1
|
Wu K, Hu C, Duan Y, Moussa MG, Li J, Lou W, Sun X, Yan X, Tan Q, Wu S. Potassium Promotes Citric Acid Accumulation by Regulating Its Synthesis and Vacuole Storage in Newhall Navel Orange ( Citrus sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40314565 DOI: 10.1021/acs.jafc.4c11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Potassium (K) is recognized as a crucial element affecting fruit flavor quality and influences the accumulation of citric acid (CA). To gain deeper insights into how K regulates CA accumulation, we investigated CA synthesis in mitochondria, decomposition pathways, and vacuolar storage under both pot and field culture in Newhall navel orange (Citrus sinensis). Our findings demonstrated that an appropriate level of K enhanced CA concentrations primarily by modulating CA synthesis, as evidenced by the increased activities and gene expressions of citrate synthase (CS) and phosphoenolpyruvate carboxylase (PEPC) in the early stages of fruit development. Integration of mitochondrial proteomic and targeted metabolomic revealed that K promoted CA synthesis by accelerating the TCA cycle, which were supported by the upregulation of TCA cycle-associated proteins, including malate dehydrogenase, 2-oxoglutarate dehydrogenase E2 component, pyruvate dehydrogenase E2 component, and dihydrolipoamide dehydrogenase, along with elevated levels of TCA cycle-related metabolites such as CA, isocitrate, 2-oxoglutarate, and succinate. Additionally, K enhanced CA concentration in vacuoles by promoting vacuolar acidification, as evidenced by the upregulation of P-type ATPase (CsPH8) expression. In summary, our findings provide novel insights into K facilitating CA accumulation by modulating its synthesis and vacuole storage in Citrus.
Collapse
Affiliation(s)
- Kongjie Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yuqing Duan
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Mohamed G Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Jinye Li
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wei Lou
- Ganzhou Citrus Research Institute, Ganzhou, Jiangxi 341000, P. R. China
| | - Xuecheng Sun
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiang Yan
- Ganzhou Citrus Research Institute, Ganzhou, Jiangxi 341000, P. R. China
| | - Qiling Tan
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Songwei Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
2
|
Zhang Z, Wang X, Gao Y, Xian X, Zhang D, Zhao W, Wang X, Wang Y. Orchestrating anthocyanin biosynthesis in fruit of fruit trees: Transcriptional, post-transcriptional, and post-translational regulation. Int J Biol Macromol 2025; 307:141835. [PMID: 40064275 DOI: 10.1016/j.ijbiomac.2025.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits. Accordingly, based on the consumption demand of beauty and nutrition, the creation of fruit tree products rich in anthocyanin is becoming an important breeding goal. The synthesis of anthocyanin has been investigated in various fruits, which is modulated by a variety of endogenous and exogenous factors, including transcription factors (TFs), plant hormones, and environmental factors (such as light, low temperature, drought). However, the detailed mechanisms in fruits of fruit trees have not been thoroughly elucidated. This review comprehensively examines the regulation of anthocyanin biosynthesis at the transcriptional, post-transcriptional, and post-translational levels, which is important for the application of molecular design strategies to cultivate high-quality fruits. At the transcriptional level, TFs were summarized to directly regulate anthocyanin biosynthesis genes, target non-anthocyanin biosynthesis pathway genes, interact with other proteins to mediate anthocyanin synthesis, and regulate anthocyanin synthesis by environmental factors and plant hormones. At the post-transcriptional level, non-coding RNAs (ncRNAs) were elucidated to mediate anthocyanin synthesis. At the post-translational level, a variety of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, and persulfidation, have been elucidated to exhibit crucial functions in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbing Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Barros JAS, Nunes-Nesi A, Fernie AR, Araújo WL. Transcriptional crosstalk linking color, acidity, and aroma in peach. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00102-5. [PMID: 40268564 DOI: 10.1016/j.tplants.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Color and flavor are key quality traits in fruits. Using a newly constructed peach pangenome, Chen et al. demonstrated that the PbBL gene, a known regulator of peach fruit color, also contributes to malate accumulation. This finding, along with previous studies, unveils a transcriptional mechanism that co-regulates multiple traits in peaches.
Collapse
Affiliation(s)
- Jessica A S Barros
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Wu S, Jin K, Li H, Chen G, Zhang L, Yang J, Zhai S, Li Y, Sun X, Cui X, Sun J, Lu T, Zhang Z. A Synthetic Facultative CAM-Like Shuttle in C 3 Rice Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500418. [PMID: 39921297 PMCID: PMC11967806 DOI: 10.1002/advs.202500418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/10/2025]
Abstract
Crassulacean acid metabolism (CAM) is one of the three major forms of photosynthesis, known for its efficient carbon sequestration mechanism. CAM plants store malate at night, which undergoes decarboxylation and promotes Rubisco carboxylation during the day. Despite its potential benefits, CAM engineering is not applied to C3 crops. This paper introduces a designed facultative CAM bypass (CBP) in rice by incorporating codon-optimized nocturnal carboxylation and decarboxylation modules, a malate transporter module, and a stomatal regulation module using the transgene stacking system. The CBP plants are correctly assembled by detection at the gene level, transcription level, protein level, and enzyme activity. Malate, CAM metabolism product, accumulated significantly at night in CBP plants. Metabolic analysis revealed that the malate is directed to the citric acid cycle and impacted carbon sequestration. The CBP plants showed a significant increase of ≈21% and ≈27% in photosynthetic rate and carboxylation efficiency, respectively. Additionally, CBP plants exhibited ≈20% increase in grain yield and biomass over the 2-year field trials. Unexpectedly, the water use efficiency and drought resistance do not improve in CBP plants. This study is the first to attempt CAM engineering in C3 and demonstrates the potential of facultative CAM carbon sequestration in rice.
Collapse
Affiliation(s)
- Suting Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Kaining Jin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Department of Plant SciencesCentre for Crop Systems AnalysisWageningen University & ResearchWageningenAK6700The Netherlands
| | - Haoshu Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Guoxin Chen
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Liying Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jinwen Yang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Shanshan Zhai
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yanni Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Xuehui Sun
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Xuean Cui
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jing Sun
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Tiegang Lu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Zhiguo Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
5
|
Zhai X, Yu X, Mao Z, Li M, Zhao Z, Cai C, Dahro B, Liu J, Li C. CsbHLH122/CsMYBS3-CsSUT2 contributes to the rapid accumulation of sugar in the ripening stage of sweet orange (Citrus sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70156. [PMID: 40245431 DOI: 10.1111/tpj.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/09/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
The sugar content serves as the fundamental metabolic component that determines both the flavor quality and the nutritional value of fruits. Nevertheless, the regulatory mechanism underlying the rapid accumulation of sugars during citrus fruit maturation remains elusive. In this study, we demonstrated that the expression level of sucrose transporter CsSUT2 is increased during citrus fruit ripening and sugar accumulation. Functional assays confirmed that CsSUT2 is localized in the plasma membrane and exhibits sucrose transporter activity. Homologous and heterologous overexpression of CsSUT2 in citrus juice sacs, calli, and tomato resulted in an increase in sugar content. Conversely, virus-induced gene silencing and RNAi-mediated silencing of CsSUT2 led to a decrease in sugar levels in transgenic citrus tissues. We further identified CsMYBS3 as an upstream transcription factor that positively regulates the expression of CsSUT2. Transgenic evidence supported that the induction of sugar accumulation by CsMYBS3 depends on the transcript level of CsSUT2. Additionally, we found that CsbHLH122 physically interacts with CsMYBS3 to form a transcription factor complex, enhancing promoter transcriptional activity of CsSUT2. This study expands our understanding of the function and regulatory mechanism of sugar transporter in citrus, providing valuable insights for regulating sugar accumulation and quality control in citrus fruit.
Collapse
Affiliation(s)
- Xiawan Zhai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zuolin Mao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengdi Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changle Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jihong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Liu P, Shao C, Ren H, Yang W, Duan C, Wang Y, Liao L, Wei X, Zhu L, Ma F, Li M, Ma B. Transcription factor MdNAC18.1 regulates malic acid accumulation in apple fruits. Int J Biol Macromol 2025; 308:142332. [PMID: 40147662 DOI: 10.1016/j.ijbiomac.2025.142332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Malic acid, the most important organic acid component in the ripe apple fruit, is of great importance for the development of the fruit flavor and regulation of the metabolism. Previous studies have demonstrated that the P3A-ATPase MdMa11 plays a role in determining fruit acidity, and a total of 85 positive clones were identified using yeast one-hybrid screening based on the fragment in MdMa11 promoter. Among these positive clones, the NAM domain protein was designated as MdNAC18.1. The analysis of transgenic apple calli, fruits and tomatoes indicated that MdNAC18.1 induced the organic acids accumulation to regulate fruit acidity. Luciferase (LUC) and glucuronidase (GUS) activation assays showed that MdNAC18.1 binds to the G-box motif (5'-ACGT-3') located 5227 bp upstream of transcription initiation site of the MdMa11, thereby promoting its expression. Meanwhile, the expression of MdWRKY126, MdMDH5, MdtDT, MdMYB1, and MdVHP1 was found to be significantly increased in transgenic apple calli overexpressing MdNAC18.1 and decreased in MdNAC18.1-silenced transgenic apple calli. The G-box was identified in all these five genes. However, the GUS and LUC activation assays exhibited that MdNAC18.1 activated MdWRKY126, MdMDH5, MdtDT, and MdMYB1 expression. Our findings contribute valuable insights into the complex mechanism regulating the accumulation of malate in apple fruits.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunxuan Shao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenbo Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Yan Y, Zhang W, Wang Y, Wang Y, Li C, Zhao N, Zhou L, Su J, Wang L, Jiang J, Chen S, Chen F. CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum. MOLECULAR HORTICULTURE 2025; 5:15. [PMID: 40025601 PMCID: PMC11874658 DOI: 10.1186/s43897-024-00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025]
Abstract
The role of ethylene as an initial signaling molecule in waterlogging stress is well-established. However, the complex molecular mechanisms underlying ethylene biosynthesis and its functional significance in chrysanthemums under waterlogging conditions have remained unclear. In this study, we observed an increase in the expression of 1-aminocyclopropane-1-carboxylate synthase 6 (CmACS6), which encodes a key enzyme responsible for ethylene biosynthesis, in response to waterlogging. This elevation increases ethylene production, induces leaf chlorosis, and enhances the chrysanthemum's sensitivity to waterlogging stress. Moreover, our analysis of upstream regulators revealed that the expression of CmACS6, in response to waterlogging, is directly upregulated by CmHRE2-like (Hypoxia Responsive ERF-like, CmHRE2L), an ethylene response factor. Notably, CmHRE2-L binds directly to the GCC-like motif in the promoter region of CmACS6. Genetic validation assays demonstrated that CmHRE2L was induced by waterlogging and contributed to ethylene production, consequently reducing waterlogging tolerance in a partially CmACS6-dependent manner. This study identified the regulatory module involving CmHRE2L and CmACS6, which governs ethylene biosynthesis in response to waterlogging stress.
Collapse
Affiliation(s)
- Yajun Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Wanwan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - You Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Chuanwei Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Nan Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
8
|
Zhang L, Tao H, Zhang J, An Y, Wang L. 5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple. MOLECULAR HORTICULTURE 2025; 5:10. [PMID: 39894860 PMCID: PMC11789342 DOI: 10.1186/s43897-024-00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/10/2024] [Indexed: 02/04/2025]
Abstract
5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.
Collapse
Affiliation(s)
- Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Pan C, Liao Y, Shi B, Zhang M, Zhou Y, Wu J, Wu H, Qian M, Bai S, Teng Y, Ni J. Blue light-induced MiBBX24 and MiBBX27 simultaneously promote peel anthocyanin and flesh carotenoid biosynthesis in mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109315. [PMID: 39608340 DOI: 10.1016/j.plaphy.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Blue light simultaneously enhances anthocyanin and carotenoid biosynthesis in mango (Mangifera indica L.) fruit peel and flesh, respectively, but the mechanism remains unclear. In this study, two blue light-triggered zinc-finger transcription factors, MiBBX24 and MiBBX27, that positively regulate anthocyanin and carotenoid biosynthesis in mango fruit were identified. Both MiBBXs transcriptionally activate the expression of MiMYB1, a positive regulator of anthocyanin biosynthesis. Furthermore, both MiBBXs also trigger the expression of a phytoene synthase gene (MiPSY), which is essential for carotenoid biosynthesis. Ectopic expression of MiBBX24 or MiBBX27 in Arabidopsis increased anthocyanin contents, and their positive effects on anthocyanin accumulation in mango peel were confirmed through transient overexpression and virus-induced silencing. Transient expression of MiBBX24 or MiBBX27 in tomato (Solanum lycopersicum) and mango fruit flesh increased the carotenoid content, while the virus-induced silencing of MiBBX24 or MiBBX27 in the mango fruit flesh decreased carotenoid accumulation. Overall, our study results reveal that MiBBX24 and MiBBX27 simultaneously promote the biosynthesis of anthocyanin and carotenoids biosynthesis in mango fruit peel and flesh under blue light, indicating that BBX-mediated dual effects on physiological functions contribute to mango fruit pigment accumulation. Furthermore, we herein shed new light on the simultaneous transcriptional regulatory effects of a single factor on the biosynthesis of different plant pigments.
Collapse
Affiliation(s)
- Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Baojing Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yi Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Hongxia Wu
- National Key Laboratory for Tropical Crop Breeding, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, PR China.
| | - Minjie Qian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572025, PR China.
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
10
|
Lin X, Li S, Shi Y, Ma Y, Li Y, Tan H, Zhang B, Xu C, Chen K. CitGATA7 interact with histone acetyltransferase CitHAG28 to promote citric acid degradation by regulating the glutamine synthetase pathway in citrus. MOLECULAR HORTICULTURE 2025; 5:8. [PMID: 39891226 PMCID: PMC11786515 DOI: 10.1186/s43897-024-00126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 02/03/2025]
Abstract
Organic acid is a crucial indicator of fruit quality traits. Citric acid, the predominant organic acid in citrus fruit, directly influences its edible quality and economic value. While the transcriptional regulatory mechanisms of citric acid metabolism have been extensively studied, the understanding about the transcriptional and epigenetic co-regulation mechanisms is limited. This study characterized a transcription factor, CitGATA7, which directly binds to and activates the expression of genes associated with the glutamine synthetase pathway regulating citric acid degradation. These genes include the aconitase encoding gene CitACO3, the isocitrate dehydrogenase encoding gene CitIDH1, and the glutamine synthetase encoding gene CitGS1. Furthermore, CitGATA7 physically interacts with the histone acetyltransferase CitHAG28 to enhance histone 3 acetylation levels near the transcription start site of CitACO3, CitIDH1, and CitGS1, thereby increasing their transcription and promoting citric acid degradation. The findings demonstrate that the CitGATA7-CitHAG28 protein complex transcriptionally regulate the expression of the GS pathway genes, i.e., CitACO3, CitIDH1, and CitGS1, via histone acetylation, thus promoting citric acid catabolism. This study establishes a direct link between transcriptional regulation and histone acetylation regarding citric acid metabolism, providing insights for strategies to manipulate organic acid accumulation in fruit.
Collapse
Affiliation(s)
- Xiahui Lin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yuchen Ma
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yinchun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Haohan Tan
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
| |
Collapse
|
11
|
Chi Z, Wang L, Hu Q, Yi G, Wang S, Guo Q, Jing D, Liang G, Xia Y. The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing EjtDT1. Int J Mol Sci 2025; 26:530. [PMID: 39859247 PMCID: PMC11765138 DOI: 10.3390/ijms26020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat. EjAGL18 is a nucleus-localized TF without transcriptional activity. The expression of EjAGL18 increased during fruit ripening, opposite to the accumulation pattern of malic acid in loquat. The transient overexpression of EjAGL18 in loquat fruit downregulated malic acid accumulation and the transcriptional level of the tonoplast dicarboxylate transporter EjtDT1. Conversely, silencing EjAGL18 in loquat fruit upregulated the malic acid content and EjtDT1 expression level. Dual-luciferase assays and yeast one-hybrid experiments further confirmed that EjAGL18 could bind to the promoter of EjtDT1 and repress its transcriptions. Furthermore, the transient overexpression of EjtDT1 in loquat fruit increased the malic acid content. These results revealed that EjAGL18 negatively regulates malic acid content by repressing EjtDT1 in loquat. This study broadens the understanding of the MADS-box TF's regulatory mechanisms in malic acid and provides new insights into fruit flavor improvement in loquat.
Collapse
Affiliation(s)
- Zhuoheng Chi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Luwei Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiankun Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guangquan Yi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Chen W, Xie Q, Fu J, Li S, Shi Y, Lu J, Zhang Y, Zhao Y, Ma R, Li B, Zhang B, Grierson D, Yu M, Fei Z, Chen K. Graph pangenome reveals the regulation of malate content in blood-fleshed peach by NAC transcription factors. Genome Biol 2025; 26:7. [PMID: 39789611 PMCID: PMC11721062 DOI: 10.1186/s13059-024-03470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches. RESULTS Here, we report a peach graph-based pangenome constructed from sixteen individual genome assemblies, capturing abundant structural variations and 82.3 Mb of sequences absent in the reference genome. Pangenome analysis reveals a long terminal repeat retrotransposon insertion in the promoter of the NAC transcription factor (TF) PpBL in blood-fleshed peaches, which enhances PpBL expression. Genome-wide association study identifies a significant association between PpBL and malate content. Silencing PpBL in peach fruit and ectopic overexpression of PpBL in tomatoes confirm that PpBL is a positive regulator of malate accumulation. Furthermore, we demonstrate that PpBL works synergistically with another NAC TF, PpNAC1, to activate the transcription of the aluminum-activated malate transporter PpALMT4, leading to increased malate content. CONCLUSIONS These findings, along with previous research showing that PpBL and PpNAC1 also regulate anthocyanin accumulation, explain the red coloration and sour taste in blood-fleshed peach fruits.
Collapse
Affiliation(s)
- Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Qi Xie
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jia Fu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jiao Lu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yingjie Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE125RD, UK
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, 14853, USA.
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, 14853, USA.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Hu DG, Zhang M, Li C, Zhao TT, Du LD, Sun Q, Wang CK, Meng D, Sun CH, Fei Z, Dandekar AM, Cheng L. A linker histone acts as a transcription factor to orchestrate malic acid accumulation in apple in response to sorbitol. THE PLANT CELL 2024; 37:koae328. [PMID: 39705498 PMCID: PMC11773815 DOI: 10.1093/plcell/koae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024]
Abstract
High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.1, which complements the Arabidopsis (Arabidopsis thaliana) H1 deficient mutant and functions as a transcription factor. MdH1.1 activates MdMYB73, MdCIbHLH1, and MdPH5 expression by directly binding to their promoters. MdMYB73, in return, binds to the promoter of MdH1.1 to enhance its transcription. This MdH1.1-MdMYB73 feedback loop responds to sorbitol, regulating Ma1 expression. Antisense suppression of either MdH1.1 or MdMYB73 expression significantly decreases whereas overexpression increases Ma1 expression and malate accumulation. These findings demonstrate that MdH1.1, in addition to being an architectural protein for chromatin structure, operates as a transcription factor orchestrating malic acid accumulation in response to sorbitol, revealing how sugar signaling modulates vacuolar malate transport via a linker histone in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Mengxia Zhang
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Chunlong Li
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ting-Ting Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lian-Da Du
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chu-Kun Wang
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Dong Meng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cui-Hui Sun
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center for Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | | | - Abhaya M Dandekar
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Xia P, Chen M, Chen L, Yang Y, Ma L, Bi P, Tang S, Luo Q, Chen J, Chen H, Zhang H. Deciphering the anthocyanin metabolism gene network in tea plant (Camellia sinensis) through structural equation modeling. BMC Genomics 2024; 25:1093. [PMID: 39548396 PMCID: PMC11568573 DOI: 10.1186/s12864-024-11012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Tea is an important cash crop that significantly contributes to rural development, poverty reduction and food security in many developing countries. It provides livelihoods for millions of smallholder producers and aids their economic stability. Anthocyanins in tea leaves provides excellent commercial quality and germplasm exploration potential. These compounds give tea leaves vibrant colors and increase health benefits. The current understanding of the synergistic regulation mechanisms responsible for color changes in purple tea, attributed to anthocyanin degradation, remains unclear. RESULTS In this study, we have identified 30 gene families within the genome that are associated to with anthocyanin metabolism from tea. These gene families play distinct roles in the biosynthesis of anthocyanin including the formation of the core, structure, modification of the molecular framework, facilitation of transport process, regulation of gene expression, breakdown pathways, sugar transportation and iron ion respectively. Subsequently, we investigated the synergistic mechanisms of anthocyanin metabolism related gene families within tea leaves using structural equation modeling. The results showed that sugar transport positively affects anthocyanin transportation, and promotes anthocyanin degradation during leaf pigmentation, whereas, it inhibits anthocyanin degradation during the fading of leaf color. Further, Iron ions facilitate the degradation of anthocyanins during their deposition and conversely, impede this degradation process during digestion. These finding suggests that tea plants may regulate the synthesis and degradation of anthocyanins through sugar transport and iron ions ensure healthy levels and vibrant colors. CONCLUSIONS Our study contributes valuable information into the dynamic equilibrium anthocyanin mechanism and sheds light on complex regulatory mechanisms that govern the synthesis, transport and degradation of these pigments. These insights could be further used to develop strategies for enhancing anthocyanins content in unique tea germplasm to aid tea industry in producing new tea products with increased health benefits and aesthetic appeals.
Collapse
Affiliation(s)
- Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P.R. China
| | - Mei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Yijian Yang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Ling Ma
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Pinpin Bi
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Song Tang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Qiongxian Luo
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Jiwei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Hongwei Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China
| | - Hongling Zhang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650051, P.R. China.
| |
Collapse
|
15
|
Zhang LL, Zhu H, Chen CY, Shang NN, Sheng LX, Yu JQ. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14590. [PMID: 39468987 DOI: 10.1111/ppl.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Salt stress severely affects the growth and yield of apples (Malus domestica Borkh). Although salt-tolerant genes have been extensively studied, documentation on the role of the ATP-dependent phosphofructokinase gene MdPFK5 in salt stress is limited. This study conducted an evolutionary tree and three-dimensional structure analysis of the PFK gene family in Arabidopsis thaliana and MdPFK (MD01G1037400), revealing a close phylogenetic relationship between MdPFK (MD01G1037400) and AtPFK5. Given the similarity in their protein tertiary structures, MdPFK was designated as MdPFK5, suggesting functional similarities with AtPFK5. Further investigation revealed elevated expression levels of MdPFK5 in apple leaves and flowers, particularly showing significant upregulation 120 days after blooming and differential expression beginning at 3 hours of salt stress. Overexpression of MdPFPK5 conferred salt tolerance in both apple calli and transgenic lines of Arabidopsis thaliana. Moreover, NaCl treatment promoted soluble sugar accumulation in apple calli and transgenic lines of Arabidopsis thaliana overexpressing MdPFK5. This study provides new insights into the salt tolerance function of MdPFK5.
Collapse
Affiliation(s)
- Li-Li Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Hao Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chao-Yan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Na-Na Shang
- Dongying Vocational Institute, Dongying, China
| | - Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Wang H, Gang H, Chen J, Liu J, Zhang X, Fu C, Shao K, Wang X, Qin D, Huo J. Transcriptomic and metabolomic analyses reveal molecular and metabolic regulation of anthocyanin biosynthesis in three varieties of currant. Food Res Int 2024; 196:115056. [PMID: 39614491 DOI: 10.1016/j.foodres.2024.115056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
Anthocyanins are natural plant metabolites that are beneficial for human health. In order to study the fruit coloring mechanism mediated by anthocyanin biosynthesis in three currant varieties (white currant, red currant and black currant), we used a combination of transcriptomics and metabolomics analyses. Our comprehensive examination revealed that anthocyanins play a pivotal role in regulating the red and purple hues of black currant and red currant fruits. Specifically, Delphinidin-3-O-rutinoside, Pelargonidin-3-O-rutinoside, Cyanidin-3-O-rutinoside, Cyanidin-3,5-O-diglucoside, Cyanidin-3-O-rutinoside-5-O-glucoside and Petunidin-3-O-glucoside emerged as key anthocyanins in black currant, while Cyanidin-3-O-rutinoside (Keracyanin), Cyanidin-3-O-sambubioside[Cyanidin-3-O-(2″-O-xylosyl)glucoside], Cyanidin-3-O-glucoside (Kuromanin) and Cyanidin-3-O-(2″-O-xylosyl)rutinoside were identified as crucial anthocyanins in red currant. Transcriptomic data showed that the upregulation of dihydroflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT) genes significantly promoted the purple coloration of black currant fruit, while increased expression of Chalcone synthase (CHS) and flavonoid 3'-hydroxylase (F3'H) genes significantly intensified the red hue of red currant fruit. Furthermore, through weighted gene co-expression network analysis (WGCNA), we identified 11 transcription factors, including 3 bHLH, 2 MYB, 3 bZIP and 3 WRKY genes, which may serve as key regulators of anthocyanin biosynthesis. These findings provide a foundational understanding of the color dynamics in different currant varieties fruits throughout their developmental stages.
Collapse
Affiliation(s)
- Haoyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Jiale Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Xuelin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Kailin Shao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Xueting Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China.
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Zhao Y, Sun J, Liu Y, Zhang X, Cao Y, Zheng B, Zhang RX, Zhao C, Ai X, He H, Han Y. Metabolic basis for superior antioxidant capacity of red-fleshed peaches. Food Chem X 2024; 23:101698. [PMID: 39211764 PMCID: PMC11357884 DOI: 10.1016/j.fochx.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Peach fruit is an important natural source of phenolic compounds that are well-known to have health benefits, but their metabolic basis remain elusive. Here, we report on phenolic compounds accumulation and antioxidant activity of ripe fruits in peach. A considerable variation in phenolic compounds content was observed among peach germplasm, with significantly higher levels detected in red-fleshed peaches compared to non-red-fleshed peaches. Antioxidant activity of crude extracts from ripe fruits showed significant differences among peach germplasm, with red-fleshed peaches having the strongest antioxidant activity. Intriguingly, it was observed that total phenolics instead of anthocyanins were strongly associated with antioxidant activity. Phenolic compounds content and antioxidant activity showed dynamic changes throughout fruit development, and these were much higher in the peel than in the flesh. Metabolomic analysis unveiled a coordinated accumulation of anthocyanins as well as key components of flavonoids and phenolic acids, which endows red-fleshed peaches with superior antioxidant activity.
Collapse
Affiliation(s)
- Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juanli Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Xiaoyan Ai
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430209, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
18
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Zheng L, Ma W, Liu P, Song S, Wang L, Yang W, Ren H, Wei X, Zhu L, Peng J, Ma F, Li M, Ma B. Transcriptional factor MdESE3 controls fruit acidity by activating genes regulating malic acid content in apple. PLANT PHYSIOLOGY 2024; 196:261-272. [PMID: 38758108 DOI: 10.1093/plphys/kiae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Peipei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujie Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqing Peng
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
20
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
21
|
Liu Q, Wang B, Xu W, Yuan Y, Yu J, Cui G. Genome-wide investigation of the PIF gene family in alfalfa (Medicago sativa L.) expression profiles during development and stress. BMC Genom Data 2024; 25:79. [PMID: 39223486 PMCID: PMC11370104 DOI: 10.1186/s12863-024-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Phytochrome-interacting factors (PIFs) plays an important role in plants as hubs for intracellular signaling regulation. The PIF gene family has been identified and characterized in many plants, but alfalfa (Medicago sativa L.), an important perennial high-quality legume forage, has not been reported on the PIF gene family. RESULTS In this study, we presented the identification and characterization of five MsPIF genes in alfalfa (Medicago sativa L.). Phylogenetic analysis indicated that PIFs from alfalfa and other four plant species could be divided into three groups supported by similar motif analysis. The collinearity analysis of the MsPIF gene family showed the presence of two gene pairs, and the collinearity analysis with AtPIFs showed three gene pairs, indicating that the evolutionary process of this family is relatively conservative. Analysis of cis-acting elements in promoter regions of MsPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Gene expression analyses demonstrated that MsPIFs were primarily expressed in the leaves and were induced by various abiotic stresses. CONCLUSION This study conducted genome-wide identification, evolution, synteny analysis, and expression analysis of the PIFs in alfalfa. Our study lays a foundation for the study of the biological functions of the PIF gene family and provides a useful reference for improving abiotic stress resistance in alfalfa.
Collapse
Affiliation(s)
- Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
22
|
Zhang QY, Ma CN, Gu KD, Wang JH, Yu JQ, Liu B, Wang Y, He JX, Hu DG, Sun Q. The BTB-BACK-TAZ domain protein MdBT2 reduces drought resistance by weakening the positive regulatory effect of MdHDZ27 on apple drought tolerance via ubiquitination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:283-299. [PMID: 38606500 DOI: 10.1111/tpj.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.
Collapse
Affiliation(s)
- Quan-Yan Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kai-Di Gu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Yun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Jun-Xia He
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
23
|
Singh S, Pal L, Rajput R, Chhatwal H, Singh N, Chattopadhyay D, Pandey A. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum. PLANTA 2024; 260:38. [PMID: 38951258 DOI: 10.1007/s00425-024-04470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Chhatwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
24
|
Huang B, Li Y, Jia K, Wang X, Wang H, Li C, Sui X, Zhang Y, Nie J, Yuan Y, Jia D. The MdMYB44-MdTPR1 repressive complex inhibits MdCCD4 and MdCYP97A3 expression through histone deacetylation to regulate carotenoid biosynthesis in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:540-556. [PMID: 38662911 DOI: 10.1111/tpj.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/01/2024]
Abstract
Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced β-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.
Collapse
Affiliation(s)
- Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiuqi Sui
- Yantai Modern Fruit Development limited company, Yantai, 264003, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| |
Collapse
|
25
|
Wang Y, Li S, Shi Y, Lv S, Zhu C, Xu C, Zhang B, Allan AC, Grierson D, Chen K. The R2R3 MYB Ruby1 is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38922743 DOI: 10.1111/tpj.16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shouzheng Lv
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changqing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Andrew C Allan
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald Grierson
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| |
Collapse
|
26
|
Du W, Xia L, Li R, Zhao X, Jin D, Wang X, Pei Y, Zhou R, Chen J, Yu X. Updated Gene Prediction of the Cucumber (9930) Genome through Manual Annotation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1604. [PMID: 38931036 PMCID: PMC11207753 DOI: 10.3390/plants13121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Thorough and precise gene structure annotations are essential for maximizing the benefits of genomic data and unveiling valuable genetic insights. The cucumber genome was first released in 2009 and updated in 2019. To increase the accuracy of the predicted gene models, 64 published RNA-seq data and 9 new strand-specific RNA-seq data from multiple tissues were used for manual comparison with the gene models. The updated annotation file (V3.1) contains an increased number (24,145) of predicted genes compared to the previous version (24,317 genes), with a higher BUSCO value of 96.9%. A total of 6231 and 1490 transcripts were adjusted and newly added, respectively, accounting for 31.99% of the overall gene tally. These newly added and adjusted genes were renamed (CsaV3.1_XGXXXXX), while genes remaining unaltered preserved their original designations. A random selection of 21 modified/added genes were validated using RT-PCR analyses. Additionally, tissue-specific patterns of gene expression were examined using the newly obtained transcriptome data with the revised gene prediction model. This improved annotation of the cucumber genome will provide essential and accurate resources for studies in cucumber.
Collapse
Affiliation(s)
- Weixuan Du
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Lei Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Rui Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Danna Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Xiaoning Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Yun Pei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Rong Zhou
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark;
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China (J.C.)
| |
Collapse
|
27
|
Xia Z, Fan W, Liu D, Chen Y, Lv J, Xu M, Zhang M, Ren Z, Chen X, Wang X, Li L, Zhu P, Liu C, Song Z, Huang C, Wang X, Wang S, Zhao A. Haplotype-resolved chromosomal-level genome assembly reveals regulatory variations in mulberry fruit anthocyanin content. HORTICULTURE RESEARCH 2024; 11:uhae120. [PMID: 38919559 PMCID: PMC11197311 DOI: 10.1093/hr/uhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/14/2024] [Indexed: 06/27/2024]
Abstract
Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Duanyang Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yuane Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jing Lv
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Mengxia Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Meirong Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Zuzhao Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xuefei Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xiujuan Wang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Liang Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Panpan Zhu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhiguang Song
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Chuanshu Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
29
|
Zuo D, Yan Y, Ma J, Zhao P. Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut ( Juglans regia L.). Genes (Basel) 2024; 15:587. [PMID: 38790216 PMCID: PMC11121633 DOI: 10.3390/genes15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (D.Z.); (Y.Y.); (J.M.)
| |
Collapse
|
30
|
Yang C, Sun N, Qin X, Liu Y, Sui M, Zhang Y, Hu Y, Mao Z, Chen X, Mao Y, Shen X. Multi-omics analysis reveals the biosynthesis of flavonoids during the browning process of Malus sieversii explants. PHYSIOLOGIA PLANTARUM 2024; 176:e14238. [PMID: 38488414 DOI: 10.1111/ppl.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Chen Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Nan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xin Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yangbo Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Mengyi Sui
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yawen Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yanli Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Yunfei Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| | - Xiang Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, China
| |
Collapse
|
31
|
Zhang L, Zhang J, Wei B, Li Y, Fang X, Zhong Y, Wang L. Transcription factor MdNAC33 is involved in ALA-induced anthocyanin accumulation in apples. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111949. [PMID: 38065304 DOI: 10.1016/j.plantsci.2023.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
5-Aminolevulinic acid (ALA), as a new natural plant growth regulator, has a significant function in promoting anthocyanin accumulation in many species of fruits. However, the mechanisms underlying remain obscure. In a transcriptome study of our group, it was found that many transcription factors (TFs) including NACs responsive to ALA treatment during anthocyanin accumulation. In the present study, we found a NAC of apple, MdNAC33 was coordinatively expressed with anthocyanin accumulation after ALA treatment in the apple fruits and leaves, suggesting that this TF may be involved in anthocyanin accumulation induced by ALA. We found that the MdNAC33 protein was localized in the nucleus and exhibited strong transcriptional activity in both yeast cells and plants, where its C-terminal contributed to the transcriptional activity. Functional analysis showed that overexpression of MdNAC33 promoted the accumulation of anthocyanin, while the silencing vector of MdNAC33 (RNAi) significantly impaired the anthocyanin accumulation induced by ALA. Yeast one-hybrid (Y1H), luciferase assay and electrophoretic mobility shift assay (EMSA) indicated that MdNAC33 could bind to promoters of MdbHLH3, MdDFR and MdANS to activate the gene expressions. In addition, MdNAC33 specifically interacts with MdMYB1, a positive regulator of anthocyanin biosynthesis, which was then in turn binding to its target genes MdUFGT and MdGSTF12, to promote anthocyanin accumulation in apples. Taken together, our data indicate that MdNAC33 plays multiple roles in ALA-induced anthocyanin biosynthesis. It provides new insights into the mechanisms of anthocyanin accumulation induced by ALA.
Collapse
Affiliation(s)
- Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiangting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yage Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Ghafari H, Hassanpour H, Motafakkerazad R. Post-harvest ultraviolet irradiation induces changes in physical-chemical properties and levels of polycyclic aromatic hydrocarbons and gene expression in mulberry fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1008-1019. [PMID: 37718501 DOI: 10.1002/jsfa.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Earlier studies reported that post-harvest ultraviolet (UV) irradiation could increase the health-promoting compounds in fruit but the effects of UV irradiation on the reduction of the polycyclic aromatic hydrocarbon (PAH) content in mulberries remain less known. Black mulberry fruit were exposed to two UV illumination dosages (3.5 and 7 kJ m-2 ) and were stored for 4, 8, and 12 days. RESULTS Mulberries treated in this way displayed higher antioxidant enzyme activity and phenolic compound content in comparison with a control condition. The transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were strongly expressed in two UV illumination dosages (about 45-95% higher than the control). The fluorine (Flu) and naphthalene (Nap) content in treated fruit decreased by 21-85% in comparison with the control condition. CONCLUSION The findings of this study indicate that UV irradiation can be considered as a promising technique to remove some PAHs in black mulberries, to increase their health-promoting potential, and indirectly to improve their aesthetic quality due to the resulting desirable color parameters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Ghafari
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | | |
Collapse
|
33
|
Xiang Y, Huang XY, Zhao YW, Wang CK, Sun Q, Hu DG. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108227. [PMID: 38043254 DOI: 10.1016/j.plaphy.2023.108227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.
Collapse
Affiliation(s)
- Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
34
|
Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, Wang WY, Liu XL, Sun Q, Hu DG. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. ABIOTECH 2023; 4:303-314. [PMID: 38106434 PMCID: PMC10721769 DOI: 10.1007/s42994-023-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 12/19/2023]
Abstract
As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00115-7.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
35
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, Ren H, Liu P, Zhu L, Su J, Ma F, Li M, Ma B. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1231-1242. [PMID: 37219375 DOI: 10.1111/tpj.16314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.
Collapse
Affiliation(s)
- Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peipei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
36
|
Zhao X, Li P, Zuo H, Peng A, Lin J, Li P, Wang K, Tang Q, Tadege M, Liu Z, Zhao J. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1051-1070. [PMID: 37162381 DOI: 10.1111/tpj.16279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junming Lin
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
37
|
Zhang L, Wang Y, Yue M, Jiang L, Zhang N, Luo Y, Chen Q, Zhang Y, Wang Y, Li M, Zhang Y, Lin Y, Tang H. FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry ( Fragaria × ananassa). Int J Mol Sci 2023; 24:12185. [PMID: 37569565 PMCID: PMC10418308 DOI: 10.3390/ijms241512185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.Z.); (Y.W.); (M.Y.); (L.J.); (N.Z.); (Y.L.); (Q.C.); (Y.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
38
|
Zheng L, Liao L, Duan C, Ma W, Peng Y, Yuan Y, Han Y, Ma F, Li M, Ma B. Allelic variation of MdMYB123 controls malic acid content by regulating MdMa1 and MdMa11 expression in apple. PLANT PHYSIOLOGY 2023; 192:1877-1891. [PMID: 36810940 PMCID: PMC10315266 DOI: 10.1093/plphys/kiad111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Acidity is a key determinant of fruit organoleptic quality. Here, a candidate gene for fruit acidity, designated MdMYB123, was identified from a comparative transcriptome study of two Ma1Ma1 apple (Malus domestica) varieties, "Qinguan (QG)" and "Honeycrisp (HC)" with different malic acid content. Sequence analysis identified an A→T SNP, which was located in the last exon, resulting in a truncating mutation, designated mdmyb123. This SNP was significantly associated with fruit malic acid content, accounting for 9.5% of the observed phenotypic variation in apple germplasm. Differential MdMYB123- and mdmyb123-mediated regulation of malic acid accumulation was observed in transgenic apple calli, fruits, and plantlets. Two genes, MdMa1 and MdMa11, were up- and down-regulated in transgenic apple plantlets overexpressing MdMYB123 and mdmyb123, respectively. MdMYB123 could directly bind to the promoter of MdMa1 and MdMa11, and induce their expression. In contrast, mdmyb123 could directly bind to the promoters of MdMa1 and MdMa11, but with no transcriptional activation of both genes. In addition, gene expression analysis in 20 different apple genotypes based on SNP locus from "QG" × "HC" hybrid population confirmed a correlation between A/T SNP with expression levels of MdMa1 and MdMa11. Our finding provides valuable functional validation of MdMYB123 and its role in the transcriptional regulation of both MdMa1 and MdMa11, and apple fruit malic acid accumulation.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Chenbo Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan 430074, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
39
|
Alabd A, Cheng H, Ahmad M, Wu X, Peng L, Wang L, Yang S, Bai S, Ni J, Teng Y. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. PLANT PHYSIOLOGY 2023; 192:1982-1996. [PMID: 36932703 PMCID: PMC10315288 DOI: 10.1093/plphys/kiad168] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Malate impacts fruit acidity and plays a vital role in stress tolerance. Malate accumulation is induced by salinity in various plants as a metabolite in coping with this stress. However, the exact molecular mechanism responsible for salinity-induced malate accumulation remains unclear. Here, we determined that salinity treatment induces malate accumulation in pear (Pyrus spp.) fruit, calli, and plantlets compared to the control. Genetic and biochemical analyses established the key roles of PpWRKY44 and ABRE-BINDING FACTOR3 (PpABF3) transcription factors in promoting malate accumulation in response to salinity. We found that PpWRKY44 is involved in salinity-induced malate accumulation by directly binding to a W-box on the promoter of the malate-associated gene aluminum-activated malate transporter 9 (PpALMT9) to activate its expression. A series of in-vivo and in-vitro assays revealed that the G-box cis-element in the promoter of PpWRKY44 was targeted by PpABF3, which further enhanced salinity-induced malate accumulation. Taken together, these findings suggest that PpWRKY44 and PpABF3 play positive roles in salinity-induced malate accumulation in pears. This research provides insights into the molecular mechanism by which salinity affects malate accumulation and fruit quality.
Collapse
Affiliation(s)
- Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lin Peng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
40
|
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, Wang Y, Leng F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
Affiliation(s)
- Liping Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jingtian Huo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jieya Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jiayi Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jialing Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Feng Leng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
41
|
Jian W, Ou X, Sun L, Chen Y, Liu S, Lu W, Yang X, Zhao Z, Li Z. Characterization of anthocyanin accumulation, nutritional properties, and postharvest attributes of transgenic purple tomato. Food Chem 2023; 408:135181. [PMID: 36525727 DOI: 10.1016/j.foodchem.2022.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Anthocyanins are natural pigments with diverse physiological roles and protective effects, but most tomatoes produce little. In this study, the anthocyanin characteristics, nutritional properties, and postharvest attributes of purple tomato (SlMYB75-OE) obtained by overexpression of SlMYB75 gene were first analyzed. Compared to wild-type (WT), eight monomeric anthocyanins were newly produced by overexpression of SlMYB75, and further study demonstrated the expression of dihydroflavonol-4-reductase (SlDFR) and two UDP-glycosyltransferase (SlUGTs) genes was activated by SlMYB75. The contents of sugars (sucrose, glucose, and fructose) and citric acid content in SlMYB75-OE were higher and lower, respectively, than in WT. In addition, FRAP and DPPH assays indicated SlMYB75-OE had higher antioxidant capacity, when compared to WT. Moreover, SlMYB75-OE exhibited a longer shelf life and stronger resistance to Botrytis cinerea than WT, and this characteristic was positively correlated with anthocyanin content. These results help to clarify the function of SlMYB75 and provide a reference for tomato breeding.
Collapse
Affiliation(s)
- Wei Jian
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaogang Ou
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lixinyu Sun
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yu Chen
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shiyu Liu
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xian Yang
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhengwu Zhao
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
42
|
Gai W, Yang F, Yuan L, ul Haq S, Wang Y, Wang Y, Shang L, Li F, Ge P, Dong H, Tao J, Wang F, Zhang X, Zhang Y. Multiple-model GWAS identifies optimal allelic combinations of quantitative trait loci for malic acid in tomato. HORTICULTURE RESEARCH 2023; 10:uhad021. [PMID: 37035859 PMCID: PMC10076212 DOI: 10.1093/hr/uhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
Malic acid (MA) is an important flavor acid in fruits and acts as a mediator in a series of metabolic pathways. It is important to understand the factors affecting MA metabolism for fruit flavor improvement and to understand MA-mediated biological processes. However, the metabolic accumulation of MA is controlled by complex heredity and environmental factors, making it difficult to predict and regulate the metabolism of MA. In this study, we carried out a genome-wide association study (GWAS) on MA using eight milestone models with two-environment repeats. A series of associated SNP variations were identified from the GWAS, and 15 high-confidence annotated genes were further predicted based on linkage disequilibrium and lead SNPs. The transcriptome data of candidate genes were explored within different tomato organs as well as various fruit tissues, and suggested specific expression patterns in fruit pericarp. Based on the genetic parameters of population differentiation and SNP distribution, tomato MA content has been more influenced by domestication sweeps and less affected by improvement sweeps in the long-term history of tomato breeding. In addition, genotype × environment interaction might contribute to the difference in domestication phenotypic data under different environments. This study provides new genetic insights into how tomato changed its MA content during breeding and makes available function-based markers for breeding by marker-assisted selection.
Collapse
Affiliation(s)
- Wenxian Gai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Liangdan Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Yaru Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lele Shang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangman Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingfei Ge
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiqiang Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinbao Tao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
43
|
Wen B, Zhao X, Gong X, Zhao W, Sun M, Chen X, Li D, Li L, Xiao W. The NAC transcription factor MdNAC4 positively regulates nitrogen deficiency-induced leaf senescence by enhancing ABA biosynthesis in apple. MOLECULAR HORTICULTURE 2023; 3:5. [PMID: 37789499 PMCID: PMC10514974 DOI: 10.1186/s43897-023-00053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/22/2023] [Indexed: 10/05/2023]
Abstract
Although it is well established that nitrogen (N) deficiency induces leaf senescence, the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown. Here, we show that an abscisic acid (ABA)-responsive NAC transcription factor (TF) is involved in N deficiency-induced leaf senescence. The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2. In addition, MdNAC4 overexpression promoted N deficiency-induced leaf senescence. Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene (SAG) MdSAG39 and upregulated its expression. Interestingly, the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA. Furthermore, we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein. Moreover, MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiency-induced leaf senescence. These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency, thus promoting N deficiency-induced leaf senescence. In conclusion, our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.
Collapse
Affiliation(s)
- Binbin Wen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuehui Zhao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061, Shandong, China
| | - Xingyao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Wenzhe Zhao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingyue Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Dongmei Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ling Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Wei Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
44
|
Kim E, Hyun TK. PlgMYBR1, an R2R3-MYB transcription factor, plays as a negative regulator of anthocyanin biosynthesis in Platycodon grandiflorus. 3 Biotech 2023; 13:75. [PMID: 36748016 PMCID: PMC9898487 DOI: 10.1007/s13205-023-03490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Floral color plays a major role in pollinator specificity, and changes in color may result in pollinator shifts and pollinator-mediated speciation. In the purple flowers of Platycodon grandiflorus, anthocyanins are the major pigment metabolites, whereas white flowers result due to the absence of anthocyanins. The lack of anthocyanins may be due to the inhibition of the anthocyanin biosynthesis pathway. However, the molecular mechanism of anthocyanin biosynthesis in P. grandiflorus is not fully understood. Hence, we identified R2R3-MYB transcription factor, PlgMYBR1, as a negative regulator for anthocyanin biosynthesis using sequence homology and tissue-specific expression pattern analyses. A heterologous co-expression assay suggested that PlgMYBR1 inhibited the function of AtPAP1 (Arabidopsis thaliana production of anthocyanin pigment 1), indicating that PlgMYBR1 plays as a repressor of anthocyanin biosynthesis in P. grandiflorus. Our results provide a foundation for future efforts to understand the anthocyanin biosynthesis in P. grandiflorus and, thereby, to improve flower color through genetic engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03490-6.
Collapse
Affiliation(s)
- Eunhui Kim
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju, 28644 Republic of Korea
| |
Collapse
|
45
|
Zhang S, Wang H, Wang T, Liu W, Zhang J, Fang H, Zhang Z, Peng F, Chen X, Wang N. MdMYB305-MdbHLH33-MdMYB10 regulates sugar and anthocyanin balance in red-fleshed apple fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1062-1079. [PMID: 36606413 DOI: 10.1111/tpj.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin. A series of molecular experiments (such as electrophoretic mobility shift and luciferase assays) confirmed that MdMYB305 combines with sugar-related genes (MdCWI1/MdVGT3/MdTMT2) and anthocyanin-related genes (MdF3H/MdDFR/MdUFGT), promoting and inhibiting their activities, and finally regulating the sugar and anthocyanin content of fruits. In addition, the study also found that MdMYB305 competes with MdMYB10 for the MdbHLH33 binding site to balance sugar and anthocyanin accumulation in the fruits, which provides a reference value for exploring more functions of the MYB-bHLH-MYB complex and the balance relationship between sugar and anthocyanin in the future.
Collapse
Affiliation(s)
- Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Tong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| |
Collapse
|
46
|
Zhou Z, Wei X, Lan H. CgMYB1, an R2R3-MYB transcription factor, can alleviate abiotic stress in an annual halophyte Chenopodium glaucum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:484-496. [PMID: 36764264 DOI: 10.1016/j.plaphy.2023.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
MYB transcription factors (TFs) are important regulators of the stress response in plants. In the present study, we characterized the CgMYB1 gene in Chenopodium glaucum, a member of the R2R3-MYB TF family. CgMYB1 was located in the nucleus with an activating domain at the C terminus. The CgMYB1 gene could be induced by salt and cold stress in C. glaucum. Overexpressing CgMYB1 in Arabidopsis significantly enhanced salt and cold tolerance, probably by improving physiological performance and stress-related gene expression. Further analysis suggests that the positive response of CgMYB1 to abiotic stress may partially be attributed to the interaction between CgMYB1 and the CgbHLH001 promoter followed by activation of downstream stress-responsive genes, which mediates stress tolerance. Our findings should contribute to further understanding of the function of R2R3 MYB TF in response to abiotic stress.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xinxin Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
47
|
Jiang SH, Wang HH, Zhang R, Yang ZY, He GR, Ming F. Transcriptomic-based analysis to identify candidate genes for blue color rose breeding. PLANT MOLECULAR BIOLOGY 2023; 111:439-454. [PMID: 36913074 DOI: 10.1007/s11103-023-01337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Analysis of the flower color formation mechanism of 'Rhapsody in Blue' by BF and WF transcriptomes reveals that RhF3'H and RhGT74F2 play a key role in flower color formation. Rosa hybrida has colorful flowers and a high ornamental value. Although rose flowers have a wide range of colors, no blue roses exist in nature, and the reason for this is unclear. In this study, the blue-purple petals (BF) of the rose variety 'Rhapsody in Blue' and the white petals (WF) of its natural mutant were subjected to transcriptome analysis to find genes related to the formation of the blue-purple color. The results showed that the anthocyanin content was significantly higher in BF than in WF. A total of 1077 differentially expressed genes (DEGs) were detected by RNA-Seq analysis, of which 555 were up-regulated and 522 were down-regulated in the WF vs. BF petals. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the DEGs revealed that a single gene up-regulated in BF was related to multiple metabolic pathways including metabolic process, cellular process, protein-containing complex, etc. Additionally, the transcript levels of most of the structural genes related to anthocyanin synthesis were significantly higher in BF than in WF. Selected genes were analyzed by qRT-PCR and the results were highly consistent with the RNA-Seq results. The functions of RhF3'H and RhGT74F2 were verified by transient overexpression analyses, and the results confirmed that both affect the accumulation of anthocyanins in 'Rhapsody in Blue'. We have obtained comprehensive transcriptome data for the rose variety 'Rhapsody in Blue'. Our results provide new insights into the mechanisms underlying rose color formation and even blue rose formation.
Collapse
Affiliation(s)
- Sheng-Hang Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Huan-Huan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ren Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhen-Yu Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guo-Ren He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
48
|
Lin Y, Chen W, Yang Q, Zhang Y, Ma X, Li M. Genome-Wide Characterization and Gene Expression Analyses of Malate Dehydrogenase ( MDH) Genes in Low-Phosphorus Stress Tolerance of Chinese Fir ( Cunninghamia lanceolata). Int J Mol Sci 2023; 24:ijms24054414. [PMID: 36901845 PMCID: PMC10003207 DOI: 10.3390/ijms24054414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Malate dehydrogenase (MDH) genes play vital roles in developmental control and environmental stress tolerance in sessile plants by modulating the organic acid-malic acid level. However, MDH genes have not yet been characterized in gymnosperm, and their roles in nutrient deficiency are largely unexplored. In this study, 12 MDH genes were identified in Chinese fir (Cunninghamia lanceolata), namely, ClMDH-1, -2, -3, …, and -12. Chinese fir is one of the most abundant commercial timber trees in China, and low phosphorus has limited its growth and production due to the acidic soil of southern China. According to the phylogenetic analysis, MDH genes were classified into five groups, and Group 2 genes (ClMDH-7, -8, -9, and 10) were only found to be present in Chinese fir but not in Arabidopsis thaliana and Populus trichocarpa. In particular, the Group 2 MDHs also had specific functional domains-Ldh_1_N (malidase NAD-binding functional domain) and Ldh_1_C (malate enzyme C-terminal functional domain)-indicating a specific function of ClMDHs in the accumulation of malate. All ClMDH genes contained the conserved MDH gene characteristic functional domains Ldh_1_N and Ldh_1_C, and all ClMDH proteins exhibited similar structures. Twelve ClMDH genes were identified from eight chromosomes, involving fifteen ClMDH homologous gene pairs, each with a Ka/Ks ratio of <1. The analysis of cis-elements, protein interactions, and transcription factor interactions of MDHs showed that the ClMDH gene might play a role in plant growth and development, and in response to stress mechanisms. The results of transcriptome data and qRT-PCR validation based on low-phosphorus stress showed that ClMDH1, ClMDH6, ClMDH7, ClMDH2, ClMDH4, ClMDH5, ClMDH10 and ClMDH11 were upregulated under low-phosphorus stress and played a role in the response of fir to low-phosphorus stress. In conclusion, these findings lay a foundation for further improving the genetic mechanism of the ClMDH gene family in response to low-phosphorus stress, exploring the potential function of this gene, promoting the improvement of fir genetics and breeding, and improving production efficiency.
Collapse
Affiliation(s)
- Yawen Lin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanting Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajing Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangqing Ma
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Colleges and University Engineering Research Center of Plantation Sustainable Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-8378-0261
| |
Collapse
|
49
|
Wang JH, Gu KD, Zhang QY, Yu JQ, Wang CK, You CX, Cheng L, Hu DG. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter 9 via the WRKY31-ERF72 network. THE NEW PHYTOLOGIST 2023. [PMID: 36747049 DOI: 10.1111/nph.18795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Malic acid accumulation in the vacuole largely determines acidity and perception of sweetness of apple. It has long been observed that reduction in malate level is associated with increase in ethylene production during the ripening process of climacteric fruits, but the molecular mechanism linking ethylene to malate reduction is unclear. Here, we show that ethylene-modulated WRKY transcription factor 31 (WRKY31)-Ethylene Response Factor 72 (ERF72)-ALUMINUM ACTIVATED MALATE TRANSPORTER 9 (Ma1) network regulates malate accumulation in apple fruit. ERF72 binds to the promoter of ALMT9, a key tonoplast transporter for malate accumulation of apple, transcriptionally repressing ALMT9 expression in response to ethylene. WRKY31 interacts with ERF72, suppressing its transcriptional inhibition activity on ALMT9. In addition, WRKY31 directly binds to the promoters of ERF72 and ALMT9, transcriptionally repressing and activating ERF72 and ALMT9, respectively. The expression of WRKY31 decreases in response to ethylene, lowering the transcription of ALMT9 directly and via its interactions with ERF72. These findings reveal that the regulatory complex WRKY31 forms with ERF72 responds to ethylene, linking the ethylene signal to ALMT9 expression in reducing malate transport into the vacuole during fruit ripening.
Collapse
Affiliation(s)
- Jia-Hui Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Quan-Yan Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Jian-Qiang Yu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
50
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, Wang Z, Dong X, Li X. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. PLANT PHYSIOLOGY 2023; 191:414-427. [PMID: 36271866 PMCID: PMC9806563 DOI: 10.1093/plphys/kiac491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiu Geng
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengjia Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|