1
|
Li C, Wang J, Lan H, Yu Q. Comprehensive analyses of the metabolome and transcriptome reveal the photosynthetic effects in Arabidopsis thaliana of SaPEPC1 gene from desert plant with single-cell C4 photosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112516. [PMID: 40246244 DOI: 10.1016/j.plantsci.2025.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The enzyme phosphoenolpyruvate carboxylase (PEPC) plays an important role in the photosynthetic metabolism of higher plants. Although the photosynthetic pathway involving PEPC has been clarified, further investigation is required to elucidate the effects of different light intensity treatments on plant photosynthetic and metabolism of PEPC. In this study, wild-type (WT) Arabidopsis was used as a control to investigate the effect of SaPEPC1 overexpression on the photosynthesis and metabolism of Arabidopsis. The results showed that intense light promoted and weak light inhibited the growth of Arabidopsis. Under different light intensity treatments, overexpression of SaPEPC1 led to increases in the photosynthetic rate (Pn) and photosynthetic enzyme activity (PEPC, Rubisco, PPDK, NADP-ME), a decrease in the intercellular CO2 concentration (Ci), and increases in sucrose accumulation, leaf length, leaf width, and shoot fresh weight. Transcriptomic data analysis revealed that the starch, sucrose, and glutathione metabolic pathways were significantly enriched in transgenic Arabidopsis under intense light. This was accompanied by the up-regulation of multiple differentially expressed genes related to starch and sucrose metabolism, including AtBAM5, AtSUS6, and AtTPS5; the expression of most genes related to glutathione metabolism was down-regulated. A targeted metabolomic data analysis of transgenic Arabidopsis yielded 56 metabolites, the majority of which were found to participate in the tricarboxylic acid (TCA) cycle, followed by glycolysis. The content of L-aspartate, fumaric acid, malic acid, oxaloacetate, citric acid, and succinic acid was higher in transgenic lines than in WT under intense light. In conclusion, the overexpression of SaPEPC1 in Arabidopsis resulted in an increase in the photosynthetic rate and promoted the TCA cycle, and these changes were more pronounced under intense light treatment.
Collapse
Affiliation(s)
- Caixia Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | - Qinghui Yu
- Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
2
|
Abe K, Hashimura H, Hiraoka H, Fujishiro S, Kameya N, Taoka K, Kuwana S, Fukuzawa M, Sawai S. Cell-cell heterogeneity in phosphoenolpyruvate carboxylase biases early cell fate priming in Dictyostelium discoideum. Front Cell Dev Biol 2025; 12:1526795. [PMID: 39968235 PMCID: PMC11832675 DOI: 10.3389/fcell.2024.1526795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Glucose metabolism is a key factor characterizing the cellular state during multicellular development. In metazoans, the metabolic state of undifferentiated cells correlates with growth/differentiation transition and cell fate determination. Notably, the cell fate of the Amoebozoa species Dictyostelium discoideum is biased by the presence of glucose and is also correlated with early differences in intracellular ATP. However, the relationship between early cell-cell heterogeneity, cell differentiation, and the metabolic state is unclear. To address the link between glucose metabolism and cell differentiation in D. discoideum, we studied the role of phosphoenolpyruvate carboxylase (PEPC), a key enzyme in the PEP-oxaloacetate-pyruvate node, a core junction that dictates the metabolic flux of glycolysis, the TCA cycle, and gluconeogenesis. We demonstrate that there is cell-cell heterogeneity in PEPC promoter activity in vegetative cells, which depends on nutrient conditions, and that cells with high PEPC promoter activity differentiate into spores. The PEPC null mutant exhibited an aberrantly high prestalk/prespore ratio, and the spore mass of the fruiting body was glassy and consisted of immature spores. Furthermore, the PEPC null mutant had high ATP levels and low mitochondrial membrane potential. Our results suggest the importance of cell-cell heterogeneity in the levels of metabolic enzymes during early cell fate priming.
Collapse
Affiliation(s)
- Kenichi Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyō, Japan
| | - Hidenori Hashimura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Haruka Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shoko Fujishiro
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Narufumi Kameya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kazuteru Taoka
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Satoshi Kuwana
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyō, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Japan
| |
Collapse
|
3
|
De la Peña M, Poucet T, Montardit-Tarda F, Urmeneta L, Urbano-Gámez JA, Cassan C, Vega-Mas I, Catalán P, Igartua E, Gibon Y, Gonzalez-Moro MB, Marino D. Natural variation in the adjustment of primary metabolism determines ammonium tolerance in the model grass Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7237-7253. [PMID: 39292826 PMCID: PMC11629996 DOI: 10.1093/jxb/erae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
Nitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment, causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to attain an agriculture with less N demand and thus more sustainable. The study of ammonium (NH4+) nutrition is of particular interest, because it mitigates N losses due to nitrate (NO3-) leaching or denitrification. In this work, we studied Brachypodium distachyon, the model plant for C3 grasses, grown with NH4+ or NO3- supply. We performed gene expression analysis in the root of the B. distachyon reference accession Bd21 and examined the phenotypic variation across 52 natural accessions through analyzing plant growth and a panel of 22 metabolic traits in leaf and root. We found that the adjustment of primary metabolism to NH4+ nutrition is essential for the natural variation of NH4+ tolerance, notably involving NH4+ assimilation and phosphoenolpyruvate carboxylase (PEPC) activity. Additionally, genome-wide association studies (GWAS) indicated several loci associated with B. distachyon growth and metabolic adaptation to NH4+ nutrition. We found that the GDH2 gene was associated with the induction of root glutamate dehydrogenase activity under NH4+ nutrition and that two genes encoding malic enzyme were associated with leaf PEPC activity. Altogether, our work underlines the value of natural variation and the key role of primary metabolism to improve NH4+ tolerance.
Collapse
Affiliation(s)
- Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Théo Poucet
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Francesc Montardit-Tarda
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Leyre Urmeneta
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Jose Alberto Urbano-Gámez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Cédric Cassan
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - M Begoña Gonzalez-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| |
Collapse
|
4
|
Bontpart T, Weiss A, Vile D, Gérard F, Lacombe B, Reichheld JP, Mari S. Growing on calcareous soils and facing climate change. TRENDS IN PLANT SCIENCE 2024; 29:1319-1330. [PMID: 38570279 DOI: 10.1016/j.tplants.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Soil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change.
Collapse
Affiliation(s)
- Thibaut Bontpart
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34060, Montpellier cédex 2, France
| | - Frédéric Gérard
- UMR Eco&Sols, INRAE, IRD, CIRAD, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoît Lacombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Mari
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
5
|
Dolui D, Das A, Hasanuzzaman M, Adak MK. Physiological and biomolecular interventions in the bio-decolorization of Methylene blue dye by Salvinia molesta D. Mitch. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-18. [PMID: 39392243 DOI: 10.1080/15226514.2024.2412242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Methylene blue, a cationic dye as a pollutant is discharged from industrial effluent into aquatic bodies. The dye is biomagnified through the food chain and is detrimental to the sustainability of aquatic flora. Despite of number of physico-chemical techniques of dye removal, the use of aquatic flora for bio-adsorption is encouraged. Thus, we used Salvinia molesta D. Mitch in bio-reduction of methylene blue on concentrations of 0, 10, 20, and 30 mg L-1 through 5 days with biosorption kinetics. The dye removal was concentration-dependent, maximized at 2 days with 30 mg L-1 which altered the relative growth rate (44%) of plants. Biosorption recorded 71% capacity at optimum pH (8.0), 24 h reducing major bond energies of amide, hydroxyl groups, etc. Bioaccumulation of dye changed potassium content (446%) under maximum dye concentration modifying tissues for dye sequestration. Reactive oxygen species were altered on dye reduction by oxidase (33%) with redox homeostasis by enzymes. Plants altered the metabolism with over accumulation of polyamines (51%), abscisic acids (448%), and phosphoenolpyruvate carboxylase (83%) on dye reduction. Thus, this study is rationalized with a sustainable approach where aquatic ecosystems can be decontaminated from dye toxicity with the exercise of bioresources like Salvinia molesta D. Mitch as herein.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Abir Das
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Malay Kumar Adak
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
6
|
Cheng W, Xu J, Mu C, Jiang J, Cheng Z, Gao J. Conservation and Divergence of PEPC Gene Family in Different Ploidy Bamboos. PLANTS (BASEL, SWITZERLAND) 2024; 13:2426. [PMID: 39273910 PMCID: PMC11397392 DOI: 10.3390/plants13172426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Phosphoenolpyruvate carboxylase (PEPC), as a necessary enzyme for higher plants to participate in photosynthesis, plays a key role in photosynthetic carbon metabolism and the stress response. However, the molecular biology of the PEPC family of Bambusoideae has been poorly studied, and the function of its members in the growth and development of Bambusoideae is still unclear. Here, we identified a total of 62 PEPC family members in bamboo. All the PEPC genes in the bamboo subfamily were divided into twelve groups, each group typically containing significantly fewer PEPC members in Olyra latifolia than in Phyllostachys edulis, Dendrocalamus latiflorus and Dendrocalamus brandisii. The results of an intraspecific and interspecies collinearity analysis showed that fragment replication and whole genome replication were the main driving forces of bamboo PEPC members. Furthermore, the Ka/Ks values of collinear genes showed that bamboo PEPC experienced purification selection. In addition, the promoter region of PEPC genes contains cis-acting elements related to light response, plant hormone response and response to stress. An analysis of the expression levels of the PEPC family in different developmental stages and tissues of bamboo shoots has shown that PhePEPC7, PhePEPC9 and PhePEPC10 were highly expressed in the leaves of non-flowering plants and culms. Furthermore, PhePEPC6 was significantly upregulated in leaves after GA treatment. Further research has shown that PhePEPC6 was mainly localized in the cell membrane. This provides a solid bioinformatics foundation for further understanding the biological functions of the bamboo PEPC family.
Collapse
Affiliation(s)
- Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, Beijing 100102, China
| |
Collapse
|
7
|
Siadjeu C, Kadereit G. C 4-like Sesuvium sesuvioides (Aizoaceae) exhibits CAM in cotyledons and putative C 4-like + CAM metabolism in adult leaves as revealed by transcriptome analysis. BMC Genomics 2024; 25:688. [PMID: 39003461 PMCID: PMC11245778 DOI: 10.1186/s12864-024-10553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.
Collapse
Affiliation(s)
- Christian Siadjeu
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany.
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany
- Botanischer Garten München-Nymphenburg Und Botanische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Str. 65, Munich, 80638, Germany
| |
Collapse
|
8
|
Sun Y, Yang N, Li S, Chen F, Xie Y, Tang C. Mechanism of oxalate decarboxylase Oxd_S12 from Bacillus velezensis BvZ45-1 in defence against cotton verticillium wilt. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3500-3520. [PMID: 38517318 DOI: 10.1093/jxb/erae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Verticillium wilt, a soilborne vascular disease caused by Verticillium dahliae, strongly affects cotton yield and quality. In this study, an isolated rhizosphere bacterium, designated Bacillus velezensis BvZ45-1, exhibited >46% biocontrol efficacy against cotton verticillium wilt under greenhouse and field conditions. Moreover, through crude protein extraction and mass spectrometry analyses, we found many antifungal compounds present in the crude protein extract of BvZ45-1. The purified oxalate decarboxylase Odx_S12 from BvZ45-1 inhibited the growth of V. dahliae Vd080 by reducing the spore yield, causing mycelia to rupture, spore morphology changes, cell membrane rupture, and cell death. Subsequently, overexpression of Odx_S12 in Arabidopsis significantly improved plant resistance to V. dahliae. Through studies of the resistance mechanism of Odx_S12, V. dahliae was shown to produce oxalic acid (OA), which has a toxic effect on Arabidopsis leaves. Odx_S12 overexpression reduced Arabidopsis OA content, enhanced tolerance to OA, and improved resistance to verticillium wilt. Transcriptomics and quantitative real-time PCR analysis revealed that Odx_S12 promoted a reactive oxygen species burst and a salicylic acid- and abscisic acid-mediated defence response in Arabidopsis. In summary, this study not only identified B. velezensis BvZ45-1 as an efficient biological control agent, but also identified the resistance gene Odx_S12 as a candidate for cotton breeding against verticillium wilt.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Sirui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Fei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
9
|
Brooks MD, Szeto RC. Biological nitrogen fixation maintains carbon/nitrogen balance and photosynthesis at elevated CO 2. PLANT, CELL & ENVIRONMENT 2024; 47:2178-2191. [PMID: 38481026 DOI: 10.1111/pce.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/30/2024]
Abstract
Understanding crop responses to elevated CO2 is necessary to meet increasing agricultural demands. Crops may not achieve maximum potential yields at high CO2 due to photosynthetic downregulation, often associated with nitrogen limitation. Legumes have been proposed to have an advantage at elevated CO2 due to their ability to exchange carbon for nitrogen. Here, the effects of biological nitrogen fixation (BNF) on the physiological and gene expression responses to elevated CO2 were examined at multiple nitrogen levels by comparing alfalfa mutants incapable of nitrogen fixation to wild-type. Elemental analysis revealed a role for BNF in maintaining shoot carbon/nitrogen (C/N) balance under all nitrogen treatments at elevated CO2, whereas the effect of BNF on biomass was only observed at elevated CO2 and the lowest nitrogen dose. Lower photosynthetic rates at were associated with the imbalance in shoot C/N. Genome-wide transcriptional responses were used to identify carbon and nitrogen metabolism genes underlying the traits. Transcription factors important to C/N signalling were identified from inferred regulatory networks. This work supports the hypothesis that maintenance of C/N homoeostasis at elevated CO2 can be achieved in plants capable of BNF and revealed important regulators in the underlying networks including an alfalfa (Golden2-like) GLK ortholog.
Collapse
Affiliation(s)
- Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| | - Ronnia C Szeto
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Carvalho P, Gomes C, Saibo NJ. C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation. Genet Mol Biol 2024; 46:e20230190. [PMID: 38517370 PMCID: PMC10958771 DOI: 10.1590/1678-4685-gmb-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.
Collapse
Affiliation(s)
- Pedro Carvalho
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Célia Gomes
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Nelson J.M. Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
11
|
Ohm H, Åstrand J, Ceplitis A, Bengtsson D, Hammenhag C, Chawade A, Grimberg Å. Novel SNP markers for flowering and seed quality traits in faba bean ( Vicia faba L.): characterization and GWAS of a diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1348014. [PMID: 38510437 PMCID: PMC10950902 DOI: 10.3389/fpls.2024.1348014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work enriches the growing pool of phenotypic and genotypic data on faba bean as a valuable resource for developing efficient breeding strategies to expand crop cultivation.
Collapse
Affiliation(s)
- Hannah Ohm
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
- Lantmännen Agriculture, Plant Breeding, Svalöv, Sweden
| | - Alf Ceplitis
- Lantmännen Agriculture, Plant Breeding, Svalöv, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | - Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| |
Collapse
|
12
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
13
|
Marín-Peña AJ, Vega-Mas I, Busturia I, de la Osa C, González-Moro MB, Monreal JA, Marino D. Root phosphoenolpyruvate carboxylase activity is essential for Sorghum bicolor tolerance to ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108312. [PMID: 38154297 DOI: 10.1016/j.plaphy.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme family with pivotal roles in plant carbon and nitrogen metabolism. A main role for non-photosynthetic PEPC is as anaplerotic enzyme to load tricarboxylic acid (TCA) cycle with carbon skeletons that compensate the intermediates diverted for biomolecule synthesis such as amino acids. When plants are grown under ammonium (NH4+) nutrition, the excessive uptake of NH4+ often provokes a stress situation. When plants face NH4+ stress, N assimilation is greatly induced and thus, requires the supply of carbon skeletons coming from TCA cycle. In this work, we addressed the importance of root PEPC and TCA cycle for sorghum (Sorghum bicolor L. Moench), a C4 cereal crop, grown under ammonium nutrition. To do so, we used RNAi sorghum lines that display a decrease expression of SbPPC3 (Ppc3 lines), the main root PEPC isoform, and reduced root PEPC activity. SbPPC3 silencing provoked ammonium hypersensitivity, meaning lower biomass accumulation in Ppc3 respect to WT plants when growing under ammonium nutrition. The silenced plants presented a deregulation of primary metabolism as highlighted by the accumulation of NH4+ in the root and the alteration of normal TCA functioning, which was evidenced by the accumulation of organic acids in the root under ammonium nutrition. Altogether, our work evidences the importance of non-photosynthetic PEPC, and root TCA cycle, in sorghum to deal with high external NH4+ availability.
Collapse
Affiliation(s)
- A J Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - I Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - I Busturia
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - C de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - M B González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - J A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain.
| | - D Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|
14
|
Li R, Wang J, Yuan H, Niu Y, Sun J, Tian Q, Wu Y, Yu J, Tang Z, Xiao X, Xie J, Hu L, Liu Z, Liao W. Exogenous application of ALA enhanced sugar, acid and aroma qualities in tomato fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1323048. [PMID: 38186602 PMCID: PMC10771311 DOI: 10.3389/fpls.2023.1323048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.
Collapse
Affiliation(s)
- Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Qiang Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Miszalski Z, Kaszycki P, Śliwa-Cebula M, Kaczmarczyk A, Gieniec M, Supel P, Kornaś A. Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental Conditions. Int J Mol Sci 2023; 24:13605. [PMID: 37686411 PMCID: PMC10487448 DOI: 10.3390/ijms241713605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants' photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the β-carboxylation pathway.
Collapse
Affiliation(s)
- Zbigniew Miszalski
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Marta Śliwa-Cebula
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Adriana Kaczmarczyk
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Miron Gieniec
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
16
|
Pérez-López J, Feria AB, Gandullo J, de la Osa C, Jiménez-Guerrero I, Echevarría C, Monreal JA, García-Mauriño S. Silencing of Sb PPCK1-3 Negatively Affects Development, Stress Responses and Productivity in Sorghum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2426. [PMID: 37446987 DOI: 10.3390/plants12132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays central roles in photosynthesis, respiration, amino acid synthesis, and seed development. PEPC is regulated by different post-translational modifications. Between them, the phosphorylation by PEPC-kinase (PEPCk) is widely documented. In this work, we simultaneously silenced the three sorghum genes encoding PEPCk (SbPPCK1-3) by RNAi interference, obtaining 12 independent transgenic lines (Ppck1-12 lines), showing different degrees of SbPPCK1-3 silencing. Among them, two T2 homozygous lines (Ppck-2 and Ppck-4) were selected for further evaluation. Expression of SbPPCK1 was reduced by 65% and 83% in Ppck-2 and Ppck-4 illuminated leaves, respectively. Expression of SbPPCK2 was higher in roots and decreased by 50% in Ppck-2 and Ppck-4 in this tissue. Expression of SbPPCK3 was low and highly variable. Despite the incomplete gene silencing, it decreased the degree of phosphorylation of PEPC in illuminated leaves, P-deficient plants, and NaCl-treated plants. Both leaves and seeds of Ppck lines had altered metabolic profiles and a general decrease in amino acid content. In addition, Ppck lines showed delayed flowering, and 20% of Ppck-4 plants did not produce flowers at all. The total amount of seeds was lowered by 50% and 36% in Ppck-2 and Ppck-4 lines, respectively. The quality of seeds was lower in Ppck lines: lower amino acid content, including Lys, and higher phytate content. These data confirm the relevance of the phosphorylation of PEPC in sorghum development, stress responses, yield, and quality of seeds.
Collapse
Affiliation(s)
- Jesús Pérez-López
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Jacinto Gandullo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| |
Collapse
|
17
|
Punyasu N, Kalapanulak S, Saithong T. CO 2 recycling by phospho enolpyruvate carboxylase enables cassava leaf metabolism to tolerate low water availability. FRONTIERS IN PLANT SCIENCE 2023; 14:1159247. [PMID: 37229106 PMCID: PMC10204807 DOI: 10.3389/fpls.2023.1159247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Cassava is a staple crop that acclimatizes well to dry weather and limited water availability. The drought response mechanism of quick stomatal closure observed in cassava has no explicit link to the metabolism connecting its physiological response and yield. Here, a genome-scale metabolic model of cassava photosynthetic leaves (leaf-MeCBM) was constructed to study on the metabolic response to drought and stomatal closure. As demonstrated by leaf-MeCBM, leaf metabolism reinforced the physiological response by increasing the internal CO2 and then maintaining the normal operation of photosynthetic carbon fixation. We found that phosphoenolpyruvate carboxylase (PEPC) played a crucial role in the accumulation of the internal CO2 pool when the CO2 uptake rate was limited during stomatal closure. Based on the model simulation, PEPC mechanistically enhanced drought tolerance in cassava by providing sufficient CO2 for carbon fixation by RuBisCO, resulting in high production of sucrose in cassava leaves. The metabolic reprogramming decreased leaf biomass production, which may lead to maintaining intracellular water balance by reducing the overall leaf area. This study indicates the association of metabolic and physiological responses to enhance tolerance, growth, and production of cassava in drought conditions.
Collapse
Affiliation(s)
- Nattharat Punyasu
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
18
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
19
|
Chen S, Peng W, Ansah EO, Xiong F, Wu Y. Encoded C 4 homologue enzymes genes function under abiotic stresses in C3 plant. PLANT SIGNALING & BEHAVIOR 2022; 17:2115634. [PMID: 36102341 PMCID: PMC9481101 DOI: 10.1080/15592324.2022.2115634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Plant organisms assimilate CO2 through the photosynthetic pathway, which facilitates in the synthesis of sugar for plant development. As environmental elements including water level, CO2 concentration, temperature and soil characteristics change, the plants may recruit series of genes to help adapt the hostile environments and challenges. C4 photosynthesis plants are an excellent example of plant evolutionary adaptation to diverse condition. Compared with C3 photosynthesis plants, C4 photosynthesis plants have altered leaf anatomy and new metabolism for CO2 capture, with multiple related enzymes such as phosphoenolpyruvate carboxylase (PEPCase), pyruvate orthophosphate dikinase (PPDK), NAD(P)-malic enzyme (NAD(P)-ME), NAD(P) - malate dehydrogenase (NAD(P)-MDH) and carbonic anhydrases (CA), identified to participate in the carbon concentrating mechanism (CCM) pathway. Recently, great achievements about C4 CCM-related genes have been made in the dissection of C3 plant development processes involving various stresses. In this review, we describe the functions of C4 CCM-related homologous genes in carbon and nitrogen metabolism in C3 plants. We further summarize C4 CCM-related homologous genes' functions in response to stresses in C3 plants. The understanding of C4 CCM-related genes' function in response to abiotic stress in plant is important to modify the crop plants for climate diversification.
Collapse
Affiliation(s)
- Simin Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wangmenghan Peng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Ebenezer Ottopah Ansah
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
21
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
22
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
23
|
Feria AB, Ruíz-Ballesta I, Baena G, Ruíz-López N, Echevarría C, Vidal J. Phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase isoenzymes play an important role in the filling and quality of Arabidopsis thaliana seed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:70-80. [PMID: 36099810 DOI: 10.1016/j.plaphy.2022.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Three plant-type phosphoenolpyruvate carboxylase (PPC1 to PPC3) and two phosphoenolpyruvate carboxylase kinase (PPCKs: PPCK1 and 2) genes are present in the Arabidopsis thaliana genome. In seeds, all PPC genes were found to be expressed. Examination of individual ppc mutants showed little reduction of PEPC protein and global activity, with the notable exception of PPC2 which represent the most abundant PEPC in dry seeds. Ppc mutants exhibited moderately lower seed parameters (weight, area, yield, germination kinetics) than wild type. In contrast, ppck1-had much altered (decreased) yield. At the molecular level, ppc3-was found to be significantly deficient in global seed nitrogen (nitrate, amino-acids, and soluble protein pools). Also, N-deficiency was much more marked in ppck1-, which exhibited a tremendous loss of 95% and 90% in nitrate and proteins, respectively. The line ppck2-had accumulated amino-acids but lower levels of soluble proteins. Regarding carboxylic acid pools, Krebs cycle intermediates were found to be diminished in all mutants; this was accompanied by a consistent decrease in ATP. Lipids were stable in ppc mutants, however ppck1-seeds accumulated more lipids while ppck2-seeds showed high level of polyunsaturated fatty acid oleic and linolenic (omega 3). Altogether, the results indicate that the complete PEPC and PPCK family are needed for normal C/N metabolism ratio, growth, development, yield and quality of the seed.
Collapse
Affiliation(s)
- Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain.
| | - Isabel Ruíz-Ballesta
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Noemí Ruíz-López
- Dpto. de Mejora Genética y Biotecnología, IHSM La Mayora, UMA-CSIC. Av. Louis Pasteur, 49, 29010, Málaga, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Nº 6, 41012, Sevilla, Spain
| | - Jean Vidal
- Institute of Plant Sciences Paris-Saclay(IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. d'Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Batiment 630, Rue Noetzlin, 91192, Gif-sur-Yvette cedex, France
| |
Collapse
|
24
|
Transcriptome analysis of mulberry (Morus alba L.) leaves to identify differentially expressed genes associated with post-harvest shelf-life elongation. Sci Rep 2022; 12:18195. [PMID: 36307466 PMCID: PMC9616847 DOI: 10.1038/s41598-022-21828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Present study deals with molecular expression patterns responsible for post-harvest shelf-life extension of mulberry leaves. Quantitative profiling showed retention of primary metabolite and accumulation of stress markers in NS7 and CO7 respectively. The leaf mRNA profiles was sequenced using the Illumina platform to identify DEGs. A total of 3413 DEGs were identified between the treatments. Annotation with Arabidopsis database has identified 1022 DEGs unigenes. STRING generated protein-protein interaction, identified 1013 DEGs nodes with p < 1.0e-16. KEGG classifier has identified genes and their participating biological processes. MCODE and BiNGO detected sub-networking and ontological enrichment, respectively at p ≤ 0.05. Genes associated with chloroplast architecture, photosynthesis, detoxifying ROS and RCS, and innate-immune response were significantly up-regulated, responsible for extending shelf-life in NS7. Loss of storage sucrose, enhanced activity of senescence-related hormones, accumulation of xenobiotics, and development of osmotic stress inside tissue system was the probable reason for tissue deterioration in CO7. qPCR validation of DEGs was in good agreement with RNA sequencing results, indicating the reliability of the sequencing platform. Present outcome provides a molecular insight regarding involvement of genes in self-life extension, which might help the sericulture industry to overcome their pre-existing problems related to landless farmers and larval feeding during monsoon.
Collapse
|
25
|
Chen LH, Cheng ZX, Xu M, Yang ZJ, Yang LT. Effects of Nitrogen Deficiency on the Metabolism of Organic Acids and Amino Acids in Oryza sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2576. [PMID: 36235442 PMCID: PMC9572205 DOI: 10.3390/plants11192576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Organic acids metabolism and nitrogen (N) metabolism in rice seedlings and the relationship between them are not fully understood. In this study, rice (Oryza sativa L. ssp. Indica) variety "Huanghuazhan" was used as the experimental material, and three N levels (5 mM, 1 mM, and 0 mM NH4NO3) were set by the hydroponic method for different levels of N treatment. Our results showed that the increased content of malate in rice leaves caused by reducing N level was related to the increased synthesis of malate (the activity of leaf PEPC increased)and the decreased degradation of malate (the activity of leaf NADP-ME decreased), while the increased contents of citrate and isocitrate in rice leaves caused by reducing N level might not be caused by the increased biosynthesis, but due to the decrease in degradation of citrate and isocitrate (the activities of leaf CS, ACO, and NADP-IDH decreased). The increased content of malate in rice roots caused by reducing N level might be related to the increased biosynthesis and the decreased degradation of root malate (the activities of root NAD-MDH and PEPC increased, while the activity of NADP-ME decreased). Compared to the control (5 mM NH4NO3), the increased content of citrate in rice roots caused by reducing N level might be related to the increased biosynthesis rather than the decreased degradation of citrate, due to the higher activities of CS and ACO in rice roots under 0 mM N and 1mM N treatment when compared to that of the control ones. At the same time, the increased content of isocitrate in roots was related to the increased isomerization of isocitrate (the activity of root ACO increased) and the decreased degradation of isocitrate (the activity of root NADP-IDH decreased). With the reducing N level, the activities of N metabolism-related enzymes, such as nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT), decreased in rice leaves and roots, resulting in the decreased contents of total free amino acids (TFAAs) and soluble proteins in rice seedlings, and finally led to the growth inhibition. Our results showed that the dynamics of organic acids metabolism caused by reducing N level were different in rice leaves and roots. In conclusion, there was a close correlation between organic acids metabolism and N metabolism in rice leaves and roots under N-limited conditions; furthermore, such a correlation was more obvious in rice leaves than that of roots.
Collapse
Affiliation(s)
- Ling-Hua Chen
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zu-Xin Cheng
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Xu
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Jian Yang
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
27
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Yamamoto N, Tong W, Lv B, Peng Z, Yang Z. The Original Form of C 4-Photosynthetic Phospho enolpyruvate Carboxylase Is Retained in Pooids but Lost in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:905894. [PMID: 35958195 PMCID: PMC9358456 DOI: 10.3389/fpls.2022.905894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Poaceae is the most prominent monocot family that contains the primary cereal crops wheat, rice, and maize. These cereal species exhibit physiological diversity, such as different photosynthetic systems and environmental stress tolerance. Phosphoenolpyruvate carboxylase (PEPC) in Poaceae is encoded by a small multigene family and plays a central role in C4-photosynthesis and dicarboxylic acid metabolism. Here, to better understand the molecular basis of the cereal species diversity, we analyzed the PEPC gene family in wheat together with other grass species. We could designate seven plant-type and one bacterial-type grass PEPC groups, ppc1a, ppc1b, ppc2a, ppc2b, ppc3, ppc4, ppcC4, and ppc-b, respectively, among which ppc1b is an uncharacterized type of PEPC. Evolutionary inference revealed that these PEPCs were derived from five types of ancient PEPCs (ppc1, ppc2, ppc3, ppc4, and ppc-b) in three chromosomal blocks of the ancestral Poaceae genome. C4-photosynthetic PEPC (ppcC4 ) had evolved from ppc1b, which seemed to be arisen by a chromosomal duplication event. We observed that ppc1b was lost in many Oryza species but preserved in Pooideae after natural selection. In silico analysis of cereal RNA-Seq data highlighted the preferential expression of ppc1b in upper ground organs, selective up-regulation of ppc1b under osmotic stress conditions, and nitrogen response of ppc1b. Characterization of wheat ppc1b showed high levels of gene expression in young leaves, transcriptional responses under nitrogen and abiotic stress, and the presence of a Dof1 binding site, similar to ppcC4 in maize. Our results indicate the evolving status of Poaceae PEPCs and suggest the functional association of ppc1-derivatives with adaptation to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Wurina Tong
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Bingbing Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang College, Xichang, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| |
Collapse
|
29
|
de la Osa C, Pérez‐López J, Feria A, Baena G, Marino D, Coleto I, Pérez‐Montaño F, Gandullo J, Echevarría C, García‐Mauriño S, Monreal JA. Knock-down of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (Sorghum bicolor L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:231-249. [PMID: 35488514 PMCID: PMC9539949 DOI: 10.1111/tpj.15789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism. Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isozymes, especially with respect to their physiological functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isozyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production. In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of molecules with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiology and metabolism in roots and leaves, negatively affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.
Collapse
Affiliation(s)
- Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Jesús Pérez‐López
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Ana‐Belén Feria
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Daniel Marino
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Inmaculada Coleto
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
| | | | - Jacinto Gandullo
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Sofía García‐Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - José A. Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| |
Collapse
|
30
|
Roulé T, Christ A, Hussain N, Huang Y, Hartmann C, Benhamed M, Gutierrez-Marcos J, Ariel F, Crespi M, Blein T. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. MOLECULAR PLANT 2022; 15:840-856. [PMID: 35150931 DOI: 10.1016/j.molp.2022.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Clustered organization of biosynthetic non-homologous genes is emerging as a characteristic feature of plant genomes. The co-regulation of clustered genes seems to largely depend on epigenetic reprogramming and three-dimensional chromatin conformation. In this study, we identified the long non-coding RNA (lncRNA) MARneral Silencing (MARS), localized inside the Arabidopsis marneral cluster, which controls the local epigenetic activation of its surrounding region in response to abscisic acid (ABA). MARS modulates the POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binding throughout the cluster in a dose-dependent manner, determining H3K27me3 deposition and chromatin condensation. In response to ABA, MARS decoys LHP1 away from the cluster and promotes the formation of a chromatin loop bringing together the MARNERAL SYNTHASE 1 (MRN1) locus and a distal ABA-responsive enhancer. The enrichment of co-regulated lncRNAs in clustered metabolic genes in Arabidopsis suggests that the acquisition of novel non-coding transcriptional units may constitute an additional regulatory layer driving the evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Thomas Roulé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Aurelie Christ
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Nosheen Hussain
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Caroline Hartmann
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Shu JP, Yan YH, Wang RJ. Convergent molecular evolution of phosphoenolpyruvate carboxylase gene family in C 4 and crassulacean acid metabolism plants. PeerJ 2022; 10:e12828. [PMID: 35116203 PMCID: PMC8784020 DOI: 10.7717/peerj.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC), as the key enzyme in initial carbon fixation of C4and crassulacean acid mechanism (CAM) pathways, was thought to undergo convergent adaptive changes resulting in the convergent evolution of C4 and CAM photosynthesis in vascular plants. However, the integral evolutionary history and convergence of PEPC in plants remain poorly understood. In the present study, we identified the members of PEPC gene family across green plants with seventeen genomic datasets, found ten conserved motifs and modeled three-dimensional protein structures of 90 plant-type PEPC genes. After reconstructing PEPC gene family tree and reconciled with species tree, we found PEPC genes underwent 71 gene duplication events and 16 gene loss events, which might result from whole-genome duplication events in plants. Based on the phylogenetic tree of the PEPC gene family, we detected four convergent evolution sites of PEPC in C4 species but none in CAM species. The PEPC gene family was ubiquitous and highly conservative in green plants. After originating from gene duplication of ancestral C3-PEPC, C4-PEPC isoforms underwent convergent molecular substitution that might facilitate the convergent evolution of C4 photosynthesis in Angiosperms. However, there was no evidence for convergent molecular evolution of PEPC genes between CAM plants. Our findings help to understand the origin and convergent evolution of C4 and CAM plants and shed light on the adaptation of plants in dry, hot environments.
Collapse
Affiliation(s)
- Jiang-Ping Shu
- Key laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China,Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Hong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Centre of China and The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China,University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Jiang Wang
- Key laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Martínez-Peña R, Schlereth A, Höhne M, Encke B, Morcuende R, Nieto-Taladriz MT, Araus JL, Aparicio N, Vicente R. Source-Sink Dynamics in Field-Grown Durum Wheat Under Contrasting Nitrogen Supplies: Key Role of Non-Foliar Organs During Grain Filling. FRONTIERS IN PLANT SCIENCE 2022; 13:869680. [PMID: 35574116 PMCID: PMC9100808 DOI: 10.3389/fpls.2022.869680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 05/08/2023]
Abstract
The integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain. We evaluated canopy vegetation indices taken throughout the growing season, physiological and metabolic traits in different photosynthetic organs (flag leaf blade, sheath, peduncle, awn, glume, and lemma) at anthesis and mid-grain filling stages, and agronomic and grain quality traits at harvest. Low N supply triggered an imbalance of C and N coordination at the whole plant level, leading to a reduction of grain yield and nutrient composition. The activities of key enzymes in C and N metabolism as well as the levels of photoassimilates showed that each organ plays an important role during grain filling, some with a higher photosynthetic capacity, others for nutrient storage for later stages of grain filling, or N assimilation and recycling. Interestingly, the enzyme activities and sucrose content of the ear organs were positively associated with grain yield and quality, suggesting, together with the regression models using isotope signatures, the potential contribution of these organs during grain filling. This study highlights the use of holistic approaches to the identification of novel targets to improve grain yield and quality in C3 cereals and the key role of non-foliar organs at late-growth stages.
Collapse
Affiliation(s)
- Raquel Martínez-Peña
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - José Luis Araus
- Integrative Crop Ecophysiology Group, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Nieves Aparicio
- Group of Cereals, Section of Herbaceous, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, Valladolid, Spain
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Plant Ecophysiology and Metabolism Group, Oeiras, Portugal
- *Correspondence: Rubén Vicente
| |
Collapse
|
33
|
Lee Y, Do VG, Kim S, Kweon H. Identification of Genes Associated with Nitrogen Stress Responses in Apple Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122649. [PMID: 34961121 PMCID: PMC8706881 DOI: 10.3390/plants10122649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is an essential macronutrient that regulates diverse physiological processes for plant survival and development. In apple orchards, inappropriate N conditions can cause imbalanced growth and subsequent physiological disorders in trees. In order to investigate the molecular basis underlying the physiological signals for N stress responses, we examined the metabolic signals responsive to contrasting N stress conditions (deficient/excessive) in apple leaves using transcriptome approaches. The clustering of differentially expressed genes (DEGs) showed the expression dynamics of genes associated with each N stress group. Functional analyses of gene ontology and pathway enrichments revealed the potential candidates of metabolic signals responsible for N-deficient/excessive stress responses. The functional interactions of DEGs in each cluster were further explored by protein-protein interaction network analysis. Our results provided a comprehensive insight into molecular signals responsive to N stress conditions, and will be useful in future research to enhance the nutrition tolerance of tree crops.
Collapse
|
34
|
Lian L, Lin Y, Wei Y, He W, Cai Q, Huang W, Zheng Y, Xu H, Wang F, Zhu Y, Luo X, Xie H, Zhang J. PEPC of sugarcane regulated glutathione S-transferase and altered carbon-nitrogen metabolism under different N source concentrations in Oryza sativa. BMC PLANT BIOLOGY 2021; 21:287. [PMID: 34167489 PMCID: PMC8223297 DOI: 10.1186/s12870-021-03071-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphoenolpyruvate carboxylase (PEPC) plays an important role in the primary metabolism of higher plants. Several studies have revealed the critical importance of PEPC in the interaction of carbon and nitrogen metabolism. However, the function mechanism of PEPC in nitrogen metabolism is unclear and needs further investigation. RESULTS This study indicates that transgenic rice expressing the sugarcane C4-PEPC gene displayed shorter primary roots and fewer crown roots at the seedling stage. However, total nitrogen content was significantly higher in transgenic rice than in wild type (WT) plants. Proteomic analysis revealed that there were more differentially expressed proteins (DEPs) responding to nitrogen changes in transgenic rice. In particular, the most enriched pathway "glutathione (GSH) metabolism", which mainly contains GSH S-transferase (GST), was identified in transgenic rice. The expression of endogenous PEPC, GST and several genes involved in the TCA cycle, glycolysis and nitrogen assimilation changed in transgenic rice. Correspondingly, the activity of enzymes including GST, citrate synthase, 6-phosphofructokinase, pyruvate kinase and ferredoxin-dependent glutamate synthase significantly changed. In addition, the levels of organic acids in the TCA cycle and carbohydrates including sucrose, starch and soluble sugar altered in transgenic rice under different nitrogen source concentrations. GSH that the substrate of GST and its components including glutamic acid, cysteine and glycine accumulated in transgenic rice. Moreover, the levels of phytohormones including indoleacetic acid (IAA), zeatin (ZT) and isopentenyladenosine (2ip) were lower in the roots of transgenic rice under total nutrients. Taken together, the phenotype, physiological and biochemical characteristics of transgenic rice expressing C4-PEPC were different from WT under different nitrogen levels. CONCLUSIONS Our results revealed the possibility that PEPC affects nitrogen metabolism through regulating GST, which provide a new direction and concepts for the further study of the PEPC functional mechanism in nitrogen metabolism.
Collapse
Affiliation(s)
- Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei Huang
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Fuxiang Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Xi Luo
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China.
| |
Collapse
|
35
|
Ancín M, Larraya L, Florez-Sarasa I, Bénard C, Fernández-San Millán A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I. Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4949-4964. [PMID: 33963398 PMCID: PMC8219043 DOI: 10.1093/jxb/erab193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/27/2021] [Indexed: 06/02/2023]
Abstract
In plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Luis Larraya
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Jon Veramendi
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Avda. Pamplona 123, 31192 Mutilva, Spain
| | - Inmaculada Farran
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| |
Collapse
|
36
|
Abstract
Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
Collapse
Affiliation(s)
- Katharina Schiller
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| |
Collapse
|
37
|
Liu D, Hu R, Zhang J, Guo HB, Cheng H, Li L, Borland AM, Qin H, Chen JG, Muchero W, Tuskan GA, Yang X. Overexpression of an Agave Phospho enolpyruvate Carboxylase Improves Plant Growth and Stress Tolerance. Cells 2021; 10:582. [PMID: 33800849 PMCID: PMC7999111 DOI: 10.3390/cells10030582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, SimCenter, University of Tennessee Chattanooga, Chattanooga, TN 37403, USA; (H.-B.G.); (H.Q.)
| | - Hua Cheng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
| | - Linling Li
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
| | - Anne M. Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Hong Qin
- Department of Computer Science and Engineering, SimCenter, University of Tennessee Chattanooga, Chattanooga, TN 37403, USA; (H.-B.G.); (H.Q.)
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (D.L.); (R.H.); (J.Z.); (H.C.); (L.L.); (A.M.B.); (J.-G.C.); (W.M.); (G.A.T.)
- The Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
38
|
Clausing S, Pena R, Song B, Müller K, Mayer-Gruner P, Marhan S, Grafe M, Schulz S, Krüger J, Lang F, Schloter M, Kandeler E, Polle A. Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. THE NEW PHYTOLOGIST 2021; 229:2611-2624. [PMID: 33128821 DOI: 10.1111/nph.17058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Nutrient imbalances cause the deterioration of tree health in European forests, but the underlying physiological mechanisms are unknown. Here, we investigated the consequences of decreasing root carbohydrate reserves for phosphorus (P) mobilisation and uptake by forest trees. In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were girdled and used to determine root, ectomycorrhizal and microbial activities related to P mobilisation in the organic layer and mineral topsoil in comparison with those in nongirdled trees. After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate carboxylase activities linking carbon and P metabolism increased. Root and ectomycorrhizal phosphatase activities and the abundances of bacterial genes catalysing major steps in P turnover increased, but soil enzymes involved in P mobilisation were unaffected. The physiological responses to girdling were stronger in P-poor than in P-rich forests. P uptake was decreased after girdling. The soluble and total P concentrations in roots were stable, but fine root biomass declined after girdling. Our results support that carbohydrate depletion results in reduced P uptake, enhanced internal P remobilisation and root biomass trade-off to compensate for the P shortage. As reductions in root biomass render trees more susceptible to drought, our results link tree deterioration with disturbances in the P supply as a consequence of decreased belowground carbohydrate allocation.
Collapse
Affiliation(s)
- Simon Clausing
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Karolin Müller
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Paula Mayer-Gruner
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Sven Marhan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Martin Grafe
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Jaane Krüger
- Soil Ecology, University of Freiburg, Bertoldstraße 17, Freiburg (i. Br.), 79085, Germany
| | - Friederike Lang
- Soil Ecology, University of Freiburg, Bertoldstraße 17, Freiburg (i. Br.), 79085, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Ellen Kandeler
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| |
Collapse
|
39
|
Dos Santos Araújo G, de Oliveira Paula-Marinho S, de Paiva Pinheiro SK, de Castro Miguel E, de Sousa Lopes L, Camelo Marques E, de Carvalho HH, Gomes-Filho E. H 2O 2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110774. [PMID: 33487358 DOI: 10.1016/j.plantsci.2020.110774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen peroxide priming has emerged as a powerful strategy to trigger multiple responses involved in plant acclimation that reinforce tolerance to abiotic stresses, including salt stress. Thus, this study aimed to investigate the impact of foliar H2O2 priming on the physiological, biochemical, and ultrastructural traits related to photosynthesis of salt-stressed plants. Besides, we provided comparative leaf metabolomic profiles of Zea mays plants under such conditions. For this, H2O or H2O2 pretreated plants were grown under saline conditions for 12-days. Salinity drastically affected photosynthetic parameters and structural chloroplasts integrity, also increased reactive oxygen species contents promoting disturbance in the plant metabolism when compared to non-saline conditions. Our results suggest that H2O2-pretreated plants improved photosynthetic performance avoiding salinity-induced energy excess and ultrastructural damage by preserving stacking thylakoids. It displayed modulation of some metabolites, as arabitol, glucose, asparagine, and tyrosine, which may contribute to the maintenance of osmotic balance and reduced oxidative stress. Hence, our study brings new insights into an understanding of plant acclimation to salinity by H2O2 priming based on photosynthesis maintenance and metabolite modulation.
Collapse
Affiliation(s)
| | | | | | - Emílio de Castro Miguel
- Department of Metallurgical and Materials Engineering and Analytical Center, Federal University of Ceará, Fortaleza, Brazil.
| | | | - Elton Camelo Marques
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil.
| | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology and National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Pici Campus St., 60455-760, Fortaleza, CE, Brazil.
| |
Collapse
|
40
|
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W. Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat. FRONTIERS IN PLANT SCIENCE 2021; 11:600278. [PMID: 33519854 DOI: 10.3389/fpls.2020.600278.pmid:33519854;pmcid:pmc7838129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/17/2020] [Indexed: 05/24/2023]
Abstract
Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptation for both pearl millet and wheat genotypes. These quantitative reference data provide tissue- and phenotype-specific marker proteins of stress defense mechanisms which are not predictable from the genome sequence itself and have potential value for marker-assisted breeding beyond genome assisted breeding.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gert Bachmann
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Luis Valledor
- Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Spain
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Weimin Li
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of Biology, Ljubljana, Slovenia
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Baena G, Feria AB, Hernández-Huertas L, Gandullo J, Echevarría C, Monreal JA, García-Mauriño S. Genetic and Pharmacological Inhibition of Autophagy increases the Monoubiquitination of Non-Photosynthetic Phospho enolpyruvate Carboxylase. PLANTS 2020; 10:plants10010012. [PMID: 33374865 PMCID: PMC7823769 DOI: 10.3390/plants10010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an enzyme with key roles in carbon and nitrogen metabolisms. The mechanisms that control enzyme stability and turnover are not well known. This paper investigates the degradation of PEPC via selective autophagy, including the role of the monoubiquitination of the enzyme in this process. In Arabidopsis, the genetic inhibition of autophagy increases the amount of monoubiquitinated PEPC in the atg2, atg5, and atg18a lines. The same is observed in nbr1, which is deficient in a protein that recruits monoubiquitinated substrates for selective autophagy. In cultured tobacco cells, the chemical inhibition of the degradation of autophagic substrates increases the quantity of PEPC proteins. When the formation of the autophagosome is blocked with 3-methyladenine (3-MA), monoubiquitinated PEPC accumulates as a result. Finally, pull-down experiments with a truncated version of NBR1 demonstrate the recovery of intact and/or fragmented PEPC in Arabidopsis leaves and roots, as well as cultured tobacco cells. Taken together, the results show that a fraction of PEPC is cleaved via selective autophagy and that the monoubiquitination of the enzyme has a role in its recruitment towards this pathway. Although autophagy seems to be a minor pathway, the results presented here increase the knowledge about the role of monoubiquitination and the regulation of PEPC degradation.
Collapse
|
42
|
Surówka E, Potocka I, Dziurka M, Wróbel-Marek J, Kurczyńska E, Żur I, Maksymowicz A, Gajewska E, Miszalski Z. Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:369-383. [PMID: 33007531 DOI: 10.1016/j.plaphy.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 05/26/2023]
Abstract
Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall. We studied Arabidopsis thaliana Columbia ecotype (WT), mutant vte1 deficient in α- and γ-TCs, mutant vte4 over-accumulating γ-TC instead of α-TC, and transgenic line tmt over-accumulating α-TC; exposed to NaCl. The results indicate that salt stress activates β-carboxylation processes in WT plants and in plants with altered TCs accumulation. In α-TC-deficient plants, NaCl causes ACC decrease, but does not change SA, whose concentration remains higher than in α-TC accumulating plants. α/γ-TCs contents influence carbohydrates, poliamines, phenolic (caffeic, ferrulic, cinnamic) acids accumulation patterns. Salinity results in increased detection of the LM5 galactan and LM19 homogalacturonan epitopes in α-TC accumulating plants, and the LM6 arabinan and MAC207 AGP epitopes in α-TC deficient mutants. Parallel, plants with altered TCs composition show decreased both the cell turgor and elastic modulus determined at the individual cell level. α-TC deficient plants reveal lower values of cell turgor and elastic modulus, but higher cell hydraulic conductivity than α-TC accumulating plants. Under salt stress, α-TC shows stronger regulatory effect than γ-TC through the impact on chloroplastic biosynthetic pathways and ROS/osmotic-modulating compounds.
Collapse
Affiliation(s)
- Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Anna Maksymowicz
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
43
|
Liu L, Petchphankul N, Ueda A, Saneoka H. Differences in Physiological Responses of Two Oat ( Avena nuda L.) Lines to Sodic-Alkalinity in the Vegetative Stage. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091188. [PMID: 32933050 PMCID: PMC7570279 DOI: 10.3390/plants9091188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 06/01/2023]
Abstract
Sodic-alkalinity is a more seriously limiting factor in agricultural productivity than salinity. Oat (Avena nuda) is a salt-tolerant crop species and is therefore useful in studying the physiological responses of cereals to alkalinity. We evaluated the differential effects of sodic-alkalinity on two naked oat lines, Caoyou1 and Yanke1. Seedlings of the two lines were exposed to 50 mM alkaline salt mixture of NaHCO3 and Na2CO3 (18:1 molar ratio; pH 8.5) for 2 weeks in a soil environment. Sodic-alkalinity exposure led the assimilation of abundant Na+ at similar concentrations in the organs of both lines. However, Caoyou1 showed much stronger growth than Yanke1, exhibiting a higher dry weight, total leaf area, and shoot height under sodic-alkalinity. Further analysis showed that Caoyou1 was more sodic-alkalinity tolerance than Yanke1. This was firstly because of differences in the oxidative stress defense mechanisms in leaves of the two lines. Antioxidant enzyme activities were either slightly elevated (catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GP), glutathione reductase (GR)) or unaltered (superoxide dismutase (SOD)) in Caoyou1 leaves, but some enzyme (SOD, GPOX, GR) activities were significantly reduced in Yanke1. AnAPX1 transcript levels significantly increased in Caoyou1 under sodic-alkalinity conditions compared with Yanke1, indicating its better antioxidant capacity. Secondly, the related parameters of Mg2+ concentration, phosphoenolpyruvate carboxylase (PEPC) activity, and AnPEPC transcript levels in the leaves showed significantly higher values in Caoyou1 compared with Yanke1. This demonstrated the effective utilization by Caoyou1 of accumulated HCO3- in the irreversible reaction from phosphoenolpyruvate to oxaloacetate to produce inorganic phosphorus, which was elevated in Caoyou1 leaves under alkalinity stress. Overall, the results demonstrated that the greater sodic-alkalinity tolerance of Caoyou1 is the result of: (1) maintained antioxidant enzyme activities; and (2) a higher capacity for the phosphoenolpyruvate to oxaloacetate reactions, as shown by the higher PEPC activity, Mg2+ concentration, and total phosphorus concentration in its leaves, despite the lower soil pH.
Collapse
Affiliation(s)
- Liyun Liu
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (A.U.); (H.S.)
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Nateetorn Petchphankul
- Tropical Agriculture International Program, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Akihiro Ueda
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (A.U.); (H.S.)
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Hirofumi Saneoka
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (A.U.); (H.S.)
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
44
|
Shao CH, Qiu CF, Qian YF, Liu GR. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS One 2020; 15:e0235975. [PMID: 32649704 PMCID: PMC7351185 DOI: 10.1371/journal.pone.0235975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.
Collapse
Affiliation(s)
- Cai-Hong Shao
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cai-Fei Qiu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yin-Fei Qian
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Guang-Rong Liu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
45
|
You L, Zhang J, Li L, Xiao C, Feng X, Chen S, Guo L, Hu H. Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4093-4108. [PMID: 32206789 PMCID: PMC7337093 DOI: 10.1093/jxb/eraa148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays a pivotal role in the photosynthetic CO2 fixation of C4 plants. However, the functions of PEPCs in C3 plants are less well characterized, particularly in relation to low atmospheric CO2 levels. Of the four genes encoding PEPC in Arabidopsis, PPC2 is considered as the major leaf PEPC gene. Here we show that the ppc2 mutants suffered a growth arrest when transferred to low atmospheric CO2 conditions, together with decreases in the maximum efficiency of PSII (Fv/Fm) and lower levels of leaf abscisic acid (ABA) and carbohydrates. The application of sucrose, malate, or ABA greatly rescued the growth of ppc2 lines under low CO2 conditions. Metabolite profiling analysis revealed that the levels of glycine and serine were increased in ppc2 leaves, while the abundance of photosynthetic metabolites was decreased under these conditions. The transcript levels of encoding enzymes involved in glycine or serine metabolism was decreased in ppc2 in an ABI5-dependent manner. Like the ppc2 mutants, abi5-1 mutants had lower photosynthetic rates and Fv/Fm compared with the wild type under photorespiratory conditions (i.e. low CO2 availability). However, the growth of these mutants was similar to that of the wild type under non-photorespiratory (low O2) conditions. The constitutive expression of ABI5 prevented the growth arrest of ppc2 lines under low CO2 conditions. These findings demonstrate that PPC2 plays an important role in the acclimation of Arabidopsis plants to low CO2 availability by linking photorespiratory metabolism to primary metabolism, and that this is mediated, at least in part, through ABA- and ABI5-dependent processes.
Collapse
Affiliation(s)
- Lei You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jumei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
46
|
Ni J, Su S, Li H, Geng Y, Zhou H, Feng Y, Xu X. Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki × B. papyrifera) under different nitrogen supply levels. TREE PHYSIOLOGY 2020; 40:667-682. [PMID: 32211806 DOI: 10.1093/treephys/tpaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Paper mulberry, a vigorous pioneer species used for ecological reclamation and a high-protein forage plant for economic development, has been widely planted in China. To further develop its potential value, it is necessary to explore the regulatory mechanism of nitrogen metabolism for rational nitrogen utilization. In this study, we investigated the morphology, physiology and transcriptome of a paper mulberry hybrid (Broussonetia kazinoki × B. papyrifera) in response to different nitrogen concentrations. Moderate nitrogen promoted plant growth and biomass accumulation. Photosynthetic characteristics, concentration of nitrogenous compounds and activities of enzymes were stimulated under nitrogen treatment. However, these enhancements were slightly or severely inhibited under excessive nitrogen supply. Nitrite reductase and glutamate synthase were more sensitive than nitrate reductase and glutamine synthetase and more likely to be inhibited under high nitrogen concentrations. Transcriptome analysis of the leaf transcriptome identified 161,961 unigenes. The differentially expressed genes associated with metabolism of nitrogen, alanine, aspartate, glutamate and glycerophospholipid showed high transcript abundances after nitrogen application, whereas those associated with glycerophospholipid, glycerolipid, amino sugar and nucleotide sugar metabolism were down-regulated. Combined with weighted gene coexpression network analysis, we uncovered 16 modules according to similarity in expression patterns. Asparagine synthetase and inorganic pyrophosphatase were considered two hub genes in two modules, which were associated with nitrogen metabolism and phosphorus metabolism, respectively. The expression characteristics of these genes may explain the regulation of morphological, physiological and other related metabolic strategies harmoniously. This multifaceted study provides valuable insights to further understand the mechanism of nitrogen metabolism and to guide utilization of paper mulberry.
Collapse
Affiliation(s)
- Jianwei Ni
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shang Su
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yonghang Geng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanzhi Feng
- Paulownia Research and Development Center of National Forestry and Grassland Administration, Zhengzhou, Henan 450003, China
| | - Xinqiao Xu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
47
|
Identification of Structural Variants in Two Novel Genomes of Maize Inbred Lines Possibly Related to Glyphosate Tolerance. PLANTS 2020; 9:plants9040523. [PMID: 32325671 PMCID: PMC7238182 DOI: 10.3390/plants9040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
To study genetic variations between genomes of plants that are naturally tolerant and sensitive to glyphosate, we used two Zea mays L. lines traditionally bred in Poland. To overcome the complexity of the maize genome, two sequencing technologies were employed: Illumina and Single Molecule Real-Time (SMRT) PacBio. Eleven thousand structural variants, 4 million SNPs and approximately 800 thousand indels differentiating the two genomes were identified. Detailed analyses allowed to identify 20 variations within the EPSPS gene, but all of them were predicted to have moderate or unknown effects on gene expression. Other genes of the shikimate pathway encoding bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase and chorismate synthase were altered by variants predicted to have a high impact on gene expression. Additionally, high-impact variants located within the genes involved in the active transport of glyphosate through the cell membrane encoding phosphate transporters as well as multidrug and toxic compound extrusion have been identified.
Collapse
|
48
|
Boxall SF, Kadu N, Dever LV, Kneřová J, Waller JL, Gould PJD, Hartwell J. Kalanchoë PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes. THE PLANT CELL 2020; 32:1136-1160. [PMID: 32051209 PMCID: PMC7145507 DOI: 10.1105/tpc.19.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Unlike C3 plants, Crassulacean acid metabolism (CAM) plants fix CO2 in the dark using phosphoenolpyruvate carboxylase (PPC; EC 4.1.1.31). PPC combines phosphoenolpyruvate with CO2 (as HCO3 -), forming oxaloacetate. The oxaloacetate is converted to malate, leading to malic acid accumulation in the vacuole, which peaks at dawn. During the light period, malate decarboxylation concentrates CO2 around Rubisco for secondary fixation. CAM mutants lacking PPC have not been described. Here, we employed RNA interference to silence the CAM isogene PPC1 in Kalanchoë laxiflora Line rPPC1-B lacked PPC1 transcripts, PPC activity, dark period CO2 fixation, and nocturnal malate accumulation. Light period stomatal closure was also perturbed, and the plants displayed reduced but detectable dark period stomatal conductance and arrhythmia of the CAM CO2 fixation circadian rhythm under constant light and temperature free-running conditions. By contrast, the rhythm of delayed fluorescence was enhanced in plants lacking PPC1 Furthermore, a subset of gene transcripts within the central circadian oscillator was upregulated and oscillated robustly in this line. The regulation of guard cell genes involved in controlling stomatal movements was also perturbed in rPPC1-B These findings provide direct evidence that the regulatory patterns of key guard cell signaling genes are linked with the characteristic inverse pattern of stomatal opening and closing during CAM.
Collapse
Affiliation(s)
- Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nirja Kadu
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Louisa V Dever
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jana Kneřová
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jade L Waller
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter J D Gould
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
49
|
Bulgari R, Cocetta G, Trivellini A, Ferrante A. Borage extracts affect wild rocket quality and influence nitrate and carbon metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:649-660. [PMID: 32255929 PMCID: PMC7113362 DOI: 10.1007/s12298-020-00783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Market is increasingly demanding vegetables with high quality and nutraceutical characteristics. It was demonstrated that leafy vegetables can get benefit from biostimulants, for the reduction of nitrate concentration and the increment of antioxidants, with potential benefit for human health. The research purpose was to investigate on the role of a novel plant-based biostimulant in affecting nitrogen and carbon metabolism in wild rocket (Diplotaxis tenuifolia L.). Foliar spray treatments were performed with extracts obtained from borage (Borago officinalis L.) leaves and flowers. To evaluate the treatments effect, in vivo determinations (chlorophyll a fluorescence and chlorophyll content) were performed. At harvest, nitrate concentration, sucrose, total sugars, chlorophyll, and carotenoids levels were measured in leaves. In order to characterize the mechanism of action also at molecular level, a set of genes encoding for some of the key enzymes implicated in nitrate and carbon metabolism was selected and their expression was measured by qRT-PCR. Interesting results concerned the increment of sucrose, coherent with a high value of Fv/Fm, in addition to a significant reduction of nitrate and ABA than control, and an enhanced NR in vivo activity. Also, genes expression was influenced by extracts, with a more pronounced effect on N related genes.
Collapse
Affiliation(s)
- Roberta Bulgari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| | - Alice Trivellini
- Institute of Life Science, Scuola Superiore Sant’Anna Pisa, Pz Martiri della Libertà 33, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| |
Collapse
|
50
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|