1
|
He YJ, Xu S, Zhang KM, Zhang Y, Liu XJ, Liu C. Multiple gatekeeping steps in pollination lock species specificity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1510-1523. [PMID: 39673238 DOI: 10.1093/jxb/erae488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
In flowering plants, pollen grains must undergo a series of critical processes, including adhesion, hydration, and germination, which are dependent on the stigma, to develop a pollen tube. This pollen tube then penetrates the stigma to reach the internal tissues of pistil, facilitating the transport of non-motile sperm cells to the embryo sac for fertilization. However, a dry stigma, characterized by the absence of an exudate that typically envelops a wet stigma, functions as a multi-layered filter in adhesion, hydration, germination, and penetration that permits the acceptance of compatible pollen or tubes while rejecting incompatible ones, thereby protecting the embryo sac from ineffective fertilization and maintaining species specificity. Given the significance of these selective events, related research has consistently been at the forefront of reproductive studies, with notable advancements being made in recent times. In this review, we systematically synthesize the selective events and provide comprehensive, up-to-date summaries of occurrences on dry stigmas with a particular focus on the Brassicaceae family, following the chronological sequence of these events. Our objective is to update and elucidate the critical points within pollination, identify unresolved questions, and propose potential avenues for future research in other plant families.
Collapse
Affiliation(s)
- Yong-Jun He
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Xu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kai-Mei Zhang
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang-Jian Liu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Liu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Cohen RO, Cisse A, Jones JU, Williams JH, Eaton DAR. Phylogeny does not predict the outcome of heterospecific pollen-pistil interactions in a species-rich alpine plant community. AMERICAN JOURNAL OF BOTANY 2025; 112:e70004. [PMID: 40023761 DOI: 10.1002/ajb2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025]
Abstract
PREMISE Co-occurring plant species that share generalist pollinators often exchange pollen. This heterospecific pollen transfer (HPT) impacts male and female reproductive success through pollen loss and reductions in seed set, respectively. The resulting fitness cost of HPT imposes selection on reproductive traits (e.g., floral color and shape), yet we currently lack strong predictors for the post-pollination fate of heterospecific pollen, especially within community and phylogenetic contexts. METHODS We investigated the fate of heterospecific pollen at three distinct stages of plant reproduction: (1) pollen germination on the stigma, (2) pollen tube growth in the style, and (3) fertilization of ovules. We experimentally crossed 11 naturally co-flowering species in the subalpine meadows of the Colorado Rocky Mountains, across a spectrum of phylogenetic relatedness. Using generalized linear mixed models and generalized linear models, we evaluated the effect of parental species identity and phylogenetic relatedness on pollen tube growth at each reproductive stage. RESULTS We found that heterospecific pollen tubes can germinate and grow within pistils at each reproductive stage, even when parental species are >100 My divergent. There was no significant effect of phylogenetic distance on heterospecific pollen success, and no evidence for a mechanism that suspends heterospecific pollen germination or pollen tube growth within heterospecific stigmas or styles. CONCLUSIONS Our results show that even in communities where HPT is common, pre-zygotic post-pollination mechanisms do not provide strong barriers to interspecific fertilization. HPT can result in the loss of ovules even between highly diverged plant species.
Collapse
Affiliation(s)
- Rachel O Cohen
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, 10027, NY, USA
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, 81224, CO, USA
| | - Asstan Cisse
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, 10027, NY, USA
| | - Jennifer U Jones
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, 10027, NY, USA
| | - Joseph H Williams
- Department of Ecology and Evolution, University of Tennessee, Knoxville, 37996, TN, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
3
|
Raut VK, Yadav A, Kaur V, Rao M, Pathania P, Wankhede D, Singh M, Singh GP. Pollen-pistil interactions in divergent wide crosses lead to spatial and temporal pre-fertilization reproductive barrier in flax (Linum usitatissimum L.). Sci Rep 2025; 15:6806. [PMID: 40000683 PMCID: PMC11861275 DOI: 10.1038/s41598-025-90046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Linseed, has been a source of natural fiber for textile industries since its domestication. However, despite being the potential source of trait reservoir, the use of Linum wild genetic resources for the improvement of economic traits are not exploited widely. This is mainly due to the degree of genetic divergence that exists among the interspecific ecotypes causing crossability issues. Self-incompatibility due to the occurrence of heterostyly is very well reported in distantly related crop wild relatives of Linum and, the mechanism of self-incompatibility between different floral morphs is also studied. However, pollen germination and tube growth responses in the interspecific crosses are rarely studied. Thus, the present study was exclusively carried out to assess the major pre-zygotic barriers and their effect on pollen germination on foreign stigma using fluorescent microscopy of aniline blue stain-aided technology, to understand how the species barriers operate on pollen germination and pollen tube growth. The study revealed that the pollen-pistil interaction in the wide crosses among L. usitatissimum X L. grandiflorum was regulated by both temporal and spatial pre-fertilization barriers. Callose deposition within 2 h after pollination (HAP) at the stigma surface, was the major cause inhibiting pollen germination. Various kinds of aberrations started appearing during the 2-4 HAP. The complexity of interspecific hybridization was observed in terms of arrest of pollen tube (PT) growth in the ovary, ruptured, twisted and swollen pollen tube tip, tube growth in reverse direction, convoluted and terminated growth patterns. Inconsistent growth rates of pollen tubes to reach various stylar regions emphasizes the importance of studying these wild relatives for potential agricultural advancements. The results show that while distant hybridization with L. grandiflorum is less efficient, pollen tubes can still navigate the ovular tissues, albeit with some delay. This finding opens avenues for investigating factors that hinder viable seed formation, enhancing our understanding of reproductive success in distant hybridization with this species.
Collapse
Affiliation(s)
- Vijaykumar Kailasrao Raut
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
- Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur, UP, India
| | - Aneeta Yadav
- Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur, UP, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Mahesh Rao
- Indian Council of Agricultural Research, National Institute for Plant Biotechnology, (ICAR-NIPB), New Delhi, India
| | - Pooja Pathania
- Division of Genomic Resources, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Dhammaprakash Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
| | - Gyanendra Pratap Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| |
Collapse
|
4
|
Ma W, Li Y, Gao H, Ma Y, Zhu Z, Wu X, Baldwin IT, Guo H. Functional dissection of three pollen-side quantitative trait loci against multiple stylar unilateral incompatibility mechanisms in Solanum pennellii LA0716. THE NEW PHYTOLOGIST 2025. [PMID: 39972638 DOI: 10.1111/nph.20456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
In Solanum pennellii LA0716, three stylar UI (sui) factors and one pollen UI (pui) factor were shown to be involved in S-RNase-independent unilateral incompatibility (UI). However, additional pui factor(s) and the antagonistic relationships among pui and sui factors remain to be investigated. Quantitative trait loci (QTL) mapping, functional and genetic analysis of LA0716-based crosses, and integrated multi-omics data are used to identify pui QTLs and functionally dissect pui QTLs from various types of stylar UI. In addition to the reported pui10.1 (SpFPS2), two pui QTLs (pui6.2 and pui12.1) were identified. In LA0716 styles, the three pui loci additively attenuate stylar UI, among which pui6.2 and pui12.1 appear to antagonize the sui factor, SpHT, via independent mechanisms. Furthermore, pui12.1's function was found to be conserved in the SC styles of Solanum habrochaites LA0407 and Solanum chmielewskii LA1028. Candidate genes linked to pui6.2 and pui12.1 are identified for further analysis. This study reveals several mechanisms for three newly described types of stylar UI and the corresponding pui QTLs in LA0716, which advance our understanding of the complex genetic mechanisms underlying UI in the tomato clade.
Collapse
Affiliation(s)
- Wenchun Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Gao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Xuna Wu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, DE-07745, Jena, Germany
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Zhou P, Li J, Jiang H, Yang Z, Sun C, Wang H, Su Q, Jin Q, Wang Y, Xu Y. NpCIPK6-NpSnRK1 module facilitates intersubgeneric hybridization barriers in water lily ( Nymphaea) by reducing abscisic acid content. HORTICULTURE RESEARCH 2025; 12:uhae289. [PMID: 39882173 PMCID: PMC11775591 DOI: 10.1093/hr/uhae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Prefertilization hybridization barriers are the main causes of intersubgeneric hybridization challenges in water lily. However, the mechanism underlying low compatibility between pollen and stigma of water lily remains unclear. This study demonstrates that CBL-interacting protein kinase 6 (CIPK6) responded to the signaling exchange between incompatible pollen and stigma through interactions with SNF1-related kinase 1 (SnRK1) and promotes the accumulation of SnRK1 protein. Activated SnRK1 interacted with 9-cis-epoxycarotenoid dioxygenase 2 (NCED2) to promote its degradation, thereby inhibiting abscisic acid (ABA) synthesis. A decrease in ABA content in the stigma impaired the ABA-mediated removal of reactive oxygen species (ROS), ultimately resulting in the rejection of the incompatible pollen by the stigma. Our results highlight the essential role of the NpCIPK6-NpSnRK1-NpNCED2 module in conferring intersubgeneric hybridization barriers in water lily by interfering with ABA synthesis and promoting ROS accumulation. This study offers valuable mechanistic insights into cellular signaling and reproductive barriers in water lily as well as across other biological contexts.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Jingwen Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Zhijuan Yang
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Yazhou District Huanjin Road, Sanya, Hainan 570228, China
| | - Chunqing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, No. 1 Hongjing Road, Huayang Town, Jurong 212400, China
| | - Hongyan Wang
- Flower Research Institute, Guangxi Academy of Agricultural Science, 174 Daxue East Road, Nanning 530007, China
| | - Qun Su
- Flower Research Institute, Guangxi Academy of Agricultural Science, 174 Daxue East Road, Nanning 530007, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No. 666 Binjiang Avenue, Jiangbei New District, Nanjing, Jiangsu 210095, China
- Sanya Research Institute of Nanjing Agricultural University, Building 9, Wutong Industrial Park, Zhenzhou Road, Yazhou District, Sanya 572000, China
| |
Collapse
|
6
|
Feller AF, Burgin G, Lewis NF, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. Evolution 2024; 78:1936-1948. [PMID: 39276149 DOI: 10.1093/evolut/qpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower-the pollen and the pistil-serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate. Here, we test whether differences in style length (a part of the pistil) generate a postmating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that the heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier, we assess pollen tube growth in vivo and in vitro. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within- and between-species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such reproductive isolating mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Nia F Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
7
|
Liu B, Li M, Qiu J, Xue J, Liu W, Cheng Q, Zhao H, Xue Y, Nasrallah ME, Nasrallah JB, Liu P. A pollen selection system links self and interspecific incompatibility in the Brassicaceae. Nat Ecol Evol 2024; 8:1129-1139. [PMID: 38637692 DOI: 10.1038/s41559-024-02399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengya Li
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jianfang Qiu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenhong Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qingqing Cheng
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hainan Zhao
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongbiao Xue
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Pei Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Feller AF, Burgin G, Lewis N, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593106. [PMID: 38766021 PMCID: PMC11100701 DOI: 10.1101/2024.05.08.593106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In flowering plants, pollen-pistil interactions can serve as an important barrier to reproduction between species. As the last barrier to reproduction before fertilization, interactions between these reproductive organs are both complex and important for determining a suitable mate. Here, we test whether differences in style length generate a post-mating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier we assess pollen tube growth in vitro and in vivo. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within and between species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F. Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Nia Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Northeastern University, Boston, MA 02115, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
MURASE K, TAKAYAMA S, ISOGAI A. Molecular mechanisms of self-incompatibility in Brassicaceae and Solanaceae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:264-280. [PMID: 38599847 PMCID: PMC11170026 DOI: 10.2183/pjab.100.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 04/12/2024]
Abstract
Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.
Collapse
Affiliation(s)
- Kohji MURASE
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan
| | - Seiji TAKAYAMA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira ISOGAI
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
12
|
Ke M, Si H, Qi Y, Sun Y, El-Kassaby YA, Wu Z, Li S, Liu K, Yu H, Hu R, Li Y. Characterization of pollen tube development in distant hybridization of Chinese cork oak (Quercus variabilis L.). PLANTA 2023; 258:110. [PMID: 37910223 DOI: 10.1007/s00425-023-04265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
MAIN CONCLUSION This work mainly found that the stigma and style of Q. variabilis did not completely lose the specific recognition towards heterologous pollen, a fact which is different from previous studies. Quercus is the foundation species in the Northern Hemisphere, with extreme prevalence for interspecific hybridization. It is not yet entirely understood whether or how the pollen tube-female tissue interaction contributes to the "extensive hybridization" in oaks. Pollen storage conditions correlate with distant hybridization. We conducted hybridization experiments with Q. variabilis as female and Q. variabilis and Q. mongolica as male parents. And the differences in pollen tube (PT) development between intra- and distant interspecific hybridization were studied by fluorescence microscopy and scanning electron microscopy (SEM). Our results showed that -20 °C allowed pollen of both species to maintain some viability. Both Q. variabilis and Q. mongolica pollen germinated profusely on the stigmas. SEM results indicated that in the intraspecific hybridization, Q. variabilis pollen started to germinate at 6 h after pollination (hap), PTs elongated significantly at 12 hap, and entered the stigma at 24 hap. By contrast, Q. mongolica pollen germinated at 15 hap, and the PTs entered the stigma at 27 hap. By fluorescence microscopical studies it was observed that some PTs of Q. variabilis gathered at the style-joining at 96 hap, unlike the Q. mongolica which reached the style junction at 144 hap. The above results indicate that the abundant germination of heterologous pollen (HP) on the stigma and the "Feeble specificity recognition" of the stigma and transmitting tract to HP may create opportunities for the "extensive hybridization" of oaks. This work provides a sexual developmental reference for clarifying the causes of Quercus "extensive hybridization".
Collapse
Affiliation(s)
- Meng Ke
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Huayu Si
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongliang Qi
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Zhiyong Wu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Shian Li
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Kelin Liu
- Beijing Green Space Maintenance and Management Service Centre, Beijing, 102200, China
| | - Hai Yu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Ruiyang Hu
- Experimental Centre of Forestry in North China, Chinese Academy of Forestry, Beijing, 102399, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Lan Z, Song Z, Wang Z, Li L, Liu Y, Zhi S, Wang R, Wang J, Li Q, Bleckmann A, Zhang L, Dresselhaus T, Dong J, Gu H, Zhong S, Qu LJ. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell 2023; 186:4773-4787.e12. [PMID: 37806310 PMCID: PMC10615786 DOI: 10.1016/j.cell.2023.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/24/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.
Collapse
Affiliation(s)
- Zijun Lan
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yiqun Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shuaihua Zhi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ruihan Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jizong Wang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Li Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
14
|
Wang L, Filatov DA. Mechanisms of prezygotic post-pollination reproductive barriers in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1230278. [PMID: 37476168 PMCID: PMC10354421 DOI: 10.3389/fpls.2023.1230278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Hybridisation between individuals of different species can lead to maladapted or inviable progeny due to genetic incompatibilities between diverging species. On the other hand, mating with close relatives, or self-fertilisation may lead to inbreeding depression. Thus, both too much or too little divergence may lead to problems and the organisms have to carefully choose mating partners to avoid both of these pitfalls. In plants this choice occurs at many stages during reproduction, but pollen-pistil interactions play a particularly important role in avoiding inbreeding and hybridisation with other species. Interestingly, the mechanisms involved in avoidance of selfing and interspecific hybridisation may work via shared molecular pathways, as self-incompatible species tend to be more 'choosy' with heterospecific pollen compared to self-compatible ones. This review discusses various prezygotic post-pollination barriers to interspecific hybridisation, with a focus on the mechanisms of pollen-pistil interactions and their role in the maintenance of species integrity.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Dmitry A. Filatov
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
15
|
Tran TC, Lenhard M. Pollen-stigma incompatibility within and between species: Tread lightly, sedate the dogs, and don't wake the guards! Dev Cell 2023; 58:335-337. [PMID: 36917929 DOI: 10.1016/j.devcel.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
In a recent issue of Nature, Huang et al. identify and show how to overcome the barriers to successful pollen germination after interspecific crosses.1 Their findings answer a long-standing question about reproductive barriers in flowering plants and open the door to harnessing genetic diversity of distant relatives for crop improvement.
Collapse
Affiliation(s)
- Thi Chi Tran
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
16
|
Huang J, Yang L, Yang L, Wu X, Cui X, Zhang L, Hui J, Zhao Y, Yang H, Liu S, Xu Q, Pang M, Guo X, Cao Y, Chen Y, Ren X, Lv J, Yu J, Ding J, Xu G, Wang N, Wei X, Lin Q, Yuan Y, Zhang X, Ma C, Dai C, Wang P, Wang Y, Cheng F, Zeng W, Palanivelu R, Wu HM, Zhang X, Cheung AY, Duan Q. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 2023; 614:303-308. [PMID: 36697825 PMCID: PMC9908550 DOI: 10.1038/s41586-022-05640-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.
Collapse
Affiliation(s)
- Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Liu Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaoyu Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaoshuang Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jiyun Hui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yumei Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongmin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shangjia Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Quanling Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Maoxuan Pang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinping Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yunyun Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yu Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinru Ren
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinzhi Lv
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jianqiang Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Junyi Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Gang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Nian Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qinghui Lin
- Computer Network Information Centre, Chinese Academy of Sciences, Beijing, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengwei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongchao Wang
- Shandong Yiyi Agricultural Science and Technology Co., Ltd, Tai'an, China
| | - Fei Cheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Weiqing Zeng
- International Flavors & Fragrances, Wilmington, DE, USA
| | | | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA, USA
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA, USA.
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
17
|
Li C, Long Y, Lu M, Zhou J, Wang S, Xu Y, Tan X. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 13:1065872. [PMID: 36762174 PMCID: PMC9902722 DOI: 10.3389/fpls.2022.1065872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Self-incompatibility (SI) is an important strategy for plants to maintain abundant variation to enhance their adaptability to the environment. Camellia oleifera is one of the most important woody oil plants and is widely cultivated in China. Late acting self-incompatibility (LSI) in C. oleifera results in a relatively poor fruit yield in the natural state, and understanding of the LSI mechanism remains limited. METHODS To better understand the molecular expression and gene coexpression network in the LSI reaction in C. oleifera, we conducted self- and cross-pollination experiments at two different flower bud developmental stages (3-4 d before flowering and 1 d before flowering), and cytological observation, fruit setting rate (FSR) investigation and RNA-Seq analysis were performed to investigate the mechanism of the male -female interaction and identify hub genes responsible for the LSI in C. oleifera. RESULTS Based on the 21 ovary transcriptomes, a total of 7669 DEGs were identified after filtering out low-expression genes. Weighted gene coexpression network analysis (WGCNA) divided the DEGs into 15 modules. Genes in the blue module (1163 genes) were positively correlated with FSR, and genes in the pink module (339 genes) were negatively correlated with FSR. KEGG analysis indicated that flavonoid biosynthesis, plant MAPK signaling pathways, ubiquitin-mediated proteolysis, and plant-pathogen interaction were the crucial pathways for the LSI reaction. Fifty four transcription factors (TFs) were obtained in the two key modules, and WRKY and MYB were potentially involved in the LSI reaction in C. oleifera. Network establishment indicated that genes encoding G-type lectin S-receptor-like serine (lecRLK), isoflavone 3'-hydroxylase-like (CYP81Q32), cytochrome P450 87A3-like (CYP87A3), and probable calcium-binding protein (CML41) were the hub genes that positively responded to the LSI reaction. The other DEGs inside the two modules, including protein RALF-like 10 (RALF), F-box and pectin acetylesterase (MTERF5), might also play vital roles in the LSI reaction in C. oleifera. DISCUSSION Overall, our study provides a meaningful resource for gene network studies of the LSI reaction process and subsequent analyses of pollen-pistil interactions and TF roles in the LSI reaction, and it also provides new insights for exploring the mechanisms of the LSI response.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Yi Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Sen Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Yan Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
18
|
Du J, Ge C, Wang T, Wang J, Ni Z, Xiao S, Zhao F, Zhao M, Qiao Y. Combined transcriptomic and proteomic analysis reveals multiple pathways involved in self-pollen tube development and the potential roles of FviYABBY1 in self-incompatibility in Fragaria viridis. FRONTIERS IN PLANT SCIENCE 2022; 13:927001. [PMID: 36186066 PMCID: PMC9515988 DOI: 10.3389/fpls.2022.927001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Fragaria viridis exhibits S-RNase-based gametophytic self-incompatibility, in which S-RNase is the major factor inhibiting pollen tube growth. However, the pathways involved in and the immediate causes of the inhibition of pollen tube growth remain unknown. Here, interactive RNA sequencing and proteome analysis revealed changes in the transcriptomic and proteomic profiles of F. viridis styles harvested at 0 and 24 h after self-pollination. A total of 2,181 differentially expressed genes and 200 differentially abundant proteins were identified during the pollen development stage of self-pollination. Differentially expressed genes and differentially abundant proteins associated with self-incompatible pollination were further mined, and multiple pathways were found to be involved. Interestingly, the expression pattern of the transcription factor FviYABBY1, which is linked to polar growth, differed from those of other genes within the same family. Specifically, FviYABBY1 expression was extremely high in pollen, and its expression trend in self-pollinated styles was consistent with that of S-RNase. Furthermore, FviYABBY1 interacted with S-RNase in a non-S haplotype way. Therefore, FviYABBY1 affects the expression of polar growth-related genes in self-pollen tubes and is positively regulated by S-RNase.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chunfeng Ge
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tao Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyou Ni
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Xiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mizhen Zhao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
19
|
Self-Incompatibility in Apricot: Identifying Pollination Requirements to Optimize Fruit Production. PLANTS 2022; 11:plants11152019. [PMID: 35956497 PMCID: PMC9370128 DOI: 10.3390/plants11152019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
In recent years, an important renewal of apricot cultivars is taking place worldwide, with the introduction of many new releases. Self-incompatible genotypes tolerant to the sharka disease caused by the plum pox virus (PPV), which can severely reduce fruit production and quality, are being used as parents in most breeding programs. As a result, the self-incompatibility trait present in most of those accessions can be transmitted to the offspring, leading to the release of new self-incompatible cultivars. This situation can considerably affect apricot management, since pollination requirements were traditionally not considered in this crop and information is lacking for many cultivars. Thus, the objective of this work was to determine the pollination requirements of a group of new apricot cultivars by molecular identification of the S-alleles through PCR amplification of RNase and SFB regions with different primer combinations. The S-genotype of 66 apricot cultivars is reported, 41 for the first time. Forty-nine cultivars were considered self-compatible and 12 self-incompatible, which were allocated in their corresponding incompatibility groups. Additionally, the available information was reviewed and added to the new results obtained, resulting in a compilation of the pollination requirements of 235 apricot cultivars. This information will allow an efficient selection of parents in apricot breeding programs, the proper design of new orchards, and the identification and solution of production problems associated with a lack of fruit set in established orchards. The diversity at the S-locus observed in the cultivars developed in breeding programs indicates a possible genetic bottleneck due to the use of a reduced number of parents.
Collapse
|
20
|
Cardoso JCF, Trevizan R, Matallana-Puerto CA, Gonçalves RV, Oliveira PE, Coelho CP, Matias R. Do distylous syntopic plant species partition their floral morphological traits? Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Morphological niche partitioning between related syntopic plants that are distylous (with short- and long-styled morphs) is complex. Owing to differences in the heights of stigmas and anthers, each floral morph must place pollen onto two distinct parts of the body of the pollinator. This led us to hypothesize that such partitioning should be more accurate among distylous syntopic species in comparison to combinations with other related plants that do not co-occur. We tested these assumptions using a set of Palicourea (Rubiaceae) species as a model system. We compared the distribution, flowering phenology, floral measurements and reciprocity of sexual organ heights of two syntopic species (Palicourea rigida and Palicourea coriacea) and one non-syntopic congener (Palicourea marcgravii). The three species overlapped in their distributions and flowering periods. The position of sexual organs was, in most cases, partitioned between syntopic populations, with low overlap in anther and stigma heights. However, we found a higher overlap involving the non-syntopic species, especially between Palicourea rigida and Palicourea marcgravii. Additionally, reciprocity of sexual organs was more accurate in intraspecific inter-morph combinations (i.e. legitimate organ correspondence) in comparison to intraspecific intra-morph, interspecific syntopic and interspecific non-syntopic combinations. The partitioning of morphological traits between syntopic species might facilitate the differential placement of pollen on the body of the pollinator and reduce the chances of interspecific interference.
Collapse
Affiliation(s)
- João Custódio Fernandes Cardoso
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia , Uberlândia, MG , Brazil
| | - Renata Trevizan
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas , Campinas, SP , Brazil
| | | | - Rogério Victor Gonçalves
- Centre for Sustainable Ecosystem Solutions, University of Wollongong , Wollongong , NSW , Australia
| | | | | | | |
Collapse
|
21
|
Yang Y, Zhang X, Zou H, Chen J, Wang Z, Luo Z, Yao Z, Fang B, Huang L. Exploration of molecular mechanism of intraspecific cross-incompatibility in sweetpotato by transcriptome and metabolome analysis. PLANT MOLECULAR BIOLOGY 2022; 109:115-133. [PMID: 35338442 PMCID: PMC9072463 DOI: 10.1007/s11103-022-01259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cross-incompatibility, frequently happening in intraspecific varieties, has seriously restricted sweetpotato breeding. However, the mechanism of sweetpotato intraspecific cross-incompatibility (ICI) remains largely unexplored, especially for molecular mechanism. Treatment by inducible reagent developed by our lab provides a method to generate material for mechanism study, which could promote incompatible pollen germination and tube growth in the ICI group. Based on the differential phenotypes between treated and untreated samples, transcriptome and metabolome were employed to explore the molecular mechanism of sweetpotato ICI in this study, taking varieties 'Guangshu 146' and 'Shangshu 19', a typical incompatible combination, as materials. The results from transcriptome analysis showed oxidation-reduction, cell wall metabolism, plant-pathogen interaction, and plant hormone signal transduction were the essential pathways for sweetpotato ICI regulation. The differentially expressed genes (DEGs) enriched in these pathways were the important candidate genes to response ICI. Metabolome analysis showed that multiple differential metabolites (DMs) involved oxidation-reduction were identified. The most significant DM identified in comparison between compatible and incompatible samples was vitexin-2-O-glucoside, a flavonoid metabolite. Corresponding to it, cytochrome P450s were the most DEGs identified in oxidation-reduction, which were implicated in flavonoid biosynthesis. It further suggested oxidation-reduction play an important role in sweetpotato ICI regulation. To validate function of oxidation-reduction, reactive oxygen species (ROS) was detected in compatible and incompatible samples. The green fluorescence was observed in incompatible but not in compatible samples. It indicated ROS regulated by oxidation-reduction is important pathway to response sweetpotato ICI. The results in this study would provide valuable insights into molecular mechanisms for sweetpotato ICI.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiongjian Zhang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingyi Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongxia Luo
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhufang Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
22
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
23
|
Chen T, Xie M, Jiang Y, Yuan T. Abortion occurs during double fertilization and ovule development in Paeonia ludlowii. JOURNAL OF PLANT RESEARCH 2022; 135:295-310. [PMID: 35059894 PMCID: PMC8894304 DOI: 10.1007/s10265-021-01366-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Paeonia ludlowii (Stern & Taylor) D.Y.Hong, an endangered species, is indigenous to Tibet, China and propagated only by seed under natural conditions. Its natural reproduction is constrained by low fecundity. Excess seed abortion is a key factor restricting its natural reproduction, cultivation, introduction, and protection. Understanding the specific origin and occurrence of aborted ovules is important for the protection of offspring. Using serial sectioning analysis, we studied the process of pollination and fertilization of P. ludlowii and examined the characteristics of aborted ovules, developmental differences after flowering of normal and aborted ovules, and their ratios at different positions in P. ludlowii ovaries. During pollination, fertilization, and seed development, ovule abortion was frequent, with a random abortion position. There were three types of abortion, namely, abnormal pistil, sterile ovules, and embryo and endosperm abortions. Of these, embryo and endosperm abortions could be divided into early abortion and middle abortion. The early aborted ovules stopped growing on day 12, the endoblast and endosperm in the embryo sac aborted gradually. Furthermore, the shape of the embryo sac cavity changed. The volume of aborted ovules was significantly different from that of fertile ovules. At ripening, the external morphology of different types of aborted seeds was significantly different. The possible reasons for the abortion of the ovules are also discussed.
Collapse
Affiliation(s)
- Tingqiao Chen
- School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Mengyu Xie
- School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yumeng Jiang
- School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Tao Yuan
- School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
24
|
Xu Y, Zhang Q, Zhang X, Wang J, Ayup M, Yang B, Guo C, Gong P, Dong W. The proteome reveals the involvement of serine/threonine kinase in the recognition of self- incompatibility in almond. J Proteomics 2022; 256:104505. [PMID: 35123051 DOI: 10.1016/j.jprot.2022.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
The self-incompatibility recognition mechanism determines whether the gametophyte is successfully fertilized between pollen tube SCF (SKP1-CUL1-F-box-RBX1) protein and pistil S-RNase protein during fertilization is unclear. In this study, the pistils of two almond cultivars 'Wanfeng' and 'Nonpareil' were used as the experimental materials after self- and nonself/cross-pollination, and pistils from the stamen-removed flowers were used as controls. We used fluorescence microscopy to observe the development of pollen tubes after pollination and 4D-LFQ to detect the protein expression profiles of 'Wanfeng' and 'Nonpareil' pistils and in controls. The results showed that it took 24-36 h for the development of the pollen tube to 1/3 of the pistil, and a total of 7684 differentially accumulated proteins (DAPs) were identified in the pistil after pollinating for 36 h, of which 7022 were quantifiable. Bioinformatics analysis based on the function of DAPs, identified RNA polymerases (4 DAPs), autophagy (3 DAPs), oxidative phosphorylation (3 DAPs), and homologous recombination (2 DAPs) pathways associated with the self-incompatibility process. These results were confirmed by parallel reaction monitoring (PRM), protein interaction and bioinformatics analysis. Taken together, these results provide the involvement of serine/threonine kinase protein in the reaction of pollen tube recognition the nonself- and the self-S-RNase protein. SIGNIFICANCE: Gametophytic self-incompatibility (GSI) is controlled by the highly polymorphic S locus or S haplotype, with two linked self-incompatibility genes, one encoding the S-RNase protein of the pistil S-determinant and the other encoding the F-box/SLF/SFB (S haplotype-specific F-box protein) protein of the pollen S-determinant. The recognition mechanism between pollen tube SCF protein and pistil S-RNase protein is divided into nonself- and self-recognition hypothesis mechanisms. At present, two hypothetical mechanisms cannot explain the recognition between pollen and pistil well, so the mechanism of gametophytic self-incompatibility recognition is still not fully revealed. In this experiment, we investigated the molecular mechanism of pollen-pistil recognition in self-incompatibility using self- and nonself-pollinated pistils of almond cultivars 'Wanfeng' and 'Nonpareil'. Based on our results, we proposed a potential involvement of the MARK2 (serine/threonine kinase) protein in the reaction of pollen tube recognition of the nonself- and the self-S-RNase protein. It provides a new way to reveal how almond pollen tubes recognize the self and nonself S-RNase enzyme protein.
Collapse
Affiliation(s)
- Yeting Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China; Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Qiuping Zhang
- Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China
| | - Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Mubarek Ayup
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Bo Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Chunmiao Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Peng Gong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China.
| |
Collapse
|
25
|
Blasio F, Prieto P, Pradillo M, Naranjo T. Genomic and Meiotic Changes Accompanying Polyploidization. PLANTS (BASEL, SWITZERLAND) 2022; 11:125. [PMID: 35009128 PMCID: PMC8747196 DOI: 10.3390/plants11010125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.
Collapse
Affiliation(s)
- Francesco Blasio
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4048, 14080 Cordova, Spain;
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| | - Tomás Naranjo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.B.); (M.P.)
| |
Collapse
|
26
|
Broz AK, Miller CM, Baek YS, Tovar-Méndez A, Acosta-Quezada PG, Riofrío-Cuenca TE, Rusch DB, Bedinger PA. S-RNase Alleles Associated With Self-Compatibility in the Tomato Clade: Structure, Origins, and Expression Plasticity. Front Genet 2021; 12:780793. [PMID: 34938321 PMCID: PMC8685505 DOI: 10.3389/fgene.2021.780793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Christopher M Miller
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
27
|
Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M. Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50. Curr Biol 2021; 32:671-676.e5. [PMID: 34906354 DOI: 10.1016/j.cub.2021.11.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Most flowering plants are hermaphrodites, with flowers having both male and female reproductive organs. One widespread adaptation to limit self-fertilization is self-incompatibility (SI), where self-pollen fails to fertilize ovules.1,2 In homomorphic SI, many morphologically indistinguishable mating types are found, although in heteromorphic SI, the two or three mating types are associated with different floral morphologies.3-6 In heterostylous Primula, a hemizygous supergene determines a short-styled S-morph and a long-styled L-morph, corresponding to two different mating types, and full seed set only results from intermorph crosses.7-9 Style length is controlled by the brassinosteroid (BR)-inactivating cytochrome P450 CYP734A50,10 yet it remains unclear what defines the male and female incompatibility types. Here, we show that CYP734A50 also determines the female incompatibility type. Inactivating CYP734A50 converts short S-morph styles into long styles with the same incompatibility behavior as L-morph styles, and this effect can be mimicked by exogenous BR treatment. In vitro responses of S- and L-morph pollen grains and pollen tubes to increasing BR levels could only partly explain their different in vivo behavior, suggesting both direct and indirect effects of the different BR levels in S- versus L-morph stigmas and styles in controlling pollen performance. This BR-mediated SI provides a novel mechanism for preventing self-fertilization. The joint control of morphology and SI by CYP734A50 has important implications for the evolutionary buildup of the heterostylous syndrome and provides a straightforward explanation for why essentially all of the derived self-compatible homostylous Primula species are long homostyles.11.
Collapse
Affiliation(s)
- Cuong Nguyen Huu
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Sylvia Plaschil
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | - Christian Kappel
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
28
|
Muñoz-Sanz JV, Tovar-Méndez A, Lu L, Dai R, McClure B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato ( Solanum Section Lycopersicon) Clade. Int J Mol Sci 2021; 22:ijms222313067. [PMID: 34884871 PMCID: PMC8657656 DOI: 10.3390/ijms222313067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species’ pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Rijk Zwaan Iberica S.A., Carretera Viator Paraje El Mamí S/N, La Cañada, 04120 Almería, Spain
- Correspondence:
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Elemental Enzymes, 1685 Galt Industrial Boulevard, St. Louis, MO 63132, USA
| | - Lu Lu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Ru Dai
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Horticultural Sciences, University of Florida, Fifield Hall, 2550 Hull Road, Gainesville, FL 32611, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
| |
Collapse
|
29
|
Zhang Z, Zhan H, Lu J, Xiong S, Yang N, Yuan H, Yang ZN. Tapetal 3-Ketoacyl-Coenzyme A Synthases Are Involved in Pollen Coat Lipid Accumulation for Pollen-Stigma Interaction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770311. [PMID: 34887893 PMCID: PMC8650583 DOI: 10.3389/fpls.2021.770311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 06/01/2023]
Abstract
Pollen coat lipids form an outer barrier to protect pollen itself and play essential roles in pollen-stigma interaction. However, the precise molecular mechanisms underlying the production, deposition, regulation, and function of pollen coat lipids during anther development remain largely elusive. In lipid metabolism, 3-ketoacyl-coenzyme A synthases (KCS) are involved in fatty acid elongation or very-long-chain fatty acid (VLCFA) synthesis. In this study, we identified six members of the Arabidopsis KCS family expressed in anther. Among them, KCS7, KCS15, and KCS21 were expressed in tapetal cells at anther stages 8-10. Further analysis demonstrated that they act downstream of male sterility 1 (MS1), a regulator of late tapetum development. The kcs7/15/21 triple mutant is fertile. Both cellular observation and lipid staining showed pollen coat lipid was decreased in kcs7/15/21 triple mutant. After landing on stigma, the wild-type pollen grains were hydrated for about 5 min while the kcs7/15/21 triple mutant pollen took about 10 min to hydrate. Pollen tube growth of the triple mutant was also delayed. These results demonstrate that the tapetum-localized KCS proteins are involved in the accumulation of pollen coat lipid and reveal the roles of tapetal-derived pollen coat lipid for pollen-stigma interaction.
Collapse
Affiliation(s)
- Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Huadong Zhan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jieyang Lu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuangxi Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongyu Yuan
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
30
|
Du J, Ge C, Li T, Wang S, Gao Z, Sassa H, Qiao Y. Molecular characteristics of S-RNase alleles as the determinant of self-incompatibility in the style of Fragaria viridis. HORTICULTURE RESEARCH 2021; 8:185. [PMID: 34333550 PMCID: PMC8325692 DOI: 10.1038/s41438-021-00623-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 05/11/2023]
Abstract
Strawberry (Fragaria spp.) is a member of the Rosoideae subfamily in the family Rosaceae. The self-incompatibility (SI) of some diploid species is a key agronomic trait that acts as a basic pollination barrier; however, the genetic mechanism underlying SI control in strawberry remains unclear. Two candidate S-RNases (Sa- and Sb-RNase) identified in the transcriptome of the styles of the self-incompatible Fragaria viridis 42 were confirmed to be SI determinants at the S locus following genotype identification and intraspecific hybridization using selfing progenies. Whole-genome collinearity and RNase T2 family analysis revealed that only an S locus exists in Fragaria; however, none of the compatible species contained S-RNase. Although the results of interspecific hybridization experiments showed that F. viridis (SI) styles could accept pollen from F. mandshurica (self-compatible), the reciprocal cross was incompatible. Sa and Sb-RNase contain large introns, and their noncoding sequences (promotors and introns) can be transcribed into long noncoding RNAs (lncRNAs). Overall, the genus Fragaria exhibits S-RNase-based gametophytic SI, and S-RNase loss occurs at the S locus of compatible germplasms. In addition, a type of SI-independent unilateral incompatibility exists between compatible and incompatible Fragaria species. Furthermore, the large introns and neighboring lncRNAs in S-RNase in Fragaria could offer clues about S-RNase expression strategies.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Chiba, Japan
| | - Chunfeng Ge
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Tingting Li
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sanhong Wang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhihong Gao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hidenori Sassa
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Chiba, Japan
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
31
|
Buteme R, Nakajiri M, Kucel N, Kabod PN, Sseremba G, Kizito EB. Intraspecific crossability and compatibility within Solanum aethiopicum. Heliyon 2021; 7:e07645. [PMID: 34386622 PMCID: PMC8346643 DOI: 10.1016/j.heliyon.2021.e07645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding hybridization barriers is relevant for germplasm conservation and utilization. The prezygotic barriers to hybridization include floral morphological differences like pistil and stamen length, pollen characteristics and pollen-pistil interactions. This study sought to elucidate the reproductive biology of Solanum aethiopicum; its mating systems and compatibility barriers. Eight genotypes of Solanum aethiopicum were examined for differences in floral morphology, phenology and cross compatibility in a full diallel mating design, with assessment of fruit set, seed set and seed viability. In-vivo pollen tube growth was observed for failed crosses at 24, 48 and 72 h after pollination. All genotypes had heterostyly flowers, with predominantly small white petals. Incompatibility was observed in five out of 39 combinations. All selfed genotypes displayed compatibility implying the genotypes are self-compatible. Pollen–pistil incompatibility, which was exhibited in four out of the five failed cross combinations, occurred on the stigma, upper style and lower style, a phenomenon typical in Solanaceae. Solanum aethiopicum is self-compatible and majorly self-pollinating but has features that support cross-pollination.
Collapse
Affiliation(s)
- Ruth Buteme
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Mary Nakajiri
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Newton Kucel
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Pamela Nahamya Kabod
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| | - Godfrey Sseremba
- National Agricultural Research Organization-NACORRI, P. O. Box 185, Kituza, Mukono, Uganda
| | - Elizabeth Balyejusa Kizito
- Department of Agricultural and Biological Sciences, P.O.Box 4, Uganda Christian University, Mukono, Uganda
| |
Collapse
|
32
|
Broz AK, Simpson-Van Dam A, Tovar-Méndez A, Hahn MW, McClure B, Bedinger PA. Spread of self-compatibility constrained by an intrapopulation crossing barrier. THE NEW PHYTOLOGIST 2021; 231:878-891. [PMID: 33864700 DOI: 10.1111/nph.17400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Mating system transitions from self-incompatibility (SI) to self-compatibility (SC) are common in plants. In the absence of high levels of inbreeding depression, SC alleles are predicted to spread due to transmission advantage and reproductive assurance. We characterized mating system and pistil-expressed SI factors in 20 populations of the wild tomato species Solanum habrochaites from the southern half of the species range. We found that a single SI to SC transition is fixed in populations south of the Rio Chillon valley in central Peru. In these populations, SC correlated with the presence of the hab-6 S-haplotype that encodes a low activity S-RNase protein. We identified a single population segregating for SI/SC and hab-6. Intrapopulation crosses showed that hab-6 typically acts in the expected codominant fashion to confer SC. However, we found one specific S-haplotype (hab-10) that consistently rejects pollen of the hab-6 haplotype, and results in SI hab-6/hab-10 heterozygotes. We suggest that the hab-10 haplotype could act as a genetic mechanism to stabilize mixed mating in this population by presenting a disadvantage for the hab-6 haplotype. This barrier may represent a mechanism allowing for the persistence of SI when an SC haplotype appears in or invades a population.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | | | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
33
|
Abstract
Pollen-pistil interactions serve as important prezygotic reproductive barriers that play a critical role in mate selection in plants. Here, we highlight recent progress toward understanding the molecular basis of pollen-pistil interactions as reproductive isolating barriers. These barriers can be active systems of pollen rejection, or they can result from a mismatch of required male and female factors. In some cases, the barriers are mechanistically linked to self-incompatibility systems, while others represent completely independent processes. Pollen-pistil reproductive barriers can act as soon as pollen is deposited on a stigma, where penetration of heterospecific pollen tubes is blocked by the stigma papillae. As pollen tubes extend, the female transmitting tissue can selectively limit growth by producing cell wall-modifying enzymes and cytotoxins that interact with the growing pollen tube. At ovules, differential pollen tube attraction and inhibition of sperm cell release can act as barriers to heterospecific pollen tubes.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA; ,
| |
Collapse
|
34
|
Qin X, Chetelat RT. Ornithine decarboxylase genes contribute to S-RNase-independent pollen rejection. PLANT PHYSIOLOGY 2021; 186:452-468. [PMID: 33576789 PMCID: PMC8154068 DOI: 10.1093/plphys/kiab062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/23/2021] [Indexed: 05/14/2023]
Abstract
Unilateral incompatibility (UI) manifests as pollen rejection in the pistil, typically when self-incompatible (SI) species are pollinated by self-compatible (SC) relatives. In the Solanaceae, UI occurs when pollen lack resistance to stylar S-RNases, but other, S-RNase-independent mechanisms exist. Pistils of the wild tomato Solanum pennellii LA0716 (SC) lack S-RNase yet reject cultivated tomato (Solanum lycopersicum, SC) pollen. In this cross, UI results from low pollen expression of a farnesyl pyrophosphate synthase gene (FPS2) in S. lycopersicum. Using pollen from fps2-/- loss-of-function mutants in S. pennellii, we identified a pistil factor locus, ui3.1, required for FPS2-based pollen rejection. We mapped ui3.1 to an interval containing 108 genes situated on the IL 3-3 introgression. This region includes a cluster of ornithine decarboxylase (ODC2) genes, with four copies in S. pennellii, versus one in S. lycopersicum. Expression of ODC2 transcript was 1,034-fold higher in S. pennellii than in S. lycopersicum styles. Pistils of odc2-/- knockout mutants in IL 3-3 or S. pennellii fail to reject fps2 pollen and abolish transmission ratio distortion (TRD) associated with FPS2. Pollen of S. lycopersicum express low levels of FPS2 and are compatible on IL 3-3 pistils, but incompatible on IL 12-3 × IL 3-3 hybrids, which express both ODC2 and ui12.1, a locus thought to encode the SI proteins HT-A and HT-B. TRD observed in F2 IL 12-3 × IL 3-3 points to additional ODC2-interacting pollen factors on both chromosomes. Thus, ODC2 genes contribute to S-RNase independent UI and interact genetically with ui12.1 to strengthen pollen rejection.
Collapse
Affiliation(s)
- Xiaoqiong Qin
- Department of Plant Sciences (ms #3), University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Roger T Chetelat
- Department of Plant Sciences (ms #3), University of California, Davis, One Shields Avenue, Davis, California 95616
- Author for communication:
| |
Collapse
|
35
|
Płachno BJ, Kapusta M, Świątek P, Banaś K, Miranda VFO, Bogucka-Kocka A. Spatio-Temporal Distribution of Cell Wall Components in the Placentas, Ovules and Female Gametophytes of Utricularia during Pollination. Int J Mol Sci 2021; 22:ijms22115622. [PMID: 34070693 PMCID: PMC8199428 DOI: 10.3390/ijms22115622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac.
Collapse
Affiliation(s)
- Bartosz Jan Płachno
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence:
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Faculty of Natural Sciences, Biotechnology and Environmental Protection, Institute of Biology, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Krzysztof Banaś
- Department of Plant Ecology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Vitor F. O. Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal CEP 14884-900, SP, Brazil;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
36
|
Zhang L, Huang J, Su S, Wei X, Yang L, Zhao H, Yu J, Wang J, Hui J, Hao S, Song S, Cao Y, Wang M, Zhang X, Zhao Y, Wang Z, Zeng W, Wu HM, Yuan Y, Zhang X, Cheung AY, Duan Q. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol 2021; 31:3004-3016.e4. [PMID: 34015250 DOI: 10.1016/j.cub.2021.04.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Most plants in the Brassicaceae evolve self-incompatibility (SI) to avoid inbreeding and generate hybrid vigor. Self-pollen is recognized by the S-haplotype-specific interaction of the pollen ligand S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein [SCR]) and its stigma-specific S-locus receptor kinase (SRK). However, mechanistically much remains unknown about the signaling events that culminate in self-pollen rejection. Here, we show that self-pollen triggers high levels of reactive oxygen species (ROS) in stigma papilla cells to mediate SI in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). We found that stigmatic ROS increased after self-pollination but decreased after compatible(CP)- pollination. Reducing stigmatic ROS by scavengers or suppressing the expression of respiratory burst oxidase homologs (Rbohs), which encode plant NADPH oxidases that produce ROS, both broke down SI. On the other hand, increasing the level of ROS inhibited the germination and penetration of compatible pollen on the stigma, mimicking an incompatible response. Furthermore, suppressing a B. rapa FERONIA (FER) receptor kinase homolog or Rac/Rop guanosine triphosphatase (GTPase) signaling effectively reduced stigmatic ROS and interfered with SI. Our results suggest that FER-Rac/Rop signaling-regulated, NADPH oxidase-produced ROS is an essential SI response leading to self-pollen rejection.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| | - Shiqi Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Huanhuan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jianqiang Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jie Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiyun Hui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Shiya Hao
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Shanshan Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Yanyan Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Maoshuai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | | | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China.
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| |
Collapse
|
37
|
Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, Sun X, Liu Z, Cheng L, Zhang H, Han Z, Chai J, Wu HM, Cheung AY, Li C. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 2021; 372:171-175. [PMID: 33833120 DOI: 10.1126/science.abc6107] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Sexual reproduction in angiosperms relies on precise communications between the pollen and pistil. The molecular mechanisms underlying these communications remain elusive. We established that in Arabidopsis, a stigmatic gatekeeper, the ANJEA-FERONIA (ANJ-FER) receptor kinase complex, perceives the RAPID ALKALINIZATION FACTOR peptides RALF23 and RALF33 to induce reactive oxygen species (ROS) production in the stigma papillae, whereas pollination reduces stigmatic ROS, allowing pollen hydration. Upon pollination, the POLLEN COAT PROTEIN B-class peptides (PCP-Bs) compete with RALF23/33 for binding to the ANJ-FER complex, leading to a decline of stigmatic ROS that facilitates pollen hydration. Our results elucidate a molecular gating mechanism in which distinct peptide classes from pollen compete with stigma peptides for interaction with a stigmatic receptor kinase complex, allowing the pollen to hydrate and germinate.
Collapse
Affiliation(s)
- Chen Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianping Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Xiao
- School of Life Sciences, Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - David Vyshedsky
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai, China
| | - Xiang Sun
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Cheng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hua Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhifu Han
- School of Life Sciences, Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- School of Life Sciences, Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
38
|
Landis JB, Miller CM, Broz AK, Bennett AA, Carrasquilla-Garcia N, Cook DR, Last RL, Bedinger PA, Moghe GD. Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species. Mol Biol Evol 2021; 38:3202-3219. [PMID: 33822137 PMCID: PMC8321546 DOI: 10.1093/molbev/msab092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Orsucci M, Sicard A. Flower evolution in the presence of heterospecific gene flow and its contribution to lineage divergence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:971-989. [PMID: 33537708 DOI: 10.1093/jxb/eraa549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The success of species depends on their ability to exploit ecological resources in order to optimize their reproduction. However, species are not usually found within single-species ecosystems but in complex communities. Because of their genetic relatedness, closely related lineages tend to cluster within the same ecosystem, rely on the same resources, and be phenotypically similar. In sympatry, they will therefore compete for the same resources and, in the case of flowering plants, exchange their genes through heterospecific pollen transfer. These interactions, nevertheless, pose significant challenges to species co-existence because they can lead to resource limitation and reproductive interference. In such cases, divergent selective pressures on floral traits will favour genotypes that isolate or desynchronize the reproduction of sympatric lineages. The resulting displacement of reproductive characters will, in turn, lead to pre-mating isolation and promote intraspecific divergence, thus initiating or reinforcing the speciation process. In this review, we discuss the current theoretical and empirical knowledge on the influence of heterospecific pollen transfer on flower evolution, highlighting its potential to uncover the ecological and genomic constraints shaping the speciation process.
Collapse
Affiliation(s)
- Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural, Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
40
|
Rushworth CA, Mitchell-Olds T. The Evolution of Sex is Tempered by Costly Hybridization in Boechera (Rock Cress). J Hered 2020; 112:67-77. [PMID: 33211850 DOI: 10.1093/jhered/esaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Despite decades of research, the evolution of sex remains an enigma in evolutionary biology. Typically, research addresses the costs of sex and asexuality to characterize the circumstances favoring one reproductive mode. Surprisingly few studies address the influence of common traits that are, in many organisms, obligately correlated with asexuality, including hybridization and polyploidy. These characteristics have substantial impacts on traits under selection. In particular, the fitness consequences of hybridization (i.e., reduced fitness due to interspecific reproductive isolation) will influence the evolution of sex. This may comprise a cost of either sex or asexuality due to the link between hybridity and asexuality. We examined reproductive isolation in the formation of de novo hybrid lineages between 2 widespread species in the ecological model system Boechera. Seventeen percent of 664 crosses produced F1 fruits, and only 10% of these were viable, suggesting that postmating prezygotic and postzygotic barriers inhibit hybrid success in this system. The postmating prezygotic barrier was asymmetrical, with 110 of 115 total F1 fruits produced when Boechera stricta acted as maternal parent. This asymmetry was confirmed in wild-collected lineages, using a chloroplast phylogeny of wild-collected B. stricta, Boechera retrofracta, and hybrids. We next compared fitness of F2 hybrids and selfed parental B. stricta lines, finding that F2 fitness was reduced by substantial hybrid sterility. Multiple reproductively isolating barriers influence the formation and fitness of hybrid lineages in the wild, and the costs of hybridization likely have profound impacts on the evolution of sex in the natural environment.
Collapse
Affiliation(s)
- Catherine A Rushworth
- Department of Evolution and Ecology, Storer Hall, University of California Davis, Davis, CA.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN.,University and Jepson Herbaria, University of California Berkeley, Berkeley, CA.,Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| | - Tom Mitchell-Olds
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Box, Durham, NC
| |
Collapse
|
41
|
Li D, Li S, Li W, Liu A, Jiang Y, Gan G, Li W, Liang X, Yu N, Chen R, Wang Y. Comparative transcriptome analysis provides insights into the molecular mechanism underlying double fertilization between self-crossed Solanum melongena and that hybridized with Solanum aethiopicum. PLoS One 2020; 15:e0235962. [PMID: 32760091 PMCID: PMC7410197 DOI: 10.1371/journal.pone.0235962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
Wild relatives represent a source of variation for many traits of interest for eggplant (Solanum melongena) breeding, as well as for broadening its genetic base. However, interspecific hybridization with wild relatives has been barely used in eggplant breeding programs, and reproductive barriers have resulted in reduced seed numbers in interspecific combinations. The mechanism underlying this phenomenon remains unclear. We hybridized females of cultivated eggplant 177 (Solanum melongena) with males of wild relatives 53 and Y11 (Solanum aethiopicum). Self-crossed 177 was the control. The seed number per control fruit was significantly higher than that of the hybrids. Paraffin sections showed no significant difference between control and 177×53 and 177×Y11. Double fertilization began 4 days post-pollination. Sperm cells were fused with egg cells 6 days post-pollination. To understand the differences in molecular mechanisms underlying this process, transcriptomes of ovaries at 0, 4, and 6 days after self-crossing and hybridization were analyzed. We screened 22,311 differentially expressed genes (DEGs) between the control and hybrids 4 and 6 days post-pollination. A total of 497 DEGs were shared among all pollination combinations. These DEGs were enriched in plant hormone transduction, cell senescence, metabolism, and biosynthesis pathways. DEG clustering analysis indicated distinct expression patterns between the control and hybrids but not between the hybrids. The DEGs in hybrids involved secondary metabolic process, phenylpropanoid metabolic process, and carboxypeptidase activity, while those in the control involved xyloglucan metabolic process, auxin-activated signaling pathway, cell wall polysaccharide metabolic process, and xyloglucosyl transferase activity. Additionally, 1683 transcription factors, including members of the AP2-ERF, MYB, bHLH, and B3 families may play important roles in self-crossing and hybridization. Our results provide insights into the regulatory mechanisms underlying variations between ovaries of self-crossed and hybrid eggplants and a basis for future studies on crossbreeding Solanum and genetic mechanisms underlying double fertilization.
Collapse
Affiliation(s)
- Dandan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Siqi Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Ake Liu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Xuyu Liang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Vegetable Breeding and New Technology Development, Nanning, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- * E-mail: (YW); (RC)
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
- * E-mail: (YW); (RC)
| |
Collapse
|
42
|
Torres-Rodríguez MD, Cruz-Zamora Y, Juárez-Díaz JA, Mooney B, McClure BA, Cruz-García F. NaTrxh is an essential protein for pollen rejection in Nicotiana by increasing S-RNase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1304-1317. [PMID: 32392366 DOI: 10.1111/tpj.14802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In self-incompatible Solanaceae, the pistil protein S-RNase contributes to S-specific pollen rejection in conspecific crosses, as well as to rejecting pollen from foreign species or whole clades. However, S-RNase alone is not sufficient for either type of pollen rejection. We describe a thioredoxin (Trx) type h from Nicotiana alata, NaTrxh, which interacts with and reduces S-RNase in vitro. Here, we show that expressing a redox-inactive mutant, NaTrxhSS , suppresses both S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia. Biochemical experiments provide evidence that NaTrxh specifically reduces the Cys155 -Cys185 disulphide bond of SC10 -Rnase, resulting in a significant increase of its ribonuclease activity. This reduction and increase in S-RNase activity by NaTrxh helps to explain why S-RNase alone could be insufficient for pollen rejection.
Collapse
Affiliation(s)
- Maria D Torres-Rodríguez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México. Cd. Mx, 04510, México
| | - Yuridia Cruz-Zamora
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México. Cd. Mx, 04510, México
| | - Javier A Juárez-Díaz
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Mx, 04510, México
| | - Brian Mooney
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO, 65211, USA
| | - Bruce A McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México. Cd. Mx, 04510, México
| |
Collapse
|
43
|
Wang L, Triviño M, Lin Z, Carli J, Eaves DJ, Van Damme D, Nowack MK, Franklin-Tong VE, Bosch M. New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2451-2463. [PMID: 32100005 PMCID: PMC7178406 DOI: 10.1093/jxb/eraa092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 05/05/2023]
Abstract
Pollen tube growth is essential for plant reproduction. Their rapid extension using polarized tip growth provides an exciting system for studying this specialized type of growth. Self-incompatibility (SI) is a genetically controlled mechanism to prevent self-fertilization. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy). This utilizes two S-determinants: stigma-expressed PrsS and pollen-expressed PrpS. Interaction of cognate PrpS-PrsS triggers a signalling network, causing rapid growth arrest and programmed cell death (PCD) in incompatible pollen. We previously demonstrated that transgenic Arabidopsis thaliana pollen expressing PrpS-green fluorescent protein (GFP) can respond to Papaver PrsS with remarkably similar responses to those observed in incompatible Papaver pollen. Here we describe recent advances using these transgenic plants combined with genetically encoded fluorescent probes to monitor SI-induced cellular alterations, including cytosolic calcium, pH, the actin cytoskeleton, clathrin-mediated endocytosis (CME), and the vacuole. This approach has allowed us to study the SI response in depth, using multiparameter live-cell imaging approaches that were not possible in Papaver. This lays the foundations for new opportunities to elucidate key mechanisms involved in SI. Here we establish that CME is disrupted in self-incompatible pollen. Moreover, we reveal new detailed information about F-actin remodelling in pollen tubes after SI.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Marina Triviño
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - José Carli
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Deborah J Eaves
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Correspondence: or
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- Correspondence: or
| |
Collapse
|
44
|
Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC. Intraspecific Genetic Variation Underlying Postmating Reproductive Barriers between Species in the Wild Tomato Clade (Solanum sect. Lycopersicon). J Hered 2020; 111:216-226. [PMID: 32072169 DOI: 10.1093/jhered/esaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase-the S-locus protein involved in SI pollen rejection-in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci-in this case at loci that prevent self-fertilization-can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.
Collapse
Affiliation(s)
| | - Simo V Zhang
- Department of Biology, Indiana University, Bloomington, IN
| | | | | | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
45
|
Jewell CP, Zhang SV, Gibson MJS, Tovar-Méndez A, McClure B, Moyle LC. Intraspecific Genetic Variation Underlying Postmating Reproductive Barriers between Species in the Wild Tomato Clade (Solanum sect. Lycopersicon). J Hered 2020. [PMID: 32072169 DOI: 10.1101/718544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
A goal of speciation genetics is to understand how the genetic components underlying interspecific reproductive barriers originate within species. Unilateral incompatibility (UI) is a postmating prezygotic barrier in which pollen rejection in the female reproductive tract (style) occurs in only one direction of an interspecific cross. Natural variation in the strength of UI has been observed among populations within species in the wild tomato clade. In some cases, molecular loci underlying self-incompatibility (SI) are associated with this variation in UI, but the mechanistic connection between these intra- and inter-specific pollen rejection behaviors is poorly understood in most instances. We generated an F2 population between SI and SC genotypes of a single species, Solanum pennellii, to examine the genetic basis of intraspecific variation in UI against other species, and to determine whether loci underlying SI are genetically associated with this variation. We found that F2 individuals vary in the rate at which UI rejection occurs. One large effect QTL detected for this trait co-localized with the SI-determining S-locus. Moreover, individuals that expressed S-RNase-the S-locus protein involved in SI pollen rejection-in their styles had much more rapid UI responses compared with those without S-RNase protein. Our analysis shows that intraspecific variation at mate choice loci-in this case at loci that prevent self-fertilization-can contribute to variation in the expression of interspecific isolation, including postmating prezygotic barriers. Understanding the nature of such intraspecific variation can provide insight into the accumulation of these barriers between diverging lineages.
Collapse
Affiliation(s)
| | - Simo V Zhang
- Department of Biology, Indiana University, Bloomington, IN
| | | | | | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
46
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
47
|
Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu YC, Ge Z, Song Z, Huang J, Qiu X, Shi Y, Xiao J, Liu P, Guo YL, Dong J, Dresselhaus T, Gu H, Qu LJ. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 2019; 364:364/6443/eaau9564. [PMID: 31147494 DOI: 10.1126/science.aau9564] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Meiling Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xinyu Qiu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
48
|
Ismail SA, Kokko H. An analysis of mating biases in trees. Mol Ecol 2019; 29:184-198. [PMID: 31755136 PMCID: PMC7003921 DOI: 10.1111/mec.15312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
Abstract
Assortative mating is a deviation from random mating based on phenotypic similarity. As it is much better studied in animals than in plants, we investigate for trees whether kinship of realized mating pairs deviates from what is expected from the set of potential mates and use this information to infer mating biases that may result from kin recognition and/or assortative mating. Our analysis covers 20 species of trees for which microsatellite data is available for adult populations (potential mates) as well as seed arrays. We test whether mean relatedness of observed mating pairs deviates from null expectations that only take pollen dispersal distances into account (estimated from the same data set). This allows the identification of elevated as well as reduced kinship among realized mating pairs, indicative of positive and negative assortative mating, respectively. The test is also able to distinguish elevated biparental inbreeding that occurs solely as a result of related pairs growing closer to each other from further assortativeness. Assortative mating in trees appears potentially common but not ubiquitous: nine data sets show mating bias with elevated inbreeding, nine do not deviate significantly from the null expectation, and two show mating bias with reduced inbreeding. While our data sets lack direct information on phenology, our investigation of the phenological literature for each species identifies flowering phenology as a potential driver of positive assortative mating (leading to elevated inbreeding) in trees. Since active kin recognition provides an alternative hypothesis for these patterns, we encourage further investigations on the processes and traits that influence mating patterns in trees.
Collapse
Affiliation(s)
- Sascha A Ismail
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
50
|
Vogler H, Santos-Fernandez G, Mecchia MA, Grossniklaus U. To preserve or to destroy, that is the question: the role of the cell wall integrity pathway in pollen tube growth. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:131-139. [PMID: 31648148 DOI: 10.1016/j.pbi.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 05/12/2023]
Abstract
In plants, cell-shape is defined by the cell wall, a complex network of polymers located outside the plasma membrane. During cell growth, cell wall properties have to be adjusted, assuring cell expansion without compromising cell integrity. Plasma membrane-located receptors sense cell wall properties, transducing extracellular signals into intracellular cascades through the cell wall integrity (CWI) pathway that, in turn, leads to adjustments in the regulation and composition of the cell wall. Using pollen tube growth as a single celled model system, we describe the importance of RAPID ALKALINIZATION FACTOR (RALF) peptides as sensors of cell wall integrity. RALF peptides can mediate the communication between cell wall components and plasma membrane-localized receptor-like kinases (RLKs) of the CrRLK1L family. The subsequent activation of intracellular pathways regulates H+, Ca2+, and ROS levels in the cell and apoplast, thereby modulating cell wall integrity. Interestingly, the RALF-CrRLK1L module and some of the components working up- and downstream of the RLK is conserved in many other developmental and physiological signaling processes.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Gorka Santos-Fernandez
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Martin A Mecchia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|