1
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
2
|
Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novák O, Senes A, Werner T. The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. PLANT PHYSIOLOGY 2018; 176:2024-2039. [PMID: 29301955 PMCID: PMC5841711 DOI: 10.1104/pp.17.00925] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 05/05/2023]
Abstract
Degradation of the plant hormone cytokinin is controlled by cytokinin oxidase/dehydrogenase (CKX) enzymes. The molecular and cellular behavior of these proteins is still largely unknown. In this study, we show that CKX1 is a type II single-pass membrane protein that localizes predominantly to the endoplasmic reticulum (ER) in Arabidopsis (Arabidopsis thaliana). This indicates that this CKX isoform is a bona fide ER protein directly controlling the cytokinin, which triggers the signaling from the ER. By using various approaches, we demonstrate that CKX1 forms homodimers and homooligomers in vivo. The amino-terminal part of CKX1 was necessary and sufficient for the protein oligomerization as well as for targeting and retention in the ER. Moreover, we show that protein-protein interaction is largely facilitated by transmembrane helices and depends on a functional GxxxG-like interaction motif. Importantly, mutations rendering CKX1 monomeric interfere with its steady-state localization in the ER and cause a loss of the CKX1 biological activity by increasing its ER-associated degradation. Therefore, our study provides evidence that oligomerization is a crucial parameter regulating CKX1 biological activity and the cytokinin concentration in the ER. The work also lends strong support for the cytokinin signaling from the ER and for the functional relevance of the cytokinin pool in this compartment.
Collapse
Affiliation(s)
- Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 78371 Olomouc, Czech Republic
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Samantha M Anderson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
- Institute of Plant Sciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Ménard D, Pesquet E. Cellular interactions during tracheary elements formation and function. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:109-15. [PMID: 25545993 DOI: 10.1016/j.pbi.2014.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 05/08/2023]
Abstract
The survival of higher plant species on land depends on the development and function of an efficient vascular system distributing water and minerals absorbed by roots to all aerial organs. This conduction and distribution of plant sap relies on specialized cells named tracheary elements (TEs). In contrast to many other cell types in plants, TEs are functionalized by cell death that hollows the cell protoplast to make way for the sap. To maintain a stable conducting function during plant development, recovery from vascular damages as well as to adapt to environmental changes, TEs are completely dependent on direct cellular interactions with neighboring xylem parenchyma cells (XPs).
Collapse
Affiliation(s)
- Delphine Ménard
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden.
| |
Collapse
|
4
|
Gershlick DC, de Marcos Lousa C, Foresti O, Lee AJ, Pereira EA, daSilva LL, Bottanelli F, Denecke J. Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. THE PLANT CELL 2014; 26:1308-29. [PMID: 24642936 PMCID: PMC4001386 DOI: 10.1105/tpc.113.122226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 05/02/2023]
Abstract
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXX-mediated receptor trafficking. Protein-protein interaction studies show that the VSR tail interacts with the μ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed.
Collapse
Affiliation(s)
- David C. Gershlick
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carine de Marcos Lousa
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Lee
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Deryabin AN, Berdichevets IN, Burakhanova EA, Trunova TI. Characteristics of extracellular invertase of Saccharomyces cerevisiae in heterologous expression of the suc2 Gene in Solanum tuberosum plants. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Cheung SCK, Long X, Liu L, Liu Q, Lan L, Tong PCY, Sun SSM. Inhibition of human MCF-7 breast cancer cells and HT-29 colon cancer cells by rice-produced recombinant human insulin-like growth binding protein-3 (rhIGFBP-3). PLoS One 2013; 8:e77516. [PMID: 24143239 PMCID: PMC3797122 DOI: 10.1371/journal.pone.0077516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/03/2013] [Indexed: 12/05/2022] Open
Abstract
Background Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. Methodology/Principal Findings We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3) in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL) were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively) and HT-29 colon cancer cells (65.14 ±3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively) when compared with wild type rice. Conclusion/Significance These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future.
Collapse
Affiliation(s)
- Stanley C. K. Cheung
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiaohang Long
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhong Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Jiangsu, China
| | - Linlin Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Peter C. Y. Tong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Samuel S. M. Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
7
|
Wang XL, Hu ZY, You CX, Kong XZ, Shi XP. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:36-45. [PMID: 23849111 DOI: 10.1016/j.plantsci.2013.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH.
Collapse
Affiliation(s)
- Xiu-Ling Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| | | | | | | | | |
Collapse
|
8
|
Xiang L, Van den Ende W. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. PLANT & CELL PHYSIOLOGY 2013; 54:1263-1277. [PMID: 23737500 DOI: 10.1093/pcp/pct075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.
Collapse
Affiliation(s)
- Li Xiang
- Biology Department, Laboratory for Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium
| | | |
Collapse
|
9
|
Scheuring D, Künzl F, Viotti C, Yan MSW, Jiang L, Schellmann S, Robinson DG, Pimpl P. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC PLANT BIOLOGY 2012; 12:164. [PMID: 22970698 PMCID: PMC3534617 DOI: 10.1186/1471-2229-12-164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.
Collapse
Affiliation(s)
- David Scheuring
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabian Künzl
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, 72076, Germany
| | - Corrado Viotti
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
- Plant Developmental Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| | - Melody San Wan Yan
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin NT, Hong Kong, PR China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin NT, Hong Kong, PR China
| | - Swen Schellmann
- Botanical Institute, Biozentrum Köln, University of Cologne, Cologne, 50674, Germany
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| | - Peter Pimpl
- Department of Developmental Genetics, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, 72076, Germany
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
10
|
Conlan BF, Gillon AD, Barbeta BL, Anderson MA. Subcellular targeting and biosynthesis of cyclotides in plant cells. AMERICAN JOURNAL OF BOTANY 2011; 98:2018-26. [PMID: 22081413 DOI: 10.3732/ajb.1100382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY The cyclotide kalata B1 is found in the leaves of Oldenlandia affinis and is a potent insecticidal and nematocidal molecule. This peptide is cleaved from a precursor protein, Oak1, and ligation of the N- and C-termini occurs to form a continuous peptide backbone. The subcellular location of the excision and cyclization reactions is unknown, and there is debate as to which enzyme catalyzes the event. To determine where in the plant cell Oak1 is processed, we prepared constructs encoding GFP (green fluorescent protein) linked to the cyclotide precursor Oak1. METHODS The GFP constructs were transiently expressed in the leaves of Nicotiana benthamiana, and GFP fluorescence was observed in living cells using confocal microscopy. A Fei Mao (FM) styryl dye was infiltrated into whole leaves that were still growing and expressing GFP constructs, enabling the plasma membrane and the tonoplast to be highlighted for visualization of the vacuole in living cells. KEY RESULTS The full length Oak1 precursor directed GFP to the vacuole, suggesting that excision and cyclization of the cyclotide domain occurs in the vacuole where the cyclotides are then stored. The N-terminal propeptide and N-terminal repeat of Oak1 were both sufficient to target GFP to the vacuole, although the C-terminal propeptide, which is essential for cyclization, was not a targeting signal. CONCLUSIONS The vacuolar location of cyclotides supports our hypothesis that the vacuolar processing enzyme, asparaginyl endoproteinase, has a pivotal role in excision and cyclization from cyclotide precursors.
Collapse
Affiliation(s)
- Brendon F Conlan
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Scabone CM, Frigerio L, Petruccelli S. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells. PLANT CELL REPORTS 2011; 30:1823-33. [PMID: 21611741 DOI: 10.1007/s00299-011-1089-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 05/15/2023]
Abstract
To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.
Collapse
Affiliation(s)
- Camila María Scabone
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-La Plata CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CC553, 1900, La Plata, Argentina
| | | | | |
Collapse
|
12
|
Cheung SC, Liu LZ, Lan LL, Liu QQ, Sun SS, Chan JC, Tong PC. Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies. BMC Biotechnol 2011; 11:37. [PMID: 21486461 PMCID: PMC3098155 DOI: 10.1186/1472-6750-11-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 04/12/2011] [Indexed: 12/13/2022] Open
Abstract
Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I.
Collapse
Affiliation(s)
- Stanley Ck Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
13
|
Boulaflous A, Saint-Jore-Dupas C, Herranz-Gordo MC, Pagny-Salehabadi S, Plasson C, Garidou F, Kiefer-Meyer MC, Ritzenthaler C, Faye L, Gomord V. Cytosolic N-terminal arginine-based signals together with a luminal signal target a type II membrane protein to the plant ER. BMC PLANT BIOLOGY 2009; 9:144. [PMID: 19995436 PMCID: PMC2799409 DOI: 10.1186/1471-2229-9-144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 12/08/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails. RESULTS Here, using Arabidopsis glucosidase I as a model, we have identified two types of signals sufficient for the location of a type II membrane protein in the ER. A first signal is located in the luminal domain, while a second signal corresponds to a short amino acid sequence located in the cytosolic tail of the membrane protein. The cytosolic tail contains at its N-terminal end four arginine residues constitutive of three di-arginine motifs (RR, RXR or RXXR) independently sufficient to confer ER localization. Interestingly, when only one di-arginine motif is present, fusion proteins are located both in the ER and in mobile punctate structures, distinct but close to Golgi bodies. Soluble and membrane ER protein markers are excluded from these punctate structures, which also do not colocalize with an ER-exit-site marker. It is hypothesized they correspond to sites involved in Golgi to ER retrotransport. CONCLUSION Altogether, these results clearly show that cytosolic and luminal signals responsible for ER retention could coexist in a same type II membrane protein. These data also suggest that both retrieval and retention mechanisms govern protein residency in the ER membrane. We hypothesized that mobile punctate structures not yet described at the ER/Golgi interface and tentatively named GERES, could be involved in retrieval mechanisms from the Golgi to the ER.
Collapse
Affiliation(s)
- Aurélia Boulaflous
- Laboratoire GLYCAD, IFRMP 23, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | | | | | | | - Carole Plasson
- Laboratoire GLYCAD, IFRMP 23, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Frédéric Garidou
- Laboratoire GLYCAD, IFRMP 23, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des plantes, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Loïc Faye
- Laboratoire GLYCAD, IFRMP 23, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Véronique Gomord
- Laboratoire GLYCAD, IFRMP 23, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
14
|
Cheung SCK, Sun SSM, Chan JCN, Tong PCY. Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants. Transgenic Res 2009; 18:943-51. [PMID: 19504171 DOI: 10.1007/s11248-009-9286-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/16/2009] [Indexed: 12/17/2022]
Abstract
Human insulin-like growth factor binding protein-3 (hIGFBP-3) is a multifunctional protein which has high affinity for insulin-like growth factor-I (IGF-I). It combines with IGF-I to form a tertiary complex in circulation, thus regulating the activity of IGF-I. Furthermore, recombinant hIGFBP-3 (rhIGFBP-3) has been found to negatively regulate cell proliferation and induce apoptosis. In this study, we have established an efficient plant bioreactor platform for mass production of rhIGFBP-3. Different expression constructs, driven by the seed-specific phaseolin promoter, were designed and transformed into tobacco plant via Agrobacterium. To enhance protein expression level, the signal peptide (SP) and the C-terminal tetrapeptide AFVY of phaseolin were used to direct rhIGFBP-3 to protein storage vacuole (PSV) in tobacco seed for stable accumulation. Western blot analysis showed that rhIGFBP-3 was successfully synthesized in transgenic tobacco seeds, with the highest protein expression of 800 mug/g dry weight. The localization of rhIGFBP-3 in PSV was also evident by confocal immunofluorescence microscopy. Our results indicated that protein sorting sequences could benefit the expression level of rhIGFBP-3 and it is feasible to use plant as "bio-factory" to produce therapeutic recombinant proteins in large quantity.
Collapse
Affiliation(s)
- Stanley C K Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
15
|
Rojo E, Denecke J. What is moving in the secretory pathway of plants? PLANT PHYSIOLOGY 2008; 147:1493-503. [PMID: 18678741 PMCID: PMC2492647 DOI: 10.1104/pp.108.124552] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Enrique Rojo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | |
Collapse
|
16
|
Langhans M, Marcote MJ, Pimpl P, Virgili-López G, Robinson DG, Aniento F. In vivo Trafficking and Localization of p24 Proteins in Plant Cells. Traffic 2008; 9:770-85. [DOI: 10.1111/j.1600-0854.2008.00719.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
daSilva LLP, Foresti O, Denecke J. Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. THE PLANT CELL 2006; 18:1477-97. [PMID: 16714388 PMCID: PMC1475491 DOI: 10.1105/tpc.105.040394] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion of BP80-ligands from tobacco (Nicotiana tabacum) leaf protoplasts. We show that both the transmembrane domain and the cytosolic tail of BP80 contain information necessary for efficient progress to the prevacuolar compartment (PVC). Furthermore, the tail must be exposed on the correct membrane surface to compete with sorting machinery. Mutational analysis of conserved residues revealed that multiple sequence motifs are necessary for competition, one of which is a typical Tyr-based motif (YXXPhi). Substitution of Tyr-612 for Ala causes partial retention in the Golgi apparatus, mistargeting to the plasma membrane (PM), and slower progress to the PVC. A role in Golgi-to-PVC transport was confirmed by generating the corresponding mutation on full-length BP80. The mutant receptor was partially mistargeted to the PM and induced the secretion of a coexpressed BP80-ligand. Further mutants indicate that the cytosolic tail is likely to contain other information besides the YXXPhi motif, possibly for endoplasmic reticulum export, endocytosis from the PM, and PVC-to-Golgi recycling.
Collapse
Affiliation(s)
- Luis L P daSilva
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
18
|
McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:156-173. [PMID: 14690501 DOI: 10.1111/j.1365-313x.2004.01949.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency. Using in vitro transcription/translation reactions with ER-derived microsomes, we show that both FAD2 and FAD3 are efficiently integrated into membranes by a co-translational, translocon-mediated pathway. We also demonstrate that while the C-terminus of FAD3 (-KSKIN) contains a functional prototypic dilysine ER retrieval motif, FAD2 contains a novel C-terminal aromatic amino acid-containing sequence (-YNNKL) that is both necessary and sufficient for maintaining localization in the ER. Co-expression of a membrane-bound reporter protein containing the FAD2 C-terminus with a dominant-negative mutant of ADP-ribosylation factor (Arf)1 abolished transient localization of the reporter protein in the Golgi, indicating that the FAD2 peptide signal acts as an ER retrieval motif. Mutational analysis of the FAD2 ER retrieval signal revealed a sequence-specific motif consisting of Phi-X-X-K/R/D/E-Phi-COOH, where -Phi- are large hydrophobic amino acid residues. Interestingly, this aromatic motif was present in a variety of other known and putative ER membrane proteins, including cytochrome P450 and the peroxisomal biogenesis factor Pex10p. Taken together, these data describe the insertion and retrieval mechanisms of FADs and define a new ER localization signal in plants that is responsible for the retrieval of escaped membrane proteins back to the ER.
Collapse
|
19
|
Navarro-Gochicoa MT, Camut S, Timmers ACJ, Niebel A, Herve C, Boutet E, Bono JJ, Imberty A, Cullimore JV. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. PLANT PHYSIOLOGY 2003; 133:1893-910. [PMID: 14630957 PMCID: PMC300742 DOI: 10.1104/pp.103.027680] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/30/2003] [Accepted: 09/15/2003] [Indexed: 05/20/2023]
Abstract
To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.
Collapse
Affiliation(s)
- Maria-Teresa Navarro-Gochicoa
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Boite Postale 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
NEUMANN ULLA, BRANDIZZI FEDERICA, HAWES CHRIS. Protein transport in plant cells: in and out of the Golgi. ANNALS OF BOTANY 2003; 92:167-80. [PMID: 12876187 PMCID: PMC4243656 DOI: 10.1093/aob/mcg134] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.
Collapse
Affiliation(s)
- ULLA NEUMANN
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
| | - FEDERICA BRANDIZZI
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
| | - CHRIS HAWES
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus,Oxford OX3 0BP, UK
- * For correspondence. Fax +44 1865 483955, e‐mail
| |
Collapse
|
21
|
Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N. The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. THE PLANT CELL 2002; 14:1077-92. [PMID: 12034898 PMCID: PMC150608 DOI: 10.1105/tpc.000620] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 02/11/2002] [Indexed: 05/18/2023]
Abstract
The tonoplast was proposed as a default destination of membrane-bound proteins without specific targeting signals. To investigate the nature of this targeting, we created type I fusion proteins with green fluorescent protein followed by the transmembrane domain of the human lysosomal protein LAMP1. We varied the length of the transmembrane domain from 23 to either 20 or 17 amino acids by deletion within the hydrophobic domain. The resulting chimeras, called TM23, TM20, and TM17, were expressed either transiently or stably in tobacco. TM23 clearly accumulated in the plasmalemma, as confirmed by immunoelectron microscopy. In contrast, TM17 clearly was retained in the endoplasmic reticulum, and TM20 accumulated in small mobile structures. The nature of the TM20-labeled compartments was investigated by coexpression with a marker localized mainly in the Golgi apparatus, AtERD2, fused to a yellow fluorescent protein. The strict colocalization of both fluorescent proteins indicated that TM20 accumulated in the Golgi apparatus. To further test the default destination of type I membrane proteins, green fluorescent protein was fused to the 19-amino acid transmembrane domain of the plant vacuolar sorting receptor BP-80. The resulting chimera also accumulated in the Golgi instead of in post-Golgi compartments, where native BP-80 localized. Additionally, when the transmembrane domain of BP-80 was lengthened to 22 amino acids, the reporter escaped the Golgi and accumulated in the plasma membrane. Thus, the tonoplast apparently is not a favored default destination for type I membrane proteins in plants. Moreover, the target membrane where the chimera concentrates is not unique and depends at least in part on the length of the membrane-spanning domain.
Collapse
Affiliation(s)
- Federica Brandizzi
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane Campus, OX3 0BP Headington-Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Transgenic plants are attractive expression systems for producing recombinant proteins. Plant cells compartmentalize and store metabolites and proteins in vacuoles, but foreign proteins need to be targeted to the correct compartments if they are to accumulate in a stable fashion. Here we present a general strategy in which unique transmembrane and cytoplasmic tail sequences are used as anchors for delivering recombinant proteins via distinct vesicular transport pathways to specific vacuolar compartments where stable accumulation can occur.
Collapse
Affiliation(s)
- Liwen Jiang
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
23
|
Bagnaresi P, Mazars-Marty D, Pupillo P, Marty F, Briat JF. Tonoplast subcellular localization of maize cytochrome b5 reductases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:645-654. [PMID: 11123803 DOI: 10.1046/j.1365-313x.2000.00914.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant cytochrome b5 reductases (b5R) are assumed to be part of an ER-associated redox chain that oxidizes NADH to provide electrons via cytochrome b5 (cyt b5) to ER-associated fatty acyl desaturase and related hydroxylases, as in mammalian cells. Here we report on cDNA cloning of a novel maize b5R, NFR II, strongly related to a previously cloned cDNA, NFR I (Bagnaresi et al., 1999, Biochem. J. 338, 499-505). Maize b5R isoforms are produced by a small multi-gene family. The NFR cDNAs were shown to encode active b5Rs by heterologous expression in yeast. Both reductases, in addition to Fe3+-chelates, efficiently reduced Cu2+-chelates. Using a polyclonal antibody able to recognize both NFR I and NFR II isoforms, no ER or mitochondrial localization could be detected in maize roots. Unexpectedly, maize b5Rs were found to be targeted to the tonoplast. Using the most specific assay to measure NFR activity, we confirmed that the highest NFR specific activity is associated with tonoplast-enriched maize root fractions. Tonoplast targeting is not consistent with a role in desaturase reactions or with the other functions ascribed to date to plant b5R. This indicates that alternative ER-associated electron donors for desaturases need to be sought, and that plant b5Rs may have previously unexpected functions.
Collapse
Affiliation(s)
- P Bagnaresi
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Montpellier II, Institut National de la Recherche Agronomique et Ecole Nationale Supérieure d'Agronomie, France
| | | | | | | | | |
Collapse
|
24
|
Frigerio L, Vine ND, Pedrazzini E, Hein MB, Wang F, Ma JK, Vitale A. Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants. PLANT PHYSIOLOGY 2000; 123:1483-94. [PMID: 10938364 PMCID: PMC59104 DOI: 10.1104/pp.123.4.1483] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Accepted: 04/26/2000] [Indexed: 05/20/2023]
Abstract
Secretory immunoglobulin (Ig) A is a decameric Ig composed of four alpha-heavy chains, four light chains, a joining (J) chain, and a secretory component (SC). The heavy and light chains form two tetrameric Ig molecules that are joined by the J chain and associate with the SC. Expression of a secretory monoclonal antibody in tobacco (Nicotiana tabacum) has been described: this molecule (secretory IgA/G [SIgA/G]) was modified by having a hybrid heavy chain sequence consisting of IgG gamma-chain domains linked to constant region domains of an IgA alpha-chain. In tobacco, about 70% of the protein assembles to its final, decameric structure. We show here that SIgA/G assembly and secretion are slow, with only approximately 10% of the newly synthesized molecules being secreted after 24 h and the bulk probably remaining in the endoplasmic reticulum. In addition, a proportion of SIgA/G is delivered to the vacuole as at least partially assembled molecules by a process that is blocked by the membrane traffic inhibitor brefeldin A. Neither the SC nor the J chain are responsible for vacuolar delivery, because IgA/G tetramers have the same fate. The parent IgG tetrameric molecule, containing wild-type gamma-heavy chains, is instead secreted rapidly and efficiently. This strongly suggests that intracellular retention and vacuolar delivery of IgA/G is due to the alpha-domains present in the hybrid alpha/gamma-heavy chains and indicates that the plant secretory system may partially deliver to the vacuole recombinant proteins expected to be secreted.
Collapse
Affiliation(s)
- L Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Benghezal M, Wasteneys GO, Jones DA. The C-terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. THE PLANT CELL 2000; 12:1179-201. [PMID: 10899983 PMCID: PMC149058 DOI: 10.1105/tpc.12.7.1179] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 05/08/2000] [Indexed: 05/18/2023]
Abstract
The tomato Cf-9 disease resistance gene encodes a type I membrane protein carrying a cytosolic dilysine motif. In mammals and yeast, this motif promotes the retrieval of type I membrane proteins from the Golgi apparatus to the endoplasmic reticulum (ER). To test whether the C-terminal KKXX signal of Cf-9 is functional as a retrieval motif and to investigate its role in plants, green fluorescent protein (GFP) was fused to the transmembrane domain of Cf-9 and expressed in yeast, Arabidopsis, and tobacco cells. The fusion protein was targeted to the ER in each of these expression systems, and mutation of the KKXX motif to NNXX led to secretion of the fusion protein. In yeast, the mutant protein reached the vacuole, but plants secreted it as a soluble protein after proteolytic removal of the transmembrane domain. Triple hemagglutinin (HA)-tagged full-length Cf-9 was also targeted to the ER in tobacco cells, and cleavage was also observed for the NNXX mutant protein, suggesting an endoprotease recognition site located within the Cf-9 lumenal sequence common to both the GFP- and the HA-tagged fusions. Our results indicate that the KKXX motif confers ER localization in plants as well as mammals and yeast and that Cf-9 is a resident protein of the ER.
Collapse
Affiliation(s)
- M Benghezal
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra
| | | | | |
Collapse
|
26
|
Benghezal M, Wasteneys GO, Jones DA. The C-terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. THE PLANT CELL 2000; 12:1179-1201. [PMID: 10899983 DOI: 10.2307/3871264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tomato Cf-9 disease resistance gene encodes a type I membrane protein carrying a cytosolic dilysine motif. In mammals and yeast, this motif promotes the retrieval of type I membrane proteins from the Golgi apparatus to the endoplasmic reticulum (ER). To test whether the C-terminal KKXX signal of Cf-9 is functional as a retrieval motif and to investigate its role in plants, green fluorescent protein (GFP) was fused to the transmembrane domain of Cf-9 and expressed in yeast, Arabidopsis, and tobacco cells. The fusion protein was targeted to the ER in each of these expression systems, and mutation of the KKXX motif to NNXX led to secretion of the fusion protein. In yeast, the mutant protein reached the vacuole, but plants secreted it as a soluble protein after proteolytic removal of the transmembrane domain. Triple hemagglutinin (HA)-tagged full-length Cf-9 was also targeted to the ER in tobacco cells, and cleavage was also observed for the NNXX mutant protein, suggesting an endoprotease recognition site located within the Cf-9 lumenal sequence common to both the GFP- and the HA-tagged fusions. Our results indicate that the KKXX motif confers ER localization in plants as well as mammals and yeast and that Cf-9 is a resident protein of the ER.
Collapse
Affiliation(s)
- M Benghezal
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra
| | | | | |
Collapse
|