in φ could have broader implications for productivity of red gum forests.
Collapse
Affiliation(s)
- Shannon Dillon
- Genetic Diversity and Adaptation, Breakthrough genetic technologies for crop productivity, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Audrey Quentin
- Landscape Intensification, CSIRO Land and Water, Hobart, TAS, Australia
| | - Milos Ivković
- Genetic Diversity and Adaptation, Breakthrough genetic technologies for crop productivity, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Robert T. Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Elizabeth Pinkard
- Landscape Intensification, CSIRO Land and Water, Hobart, TAS, Australia
| |
Collapse
|
46
|
van Rooijen R, Kruijer W, Boesten R, van Eeuwijk FA, Harbinson J, Aarts MGM. Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nat Commun 2017; 8:1421. [PMID: 29123092 PMCID: PMC5680337 DOI: 10.1038/s41467-017-01576-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/29/2017] [Indexed: 12/28/2022] Open
Abstract
Exploiting genetic variation for more efficient photosynthesis is an underexplored route towards new crop varieties. This study demonstrates the genetic dissection of higher plant photosynthesis efficiency down to the genomic DNA level, by confirming that allelic sequence variation at the Arabidopsis thaliana YELLOW SEEDLING1 (YS1) gene explains natural diversity in photosynthesis acclimation to high irradiance. We use a genome-wide association study to identify quantitative trait loci (QTLs) involved in the Arabidopsis photosynthetic acclimation response. Candidate genes underlying the QTLs are prioritized according to functional clues regarding gene ontology, expression and function. Reverse genetics and quantitative complementation confirm the candidacy of YS1, which encodes a pentatrico-peptide-repeat (PPR) protein involved in RNA editing of plastid-encoded genes (anterograde signalling). Gene expression analysis and allele sequence comparisons reveal polymorphisms in a light-responsive element in the YS1 promoter that affect its expression, and that of its downstream targets, resulting in the variation in photosynthetic acclimation. Natural genetic variation of photosynthesis is an underexplored resource for plant genetic improvement. Here, the authors find allelic variations of YS1 affect Arabidopsis photosynthesis acclimation using genome-wide association study, reverse genetics, and quantitative complementation approaches.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Horticulture and Product Physiology Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Cluster of Excellence on Plant Science, Heinrich Heine University, Düsseldorf, Germany
| | - Willem Kruijer
- Mathematical and Statistical Methods Group - Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - René Boesten
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Mathematical and Statistical Methods Group - Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol 2017; 1:1551-1561. [DOI: 10.1038/s41559-017-0297-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/27/2017] [Indexed: 11/08/2022]
|
48
|
Rishmawi L, Bühler J, Jaegle B, Hülskamp M, Koornneef M. Quantitative trait loci controlling leaf venation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1429-1441. [PMID: 28252189 DOI: 10.1111/pce.12938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 05/23/2023]
Abstract
Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning.
Collapse
Affiliation(s)
- Louai Rishmawi
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Jonas Bühler
- Forschungszentrum Jülich GmbH, IBG-2: Plant Sciences, 52425, Jülich, Germany
| | - Benjamin Jaegle
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, University of Cologne, Cologne Biocenter, 50674, Cologne, Germany
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| | - Maarten Koornneef
- Max-Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Universitätsstrasse 1, Cluster of Excellence on Plant Sciences, D-40225, Düsseldorf, Germany
| |
Collapse
|
49
|
de Sousa CAF, de Paiva DS, Casari RADCN, de Oliveira NG, Molinari HBC, Kobayashi AK, Magalhães PC, Gomide RL, Souza MT. A procedure for maize genotypes discrimination to drought by chlorophyll fluorescence imaging rapid light curves. PLANT METHODS 2017; 13:61. [PMID: 28769996 PMCID: PMC5530575 DOI: 10.1186/s13007-017-0209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/17/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Photosynthesis can be roughly separated into biochemical and photochemical processes. Both are affected by drought and can be assessed by non-invasive standard methods. Gas exchange, which mainly assesses the first process, has well-defined protocols. It is considered a standard method for evaluation of plant responses to drought. Under such stress, assessment of photochemical apparatus by chlorophyll fluorescence needs improvement to become faster and reproducible, especially in growing plants under field conditions. For this, we developed a protocol based on chlorophyll fluorescence imaging, using a rapid light curve approach. RESULTS Almost all parameters obtained by rapid light curves have shown statistical differences between control and drought stressed maize plants. However, most of them were affected by induction processes, relaxation rate, and/or differences in chlorophyll content; while they all were influenced by actinic light intensity on each light step of light curve. Only the normalized parameters related to photochemical and non-photochemical quenching were strongly correlated with data obtained by gas exchange, but only from the light step in which the linear electron flow reached saturation. CONCLUSIONS The procedure developed in this study for discrimination of plant responses to water deficit stress proved to be as fast, efficient and reliable as the standard technique of gas exchange in order to discriminate the responses of maize genotypes to drought. However, unlike that, there is no need to perform daily and time consuming calibration routines. Moreover, plant acclimation to the dark is not required. The protocol can be applied to plants growing in both controlled conditions and full sunlight in the field. In addition, it generates parameters in a fast and accurate measurement process, which enables evaluating several plants in a short period of time.
Collapse
Affiliation(s)
| | - Dayane Silva de Paiva
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), Avenida W3 Norte (Final), Brasília, DF 70770-901 Brazil
| | | | - Nelson Geraldo de Oliveira
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), Avenida W3 Norte (Final), Brasília, DF 70770-901 Brazil
| | - Hugo Bruno Correa Molinari
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), Avenida W3 Norte (Final), Brasília, DF 70770-901 Brazil
| | - Adilson Kenji Kobayashi
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), Avenida W3 Norte (Final), Brasília, DF 70770-901 Brazil
| | - Paulo Cesar Magalhães
- Embrapa Milho e Sorgo, Rod. MG 424 km 45, Zona Rural, Sete Lagoas, MG 35701-970 Brazil
| | - Reinaldo Lúcio Gomide
- Embrapa Milho e Sorgo, Rod. MG 424 km 45, Zona Rural, Sete Lagoas, MG 35701-970 Brazil
| | - Manoel Teixeira Souza
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), Avenida W3 Norte (Final), Brasília, DF 70770-901 Brazil
| |
Collapse
|
50
|
Miller MAE, O’Cualain R, Selley J, Knight D, Karim MF, Hubbard SJ, Johnson GN. Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome. FRONTIERS IN PLANT SCIENCE 2017; 8:1239. [PMID: 28775726 PMCID: PMC5517461 DOI: 10.3389/fpls.2017.01239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/30/2017] [Indexed: 05/18/2023]
Abstract
Leaves of Arabidopsis thaliana transferred from low to high light increase their capacity for photosynthesis, a process of dynamic acclimation. A mutant, gpt2, lacking a chloroplast glucose-6-phosphate/phosphate translocator, is deficient in its ability to acclimate to increased light. Here, we have used a label-free proteomics approach, to perform relative quantitation of 1993 proteins from Arabidopsis wild type and gpt2 leaves exposed to increased light. Data are available via ProteomeXchange with identifier PXD006598. Acclimation to light is shown to involve increases in electron transport and carbon metabolism but no change in the abundance of photosynthetic reaction centers. The gpt2 mutant shows a similar increase in total protein content to wild type but differences in the extent of change of certain proteins, including in the relative abundance of the cytochrome b6f complex and plastocyanin, the thylakoid ATPase and selected Benson-Calvin cycle enzymes. Changes in leaf metabolite content as plants acclimate can be explained by changes in the abundance of enzymes involved in metabolism, which were reduced in gpt2 in some cases. Plants of gpt2 invest more in stress-related proteins, suggesting that their reduced ability to acclimate photosynthetic capacity results in increased stress.
Collapse
Affiliation(s)
- Matthew A. E. Miller
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Ronan O’Cualain
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Julian Selley
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - David Knight
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Mohd F. Karim
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| | - Simon J. Hubbard
- School of Biological Sciences, University of ManchesterManchester, United Kingdom
| | - Giles N. Johnson
- School of Earth and Environmental Sciences, University of ManchesterManchester, United Kingdom
| |
Collapse
|