1
|
Uyehara AN, Diep BN, Allsman LA, Gayer SG, Martinez SE, Kim JJ, Agarwal S, Rasmussen CG. De novo TANGLED1 recruitment from the phragmoplast to aberrant cell plate fusion sites in maize. J Cell Sci 2024; 137:jcs262097. [PMID: 38832513 PMCID: PMC11234383 DOI: 10.1242/jcs.262097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Division plane positioning is crucial for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site-localized proteins, which remain at the division site after the PPB disassembles. Here, we show that the division site-localized protein TANGLED1 (TAN1) is recruited independently of the PPB to the cell cortex by the plant cytokinetic machinery, the phragmoplast, from experiments using both the PPB-defective mutant discordia1 (dcd1) and chemical treatments that disrupt the phragmoplast in maize. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site-localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.
Collapse
Affiliation(s)
- Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Beatrice N. Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Sarah G. Gayer
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Janice J. Kim
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Shreya Agarwal
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| |
Collapse
|
2
|
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G. Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2829-2847. [PMID: 38436428 PMCID: PMC11282576 DOI: 10.1093/jxb/erae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | | | | | - Eric Wait
- Janelia Research Campus, Ashburn, VA, USA
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Daniel Cox
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | - Thomas Wilkop
- Department of Molecular and Cellular Biology, Light Microscopy Imaging Facility, University of California Davis, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Uyehara AN, Diep BN, Allsman LA, Gayer SG, Martinez SE, Kim JJ, Agarwal S, Rasmussen CG. De Novo TANGLED1 Recruitment to Aberrant Cell Plate Fusion Sites in Maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583939. [PMID: 38496554 PMCID: PMC10942460 DOI: 10.1101/2024.03.07.583939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Division plane positioning is critical for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site localized proteins, which remain at the division site after the PPB disassembles. Here, we show that a division site localized protein, TANGLED1 (TAN1), is recruited independently of the PPB to the cell cortex at sites, by the plant cytokinetic machinery, the phragmoplast. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.
Collapse
Affiliation(s)
- Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Beatrice N. Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA 53706
| | - Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Sarah G. Gayer
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Janice J. Kim
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Shreya Agarwal
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, USA 92521
| |
Collapse
|
4
|
Chebli Y, Geitmann A. Pectate lyase-like lubricates the male gametophyte's path toward its mating partner. PLANT PHYSIOLOGY 2023; 194:124-136. [PMID: 37658849 DOI: 10.1093/plphys/kiad481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
The pollen tube is an extension of the male gametophyte in plants and mediates sexual reproduction by delivering the sperm cells to the female gametophyte. To accomplish this task, the elongating pollen tube must break through the thick wall of the pollen grain and penetrate multiple pistillar tissues. Both processes require the loosening of cell wall material-that of the pollen intine and that of the apoplast of the transmitting tract. The enzymatic toolbox for these cell wall modifying processes employed by the invading male gametophyte is elusive. We investigated the role of the pectin-digesting pectate lyase-like (PLL) by combining mutant analysis with microscopy observations, fluorescence recovery after photo-bleaching experiments, and immuno-detection. We show that in Arabidopsis (Arabidopsis thaliana), PLLs are required for intine loosening during the first steps of pollen tube germination. We provide evidence that during pollen tube elongation, PLLs are released by the pollen tube into the extracellular space, suggesting that they may be employed to soften the apoplast of the transmitting tissue. The synergistic enzymatic action of PLLs in the pollen grain, the pollen tube, and the transmitting track contribute to an effective fertilization process.
Collapse
Affiliation(s)
- Youssef Chebli
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
- ECP3-Multi-Scale Imaging Facility, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
5
|
Du P, Liu Y, Deng L, Qian D, Xue X, Yang T, Li T, Xiang Y, Ren H. AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1950-1965. [PMID: 37093857 DOI: 10.1111/jipb.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51-154) is the key domain for binding MTs, and N-CC1(51-125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
Collapse
Affiliation(s)
- Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yu Liu
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Lu Deng
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiuhua Xue
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Ting Yang
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Tonghui Li
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
6
|
Nan Q, Liang H, Mendoza J, Liu L, Fulzele A, Wright A, Bennett EJ, Rasmussen CG, Facette MR. The OPAQUE1/DISCORDIA2 myosin XI is required for phragmoplast guidance during asymmetric cell division in maize. THE PLANT CELL 2023; 35:2678-2693. [PMID: 37017144 PMCID: PMC10291028 DOI: 10.1093/plcell/koad099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hong Liang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Janette Mendoza
- Department of Botany, University of New Mexico, Albuquerque, NM 87131, USA
| | - Le Liu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Amanda Wright
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Bellinger MA, Uyehara AN, Allsman L, Martinez P, McCarthy MC, Rasmussen CG. Cortical microtubules contribute to division plane positioning during telophase in maize. THE PLANT CELL 2023; 35:1496-1512. [PMID: 36753568 PMCID: PMC10118269 DOI: 10.1093/plcell/koad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cell divisions are accurately positioned to generate cells of the correct size and shape. In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along an antiparallel microtubule and a microfilament array called the phragmoplast. The phragmoplast expands toward a specific location at the cell cortex called the division site, but how it accurately reaches the division site is unclear. We observed microtubule arrays that accumulate at the cell cortex during the telophase transition in maize (Zea mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these cortical-telophase microtubules transiently interact with the division site. Increased microtubule plus end capture and pausing occur when microtubules contact the division site-localized protein TANGLED1 or other closely associated proteins. Microtubule capture and pausing align the cortical microtubules perpendicular to the division site during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase microtubules are incorporated into the phragmoplast primarily by parallel bundling. The addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at the division site. Our hypothesis is that division site-localized proteins such as TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast positioning at the final division plane.
Collapse
Affiliation(s)
- Marschal A Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lindy Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Pablo Martinez
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| | | | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| |
Collapse
|
8
|
Mills AM, Morris VH, Rasmussen CG. The localization of PHRAGMOPLAST ORIENTING KINESIN1 at the division site depends on the microtubule-binding proteins TANGLED1 and AUXIN-INDUCED IN ROOT CULTURES9 in Arabidopsis. THE PLANT CELL 2022; 34:4583-4599. [PMID: 36005863 PMCID: PMC9614452 DOI: 10.1093/plcell/koac266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 05/04/2023]
Abstract
Proper plant growth and development require spatial coordination of cell divisions. Two unrelated microtubule-binding proteins, TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES9 (AIR9), are together required for normal growth and division plane orientation in Arabidopsis (Arabidopsis thaliana). The tan1 air9 double mutant has synthetic growth and division plane orientation defects, while single mutants lack obvious defects. Here we show that the division site-localized protein, PHRAGMOPLAST ORIENTING KINESIN1 (POK1), was aberrantly lost from the division site during metaphase and telophase in the tan1 air9 mutant. Since TAN1 and POK1 interact via the first 132 amino acids of TAN1 (TAN11-132), we assessed the localization and function of TAN11-132 in the tan1 air9 double mutant. TAN11-132 rescued tan1 air9 mutant phenotypes and localized to the division site during telophase. However, replacing six amino-acid residues within TAN11-132, which disrupted the POK1-TAN1 interaction in the yeast-two-hybrid system, caused loss of both rescue and division site localization of TAN11-132 in the tan1 air9 mutant. Full-length TAN1 with the same alanine substitutions had defects in phragmoplast guidance and reduced TAN1 and POK1 localization at the division site but rescued most tan1 air9 mutant phenotypes. Together, these data suggest that TAN1 and AIR9 are required for POK1 localization, and yet unknown proteins may stabilize TAN1-POK1 interactions.
Collapse
Affiliation(s)
- Alison M Mills
- Graduate Group in Biochemistry and Molecular Biology, University of California, Riverside, California, USA
| | - Victoria H Morris
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California, USA
| | - Carolyn G Rasmussen
- Graduate Group in Biochemistry and Molecular Biology, University of California, Riverside, California, USA
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
9
|
Mills AM, Rasmussen CG. Defects in division plane positioning in the root meristematic zone affect cell organization in the differentiation zone. J Cell Sci 2022; 135:jcs260127. [PMID: 36074053 PMCID: PMC9658997 DOI: 10.1242/jcs.260127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cell-division-plane orientation is critical for plant and animal development and growth. TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) are division-site-localized microtubule-binding proteins required for division-plane positioning. The single mutants tan1 and air9 of Arabidopsis thaliana have minor or no noticeable phenotypes, but the tan1 air9 double mutant has synthetic phenotypes including stunted growth, misoriented divisions and aberrant cell-file rotation in the root differentiation zone. These data suggest that TAN1 plays a role in non-dividing cells. To determine whether TAN1 is required in elongating and differentiating cells in the tan1 air9 double mutant, we limited its expression to actively dividing cells using the G2/M-specific promoter of the syntaxin KNOLLE (pKN:TAN1-YFP). Unexpectedly, in addition to rescuing division-plane defects, expression of pKN:TAN1-YFP rescued root growth and cell file rotation defects in the root-differentiation zone in tan1 air9 double mutants. This suggests that defects that occur in the meristematic zone later affect the organization of elongating and differentiating cells.
Collapse
Affiliation(s)
| | - Carolyn G. Rasmussen
- Graduate Group in Biochemistry and Molecular Biology
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
12
|
Jawaid MZ, Sinclair R, Bulone V, Cox DL, Drakakaki G. A biophysical model for plant cell plate maturation based on the contribution of a spreading force. PLANT PHYSIOLOGY 2022; 188:795-806. [PMID: 34850202 PMCID: PMC8825336 DOI: 10.1093/plphys/kiab552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Plant cytokinesis, a fundamental process of plant life, involves de novo formation of a "cell plate" partitioning the cytoplasm of dividing cells. Cell plate formation is directed by orchestrated delivery, fusion of cytokinetic vesicles, and membrane maturation to form a nascent cell wall by timely deposition of polysaccharides. During cell plate maturation, the fragile membrane network transitions to a fenestrated sheet and finally a young cell wall. Here, we approximated cell plate sub-structures with testable shapes and adopted the Helfrich-free energy model for membranes, including a stabilizing and spreading force, to understand the transition from a vesicular network to a fenestrated sheet and mature cell plate. Regular cell plate development in the model was possible, with suitable bending modulus, for a two-dimensional late stage spreading force of 2-6 pN/nm, an osmotic pressure difference of 2-10 kPa, and spontaneous curvature between 0 and 0.04 nm-1. With these conditions, stable membrane conformation sizes and morphologies emerged in concordance with stages of cell plate development. To reach a mature cell plate, our model required the late-stage onset of a spreading/stabilizing force coupled with a concurrent loss of spontaneous curvature. Absence of a spreading/stabilizing force predicts failure of maturation. The proposed model provides a framework to interrogate different players in late cytokinesis and potentially other membrane networks that undergo such transitions. Callose, is a polysaccharide that accumulates transiently during cell plate maturation. Callose-related observations were consistent with the proposed model's concept, suggesting that it is one of the factors involved in establishing the spreading force.
Collapse
Affiliation(s)
- Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Rosalie Sinclair
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Vincent Bulone
- School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide SA 5064, Australia
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel L Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
13
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
14
|
Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division. Nat Commun 2022; 13:235. [PMID: 35017541 PMCID: PMC8752632 DOI: 10.1038/s41467-021-27913-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
In plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem. In the endodermis, KOIN polarity is opposite to IRK, a receptor that represses endodermal cell divisions. Their contra-polar localization facilitates dissection of polarity mechanisms and the links between polarity and function. We find that IRK and KOIN are recognized, sorted, and secreted through distinct pathways. IRK extracellular domains determine its polarity and partially rescue the mutant phenotype, whereas KOIN’s extracellular domains are insufficient for polar sorting and function. Endodermal expression of an IRK/KOIN chimera generates non-cell-autonomous misregulation of root cell divisions that impacts patterning. Altogether, we reveal two contrasting mechanisms determining these receptors’ polarity and link their polarity to cell divisions in root tissue patterning. Protein polarization coordinates many plant developmental processes. Here the authors show that IRK and KOIN, two LRR-receptor-kinases polarized to opposite sides of cells in the root meristem, rely on distinct mechanisms to achieve polarity.
Collapse
|
15
|
Kohorn BD, Greed BE, Mouille G, Verger S, Kohorn SL. Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS One 2021; 16:e0251922. [PMID: 34015001 PMCID: PMC8136723 DOI: 10.1371/journal.pone.0251922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| | - Bridgid E. Greed
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, Versailles Cedex, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Susan L. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| |
Collapse
|
16
|
Kohorn BD, Zorensky FDH, Dexter-Meldrum J, Chabout S, Mouille G, Kohorn S. Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development 2021; 148:268319. [PMID: 34015094 DOI: 10.1242/dev.199420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Salem Chabout
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susan Kohorn
- Department of Biology, Bowdoin College, ME 04011, USA
| |
Collapse
|
17
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
18
|
Peaucelle A, Wightman R, Haas KT. Multicolor 3D-dSTORM Reveals Native-State Ultrastructure of Polysaccharides' Network during Plant Cell Wall Assembly. iScience 2020; 23:101862. [PMID: 33336161 PMCID: PMC7733027 DOI: 10.1016/j.isci.2020.101862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The plant cell wall, a form of the extracellular matrix, is a complex and dynamic network of polymers mediating a plethora of physiological functions. How polysaccharides assemble into a coherent and heterogeneous matrix remains mostly undefined. Further progress requires improved molecular-level visualization methods that would gain a deeper understanding of the cell wall nanoarchitecture. dSTORM, a type of super-resolution microscopy, permits quantitative nanoimaging of the cell wall. However, due to the lack of single-cell model systems and the requirement of tissue-level imaging, its use in plant science is almost absent. Here we overcome these limitations; we compare two methods to achieve three-dimensional dSTORM and identify optimal photoswitching dyes for tissue-level multicolor nanoscopy. Combining dSTORM with spatial statistics, we reveal and characterize the ultrastructure of three major polysaccharides, callose, mannan, and cellulose, in the plant cell wall precursor and provide evidence for cellulose structural re-organization related to callose content.
Collapse
Affiliation(s)
- Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Kalina Tamara Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
19
|
Expression Kinetics of Regulatory Genes Involved in the Vesicle Trafficking Processes Operating in Tomato Flower Abscission Zone Cells during Pedicel Abscission. Life (Basel) 2020; 10:life10110273. [PMID: 33172002 PMCID: PMC7694662 DOI: 10.3390/life10110273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
The abscission process occurs in a specific abscission zone (AZ) as a consequence of the middle lamella dissolution, cell wall degradation, and formation of a defense layer. The proteins and metabolites related to these processes are secreted by vesicle trafficking through the plasma membrane to the cell wall and middle lamella of the separating cells in the AZ. We investigated this process, since the regulation of vesicle trafficking in abscission systems is poorly understood. The data obtained describe, for the first time, the kinetics of the upregulated expression of genes encoding the components involved in vesicle trafficking, occurring specifically in the tomato (Solanum lycopersicum) flower AZ (FAZ) during pedicel abscission induced by flower removal. The genes encoding vesicle trafficking components included soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), SNARE regulators, and small GTPases. Our results clearly show how the processes of protein secretion by vesicle trafficking are regulated, programmed, and orchestrated at the level of gene expression in the FAZ. The data provide evidence for target proteins, which can be further used for affinity purification of plant vesicles in their natural state. Such analyses and dissection of the complex vesicle trafficking networks are essential for further elucidating the mechanism of organ abscission.
Collapse
|
20
|
Maeda K, Sasabe M, Hanamata S, Machida Y, Hasezawa S, Higaki T. Actin Filament Disruption Alters Phragmoplast Microtubule Dynamics during the Initial Phase of Plant Cytokinesis. PLANT & CELL PHYSIOLOGY 2020; 61:445-456. [PMID: 32030404 DOI: 10.1093/pcp/pcaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Plant growth and development relies on the accurate positioning of the cell plate between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which contains bipolar microtubules that polymerize to form a framework with the plus ends at or near the division site. This allows the transport of Golgi-derived vesicles toward the plus ends to form and expand the cell plate. Actin filaments play important roles in cell plate expansion and guidance in plant cytokinesis at the late phase, but whether they are involved at the early phase is unknown. To investigate this further, we disrupted the actin filaments in cell cycle-synchronized tobacco BY-2 cells with latrunculin B (LatB), an actin polymerization inhibitor. We observed the cells under a transmission electron microscope or a spinning-disk confocal laser scanning microscope. We found that disruption of actin filaments by LatB caused the membrane vesicles at the equatorial plane of the cell plate to be dispersed rather than form clusters as they did in the untreated cells. The midzone constriction of phragmoplast microtubules also was perturbed in LatB-treated cells. The live cell imaging and kymograph analysis showed that disruption of actin filaments also changed the accumulation timing of NACK1 kinesin, which plays a crucial role in cell plate expansion. This suggests that there are two functionally different types of microtubules in the phragmoplast. Together, our results show that actin filaments regulate phragmoplast microtubules at the initial phase of plant cytokinesis.
Collapse
Affiliation(s)
- Keisho Maeda
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561 Japan
| | - Shigeru Hanamata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| |
Collapse
|
21
|
Vulavala VKR, Fogelman E, Faigenboim A, Shoseyov O, Ginzberg I. The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Sci Rep 2019; 9:10216. [PMID: 31308437 PMCID: PMC6629697 DOI: 10.1038/s41598-019-46681-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The periderm is a protective corky tissue that is formed through the cambial activity of phellogen cells, when the outer epidermis is damaged. Timely periderm formation is critical to prevent pathogen invasion and water loss. The outer layers of the potato periderm, the tuber skin, serves as a model to study cork development. Early in tuber development the phellogen becomes active and produces the skin. During tuber maturation it becomes inactive and the skin adheres to the tuber flesh. The characterization of potato phellogen may contribute to the management of costly agricultural problems related to incomplete skin-set and the resulting skinning injuries, and provide us with new knowledge regarding cork development in planta. A transcriptome of potato tuber phellogen isolated by laser capture microdissection indicated similarity to vascular cambium and the cork from trees. Highly expressed genes and transcription factors indicated that phellogen activation involves cytokinesis and gene reprograming for the establishment of a dedifferentiation state; whereas inactivation is characterized by activity of genes that direct organ identity in meristem and cell-wall modifications. The expression of selected genes was analyzed using qPCR in native and wound periderm at distinct developmental stages. This allowed the identification of genes involved in periderm formation and maturation.
Collapse
Affiliation(s)
- Vijaya K R Vulavala
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Oded Shoseyov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
22
|
Plant cell division - defining and finding the sweet spot for cell plate insertion. Curr Opin Cell Biol 2019; 60:9-18. [PMID: 30999231 DOI: 10.1016/j.ceb.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
The plant microtubules form unique arrays using acentrosomal microtubule nucleation pathways, yet utilizing evolutionary conserved centrosomal proteins. In cytokinesis, a multi-component cytoskeletal apparatus, the phragmoplast mediates the biosynthesis of the new cell plate by dynamic centrifugal expansion, a process that demands exquisite coordination of microtubule turnover and endomembrane trafficking. At the same time, the phragmoplast is guided to meet with the parental wall at a cortical site that is predefined before mitotic entry and transiently marked by the preprophase band of microtubules. The cortical division zone maintains positional information of the selected division plane for the entire duration of cell division and for the guidance of the phragmoplast during cytokinesis. Its establishment is an essential requirement for normal plant organogenesis, due to the confinement of cells by rigid cell walls.
Collapse
|
23
|
Filipin EP, Pereira DT, Ouriques LC, Bouzon ZL, Simioni C. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:352-360. [PMID: 30472775 DOI: 10.1111/plb.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
Collapse
Affiliation(s)
- E P Filipin
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - D T Pereira
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - L C Ouriques
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - C Simioni
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
24
|
Rosquete MR, Drakakaki G. Plant TGN in the stress response: a compartmentalized overview. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:122-129. [PMID: 30316189 DOI: 10.1016/j.pbi.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
The cellular responses to abiotic and biotic stress rely on the regulation of vesicle trafficking to ensure the correct localization of proteins specialized in sensing stress stimuli and effecting the response. Several studies have implicated the plant trans-Golgi network (TGN)-mediated trafficking in different types of biotic and abiotic stress responses; however, the underlying molecular mechanisms are poorly understood. Further, the identity, specialization and stress-relevant cargo transported by the TGN subcompartments involved in stress responses await more in depth characterization. This review presents TGN trafficking players implicated in stress and discusses potential avenues to understand the role of this dynamic network under such extreme circumstances.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| |
Collapse
|
25
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
26
|
Chen HW, Persson S, Grebe M, McFarlane HE. Cellulose synthesis during cell plate assembly. PHYSIOLOGIA PLANTARUM 2018; 164:17-26. [PMID: 29418000 DOI: 10.1111/ppl.12703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 05/07/2023]
Abstract
The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
27
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
28
|
Novák D, Vadovič P, Ovečka M, Šamajová O, Komis G, Colcombet J, Šamaj J. Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. FRONTIERS IN PLANT SCIENCE 2018; 9:371. [PMID: 29628934 PMCID: PMC5877115 DOI: 10.3389/fpls.2018.00371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 05/11/2023]
Abstract
Phospholipase D alpha 1 (PLDα1, At3g15730) and its product phosphatidic acid (PA) are involved in a variety of cellular and physiological processes, such as cytoskeletal remodeling, regulation of stomatal closure and opening, as well as biotic and abiotic stress signaling. Here we aimed to study developmental expression patterns and subcellular localization of PLDα1 in Arabidopsis using advanced microscopy methods such as light-sheet fluorescence microscopy (LSFM) and structured illumination microscopy (SIM). We complemented two knockout pldα1 mutants with a YFP-tagged PLDα1 expressed under the PLDα1 native promoter in order to study developmental expression pattern and subcellular localization of PLDα1 in Arabidopsis thaliana under natural conditions. Imaging of tissue-specific and developmentally-regulated localization of YFP-tagged PLDα1 by LSFM in roots of growing seedlings showed accumulation of PLDα1-YFP in the root cap and the rhizodermis. Expression of PLDα1-YFP in the rhizodermis was considerably higher in trichoblasts before and during root hair formation and growth. Thus, PLDα1-YFP accumulated in emerging root hairs and in the tips of growing root hairs. PLDα1-YFP showed cytoplasmic subcellular localization in root cap cells and in cells of the root transition zone. In aerial parts of plants PLDα1-YFP was also localized in the cytoplasm showing enhanced accumulation in the cortical cytoplasmic layer of epidermal non-dividing cells of hypocotyls, leaves, and leaf petioles. However, in dividing cells of root apical meristem and leaf petiole epidermis PLDα1-YFP was enriched in mitotic spindles and phragmoplasts, as revealed by co-visualization with microtubules. Finally, super-resolution SIM imaging revealed association of PLDα1-YFP with both microtubules and clathrin-coated vesicles (CCVs) and pits (CCPs). In conclusion, this study shows the developmentally-controlled expression and subcellular localization of PLDα1 in dividing and non-dividing Arabidopsis cells.
Collapse
Affiliation(s)
- Dominik Novák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jean Colcombet
- UMR9213 Institut des Sciences des Plantes de Paris Saclay, Orsay, France
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
29
|
Rosquete MR, Davis DJ, Drakakaki G. The Plant Trans-Golgi Network: Not Just a Matter of Distinction. PLANT PHYSIOLOGY 2018; 176:187-198. [PMID: 29192030 PMCID: PMC5761815 DOI: 10.1104/pp.17.01239] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
The trans-Golgi network in plants is a major sorting station of Golgi derived cargo while it also receives recycled material from endocytosis.
Collapse
Affiliation(s)
| | - Destiny Jade Davis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|