1
|
Lee AK, Welander PV. A geranylgeranyl reductase homolog required for cholesterol production in Myxococcota. J Bacteriol 2025; 207:e0049524. [PMID: 40067012 PMCID: PMC12004948 DOI: 10.1128/jb.00495-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 04/18/2025] Open
Abstract
Myxococcota is a phylum of sterol-producing bacteria. They exhibit a clade depth for sterol biosynthesis unparalleled in the bacterial domain and produce sterols of a biosynthetic complexity that rivals eukaryotes. Additionally, the sterol biosynthesis pathways found in this phylum have been proposed as a potential source for sterol biosynthesis in the last eukaryotic common ancestor, lending evolutionary importance to our understanding of this pathway in Myxococcota. However, sterol production has only been characterized in a few species, and outstanding questions about the evolutionary history of this pathway remain. Here, we identify two myxobacteria, Minicystis rosea and Sandaracinus amylolyticus, capable of cholesterol biosynthesis. These two myxobacteria possess a cholesterol biosynthesis pathway that differs in both the ordering and enzymes involved in biosynthesis compared with Enhygromyxa salina, a myxobacterium previously demonstrated to produce cholesterol, as well as the canonical pathways found in eukaryotes. We characterize an alternative bacterial reductase responsible for performing C-24 reduction, further delineating bacterial cholesterol production from eukaryotes. Finally, we examine the distribution and phylogenetic relationships of sterol biosynthesis proteins across both cultured and uncultured Myxococcota species, providing evidence for multiple acquisition events and instances of both horizontal and vertical transfer at the family level. Altogether, this work further demonstrates the capacity of myxobacteria to synthesize eukaryotic sterols but with an underlying diversity in the biochemical reactions that govern sterol synthesis, suggesting a complex evolutionary history and refining our understanding of how myxobacterial cholesterol production relates to their eukaryotic counterparts. IMPORTANCE Sterols are essential and ubiquitous lipids in eukaryotes, but their significance in bacteria is less understood. Sterol production in Myxococcota, a phylum of developmentally complex predatory bacteria, has provided insight into novel sterol biochemistry and prompted discussion regarding the evolution of this pathway within both the eukaryotic and bacterial domains. Here, we characterize cholesterol biosynthesis in two myxobacteria, providing evidence for distinct pathway organization and identifying a unique protein responsible for C-24 reduction. We couple these results with the phylogenomic analysis of sterol biosynthesis within Myxococcota, revealing a complicated evolutionary history marked by vertical and horizontal transfer. This suggests a mosaic acquisition of this pathway in Myxococcota and highlights the complex role myxobacteria may have had in sterol transfer to eukaryotes.
Collapse
Affiliation(s)
- Alysha K. Lee
- Department of Earth Systems Science, Stanford University, Stanford, California, USA
| | - Paula V. Welander
- Department of Earth Systems Science, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Herr S, Li X, Wu D, Hunter CT, Magallanes-Lundback M, Wood JC, Kaczmar N, Buell CR, DellaPenna D, Gore MA. Total tocopherol levels in maize grain depend on chlorophyll biosynthesis within the embryo. BMC PLANT BIOLOGY 2025; 25:328. [PMID: 40082754 PMCID: PMC11905637 DOI: 10.1186/s12870-025-06267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Tocopherols are a class of lipid-soluble compounds that have multiple functional roles in plants and exhibit vitamin E activity, an essential nutrient for human and animal health. The tocopherol biosynthetic pathway is conserved across the plant kingdom, but source of the key tocopherol pathway precursor, phytol, is unclear. Two protochlorophyllide reductases (POR1 and POR2) were previously identified as loci controlling the natural variation of total tocopherols in maize grain, a non-photosynthetic tissue. POR1 and POR2 are key genes in chlorophyll biosynthesis yet the contribution of the chlorophyll biosynthetic pathway to tocopherol biosynthesis is still not understood. RESULTS We took two approaches to alter the activity of these two POR genes within kernel tissue, physiological treatments and CRISPR/Cas9-mediated knockouts, to determine the role of chlorophyll biosynthesis for tocopherol content. Since light is required for POR enzymatic activity, we imposed a dark treatment on developing kernels, which reduced chlorophyll a and tocopherols levels in embryo tissue by 92-99% and 87-90%, respectively, compared to the light treatment. In CRISPR/Cas9-mediated knockouts, the levels of chlorophyll a and tocopherols in embryos of the por1 por2 double homozygous mutant were reduced by 98-100% and 76-83%, respectively, compared to WT. CONCLUSION These findings demonstrate that tocopherol synthesis in maize grain depends almost entirely on phytol derived from chlorophyll biosynthesis within the embryo. POR1 and POR2 activity play crucial roles in chlorophyll biosynthesis, underscoring the importance of POR alleles and their activity in the biofortification of vitamin E levels in non-photosynthetic grain of maize.
Collapse
Affiliation(s)
- Sam Herr
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | | | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Department of Crop & Soil Sciences and Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Bao Y, Magallanes-Lundback M, Kim SS, Deason N, Niu Y, Johnny C, Froehlich J, DellaPenna D. A family of α/β hydrolases removes phytol from chlorophyll metabolites for tocopherol biosynthesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf021. [PMID: 40036548 PMCID: PMC11878634 DOI: 10.1093/plcell/koaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025]
Abstract
Tocopherol synthesis requires phytyl diphosphate derived from phytol esterified to chlorophyll metabolites. The >600-member Arabidopsis thaliana α/β hydrolase (ABH) gene family contains 4 members that can release phytol from chlorophyll metabolites in vitro; however, only pheophytinase (PPH) affects tocopherol synthesis when mutated, reducing seed tocopherols by 5%. We report the biochemical analysis of 2 previously uncharacterized ABHs, chlorophyll dephytylase 2 (CLD2) and CLD3, and their respective mutants singly and in combinations with pph and cld1 alleles. While all CLDs localized to the thylakoid and could hydrolyze phytol from chlorophylls and Pheophytin a in vitro, CLD3 had the highest in vitro activity and the largest effect on tocopherol synthesis in vivo. The 3 CLDs acted cooperatively to provide phytol for 31% of tocopherols synthesized in light-grown leaf tissue. Dark-induced leaf senescence assays showed PPH is required for 18% of the tocopherols synthesized. Though the cld123 triple mutant had no impact on dark-induced tocopherol content, cld123 in the pph background reduced tocopherol levels by an additional 18%. In seeds, pph and cld123 each reduced tocopherol content by 5% and by 15% in the cld123pph quadruple mutant. VTE7 (ViTamin E7) is an envelope-localized ABH that specifically affects chlorophyll biosynthetic intermediates in vivo and is required for 55% of seed tocopherol synthesis. The introduction of cld123pph into the vte7 background further reduced seed tocopherol levels to 23% of that of the wild type. Our findings demonstrate that phytol provision for tocopherol biosynthesis and homeostasis is a complex process involving the coordinated spatiotemporal expression of multiple ABH family members.
Collapse
Affiliation(s)
- Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cassandra Johnny
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Kodru S, Nellaepalli S, Ozawa SI, Satoh C, Kuroda H, Tanaka R, Guan K, Kobayashi M, Tran P, McCarthy S, Wakao S, Niyogi KK, Takahashi Y. Geranylgeranylated-chlorophyll-protein complexes in lhl3 mutant of the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1577-1590. [PMID: 39405462 DOI: 10.1111/tpj.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
Chlorophylls a and b (Chl a and b) are involved in light harvesting, photochemical reactions, and electron transfer reactions in plants and green algae. The core complexes of the photosystems (PSI and PSII) associate with Chl a, while the peripheral antenna complexes (LHCI and LHCII) bind Chls a and b. One of the final steps of Chl biosynthesis is the conversion of geranylgeranylated Chls (ChlsGG) to phytylated Chls by geranylgeranyl reductase (GGR). Here, we isolated and characterized a pale green mutant of the green alga Chlamydomonas reinhardtii that was very photosensitive and was unable to grow photoautotrophically. This mutant has a 16-bp deletion in the LHL3 gene, which resulted in the loss of LHL3 and GGR and accumulated only ChlsGG. The lhl3 mutant cells grown in the dark accumulated PSII and PSI proteins at 25-50% of WT levels, lacked PSII activity, and retained a decreased PSI activity. The PSII and PSI proteins were depleted to trace amounts in the mutant cells grown in light. In contrast, the accumulation of LHCI and LHCII was unaffected except for LHCA3. Our results suggest that the replacement of Chls with ChlsGG strongly affects the structural and functional integrity of PSII and PSI complexes but their associating LHC complexes to a lesser extent. Affinity purification of HA-tagged LHL3 confirmed the formation of a stable LHL3-GGR complex, which is vital for GGR stability. The LHL3-GGR complex contained a small amount of PSI complex assembly factors, suggesting a putative coupling between Chl synthesis and PSI complex assembly.
Collapse
Affiliation(s)
- Sireesha Kodru
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Chihiro Satoh
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Katharine Guan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Marilyn Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, 94720, USA
| | - Phoi Tran
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Sarah McCarthy
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California, 94720, USA
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
- JST-CREST, Tokyo, Japan
| |
Collapse
|
5
|
Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. PLANT PHYSIOLOGY 2023; 193:1772-1796. [PMID: 37310689 PMCID: PMC10602608 DOI: 10.1093/plphys/kiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.
Collapse
Affiliation(s)
- Elena Kreis
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Katharina König
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Melissa Misir
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Ikuyinminu E, Goñi O, Łangowski Ł, O'Connell S. Transcriptome, Biochemical and Phenotypic Analysis of the Effects of a Precision Engineered Biostimulant for Inducing Salinity Stress Tolerance in Tomato. Int J Mol Sci 2023; 24:ijms24086988. [PMID: 37108156 PMCID: PMC10138596 DOI: 10.3390/ijms24086988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K+/Na+ ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
Collapse
Affiliation(s)
- Elomofe Ikuyinminu
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | | | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
8
|
Lin YP, Shen YY, Shiu YB, Charng YY, Grimm B. Chlorophyll dephytylase 1 and chlorophyll synthase: a chlorophyll salvage pathway for the turnover of photosystems I and II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:979-994. [PMID: 35694901 DOI: 10.1111/tpj.15865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Chlorophyll (Chl) is made up of the tetrapyrrole chlorophyllide and phytol, a diterpenoid alcohol. The photosynthetic protein complexes utilize Chl for light harvesting to produce biochemical energy for plant development. However, excess light and adverse environmental conditions facilitate generation of reactive oxygen species, which damage photosystems I and II (PSI and PSII) and induce their turnover. During this process, Chl is released, and is thought to be recycled via dephytylation and rephytylation. We previously demonstrated that Chl recycling in Arabidopsis under heat stress is mediated by the enzymes chlorophyll dephytylase 1 (CLD1) and chlorophyll synthase (CHLG) using chlg and cld1 mutants. Here, we show that the mutants with high CLD1/CHLG ratio, by different combinations of chlg-1 (a knock-down mutant) and the hyperactive cld1-1 alleles, develop necrotic leaves when grown under long- and short-day, but not continuous light conditions, owing to the accumulation of chlorophyllide in the dark. Combination of chlg-1 with cld1-4 (a knock-out mutant) leads to reduced chlorophyllide accumulation and necrosis. The operation of CLD1 and CHLG as a Chl salvage pathway was also explored in the context of Chl recycling during the turnover of Chl-binding proteins of the two photosystems. CLD1 was found to interact with CHLG and the light-harvesting complex-like proteins OHP1 and LIL3, implying that auxiliary factors are required for this process.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 Building 12, 10115, Berlin, Germany
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yu-Yen Shen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yen-Bin Shiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 Building 12, 10115, Berlin, Germany
| |
Collapse
|
9
|
Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proc Natl Acad Sci U S A 2022; 119:e2113488119. [PMID: 35639691 DOI: 10.1073/pnas.2113488119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTocopherols (vitamin E) are plant-synthesized, lipid-soluble antioxidants whose dietary intake, primarily from seed oils, is essential for human health. Tocopherols contain a phytol-derived hydrophobic tail whose in vivo source has been elusive. The most significant genome-wide association signal for Arabidopsis seed tocopherols identified an uncharacterized, seed-specific esterase (VTE7) localized to the chloroplast envelope, where tocopherol synthesis occurs. VTE7 disruption and overexpression had large impacts on tissue tocopherol contents with metabolic phenotypes consistent with release of prenyl alcohols, including phytol, during chlorophyll synthesis, rather than from the bulk degradation of thylakoid chlorophylls as has long been assumed. Understanding the source of phytol for tocopherols will enable breeding and engineering plants for vitamin E biofortification and enhanced stress resilience.
Collapse
|
10
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Zhou F, Liu Y, Feng X, Zhang Y, Zhu P. Transcriptome Analysis of Green and White Leaf Ornamental Kale Reveals Coloration-Related Genes and Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:769121. [PMID: 35574148 PMCID: PMC9094084 DOI: 10.3389/fpls.2022.769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Leaf color is a crucial agronomic trait in ornamental kale. However, the molecular mechanism regulating leaf pigmentation patterns in green and white ornamental kale is not completely understood. To address this, we performed transcriptome and pigment content analyses of green and white kale leaf tissues. A total of 5,404 and 3,605 different expressed genes (DEGs) were identified in the green vs. white leaf and the green margin vs. white center samples. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis showed that 24 and 15 common DEGs in two pairwise comparisons were involved in chlorophyll metabolism and carotenoid biosynthesis, respectively. Seventeen genes related to chlorophyll biosynthesis were significantly upregulated in green leaf tissue, especially chlH and por. Of the 15 carotenoid biosynthesis genes, all except CYP707A and BG1 were lower expressed in white leaf tissue. Green leaf tissue exhibited higher levels of chlorophyll and carotenoids than white leaf tissue. In addition, the DEGs involved in photosystem and chlorophyll-binding proteins had higher expression in green leaf tissue. The PSBQ, LHCB1.3, LHCB2.4, and HSP70 may be key genes of photosynthesis and chloroplast formation. These results demonstrated that green and white coloration in ornamental kale leaves was caused by the combined effects of chlorophyll and carotenoid biosynthesis, chloroplast development, as well as photosynthesis. These findings enhance our understanding of the molecular mechanisms underlying leaf color development in ornamental kale.
Collapse
Affiliation(s)
- Fuhui Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| |
Collapse
|
12
|
Cheng LM, Zhang SF, Xie ZX, Li DX, Lin L, Wang MH, Wang DZ. Metabolic Adaptation of a Globally Important Diatom following 700 Generations of Selection under a Warmer Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5247-5255. [PMID: 35352563 DOI: 10.1021/acs.est.1c08584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diatoms, accounting for 40% of the marine primary production and 20% of global carbon dioxide fixation, are threatened by the ongoing ocean warming (OW). However, whether and how these ecologically important phytoplankton adapt to OW remains poorly unknown. Here, we experimentally examined the metabolic adaptation of a globally important diatom species Skeletonema dohrnii (S. dohrnii) to OW at two elevated temperatures (24 and 28 °C compared with 20 °C) under short-term (∼300 generations) and long-term (∼700 generations) selection. Both warming levels significantly increased the cell growth rate but decreased the chlorophyll a content. The contents of particulate organic carbon (POC) and particulate organic nitrogen (PON) decreased significantly initially (i.e., until 300 generations) at two temperature treatments but completely recovered after 700 generations of selection, suggesting that S. dohrnii ultimately developed thermal adaptation. Proteomic analysis demonstrated that elevated temperatures upregulated energy metabolism via glycolysis, tricarboxylic acid cycle, and fatty acid oxidation as well as nitrogen acquisition and utilization, which in turn reduced substance storage because of trade-off in the 300th generation, thus decreasing POC and PON. Interestingly, populations at both elevated temperatures exhibited significant proteome plasticity in the 700th generation, as primarily demonstrated by the increased lipid catabolism and glucose accumulation, accounting for the recovery of POC and PON. Changes occurring in cells at the 300th and 700th generations demonstrate that S. dohrnii can adapt to the projected OW, and readjusting the energy metabolism is an important adaptive strategy.
Collapse
Affiliation(s)
- Lu-Man Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dong-Xu Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
He F, Shi YJ, Chen Q, Li JL, Niu MX, Feng CH, Lu MM, Tian FF, Zhang F, Lin TT, Chen LH, Liu QL, Wan XQ. Genome-Wide Investigation of the PtrCHLP Family Reveals That PtrCHLP3 Actively Mediates Poplar Growth and Development by Regulating Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:870970. [PMID: 35620683 PMCID: PMC9127975 DOI: 10.3389/fpls.2022.870970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) plays a crucial role in plant photosynthesis. The geranylgeraniol reductase gene (CHLP) participates in the terminal hydrogenation of chlorophyll biosynthesis. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been conducted on CHLP family genes, especially those concerning growth and photosynthesis. In this study, three CHLP genes were identified in Populus. The evolutionary tree indicated that the CHLP family genes were divided into six groups. Moreover, one pair of genes was derived from segmental duplications in Populus. Many elements related to growth were detected by cis-acting element analysis of the promoters of diverse PtrCHLPs. Furthermore, PtrCHLPs exhibit different tissue expression patterns. In addition, PtrCHLP3 is preferentially expressed in the leaves and plays an important role in regulating chlorophyll biosynthesis. Silencing of PtrCHLP3 in poplar resulted in a decrease in chlorophyll synthesis in plants, thus blocking electron transport during photosynthesis. Furthermore, inhibition of PtrCHLP3 expression in poplar can inhibit plant growth through the downregulation of photosynthesis. Ultimately, PtrCHLP3 formed a co-expression network with photosynthesis and chlorophyll biosynthesis-related genes, which synergistically affected the growth and photosynthesis of poplars. Thus, this study provides genetic resources for the improved breeding of fast-growing tree traits.
Collapse
Affiliation(s)
- Fang He
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu-Jie Shi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun-Lin Li
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Meng-Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meng-Meng Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fei-Fei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tian-Tian Lin
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Liang-Hua Chen
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qin-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xue-Qin Wan,
| |
Collapse
|
14
|
Dou Y, Xia W, Mason AS, Huang D, Sun X, Fan H, Xiao Y. Developing functional markers for vitamin E biosynthesis in oil palm. PLoS One 2021; 16:e0259684. [PMID: 34797841 PMCID: PMC8604351 DOI: 10.1371/journal.pone.0259684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
Vitamin E is essential for human health and plays positive roles in anti-oxidation. Previously, we detected large variation in vitamin E content among 161 oil palm accessions. In this study, twenty oil palm accessions with distinct variation in vitamin E contents (171.30 to 1 258.50 ppm) were selected for genetic variation analysis and developing functional markers associated with vitamin E contents. Thirty-seven homologous genes in oil palm belonging to vitamin E biosynthesis pathway were identified via BLASTP analysis, the lengths of which ranged from 426 to 25 717 bp (average 7 089 bp). Multiplex PCR sequencing for the 37 genes found 1 703 SNPs and 85 indels among the 20 oil palm accessions, with 226 SNPs locating in the coding regions. Clustering analysis for these polymorphic loci showed that the 20 oil palm accessions could be divided into five groups. Among these groups, group I included eight oil palm accessions whose vitamin E content (mean value: 893.50 ppm) was far higher than other groups (mean value 256.29 to 532.94 ppm). Correlation analysis between the markers and vitamin E traits showed that 134 SNP and 7 indel markers were significantly (p < 0.05) related with total vitamin E content. Among these functional markers, the indel EgTMT-1-24 was highly correlated with variation in vitamin E content, especially tocotrienol content. Our study identified a number of candidate function associated markers and provided clues for further research into molecular breeding for high vitamin E content oil palm.
Collapse
Affiliation(s)
- Yajing Dou
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Annaliese S. Mason
- Plant Breeding Department, The University of Bonn, Bonn, North Rhine-Westphalia, Germany
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Haikuo Fan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, P.R. China
- * E-mail: ,
| |
Collapse
|
15
|
A Label-Free Proteomic and Complementary Metabolomic Analysis of Leaves of the Resurrection Plant Xerophytaschlechteri during Dehydration. Life (Basel) 2021; 11:life11111242. [PMID: 34833116 PMCID: PMC8624122 DOI: 10.3390/life11111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Vegetative desiccation tolerance, or the ability to survive the loss of ~95% relative water content (RWC), is rare in angiosperms, with these being commonly called resurrection plants. It is a complex multigenic and multi-factorial trait, with its understanding requiring a comprehensive systems biology approach. The aim of the current study was to conduct a label-free proteomic analysis of leaves of the resurrection plant Xerophyta schlechteri in response to desiccation. A targeted metabolomics approach was validated and correlated to the proteomics, contributing the missing link in studies on this species. Three physiological stages were identified: an early response to drying, during which the leaf tissues declined from full turgor to a RWC of ~80–70%, a mid-response in which the RWC declined to 40% and a late response where the tissues declined to 10% RWC. We identified 517 distinct proteins that were differentially expressed, of which 253 proteins were upregulated and 264 were downregulated in response to the three drying stages. Metabolomics analyses, which included monitoring the levels of a selection of phytohormones, amino acids, sugars, sugar alcohols, fatty acids and organic acids in response to dehydration, correlated with some of the proteomic differences, giving insight into the biological processes apparently involved in desiccation tolerance in this species.
Collapse
|
16
|
Dominguez PG, Conti G, Duffy T, Insani M, Alseekh S, Asurmendi S, Fernie AR, Carrari F. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6490-6509. [PMID: 34100923 DOI: 10.1093/jxb/erab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás Duffy
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marina Insani
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Carrari
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
17
|
Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. PHOTOSYNTHESIS RESEARCH 2021; 149:233-252. [PMID: 33948813 PMCID: PMC8382614 DOI: 10.1007/s11120-021-00827-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Collapse
Affiliation(s)
- Václav Karlický
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Zuzana Kmecová Materová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Irena Kurasová
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Győző Garab
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Biological Research Center, Institute of Plant Biology, Temesvári körút 62, 6726, Szeged, Hungary.
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Li YY, Han M, Wang RH, Gao MG. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot. PLoS One 2021; 16:e0252031. [PMID: 34043661 PMCID: PMC8158985 DOI: 10.1371/journal.pone.0252031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022] Open
Abstract
The flesh of the taproot of Raphanus sativus L. is rich in chlorophyll (Chl) throughout the developmental process, which is why the flesh is green. However, little is known about which genes are associated with Chl accumulation in this non-foliar, internal green tissue and whether the green flesh can perform photosynthesis. To determine these aspects, we measured the Chl content, examined Chl fluorescence, and carried out comparative transcriptome analyses of taproot flesh between green-fleshed "Cuishuai" and white-fleshed "Zhedachang" across five developmental stages. Numerous genes involved in the Chl metabolic pathway were identified. It was found that Chl accumulation in radish green flesh may be due to the low expression of Chl degradation genes and high expression of Chl biosynthesis genes, especially those associated with Part Ⅳ (from Protoporphyrin Ⅸ to Chl a). Bioinformatics analysis revealed that differentially expressed genes between "Cuishuai" and "Zhedachang" were significantly enriched in photosynthesis-related pathways, such as photosynthesis, antenna proteins, porphyrin and Chl metabolism, carbon fixation, and photorespiration. Twenty-five genes involved in the Calvin cycle were highly expressed in "Cuishuai". These findings suggested that photosynthesis occurred in the radish green flesh, which was also supported by the results of Chl fluorescence. Our study provides transcriptome data on radish taproots and provides new information on the formation and function of radish green flesh.
Collapse
Affiliation(s)
- Yuan-yuan Li
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
- * E-mail: (Y-yL); (M-gG)
| | - Min Han
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
| | - Rui-hua Wang
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
| | - Ming-gang Gao
- Department of Bioengineering, Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang University, Weifang, China
- * E-mail: (Y-yL); (M-gG)
| |
Collapse
|
19
|
Bashyal BM, Parmar P, Zaidi NW, Aggarwal R. Molecular Programming of Drought-Challenged Trichoderma harzianum-Bioprimed Rice ( Oryza sativa L.). Front Microbiol 2021; 12:655165. [PMID: 33927706 PMCID: PMC8076752 DOI: 10.3389/fmicb.2021.655165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering various plant metabolic pathways related to antioxidative defense, secondary metabolites, and hormonal upregulation. In the present study, transcriptomic analysis of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress was carried out in comparison with drought-stressed samples using next-generation sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382 (15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787 (70%) were commonly expressed. Furthermore, comparative analysis of upregulated and downregulated genes under stressed conditions showed that 1,053 genes (42%) were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated drought-stressed rice plants. The genes exclusively expressed in T. harzianum-treated drought-stressed plants were mostly photosynthetic and antioxidative such as plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins, proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most enriched pathways were metabolic (38%) followed by pathways involved in the synthesis of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and glutathione metabolism (3%). Some of the genes were selected for validation using real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to establish host-T. harzianum interaction, transcriptome analysis of Trichoderma was also carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested that the annotated genes are functionally related to carbohydrate binding module, glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated, playing an important role in establishing the mycelia colonization of rice roots and its growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress in rice cultivars by a multitude of molecular programming.
Collapse
Affiliation(s)
- Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pooja Parmar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
20
|
Kisten L, Tolmay VL, Mathew I, Sydenham SL, Venter E. Genome-wide association analysis of Russian wheat aphid (Diuraphis noxia) resistance in Dn4 derived wheat lines evaluated in South Africa. PLoS One 2020; 15:e0244455. [PMID: 33370360 PMCID: PMC7769470 DOI: 10.1371/journal.pone.0244455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Russian wheat aphid (RWA; Diuraphis noxia Kurdjumov) resistance on the 1D chromosome of wheat has been the subject of intensive research. Conversely, the deployment of the Dn4 derived RWA resistant varieties diminished in recent years due to the overcoming of the resistance it imparts in the United States of America. However, this resistance has not been deployed in South Africa despite reports that Dn4 containing genotypes exhibited varying levels of resistance against the South African RWA biotypes. It is possible that there may be certain genetic differences within breeding lines or cultivars that influence the expression of resistance. The aim of this study was to identify single nucleotide polymorphism (SNP) markers associated with resistance to South African RWA biotypes. A panel of thirty-two wheat lines were phenotyped for RWA resistance using four South African RWA biotypes and a total of 181 samples were genotyped using the Illumina 9K SNP wheat chip. A genome wide association study using 7598 polymorphic SNPs showed that the population was clustered into two distinct subpopulations. Twenty-seven marker trait associations (MTA) were identified with an average linkage disequilibrium of 0.38 at 10 Mbp. Four of these markers were highly significant and three correlated with previously reported quantitative trait loci linked to RWA resistance in wheat. Twenty putative genes were annotated using the IWGSC RefSeq, three of which are linked to plant defence responses. This study identified novel chromosomal regions that contribute to RWA resistance and contributes to unravelling the complex genetics that control RWA resistance in wheat.
Collapse
Affiliation(s)
- Lavinia Kisten
- Germplasm Development, ARC-Small Grain, Bethlehem, Free State, South Africa
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, Gauteng, South Africa
- * E-mail: (LK); (VLT)
| | - Vicki L. Tolmay
- Germplasm Development, ARC-Small Grain, Bethlehem, Free State, South Africa
- * E-mail: (LK); (VLT)
| | - Isack Mathew
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| | - Scott L. Sydenham
- LongReach Plant Breeders Management Pty Ltd, York, Western Australia, Australia
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, Gauteng, South Africa
| |
Collapse
|
21
|
Kumar A, Prasad A, Sedlářová M, Ksas B, Havaux M, Pospíšil P. Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radic Biol Med 2020; 160:894-907. [PMID: 32931882 DOI: 10.1016/j.freeradbiomed.2020.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/12/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023]
Abstract
Tocochromanols (tocopherols, tocotrienols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (carotenes and xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analyzed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9/plastoquinol-9 and zeaxanthin. In the first line of defense (non-radical mechanism), singlet oxygen is either physically or chemically quenched by α-tocopherol; however, when α-tocopherol is consumed, zeaxanthin and plastoquinone-9/plastoquinol-9 can provide alternative protection against singlet oxygen toxicity by functional replacement of α-tocopherol either by zeaxanthin for the physical quenching or by plastoquinone-9/plastoquinol-9 for the chemical quenching. When singlet oxygen escapes this first line of defense, it oxidizes lipids and forms lipid hydroperoxides, which are oxidized to lipid peroxyl radicals by ferric iron. In the second line of defense (radical mechanism), lipid peroxyl radicals are scavenged by α-tocopherol. After its consumption, plastochromanol-8 overtakes this function. We provide a comprehensive description of the reaction pathways underlying the non-radical and radical antioxidant activities of α-tocopherol, carotenoids, plastoquinone-9/plastoquinol-9 and plastochromanol-8. The interplay between the different plastid lipid-soluble antioxidants in the non-radical and the radical mechanism provides step by step insights into protection against photooxidative stress in higher plants.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Brigitte Ksas
- CEA, CNRS UMR 7265 BVME, Aix-Marseille Université, Laboratoire D'Écophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- CEA, CNRS UMR 7265 BVME, Aix-Marseille Université, Laboratoire D'Écophysiologie Moléculaire des Plantes, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
22
|
Gülck T, Booth JK, Carvalho Â, Khakimov B, Crocoll C, Motawia MS, Møller BL, Bohlmann J, Gallage NJ. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae. JOURNAL OF NATURAL PRODUCTS 2020; 83:2877-2893. [PMID: 33000946 DOI: 10.1021/acs.jnatprod.0c00241] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytocannabinoids are a group of plant-derived metabolites that display a wide range of psychoactive as well as health-promoting effects. The production of pharmaceutically relevant cannabinoids relies on extraction and purification from cannabis (Cannabis sativa) plants yielding the major constituents, Δ9-tetrahydrocannabinol and cannabidiol. Heterologous biosynthesis of cannabinoids in Nicotiana benthamiana or Saccharomyces cerevisiae may provide cost-efficient and rapid future production platforms to acquire pure and high quantities of both the major and the rare cannabinoids as well as novel derivatives. Here, we used a meta-transcriptomic analysis of cannabis to identify genes for aromatic prenyltransferases of the UbiA superfamily and chalcone isomerase-like (CHIL) proteins. Among the aromatic prenyltransferases, CsaPT4 showed CBGAS activity in both N. benthamiana and S. cerevisiae. Coexpression of selected CsaPT pairs and of CHIL proteins encoding genes with CsaPT4 did not affect CBGAS catalytic efficiency. In a screen of different plant UDP-glycosyltransferases, Stevia rebaudiana SrUGT71E1 and Oryza sativa OsUGT5 were found to glucosylate olivetolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid. Metabolic engineering of N. benthamiana for production of cannabinoids revealed intrinsic glucosylation of olivetolic acid and cannabigerolic acid. S. cerevisiae was engineered to produce olivetolic acid glucoside and cannabigerolic acid glucoside.
Collapse
Affiliation(s)
- Thies Gülck
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - J K Booth
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Â Carvalho
- River Stone Biotech ApS, Fruebjergvej 3, 2100 København Ø, Denmark
| | - B Khakimov
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - C Crocoll
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - M S Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - B L Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - J Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - N J Gallage
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Octarine Bio, Fruebjergvej 3, 2100 København Ø, Denmark
| |
Collapse
|
23
|
Zhu C, Xiaoyu L, Junlan G, Yun X, Jie R. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence. BMC PLANT BIOLOGY 2020; 20:410. [PMID: 32883206 PMCID: PMC7650285 DOI: 10.1186/s12870-020-02628-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To fully elucidate the roles and mechanisms of plant hormones in leaf senescence, we adopted an integrated analysis of both non-senescing and senescing leaves from red maple with transcriptome and metabolome data. RESULTS Transcription and metabolite profiles were generated through a combination of deep sequencing, third-generation sequencing data analysis, and ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS), respectively. We investigated the accumulation of compounds and the expression of biosynthesis and signaling genes for eight hormones. The results revealed that ethylene and abscisic acid concentrations increased during the leaf senescence process, while the contents of cytokinin, auxin, jasmonic acid, and salicylic acid continued to decrease. Correlation tests between the hormone content and transcriptional changes were analyzed, and in six pathways, genes closely linked with leaf senescence were identified. CONCLUSIONS These results will enrich our understanding of the mechanisms of plant hormones that regulate leaf senescence in red maple, while establishing a foundation for the genetic modification of Acer in the future.
Collapse
Affiliation(s)
- Chen Zhu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Lu Xiaoyu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui 230036 P.R. China
| | - Gao Junlan
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Xuan Yun
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| | - Ren Jie
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, Anhui 230031 P.R. China
| |
Collapse
|
24
|
Ma G, Zhang L, Kitaya Y, Seoka M, Kudaka R, Yahata M, Yamawaki K, Shimada T, Fujii H, Endo T, Kato M. Blue LED light induces regreening in the flavedo of Valencia orange in vitro. Food Chem 2020; 335:127621. [PMID: 32738533 DOI: 10.1016/j.foodchem.2020.127621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
In the present study, the effects of blue LED light on the regreening of citrus fruit were investigated in an in vitro system of Valencia orange flavedos. The results showed that blue LED light irradiation induced regreening in the flavedos. After four-week culture in vitro, the flavedos exhibited obviously green color in the blue LED light treatment, while the flavedos in the control were still in orange color. During the regreening process, the blue LED light treatment induced chlorophyll accumulation, and substantially altered the carotenoid composition in the flavedos. Compared with the control, the content of 9-cis-violaxanthin was decreased, while the contents of lutein, β-carotene, and all-trans-violaxanthin were increased by blue LED light. In addition, gene expression results showed that the up-regulation of CitLCYe and down-regulation of CitLCYb2 by blue LED light led to a shift from β,β-branch to β,ε-branch of the carotenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Yurika Kitaya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Rin Kudaka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Kazuki Yamawaki
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| | - Takehiko Shimada
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Hiroshi Fujii
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Tomoko Endo
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan.
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan.
| |
Collapse
|
25
|
Kong L, Price NM. Identification of copper-regulated proteins in an oceanic diatom,Thalassiosira oceanica1005. Metallomics 2020; 12:1106-1117. [DOI: 10.1039/d0mt00033g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plastocyanin-dependent diatoms adjust cellular metabolism to cope with chronic Cu deficiency.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Biology
- McGill University
- Montréal
- Canada
- College of Marine Life Sciences
| | - Neil M. Price
- Department of Biology
- McGill University
- Montréal
- Canada
| |
Collapse
|
26
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
27
|
Li C, Liu X, Pan J, Guo J, Wang Q, Chen C, Li N, Zhang K, Yang B, Sun C, Deng X, Wang P. A lil3 chlp double mutant with exclusive accumulation of geranylgeranyl chlorophyll displays a lethal phenotype in rice. BMC PLANT BIOLOGY 2019; 19:456. [PMID: 31664904 PMCID: PMC6819399 DOI: 10.1186/s12870-019-2028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phytyl residues are the common side chains of chlorophyll (Chl) and tocopherols. Geranylgeranyl reductase (GGR), which is encoded by CHLP gene, is responsible for phytyl biosynthesis. The light-harvesting like protein LIL3 was suggested to be required for stability of GGR and protochlorophyllide oxidoreductase in Arabidopsis. RESULTS In this study, we isolated a yellow-green leaf mutant, 637ys, in rice (Oryza sativa). The mutant accumulated majority of Chls with unsaturated geranylgeraniol side chains and displayed a yellow-green leaf phenotype through the whole growth period. The development of chloroplasts was suppressed, and the major agronomic traits, especially No. of productive panicles per plant and of spikelets per panicle, dramatically decreased in 637ys. Besides, the mutant exhibited to be sensitive to light intensity and deficiency of tocopherols without obvious alteration in tocotrienols in leaves and grains. Map-based cloning and complementation experiment demonstrated that a point mutation on the OsLIL3 gene accounted for the mutant phenotype of 637ys. OsLIL3 is mainly expressed in green tissues, and its encoded protein is targeted to the chloroplast. Furthermore, the 637ys 502ys (lil3 chlp) double mutant exclusively accumulated geranylgeranyl Chl and exhibited lethality at the three-leaf stage. CONCLUSIONS We identified the OsLIL3 gene through a map-based cloning approach. Meanwhile, we demonstrated that OsLIL3 is of extreme importance to the function of OsGGR, and that the complete replacement of phytyl side chain of chlorophyll by geranylgeranyl chain could be fatal to plant survival in rice.
Collapse
Affiliation(s)
- Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
- Zhongkai University of Agriculture and Engineering, 24 Dongsha Street, Haizhu District, Guangzhou, 510225, China
| | - Xin Liu
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jihong Pan
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Na Li
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Kuan Zhang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
28
|
Zhang S, Wu X, Cui J, Zhang F, Wan X, Liu Q, Zhong Y, Lin T. Physiological and transcriptomic analysis of yellow leaf coloration in Populus deltoides Marsh. PLoS One 2019; 14:e0216879. [PMID: 31112574 PMCID: PMC6529213 DOI: 10.1371/journal.pone.0216879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Populus deltoides Marsh has high ornamental value because its leaves remain yellow during the non-dormant period. However, little is known about the regulatory mechanism of leaf coloration in P. deltoides Marsh. Thus, we analyzed the physiological and transcriptional differences of yellow leaves (mutant) and green leaves (wild-type) of P. deltoides Marsh. Physiological experiments showed that the contents of chlorophyll (Chl) and carotenoid were lower in mutant leaves, and the flavonoid content did not differ significantly between mutant and wild-type leaves. Transcriptomic sequencing was further used to identify 153 differentially expressed genes (DEGs). Functional classifications based on Gene Ontology enrichment and Genome enrichment analysis indicated that the DEGs were involved in Chl biosynthesis and flavonoid biosynthesis pathways. Among these, geranylgeranyl diphosphate (CHLP) genes associated with Chl biosynthesis showed down-regulation, while chlorophyllase (CLH) genes associated with Chl degradation were up-regulated in yellow leaves. The expression levels of these genes were further confirmed using quantitative real-time PCR (RT-qPCR). Furthermore, the estimation of the main precursors of Chl confirmed that CHLP is a vital enzyme for the yellow leaf color phenotype. Consequently, the formation of yellow leaf color is due to the disruption of Chl synthesis or catabolism rather than flavonoid synthesis. These results contribute to our understanding of mechanisms and regulation of leaf color variation in poplar at the transcriptional level.
Collapse
Affiliation(s)
- Shuzhen Zhang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolu Wu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Cui
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fan Zhang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Wan
- College of Forestry of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qinglin Liu
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Zhong
- College of Forestry of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tiantian Lin
- College of Forestry of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, Welsch R. Enzyme Fusion Removes Competition for Geranylgeranyl Diphosphate in Carotenogenesis. PLANT PHYSIOLOGY 2019; 179:1013-1027. [PMID: 30309967 PMCID: PMC6393812 DOI: 10.1104/pp.18.01026] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
Geranylgeranyl diphosphate (GGPP), a prenyl diphosphate synthesized by GGPP synthase (GGPS), represents a metabolic hub for the synthesis of key isoprenoids, such as chlorophylls, tocopherols, phylloquinone, gibberellins, and carotenoids. Protein-protein interactions and the amphipathic nature of GGPP suggest metabolite channeling and/or competition for GGPP among enzymes that function in independent branches of the isoprenoid pathway. To investigate substrate conversion efficiency between the plastid-localized GGPS isoform GGPS11 and phytoene synthase (PSY), the first enzyme of the carotenoid pathway, we used recombinant enzymes and determined their in vitro properties. Efficient phytoene biosynthesis via PSY strictly depended on simultaneous GGPP supply via GGPS11. In contrast, PSY could not access freely diffusible GGPP or time-displaced GGPP supply via GGPS11, presumably due to liposomal sequestration. To optimize phytoene biosynthesis, we applied a synthetic biology approach and constructed a chimeric GGPS11-PSY metabolon (PYGG). PYGG converted GGPP to phytoene almost quantitatively in vitro and did not show the GGPP leakage typical of the individual enzymes. PYGG expression in Arabidopsis resulted in orange-colored cotyledons, which are not observed if PSY or GGPS11 are overexpressed individually. This suggests insufficient GGPP substrate availability for chlorophyll biosynthesis achieved through GGPP flux redirection to carotenogenesis. Similarly, carotenoid levels in PYGG-expressing callus exceeded that in PSY- or GGPS11-overexpression lines. The PYGG chimeric protein may assist in provitamin A biofortification of edible plant parts. Moreover, other GGPS fusions may be used to redirect metabolic flux into the synthesis of other isoprenoids of nutritional and industrial interest.
Collapse
Affiliation(s)
- Maurizio Camagna
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Cornelia Bär
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Peter Beyer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Welsch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Tamary E, Nevo R, Naveh L, Levin‐Zaidman S, Kiss V, Savidor A, Levin Y, Eyal Y, Reich Z, Adam Z. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. PLANT DIRECT 2019; 3:e00127. [PMID: 31245770 PMCID: PMC6508775 DOI: 10.1002/pld3.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/18/2023]
Abstract
The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.
Collapse
Affiliation(s)
- Eyal Tamary
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Reinat Nevo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| | - Smadar Levin‐Zaidman
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vladimir Kiss
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alon Savidor
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yishai Levin
- de Botton Institute for Protein ProfilingThe Nancy and Stephen Grand Israel National Center for Personalized MedicineWeizmann Institute of ScienceRehovotIsrael
| | - Yoram Eyal
- Institute of Plant SciencesThe Volcani Center ARORishon LeZionIsrael
| | - Ziv Reich
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew UniversityRehovotIsrael
| |
Collapse
|
31
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
32
|
Ampomah‐Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. THE NEW PHYTOLOGIST 2019; 221:309-325. [PMID: 30067292 PMCID: PMC6585760 DOI: 10.1111/nph.15362] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/11/2018] [Indexed: 05/10/2023]
Abstract
MYB transcription factors (TFs) regulate diverse plant developmental processes and understanding their roles in controlling pigment accumulation in fruit is important for developing new cultivars. In this study, we characterised kiwifruit TFMYB7, which was found to activate the promoter of the kiwifruit lycopene beta-cyclase (AdLCY-β) gene that plays a key role in the carotenoid biosynthetic pathway. To determine the role of MYB7, we analysed gene expression and metabolite profiles in Actinidia fruit which show different pigment profiles. The impact of MYB7 on metabolic biosynthetic pathways was then evaluated by overexpression in Nicotiana benthamiana followed by metabolite and gene expression analysis of the transformants. MYB7 was expressed in fruit that accumulated carotenoid and Chl pigments with high transcript levels associated with both pigments. Constitutive over-expression of MYB7, through transient or stable transformation of N. benthamiana, altered Chl and carotenoid pigment levels. MYB7 overexpression was associated with transcriptional activation of certain key genes involved in carotenoid biosynthesis, Chl biosynthesis, and other processes such as chloroplast and thylakoid membrane organization. Our results suggest that MYB7 plays a role in modulating carotenoid and Chl pigment accumulation in tissues through transcriptional activation of metabolic pathway genes.
Collapse
Affiliation(s)
- Charles Ampomah‐Dwamena
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Amali H. Thrimawithana
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Supinya Dejnoprat
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - David Lewis
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 11600Palmerston North4442New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019AucklandNew Zealand
| |
Collapse
|
33
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
34
|
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa'ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:169-191. [PMID: 29385635 DOI: 10.1111/tpj.13838] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.
Collapse
Affiliation(s)
- Navot Galpaz
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Itay Gonda
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Doron Shem-Tov
- NRGENE, Park HaMada Ness Ziona, Israel
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Galil Tzuri
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shery Lev
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rotem Harel-Beja
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Oren Tzfadia
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
| | - Einat Bar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Sa'ar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Halperin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Kenigswald
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Elazar Fallik
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nadia Lombardi
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | - Guy Kol
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Gil Ronen
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Yosef Burger
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gur
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ya'akov Tadmor
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Vitaly Portnoy
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Efraim Lewinsohn
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Nurit Katzir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
35
|
Lin YP, Charng YY. Supraoptimal activity of CHLOROPHYLL DEPHYTYLASE1 results in an increase in tocopherol level in mature arabidopsis seeds. PLANT SIGNALING & BEHAVIOR 2017; 12:e1382797. [PMID: 28937840 PMCID: PMC5703258 DOI: 10.1080/15592324.2017.1382797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tocopherols are synthesized in photosynthetic organisms, playing a role in plant stress tolerance. Recent studies showed that the phytol moiety of tocopherols comes from the salvaged phytol chain during chlorophyll degradation. However, the enzyme(s) responsible for chlorophyll dephytylation remains unclear. Recently, we reported the identification and characterization of CHLOROPHYLL DEPHYTYLASE1 (CLD1) of Arabidopsis, suggesting its role in chlorophyll turnover at steady state. In this addendum to the report, we presented and discussed the results related to the function of CLD1 in tocopherol biosynthesis. The tocopherol levels in the mature seeds were not altered in the transgenic lines with reduced CLD1 expression but were moderately increased in the plants with supraoptimal CLD1 activity compared to wild type. These results suggest that manipulating CLD1 activity could affect tocopherol biosynthesis to a certain extent and that other dephytylating enzymes are sharing redundant function in contributing the phytol pool in plant cells.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, R.O.C.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, R.O.C.
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, R.O.C.
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, R.O.C.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, R.O.C.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, R.O.C.
- Contact Yee-yung Charng Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C.
| |
Collapse
|
36
|
Singh RK, Chaurasia AK, Bari R, Sane VA. Tocopherol levels in different mango varieties correlate with MiHPPD expression and its over-expression elevates tocopherols in transgenic Arabidopsis and tomato. 3 Biotech 2017; 7:352. [PMID: 29062673 DOI: 10.1007/s13205-017-0991-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023] Open
Abstract
Mango fruit tocopherol levels vary in different varieties during ripening. This study shows that tocopherol accumulation is highly correlated with its p-hydroxyphenyl pyruvate dioxygenase (MiHPPD) gene expression during ripening. MiHPPD transcript is ethylene induced and differentially expressed in four mango varieties used in this study. Higher/lower accumulation of tocopherol (mainly α-tocopherol) was achieved by heterologous expression of MiHPPD in Arabidopsis and tomato. The results suggest that tocopherol accumulation in mango fruit is correlated to MiHPPD gene expression. Over-expression of MiHPPD gene channelizes the flux towards tocophreol biosynthesis and could be used as a potential tool for metabolic engineering.
Collapse
Affiliation(s)
- Rajesh K Singh
- Plant Gene Expression Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Present Address: Department of Forest Genetics and Plant Physiology, SLU, 901 83 Umeå, Sweden
| | - Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Irrigation Systems Ltd., Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Rupesh Bari
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Irrigation Systems Ltd., Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Vidhu A Sane
- Plant Gene Expression Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| |
Collapse
|
37
|
Meise P, Jozefowicz AM, Uptmoor R, Mock HP, Ordon F, Schum A. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. J Proteomics 2017; 166:68-82. [PMID: 28733104 DOI: 10.1016/j.jprot.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
Aiming at a better understanding of the physiological and biochemical background of nitrogen use efficiency, alterations in the shoot proteome under N-deficiency were investigated in two contrasting potato genotypes grown in vitro with 60 and 7.5mM N, respectively. A gel based proteomic approach was applied to identify candidate proteins associated with genotype specific responses to N-deficiency. 21% of the detected proteins differed in abundance between the two genotypes. Between control and N-deficiency conditions 19.5% were differentially accumulated in the sensitive and 15% in the tolerant genotype. 93% of the highly N-deficiency responsive proteins were identified by MALDI TOF/TOF mass spectrometry. The major part was associated with photosynthesis, carbohydrate metabolism, stress response and regulation. Differential accumulation of enzymes involved in the Calvin cycle and glycolysis suggest activation of alternative carbohydrate pathways. In the tolerant genotype, increased abundance under N-deficiency was also found for enzymes involved in chlorophyll synthesis and stability of enzymes, which increase photosynthetic carbon fixation efficiency. Out of a total of 106 differentially abundant proteins, only eight were detected in both genotypes. Our findings suggest that mutually responsive proteins reflect universal stress responses while adaptation to N-deficiency in metabolic pathways is more genotype specific. SIGNIFICANCE Nitrogen losses from arable farm land considerably contribute to environmental pollution. In potato, this is a special problem due cultivation on light soils, irrigation and the shallow root system. Therefore, breeding of cultivars with improved nitrogen use efficiency and stable yields under reduced N fertilization is an important issue. Knowledge of genotype dependent adaptation to N-deficiency at the proteome level can help to understand regulation of N efficiency and development of N-efficient cultivars.
Collapse
Affiliation(s)
- Philipp Meise
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Ralf Uptmoor
- University of Rostock, Faculty of Agricultural and Environmental Science, Justus-von-Liebig-Weg 6, 18055 Rostock, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Annegret Schum
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany.
| |
Collapse
|
38
|
Mizoguchi T, Isaji M, Yamano N, Harada J, Fujii R, Tamiaki H. Molecular Structures and Functions of Chlorophylls-a Esterified with Geranylgeranyl, Dihydrogeranylgeranyl, and Tetrahydrogeranylgeranyl Groups at the 17-Propionate Residue in a Diatom, Chaetoceros calcitrans. Biochemistry 2017. [PMID: 28627163 DOI: 10.1021/acs.biochem.7b00381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 17-propionate ester group of chlorophyll(Chl)-a in some oxygenic phototrophs was investigated using HPLC. Chls-a esterified with partially dehydrogenated forms of a phytyl group were found in fully grown cells of a diatom, Chaetoceros calcitrans: geranylgeranyl (GG), dihydrogeranylgeranyl (DHGG), and tetrahydrogeranylgeranyl (THGG). Chls-a bearing such esterifying groups were reported to be found only in greening processes of higher plants, and thus these Chls-a have been thought to be biosynthetic precursors for phytylated Chl-a. Their molecular structures were unambiguously determined using 1H and 13C NMR spectroscopy and mass spectrometry. In particular, the positions of C═C double bonds in DHGG were identified at C2═C3, C6═C7, and C14═C15, and those in THGG were determined to be at C2═C3 and C14═C15. Notably, the present DHGG was different from the previously determined DHGG of bacteriochlorophyll-a in purple bacteria (C2═C3, C10═C11, and C14═C15). Moreover, thylakoid membranes as well as fucoxanthin-chlorophyll-a/c proteins called FCPs were isolated from the diatom, and their Chl-a compositions were analyzed. Chls-a esterified with GG, DHGG, and THGG were detected by HPLC, indicating that such Chls-a were not merely biosynthetic precursors, but photosynthetically active pigments.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| | - Megumi Isaji
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| | | | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine , Kurume, Fukuoka 830-0011, Japan
| | | | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University , Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
39
|
Materová Z, Sobotka R, Zdvihalová B, Oravec M, Nezval J, Karlický V, Vrábl D, Štroch M, Špunda V. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:48-56. [PMID: 28527413 DOI: 10.1016/j.plaphy.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 05/27/2023]
Abstract
Light quality is an important environmental factor affecting the biosynthesis of photosynthetic pigments whose production seems to be affected not only quantitatively but also qualitatively. In this work, we set out to identify unusual pigment detected in leaves of barley (Hordeum vulgare L.) and explain its presence in plants grown under monochromatic green light (GL; 500-590 nm). The chromatographic analysis (HPLC-DAD) revealed that a peak belonging to this unknown pigment is eluted between chlorophyll (Chl) a and b. This pigment exhibited the same absorption spectrum and fluorescence excitation and emission spectra as Chl a. It was negligible in control plants cultivated under white light of the same irradiance (photosynthetic photon flux density of 240 μmol m-2 s-1). Mass spectrometry analysis of this pigment (ions m/z = 889 [M-H]-; m/z = 949 [M+acetic acid-H]-) indicates that it is Chl a with a tetrahydrogengeranylgeraniol side chain (containing two double bonds in a phytyl side chain; Chl aTHGG), which is an intermediate in Chl a synthesis. In plants grown under GL, the proportion of Chl aTHGG to total Chl content rose to approximately 8% and 16% after 7 and 14 days of cultivation, respectively. Surprisingly, plants cultivated under GL exhibited drastically increased concentration of the enzyme geranylgeranyl reductase, which is responsible for the reduction of phytyl chain double bonds in the Chl synthesis pathway. This indicates impaired activity of this enzyme in GL-grown plants. A similar effect of GL on Chl synthesis was observed for distinct higher plant species.
Collapse
Affiliation(s)
- Zuzana Materová
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic.
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Barbora Zdvihalová
- Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Michal Oravec
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Jakub Nezval
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
| | - Václav Karlický
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Daniel Vrábl
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
| | - Michal Štroch
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Vladimír Špunda
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
40
|
Lin YP, Wu MC, Charng YY. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis. THE PLANT CELL 2016; 28:2974-2990. [PMID: 27920339 PMCID: PMC5240737 DOI: 10.1105/tpc.16.00478] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 05/17/2023]
Abstract
Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| | - Meng-Chen Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
41
|
Fesenko I, Seredina A, Arapidi G, Ptushenko V, Urban A, Butenko I, Kovalchuk S, Babalyan K, Knyazev A, Khazigaleeva R, Pushkova E, Anikanov N, Ivanov V, Govorun VM. The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. FRONTIERS IN PLANT SCIENCE 2016; 7:1661. [PMID: 27867392 PMCID: PMC5095126 DOI: 10.3389/fpls.2016.01661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Anna Seredina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Georgij Arapidi
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vasily Ptushenko
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- Department of Biocatalysis, Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, Russia
| | - Anatoly Urban
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Ivan Butenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| | - Sergey Kovalchuk
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Konstantin Babalyan
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Andrey Knyazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Elena Pushkova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nikolai Anikanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim M. Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| |
Collapse
|
42
|
Riva-Roveda L, Escale B, Giauffret C, Périlleux C. Maize plants can enter a standby mode to cope with chilling stress. BMC PLANT BIOLOGY 2016; 16:212. [PMID: 27716066 PMCID: PMC5050578 DOI: 10.1186/s12870-016-0909-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND European Flint maize inbred lines are used as a source of adaptation to cold in most breeding programs in Northern Europe. A deep understanding of their adaptation strategy could thus provide valuable clues for further improvement, which is required in the current context of climate change. We therefore compared six inbreds and two derived Flint x Dent hybrids for their response to one-week at low temperature (10 °C day/7 or 4 °C night) during steady-state vegetative growth. RESULTS Leaf growth was arrested during chilling treatment but recovered fast upon return to warm temperature, so that no negative effect on shoot biomass was measured. Gene expression analyses of the emerging leaf in the hybrids suggest that plants maintained a 'ready-to-grow' state during chilling since cell cycle genes were not differentially expressed in the division zone and genes coding for expansins were on the opposite up-regulated in the elongation zone. In photosynthetic tissues, a strong reduction in PSII efficiency was measured. Chilling repressed chlorophyll biosynthesis; we detected accumulation of the precursor geranylgeranyl chlorophyll a and down-regulation of GERANYLGERANYL REDUCTASE (GGR) in mature leaf tissues. Excess light energy was mostly dissipated through fluorescence and constitutive thermal dissipation processes, rather than by light-regulated thermal dissipation. Consistently, only weak clues of xanthophyll cycle activation were found. CO2 assimilation was reduced by chilling, as well as the expression levels of genes encoding phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and the small subunit of Rubisco. Accumulation of sugars was correlated with a strong decrease of the specific leaf area (SLA). CONCLUSIONS Altogether, our study reveals good tolerance of the photosynthetic machinery of Northern European maize to chilling and suggests that growth arrest might be their strategy for fast recovery after a mild stress.
Collapse
Affiliation(s)
- Laëtitia Riva-Roveda
- Arvalis – Institut du Végétal, Service Génétique, Physiologie et Protection des Plantes, Chemin de Pau 21, F-64121 Montardon, France
- UMR SADV, INRA, Université de Lille 1 Sciences et Technologies, F-80203 Estrées-Mons, France
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus Quartier Vallée 1, Chemin de la Vallée 4, B-4000 Liège, Belgium
| | - Brigitte Escale
- Arvalis – Institut du Végétal, Service Génétique, Physiologie et Protection des Plantes, Chemin de Pau 21, F-64121 Montardon, France
| | - Catherine Giauffret
- UMR SADV, INRA, Université de Lille 1 Sciences et Technologies, F-80203 Estrées-Mons, France
- UR AgroImpact, INRA, F-80203 Estrées-Mons, France
| | - Claire Périlleux
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus Quartier Vallée 1, Chemin de la Vallée 4, B-4000 Liège, Belgium
| |
Collapse
|
43
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
44
|
Zhang DW, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin Y, Lin HH. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:12-25. [PMID: 25158995 DOI: 10.1111/pce.12438] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/08/2023]
Abstract
Although mitochondrial alternative oxidase (AOX) has been proposed to play essential roles in high light stress tolerance, the effects of AOX on chlorophyll synthesis are unclear. Previous studies indicated that during greening, chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene. Here, we showed that this delay of chlorophyll accumulation was more significant under high light condition. Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP(+) ratio, especially under high light treatment which subsequently blocked the import of multiple plastidial proteins, such as some components of the photosynthetic electron transport chain, the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components. Overexpression of AOX1a rescued the aox1a mutant phenotype, including the chlorophyll accumulation during greening and plastidial protein import. It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal, the AOX-derived plastidial NADPH/NADP(+) ratio change. Further, our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Shu Yuan
- Institute of Ecological and Environmental Sciences, College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Ming Yuan
- College of Biology and Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hua-Xun Ye
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Hong-Qing Guo
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Plant Science Institute, Iowa State University, Ames, IA, 50011, USA
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
45
|
Georgiadou EC, Ntourou T, Goulas V, Manganaris GA, Kalaitzis P, Fotopoulos V. Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development. FRONTIERS IN PLANT SCIENCE 2015; 6:871. [PMID: 26557125 PMCID: PMC4617049 DOI: 10.3389/fpls.2015.00871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 05/09/2023]
Abstract
The aim of this work was to generate a high resolution temporal mapping of the biosynthetic pathway of vitamin E in olive fruit (Olea europaea cv. "Koroneiki") during 17 successive on-tree developmental stages. Fruit material was collected from the middle of June until the end of January, corresponding to 6-38 weeks after flowering (WAF). Results revealed a variable gene regulation pattern among 6-38 WAF studied and more pronounced levels of differential regulation of gene expression for the first and intermediate genes in the biosynthetic pathway (VTE5, geranylgeranyl reductase, HPPD, VTE2, HGGT and VTE3) compared with the downstream components of the pathway (VTE1 and VTE4). Notably, expression of HGGT and VTE2 genes were significantly suppressed throughout the developmental stages examined. Metabolite analysis indicated that the first and intermediate stages of development (6-22 WAF) have higher concentrations of tocochromanols compared with the last on-tree stages (starting from 24 WAF onwards). The concentration of α-tocopherol (16.15 ± 0.60-32.45 ± 0.54 mg/100 g F.W.) were substantially greater (up to 100-fold) than those of β-, γ-, and δ-tocopherols (0.13 ± 0.01-0.25 ± 0.03 mg/100 g F.W., 0.13 ± 0.01-0.33 ± 0.04 mg/100 g F.W., 0.14 ± 0.01-0.28 ± 0.01 mg/100 g F.W., respectively). In regard with tocotrienol content, only γ-tocotrienol was detected. Overall, olive fruits (cv. "Koroneiki") exhibited higher concentrations of vitamin E until 22 WAF as compared with later WAF, concomitant with the expression profile of phytol kinase (VTE5), which could be used as a marker gene due to its importance in the biosynthesis of vitamin E. To the best of our knowledge, this is the first study that explores the complete biosynthetic pathway of vitamin E in a fruit tree crop of great horticultural importance such as olive, linking molecular gene expression analysis with tocochromanol content.
Collapse
Affiliation(s)
- Egli C. Georgiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - Thessaloniki Ntourou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of ChaniaChania, Greece
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of ChaniaChania, Greece
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| |
Collapse
|
46
|
Chatterjee A, Kundu S. Revisiting the chlorophyll biosynthesis pathway using genome scale metabolic model of Oryza sativa japonica. Sci Rep 2015; 5:14975. [PMID: 26443104 PMCID: PMC4595741 DOI: 10.1038/srep14975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/27/2015] [Indexed: 12/30/2022] Open
Abstract
Chlorophyll is one of the most important pigments present in green plants and rice is one of the major food crops consumed worldwide. We curated the existing genome scale metabolic model (GSM) of rice leaf by incorporating new compartment, reactions and transporters. We used this modified GSM to elucidate how the chlorophyll is synthesized in a leaf through a series of bio-chemical reactions spanned over different organelles using inorganic macronutrients and light energy. We predicted the essential reactions and the associated genes of chlorophyll synthesis and validated against the existing experimental evidences. Further, ammonia is known to be the preferred source of nitrogen in rice paddy fields. The ammonia entering into the plant is assimilated in the root and leaf. The focus of the present work is centered on rice leaf metabolism. We studied the relative importance of ammonia transporters through the chloroplast and the cytosol and their interlink with other intracellular transporters. Ammonia assimilation in the leaves takes place by the enzyme glutamine synthetase (GS) which is present in the cytosol (GS1) and chloroplast (GS2). Our results provided possible explanation why GS2 mutants show normal growth under minimum photorespiration and appear chlorotic when exposed to air.
Collapse
Affiliation(s)
- Ankita Chatterjee
- 1Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta India
| | - Sudip Kundu
- 1Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta India.,Center of Excellence in Systems Biology and Biomedical Engineering, TEQIP Phase-II, University of Calcutta India
| |
Collapse
|
47
|
Lohscheider JN, Rojas-Stütz MC, Rothbart M, Andersson U, Funck D, Mendgen K, Grimm B, Adamska I. Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance. PLANT, CELL & ENVIRONMENT 2015; 38:2115-27. [PMID: 25808681 DOI: 10.1111/pce.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 05/10/2023]
Abstract
Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
- Department of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Marc C Rojas-Stütz
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Maxi Rothbart
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Ulrica Andersson
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Dietmar Funck
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Kurt Mendgen
- Phytopathologie, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Humboldt-Universität zu Berlin, DE-10115, Berlin, Germany
| | - Iwona Adamska
- Biochemie und Physiologie der Pflanzen, Universität Konstanz, DE-78457, Konstanz, Germany
| |
Collapse
|
48
|
Mork-Jansson AE, Gargano D, Kmiec K, Furnes C, Shevela D, Eichacker LA. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana. FEBS Lett 2015; 589:3064-70. [PMID: 26320415 DOI: 10.1016/j.febslet.2015.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/15/2022]
Abstract
The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | - Daniela Gargano
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Karol Kmiec
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Dmitriy Shevela
- Center for Organelle Research, University of Stavanger, Stavanger, Norway; Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Sweden
| | | |
Collapse
|
49
|
Mork-Jansson A, Bue AK, Gargano D, Furnes C, Reisinger V, Arnold J, Kmiec K, Eichacker LA. Lil3 Assembles with Proteins Regulating Chlorophyll Synthesis in Barley. PLoS One 2015; 10:e0133145. [PMID: 26172838 PMCID: PMC4501709 DOI: 10.1371/journal.pone.0133145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/23/2015] [Indexed: 11/24/2022] Open
Abstract
The light-harvesting-like (LIL) proteins are a family of membrane proteins that share a chlorophyll a/b-binding motif with the major light-harvesting antenna proteins of oxygenic photoautotrophs. LIL proteins have been associated with the regulation of tetrapyrrol biosynthesis, and plant responses to light-stress. Here, it was found in a native PAGE approach that chlorophyllide, and chlorophyllide plus geranylgeraniolpyrophosphate trigger assembly of Lil3 in three chlorine binding fluorescent protein bands, termed F1, F2, and F3. It is shown that light and chlorophyllide trigger accumulation of protochlorophyllide-oxidoreductase, and chlorophyll synthase in band F3. Chlorophyllide and chlorophyll esterified to geranylgeraniol were identified as basis of fluorescence recorded from band F3. A direct interaction between Lil3, CHS and POR was confirmed in a split ubiquitin assay. In the presence of light or chlorophyllide, geranylgeraniolpyrophosphate was shown to trigger a loss of the F3 band and accumulation of Lil3 and geranylgeranyl reductase in F1 and F2. No direct interaction between Lil3 and geranylgeraniolreductase was identified in a split ubiquitin assay; however, accumulation of chlorophyll esterified to phytol in F1 and F2 corroborated the enzymes assembly. Chlorophyll esterified to phytol and the reaction center protein psbD of photosystem II were identified to accumulate together with psb29, and APX in the fluorescent band F2. Data show that Lil3 assembles with proteins regulating chlorophyll synthesis in etioplasts from barley (Hordeum vulgare L.).
Collapse
Affiliation(s)
| | - Ann Kristin Bue
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Daniela Gargano
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Clemens Furnes
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Veronika Reisinger
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Janine Arnold
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Karol Kmiec
- Center for Organelle Research, University of Stavanger, Stavanger, Norway
| | | |
Collapse
|
50
|
Saladié M, Cañizares J, Phillips MA, Rodriguez-Concepcion M, Larrigaudière C, Gibon Y, Stitt M, Lunn JE, Garcia-Mas J. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics 2015; 16:440. [PMID: 26054931 PMCID: PMC4460886 DOI: 10.1186/s12864-015-1649-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/20/2015] [Indexed: 11/14/2022] Open
Abstract
Background In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Results Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Conclusions Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1649-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Montserrat Saladié
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Present address: School of Chemistry and Biochemistry, Biochemistry and Molecular Biology, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Joaquin Cañizares
- COMAV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València (UPV), Camino de Vera s/n, Valencia, 46022, Spain.
| | - Michael A Phillips
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Christian Larrigaudière
- IRTA, Parc Científic i Tecnològic Agroalimentari, Parc de Gardeny, Edifici Fruitcentre, Lleida, 25003, Spain.
| | - Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany. .,Present address: INRA Bordeaux, University of Bordeaux, UMR1332 Fruit Biology and Pathology, Villenave d'Ornon, F-33883, France.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam, 14476, (OT) Golm, Germany.
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| |
Collapse
|