1
|
Burnett D, Hussein M, Barr ZK, Näther LN, Wright KM, Tilsner J. Live-cell RNA imaging with the inactivated endonuclease Csy4 enables new insights into plant virus transport through plasmodesmata. PLoS Pathog 2025; 21:e1013049. [PMID: 40203052 DOI: 10.1371/journal.ppat.1013049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Plant-infecting viruses spread through their hosts by transporting their infectious genomes through intercellular nano-channels called plasmodesmata. This process is mediated by virus-encoded movement proteins. Whilst the sub-cellular localisations of movement proteins have been intensively studied, live-cell RNA imaging systems have so far not been able to detect viral genomes inside the plasmodesmata. Here, we describe a highly sensitive RNA live-cell reporter based on an enzymatically inactive form of the small bacterial endonuclease Csy4, which binds to its cognate stem-loop with picomolar affinity. This system allows imaging of plant viral RNA genomes inside plasmodesmata and shows that potato virus X RNA remains accessible within the channels and is therefore not fully encapsidated during movement. We also combine Csy4-based RNA-imaging with interspecies movement complementation to show that an unrelated movement protein from tobacco mosaic virus can recruit potato virus X replication complexes adjacent to plasmodesmata. Therefore, recruitment of potato virus X replicase is mediated non-specifically, likely by indirect coupling of movement proteins and viral replicase via the viral RNA or co-compartmentalisation, potentially contributing to transport specificity. Lastly, we show that a 'self-tracking' virus can express the Csy4-based reporter during the progress of infection. However, expression of the RNA-binding protein in cis interferes with viral movement by an unidentified mechanism when cognate stem-loops are present in the viral RNA.
Collapse
Affiliation(s)
- David Burnett
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Mohamed Hussein
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
- Cukurova University, Institute of Natural and Applied Sciences, Saricam, Adana, Turkey
| | - Zoe Kathleen Barr
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Laura Newsha Näther
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
| | - Kathryn M Wright
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Jens Tilsner
- Biomedical Sciences Research Complex, The University of St Andrews, School of Biology, St Andrews, Fife, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| |
Collapse
|
2
|
Du K, Zhang D, Dan Z, Bao L, Mu W, Zhang J. Identification of Long-Distance Mobile mRNAs Responding to Drought Stress in Heterografted Tomato Plants. Int J Mol Sci 2025; 26:3168. [PMID: 40243940 PMCID: PMC11989872 DOI: 10.3390/ijms26073168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Grafting is widely used as an effective strategy to enhance tolerance to biotic and abiotic stresses and improve fruit quality in horticultural crops. However, the molecular mechanisms of transcription and the regulatory functions in response to drought stress of mobile mRNAs remain poorly understood. In this study, we developed a grafting system based on the "one grafted plant-three samples" approach using the cultivated tomato/Solanum pennellii (Heinz 1706/LA 0716) heterografting system. A bioinformatics pipeline was developed based on RNA-seq to identify mobile mRNAs in the heterografting systems. A total of 61 upwardly and 990 downwardly mobile mRNAs were identified. Furthermore, we found that the mobility of mRNAs was not correlated with their abundance. The functional annotation and enrichment analysis indicated that mobile mRNAs were mainly involved in RNA binding, photosynthesis, photosystem, response to heat, and translation processes, and ultimately increased the drought tolerance of grafted plants. In addition, we also analyzed the RNA-binding proteins (RBPs) of downwardly mobile mRNAs and found that RBPs were conserved among species. Further, mobile mRNAs may be degraded during transportation. This study provides a pipeline for detecting mobile mRNAs in plant heterografting systems and offers new insights into future studies on long-distance mRNAs transport and regulatory mechanisms involved in drought stress responses.
Collapse
Affiliation(s)
- Kanghua Du
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Da Zhang
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Zhong Dan
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Lingfeng Bao
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Wanfu Mu
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Jie Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Vegetable Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Li X, Wang C, Chen Y, Liu W, Zhang M, Wang N, Xiang C, Gao L, Dong Y, Zhang W. m5C and m6A modifications regulate the mobility of pumpkin CHOLINE KINASE 1 mRNA under chilling stress. PLANT PHYSIOLOGY 2025; 197:kiae511. [PMID: 39325727 DOI: 10.1093/plphys/kiae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Mobile messenger RNAs (mRNAs) serve as crucial long-distance signaling molecules, responding to environmental stimuli in plants. Although many mobile transcripts have been identified, only a limited subset has been characterized as functional long-distance signals within specific plant species, raising an intriguing question about whether the prevalence of species specificity in mobile transcripts implies a divergence in the mechanisms governing mRNA mobility across distinct plant species. Our study delved into the notable case of CHOLINE KINASE 1 (CK1), an extensively studied instance of mobile mRNAs regulated by a transfer RNA-like sequence (TLS) in Arabidopsis (Arabidopsis thaliana). We established an association between mRNA mobility and length, independent of TLS numbers. Notably, neither the mobile mRNAs nor the mechanisms underpinning their mobility proved to be conserved across different plant species. The exclusive mobility of pumpkin CK1 mRNA under chilling stress was pivotal in enhancing the chilling tolerance of cucumber/pumpkin heterografts. Distinct from the TLS-mediated mobility of AtCK1 mRNA, the mobility of CmoCK1 mRNA is orchestrated by both m5C and m6A modifications, adding dimensions to our understanding of mRNA transport mechanisms.
Collapse
Affiliation(s)
- Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Miao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Naonao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chenggang Xiang
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan, 661100, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Kang GH, Ko Y, Lee JM. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. PLANT CELL REPORTS 2025; 44:22. [PMID: 39762363 DOI: 10.1007/s00299-024-03392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding. In this study, we highly improved virus-induced genome-editing (VIGE) system for cultivated tomato. Vectors of tobacco rattle virus (TRV) and potato virus X (PVX) were used to deliver sgRNA targeting phytoene desaturase (SlPDS), along with mobile RNA sequences of tFT or tRNAIleu, into Cas9-overexpressing cultivated tomato (S. lycopersicum cv. Moneymaker). Our results demonstrate that low temperature significantly enhanced viral vector-mediated gene editing efficiency in both cotyledons and systemic upper leaves. However, no mutant progeny was obtained from TRV- and PVX301-infected MM-Cas9 plants. To address this challenge, we employed tissue culture techniques and found that low-temperature incubations at the initiation stage of tissue culture lead to enhanced editing efficiency in both vectors, resulting in a higher mutation rate (> 70%) of SlPDS in regenerated plants. Heritable gene-edited and virus-free progenies were successfully identified. This study presents a straightforward approach to enhance VIGE efficiency and the expeditious production of gene-edited lines in tomato breeding.
Collapse
Affiliation(s)
- Ga Hui Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yujung Ko
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Xiao F, Zhao Y, Wang X, Jian X, Zhou H. Analysis of differential mRNA and miRNA expression induced by heterogeneous grafting in Gleditsia sinensis. Int J Biol Macromol 2024; 270:132235. [PMID: 38734341 DOI: 10.1016/j.ijbiomac.2024.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Gleditsia sinensis Lam. is a multifaceted plant with medicinal, edible, chemical, timber, and ornamental applications. However, the effect of rootstocks on scions after grafting is still unclear. This study examined the mRNA and miRNA transcriptome among homografts, heterografts, and seedlings. GO enrichment analysis between seedlings and homograft/heterograft combinations revealed that biosynthesis, degradation, and transport were enriched. The KEGG enrichment results showed that plant hormone signal transduction and the plant MAPK signaling pathway were enriched in both seedlings and heterograft combinations. Through weighted correlation network analysis (WGCNA), the hub genes related to the content of plant hormones were obtained. Taking G. sinensis as the scion, there were 4594, 2887, 3429, and 5959 mRNAs that were specifically expressed in the grafted plants of G. sinensis/G. fera, G. sinensis/G. delavayi, G. sinensis/G. microphylla, and G. sinensis/G. japonica, respectively. The specifically expressed mRNA genes may participate in such processes and pathways as the rhythmic process, circadian rhythm, gibberellic-acid-mediated signaling pathway, and peptide-based amino acid modification. Additionally, 3, 16, 2, and 15 specifically expressed miRNAs were identified. This study examines the impact of grafting on gene expression in Gleditsia plants and establishes a foundation for the development of new resources and rootstock breeding.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji 133002, Jilin, China
| | - Heying Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
6
|
Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:743. [PMID: 38475589 DOI: 10.3390/plants13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.
Collapse
Affiliation(s)
- Zheng-Chao Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Xiang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Qi Sang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan-Chen Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Ming Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Luo KR, Huang NC, Chang YH, Jan YW, Yu TS. Arabidopsis cyclophilins direct intracellular transport of mobile mRNA via organelle hitchhiking. NATURE PLANTS 2024; 10:161-171. [PMID: 38177664 DOI: 10.1038/s41477-023-01597-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Plants convert external cues into mobile mRNAs to synchronize meristematic differentiation with environmental dynamics. These mRNAs are selectively transported to intercellular pores, plasmodesmata (PD), for cell-to-cell movement. However, how plants recognize and deliver mobile mRNAs to PD remains unknown. Here we show that mobile mRNAs hitchhike on organelle trafficking to transport towards PD. Perturbed cytoskeleton organization or organelle trafficking severely disrupts the subcellular distribution of mobile mRNAs. Arabidopsis rotamase cyclophilins (ROCs), which are organelle-localized RNA-binding proteins, specifically bind mobile mRNAs on the surface of organelles to direct intracellular transport. Arabidopsis roc mutants exhibit phenotype alterations and disruptions in the transport of mobile mRNAs. These findings suggest that ROCs play a crucial role in facilitating the systemic delivery of mobile mRNAs. Our results highlight that an RNA-binding protein-mediated hitchhiking system is specifically recruited to orient plant mobile mRNAs for intercellular transport.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Jan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2024; 34:48-57. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Gerber A, van Otterdijk S, Bruggeman FJ, Tutucci E. Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies. Transcription 2023; 14:105-126. [PMID: 37050882 PMCID: PMC10807504 DOI: 10.1080/21541264.2023.2199669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.
Collapse
Affiliation(s)
- Alan Gerber
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
11
|
Real N, Villar I, Serrano I, Guiu-Aragonés C, Martín-Hernández AM. Mutations in CmVPS41 controlling resistance to cucumber mosaic virus display specific subcellular localization. PLANT PHYSIOLOGY 2023; 191:1596-1611. [PMID: 36527697 PMCID: PMC10022621 DOI: 10.1093/plphys/kiac583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Resistance to cucumber mosaic virus (CMV) in melon (Cucumis melo L.) has been described in several exotic accessions and is controlled by a recessive resistance gene, cmv1, that encodes a vacuolar protein sorting 41 (CmVPS41). cmv1 prevents systemic infection by restricting the virus to the bundle sheath cells, preventing viral phloem entry. CmVPS41 from different resistant accessions carries two causal mutations, either a G85E change, found in Pat-81 and Freeman's cucumber, or L348R, found in PI161375, cultivar Songwhan Charmi (SC). Here, we analyzed the subcellular localization of CmVPS41 in Nicotiana benthamiana and found differential structures in resistant and susceptible accessions. Susceptible accessions showed nuclear and membrane spots and many transvacuolar strands, whereas the resistant accessions showed many intravacuolar invaginations. These specific structures colocalized with late endosomes. Artificial CmVPS41 carrying individual mutations causing resistance in the genetic background of CmVPS41 from the susceptible variety Piel de Sapo (PS) revealed that the structure most correlated with resistance was the absence of transvacuolar strands. Coexpression of CmVPS41 with viral movement proteins, the determinant of virulence, did not change these localizations; however, infiltration of CmVPS41 from either SC or PS accessions in CMV-infected N. benthamiana leaves showed a localization pattern closer to each other, with up to 30% cells showing some membrane spots in the CmVPS41SC and fewer transvacuolar strands (reduced from a mean of 4 to 1-2) with CmVPS41PS. Our results suggest that the distribution of CmVPS41PS in late endosomes includes transvacuolar strands that facilitate CMV infection and that CmVPS41 re-localizes during viral infection.
Collapse
Affiliation(s)
- Núria Real
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Irene Villar
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Irene Serrano
- Laboratoire des Interactions des Plantes et Microorganismes, CNRS, 31326 Toulouse, France
| | - Cèlia Guiu-Aragonés
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, C/ Vall Moronta, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| |
Collapse
|
12
|
Zhang L, Si Q, Yang K, Zhang W, Okita TW, Tian L. mRNA Localization to the Endoplasmic Reticulum in Plant Endosperm Cells. Int J Mol Sci 2022; 23:13511. [PMID: 36362297 PMCID: PMC9656906 DOI: 10.3390/ijms232113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.
Collapse
Affiliation(s)
- Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Qidong Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Kejie Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Wenwei Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| |
Collapse
|
13
|
Christensen JR, Reck-Peterson SL. Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells. Annu Rev Cell Dev Biol 2022; 38:155-178. [PMID: 35905769 PMCID: PMC10967659 DOI: 10.1146/annurev-cellbio-120420-104341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; ,
- Department of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
14
|
Spinach-based RNA mimicking GFP in plant cells. Funct Integr Genomics 2022; 22:423-428. [PMID: 35267109 PMCID: PMC9197860 DOI: 10.1007/s10142-022-00835-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Abstract
Spinach RNA-mimicking GFP (S-RMG) has been successfully used to monitor cellular RNAs including microRNAs in bacterium, yeast, and human cells. However, S-RMG has not been established in plants. In this study, we found that like bacterial, yeast, and human cellular tRNAs, plant tRNAs such as tRNALys can protect and/or stabilize the Spinach RNA aptamer interaction with the fluorophore DFHBI enabling detectable levels of green fluorescence to be emitted. The tRNALys-Spinach-tRNALys, once delivered into "chloroplast-free" onion epidermal cells can emit strong green fluorescence in the presence of DFHBI. Our results demonstrate for the first time that Spinach-based RNA visualization has the potential for in vivo monitoring of RNAs in plant cells.
Collapse
|
15
|
Kehr J, Morris RJ, Kragler F. Long-Distance Transported RNAs: From Identity to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:457-474. [PMID: 34910585 DOI: 10.1146/annurev-arplant-070121-033601] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is now a wealth of data, from different plants and labs and spanning more than two decades, which unequivocally demonstrates that RNAs can be transported over long distances, from the cell where they are transcribed to distal cells in other tissues. Different types of RNA molecules are transported, including micro- and messenger RNAs. Whether these RNAs are selected for transport and, if so, how they are selected and transported remain, in general, open questions. This aspect is likely not independent of the biological function and relevance of the transported RNAs, which are in most cases still unclear. In this review, we summarize the experimental data supporting selectivity or nonselectivity of RNA translocation and review the evidence for biological functions. After discussing potential issues regarding the comparability between experiments, we propose criteria that need to be critically evaluated to identify important signaling RNAs.
Collapse
Affiliation(s)
- Julia Kehr
- Department of Biology, Institute for Plant Sciences and Microbiology, Universität Hamburg, Hamburg, Germany;
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom;
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany;
| |
Collapse
|
16
|
Li W, Chen S, Liu Y, Wang L, Jiang J, Zhao S, Fang W, Chen F, Guan Z. Long-distance transport RNAs between rootstocks and scions and graft hybridization. PLANTA 2022; 255:96. [PMID: 35348893 DOI: 10.1007/s00425-022-03863-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present review addresses the advances of the identification methods, functions, and transportation mechanism of long-distance transport RNAs between rootstock and scion. In addition, we highlight the cognitive processes and potential mechanisms of graft hybridization. Phloem, the main transport channel of higher plants, plays an important role in the growth and development of plants. Numerous studies have identified a large number of RNAs, including mRNAs, miRNAs, siRNAs, and lncRNAs, in the plant phloem. They can not only be transported to long distances across the grafting junction in the phloem, but also act as signal molecules to regulate the growth, development, and stress resistance of remote cells or tissues, resulting in changes in the traits of rootstocks and scions. Many mobile RNAs have been discovered, but their detection methods, functions, and long-distance transport mechanisms remain to be elucidated. In addition, grafting hybridization, a phenomenon that has been questioned before, and which has an important role in selecting for superior traits, is gradually being recognized with the emergence of new evidence and the prevalence of horizontal gene transfer between parasitic plants. In this review, we outline the species, functions, identification methods, and potential mechanisms of long-distance transport RNAs between rootstocks and scions after grafting. In addition, we summarize the process of recognition and the potential mechanisms of graft hybridization. This study aimed to emphasize the role of grafting in the study of long-distance signals and selection for superior traits and to provide ideas and clues for further research on long-distance transport RNAs and graft hybridization.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
18
|
Huang NC, Luo KR, Yu TS. Development of a split fluorescent protein-based RNA live-cell imaging system to visualize mRNA distribution in plants. PLANT METHODS 2022; 18:15. [PMID: 35130941 PMCID: PMC8822845 DOI: 10.1186/s13007-022-00849-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA live-cell imaging systems have been used to visualize subcellular mRNA distribution in living cells. The RNA-binding protein (RBP)-based RNA imaging system exploits specific RBP and the corresponding RNA recognition sequences to indirectly label mRNAs. Co-expression of fluorescent protein-fused RBP and target mRNA conjugated with corresponding RNA recognition sequences allows for visualizing mRNAs by confocal microscopy. To minimize the background fluorescence in the cytosol, the nuclear localization sequence has been used to sequester the RBP not bound to mRNA in the nucleus. However, strong fluorescence in the nucleus may limit the visualization of nucleus-localized RNA and sometimes may interfere in detecting fluorescence signals in the cytosol, especially in cells with low signal-to-noise ratio. RESULTS We eliminated the background fluorescence in the nucleus by using the split fluorescent protein-based approach. We fused two different RBPs with the N- or C-terminus of split fluorescent proteins (FPs). Co-expression of RBPs with the target mRNA conjugated with the corresponding RNA recognition sequences can bring split FPs together to reconstitute functional FPs for visualizing target mRNAs. We optimized the system with minimal background fluorescence and used the imaging system to visualize mRNAs in living plant cells. CONCLUSIONS We established a background-free RNA live-cell imaging system that provides a platform to visualize subcellular mRNA distribution in living plant cells.
Collapse
Affiliation(s)
- Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
19
|
Kitagawa M, Wu P, Balkunde R, Cunniff P, Jackson D. An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. Science 2022; 375:177-182. [PMID: 35025667 DOI: 10.1126/science.abm0840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Messenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog. Our findings suggest that AtRRP44A promotes mRNA trafficking through plasmodesmata to control stem cell–dependent processes in plants.
Collapse
Affiliation(s)
| | - Peipei Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Patrick Cunniff
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
20
|
Yu Z, Chen W, Wang Y, Zhang P, Shi N, Hong Y. Mobile Flowering Locus T RNA - Biological Relevance and Biotechnological Potential. FRONTIERS IN PLANT SCIENCE 2022; 12:792192. [PMID: 35046978 PMCID: PMC8761650 DOI: 10.3389/fpls.2021.792192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Many systemically mobile mRNAs have been revealed in phloem. However, very few of them have been found to be of clear signaling functions. One of such rare examples is the mobile Flowering locus T (FT) mRNA despite the continuous debate about its mobility and biological relevance to the control of flowering time in plants. Nevertheless, accumulating evidence supports the notion of the long-distance movement of FT mRNA from leaf to shoot apex meristem and its role in flowering. In this review, we discuss the discovery of florigenic FT, the initial debate on long-distance movement of FT mRNA, emerging evidence to prove its mobility, and the use of mobile FT mRNA to generate heritable transgenerational gene editing in plants. We elaborate on evidence from virus-based RNA mobility assay, plant grafting, RNA with fluorescent protein labeling, and CRISPR/Cas9 gene-editing technology, to demonstrate that the FT mRNA besides the FT protein can move systemically and function as an integral component of the florigenic signal in flowering. We also propose a model to prompt further research on the molecular mechanism underlying the long-distance movement of this important mobile signaling RNA in plants.
Collapse
Affiliation(s)
- Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiwei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
21
|
Zhang G, Kong G, Li Y. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1926-1934. [PMID: 34431527 DOI: 10.1111/ppl.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
22
|
Deng Z, Wu H, Li D, Li L, Wang Z, Yuan W, Xing Y, Li C, Liang D. Root-to-Shoot Long-Distance Mobile miRNAs Identified from Nicotiana Rootstocks. Int J Mol Sci 2021; 22:12821. [PMID: 34884626 PMCID: PMC8657949 DOI: 10.3390/ijms222312821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Root-derived mobile signals play critical roles in coordinating a shoot's response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.
Collapse
Affiliation(s)
- Zhuying Deng
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Huiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Dongyi Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Luping Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Zhipeng Wang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of BioResources, State Key Lab of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yongzhong Xing
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA 6150, Australia;
| | - Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.D.); (H.W.); (D.L.); (L.L.); (Z.W.)
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
23
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:2450-2460. [PMID: 33693548 DOI: 10.1101/2020.06.15.152819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
MOTIVATION Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. RESULTS This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model's dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. AVAILABILITY AND IMPLEMENTATION The method was developed with the R statistical software and is made available through the R package 'irg' hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva 1205, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Bobrovskikh A, Doroshkov A, Mazzoleni S, Cartenì F, Giannino F, Zubairova U. A Sight on Single-Cell Transcriptomics in Plants Through the Prism of Cell-Based Computational Modeling Approaches: Benefits and Challenges for Data Analysis. Front Genet 2021; 12:652974. [PMID: 34093652 PMCID: PMC8176226 DOI: 10.3389/fgene.2021.652974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Single-cell technology is a relatively new and promising way to obtain high-resolution transcriptomic data mostly used for animals during the last decade. However, several scientific groups developed and applied the protocols for some plant tissues. Together with deeply-developed cell-resolution imaging techniques, this achievement opens up new horizons for studying the complex mechanisms of plant tissue architecture formation. While the opportunities for integrating data from transcriptomic to morphogenetic levels in a unified system still present several difficulties, plant tissues have some additional peculiarities. One of the plants' features is that cell-to-cell communication topology through plasmodesmata forms during tissue growth and morphogenesis and results in mutual regulation of expression between neighboring cells affecting internal processes and cell domain development. Undoubtedly, we must take this fact into account when analyzing single-cell transcriptomic data. Cell-based computational modeling approaches successfully used in plant morphogenesis studies promise to be an efficient way to summarize such novel multiscale data. The inverse problem's solutions for these models computed on the real tissue templates can shed light on the restoration of individual cells' spatial localization in the initial plant organ-one of the most ambiguous and challenging stages in single-cell transcriptomic data analysis. This review summarizes new opportunities for advanced plant morphogenesis models, which become possible thanks to single-cell transcriptome data. Besides, we show the prospects of microscopy and cell-resolution imaging techniques to solve several spatial problems in single-cell transcriptomic data analysis and enhance the hybrid modeling framework opportunities.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alexey Doroshkov
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ulyana Zubairova
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. PLANT METHODS 2021; 17:20. [PMID: 33596981 PMCID: PMC7890912 DOI: 10.1186/s13007-021-00719-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The virus-induced genome editing (VIGE) system can be used to quickly identify gene functions and generate knock-out libraries as an alternative to the virus-induced gene silencing (VIGS). Although plant virus-mediated VIGE has been shown to have great application prospects, edited genes cannot be transferred to the next generations using this system, as viruses cannot enter into shoot apical meristem (SAM) in plants. RESULTS We developed a novel cotton leaf crumple virus (CLCrV)-mediated VIGE system designed to target BRI1, GL2, PDS genes, and GUS transgene in A. thaliana by transforming Cas9 overexpression (Cas9-OE) A. thaliana. Given the deficiency of the VIGE system, ProYao::Cas9 and Pro35S::Cas9 A. thaliana were transformed by fusing 102 bp FT mRNAs with sgRNAs so as to explore the function of Flowering Locus T (FT) gene in delivering sgRNAs into SAM, thus avoiding tissue culture and stably acquiring heritable mutant offspring. Our results showed that sgRNAs fused with FT mRNA at the 5' end (FT strategy) effectively enabled gene editing in infected plants and allowed the acquisition of mutations heritable by the next generation, with an efficiency of 4.35-8.79%. In addition, gene-edited offspring by FT-sgRNAs did not contain any components of the CLCrV genome. CONCLUSIONS FT strategy can be used to acquire heritable mutant offspring avoiding tissue culture and stable transformation based on the CLCrV-mediated VIGE system in A. thaliana.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Peihong Dai
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Yue Li
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Wanqi Zhang
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Guantong Zhou
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Chao Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China
| | - Xiaodong Liu
- College of Agriculture, Xinjiang Agricultural University, Engineering Research Centre of Cotton, Ministry of Education, 311 Nongda East Road, Urumqi, 830052, P.R. China.
| |
Collapse
|
27
|
Peña EJ, Robles Luna G, Heinlein M. In vivo imaging of tagged mRNA in plant tissues using the bacterial transcriptional antiterminator BglG. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:271-282. [PMID: 33098198 DOI: 10.1111/tpj.15035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.
Collapse
Affiliation(s)
- Eduardo J Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| |
Collapse
|
28
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
29
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
31
|
Cortijo S, Locke JCW. Does Gene Expression Noise Play a Functional Role in Plants? TRENDS IN PLANT SCIENCE 2020; 25:1041-1051. [PMID: 32467064 DOI: 10.1016/j.tplants.2020.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
Gene expression in individual cells can be surprisingly noisy. In unicellular organisms this noise can be functional; for example, by allowing a subfraction of the population to prepare for environmental stress. The role of gene expression noise in multicellular organisms has, however, remained unclear. In this review, we discuss how new techniques are revealing an unexpected level of variability in gene expression between and within genetically identical plants. We describe recent progress as well as speculate on the function of transcriptional noise as a mechanism for generating functional phenotypic diversity in plants.
Collapse
Affiliation(s)
- Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
32
|
Long-Distance Movement of mRNAs in Plants. PLANTS 2020; 9:plants9060731. [PMID: 32531920 PMCID: PMC7356335 DOI: 10.3390/plants9060731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/28/2023]
Abstract
Long-distance transport of information molecules in the vascular tissues could play an important role in regulating plant growth and enabling plants to cope with adverse environments. Various molecules, including hormones, proteins, small peptides and small RNAs have been detected in the vascular system and proved to have systemic signaling functions. Sporadic studies have shown that a number of mRNAs produced in the mature leaves leave their origin cells and move to distal tissues to exert important physiological functions. In the last 3-5 years, multiple heterograft systems have been developed to demonstrate that a large quantity of mRNAs are mobile in plants. Further comparison of the mobile mRNAs identified from these systems showed that the identities of these mRNAs are very diverse. Although species-specific mRNAs may regulate the unique physiological characteristic of the plant, mRNAs with conserved functions across multiple species are worth more effort in identifying universal physiological mechanisms existing in the plant kingdom.
Collapse
|
33
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
34
|
Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. NATURE PLANTS 2020; 6:620-624. [PMID: 32483329 DOI: 10.1038/s41477-020-0670-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
An in planta gene editing approach was developed wherein Cas9 transgenic plants are infected with an RNA virus that expresses single guide RNAs (sgRNAs). The sgRNAs are augmented with sequences that promote cell-to-cell mobility. Mutant progeny are recovered in the next generation at frequencies ranging from 65 to 100%; up to 30% of progeny derived from plants infected with a virus expressing three sgRNAs have mutations in all three targeted loci.
Collapse
Affiliation(s)
- Evan E Ellison
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, MN, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Maria Elena Gamo
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
| | - Pin-Jui Huang
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Savithramma Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
35
|
Peña EJ, Heinlein M. Visualization of Transiently Expressed mRNA in Plants Using MS2. Methods Mol Biol 2020; 2166:103-120. [PMID: 32710405 DOI: 10.1007/978-1-0716-0712-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
RNA transport and localization are evolutionarily conserved processes that allow protein translation to occur at specific subcellular sites and thereby having fundamental roles in the determination of cell fates, embryonic patterning, asymmetric cell division, and cell polarity. In addition to localizing RNA molecules to specific subcellular sites, plants have the ability to exchange RNA molecules between cells through plasmodesmata (PD). Plant RNA viruses hijack the mechanisms of intracellular and intercellular RNA transport to establish localized replication centers within infected cells and then to disseminate their infectious genomes between cells and throughout the plant organism with the help of their movement proteins (MP). In this chapter, we describe the transient expression of the tobacco mosaic virus movement protein (TMV-MP) and the application of the MS2 system for the in vivo labeling of the MP-encoding mRNA. The MS2 method is based on the binding of the bacteriophage coat protein (CP) to its origin of assembly (OAS) in the phage RNA. Thus, to label a specific mRNA in vivo, a tandem repetition of a 19-nucleotide-long stem-loop (SL) sequence derived from the MS2 OAS sequence (MSL) is transcriptionally fused to the RNA under investigation. The RNA is detected by the co-expression of fluorescent protein-tagged MS2 CP (MCP), which binds to each of the MSL elements. In providing a detailed protocol for the in vivo visualization of TMV-MP mRNA tagged with the MS2 system in Nicotiana benthamiana epidermal cells, we describe (1) the specific DNA constructs, (2) Agrobacterium tumefaciens-mediated transfection for their transient expression in plants, and (3) imaging conditions required to obtain high-quality mRNA imaging data.
Collapse
Affiliation(s)
- Eduardo José Peña
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata CONICET, Fac. Cs. Exactas, U.N.L.P, La Plata, Argentina
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
36
|
Tian L, Chou HL, Fukuda M, Kumamaru T, Okita TW. mRNA Localization in Plant Cells. PLANT PHYSIOLOGY 2020; 182:97-109. [PMID: 31611420 PMCID: PMC6945871 DOI: 10.1104/pp.19.00972] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
Localization of mRNAs at the subcellular level is an essential mechanism for specific protein targeting and local control of protein synthesis in both eukaryotes and bacteria. While mRNA localization is well documented in metazoans, somatic cells, and microorganisms, only a handful of well-defined mRNA localization examples have been reported in vascular plants and algae. This review summarizes the function and mechanism of mRNA localization and highlights recent studies of mRNA localization in vascular plants. While the emphasis focuses on storage protein mRNA localization in rice endosperm cells, information on targeting of RNAs to organelles (chloroplasts and mitochondria) and plasmodesmata is also discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshihiro Kumamaru
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
37
|
Abstract
Multicellular organisms rely on systemic signals to orchestrate diverse developmental and physiological programs. To transmit environmental stimuli that perceived in the leaves, plants recruit many mobile molecules including mobile mRNAs as systemic signals for interorgan communication. The mobile mRNAs provide an efficient and specific remote control system for plants to cope with environmental dynamics. Upon being transcribed in local tissues, mobile mRNAs are selectively targeted to plasmodesmata for cell-to-cell and long-distance translocation. The mRNA labeling system based on the RNA-binding protein MS2 provides a useful tool to investigate intracellular trafficking of mobile mRNAs in plants. Here we describe the detailed protocol to visualize intracellular trafficking of plant mobile mRNAs by using the MS2 live-cell imaging system.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
38
|
Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants. Int J Mol Sci 2019; 20:ijms20174306. [PMID: 31484348 PMCID: PMC6747330 DOI: 10.3390/ijms20174306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Plants are exposed every day to multiple environmental cues, and tight transcriptome reprogramming is necessary to control the balance between responses to stress and processes of plant growth. In this context, the silencing phenomena mediated by small RNAs can drive transcriptional and epigenetic regulatory modifications, in turn shaping plant development and adaptation to the surrounding environment. Mounting experimental evidence has recently pointed to small noncoding RNAs as fundamental players in molecular signalling cascades activated upon exposure to abiotic and biotic stresses. Although, in the last decade, studies on stress responsive small RNAs increased significantly in many plant species, the physiological responses triggered by these molecules in the presence of environmental stresses need to be further explored. It is noteworthy that small RNAs can move either cell-to-cell or systemically, thus acting as mobile silencing effectors within the plant. This aspect has great importance when physiological changes, as well as epigenetic regulatory marks, are inspected in light of plant environmental adaptation. In this review, we provide an overview of the categories of mobile small RNAs in plants, particularly focusing on the biological implications of non-cell autonomous RNA silencing in the stress adaptive response and epigenetic modifications.
Collapse
|
39
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
40
|
Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting. THE NEW PHYTOLOGIST 2019; 223:582-589. [PMID: 30834529 DOI: 10.1111/nph.15772] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 05/23/2023]
Abstract
Vascular plants are wired with a remarkable long-distance communication system. This network can span from as little as a few centimeters (or less) in species like Arabidopsis, up to 100 m in the tallest giant sequoia, linking distant organ systems into a unified, multicellular organism. Grafting is a fundamental technique that allows researchers to physically break apart and reassemble the long-distance transport system, enabling the discovery of molecular signals that underlie intraorganismal communication. In this review, we highlight how plant grafting has facilitated the discovery of new long-distance signaling molecules that function in coordinating developmental transitions, abiotic and biotic responses, and cross-species interactions. This rapidly expanding area of research offers sustainable approaches for improving plant performance in the laboratory, the field, the orchard, and beyond.
Collapse
Affiliation(s)
- Hannah R Thomas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Song GQ, Prieto H, Orbovic V. Agrobacterium-Mediated Transformation of Tree Fruit Crops: Methods, Progress, and Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:226. [PMID: 30881368 PMCID: PMC6405644 DOI: 10.3389/fpls.2019.00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Genetic engineering based on Agrobacterium-mediated transformation has been a desirable tool to manipulate single or multiple genes of existing genotypes of woody fruit crops, for which conventional breeding is a difficult and lengthy process due to heterozygosity, sexual incompatibility, juvenility, or a lack of natural sources. To date, successful transformation has been reported for many fruit crops. We review the major progress in genetic transformation of these fruit crops made in the past 5 years, emphasizing reproducible transformation protocols as well as the strategies that have been tested in fruit crops. While direct transformation of scion cultivars was mostly used for fruit quality improvement, biotic and abiotic tolerance, and functional gene analysis, transgrafting on genetically modified (GM) rootstocks showed a potential to produce non-GM fruit products. More recently, genome editing technology has demonstrated a potential for gene(s) manipulation of several fruit crops. However, substantial efforts are still needed to produce plants from gene-edited cells, for which tremendous challenge remains in the context of either cell's recalcitrance to regeneration or inefficient gene-editing due to their polyploidy. We propose that effective transient transformation and efficient regeneration are the key for future utilization of genome editing technologies for improvement of fruit crops.
Collapse
Affiliation(s)
- Guo-qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, United States
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santiago de Chile, Chile
| | - Vladimir Orbovic
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
42
|
Liu L, Chen X. Intercellular and systemic trafficking of RNAs in plants. NATURE PLANTS 2018; 4:869-878. [PMID: 30390090 PMCID: PMC7155933 DOI: 10.1038/s41477-018-0288-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/21/2018] [Indexed: 05/14/2023]
Abstract
Plants have evolved dynamic and complex networks of cell-to-cell communication to coordinate and adapt their growth and development to a variety of environmental changes. In addition to small molecules, such as metabolites and phytohormones, macromolecules such as proteins and RNAs also act as signalling agents in plants. As information molecules, RNAs can move locally between cells through plasmodesmata, and over long distances through phloem. Non-cell-autonomous RNAs may act as mobile signals to regulate plant development, nutrient allocation, gene silencing, antiviral defence, stress responses and many other physiological processes in plants. Recent work has shed light on mobile RNAs and, in some cases, uncovered their roles in intercellular and systemic signalling networks. This review summarizes the current knowledge of local and systemic RNA movement, and discusses the potential regulatory mechanisms and biological significance of RNA trafficking in plants.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
43
|
Huang NC, Luo KR, Yu TS. Mobility of Antiflorigen and PEBP mRNAs in Tomato-Tobacco Heterografts. PLANT PHYSIOLOGY 2018; 178:783-794. [PMID: 30150303 PMCID: PMC6181055 DOI: 10.1104/pp.18.00725] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/19/2018] [Indexed: 05/19/2023]
Abstract
Photoperiodic floral induction is controlled by the leaf-derived and antagonistic mobile signals florigen and antiflorigen. In response to photoperiodic variations, florigen and antiflorigen are produced in leaves and translocated through phloem to the apex, where they counteract floral initiation. Florigen and antiflorigen are encoded by a pair of homologs belonging to FLOWERING LOCUS T (FT)- or TERMINAL FLOWER1 (TFL1)-like clades in the phosphatidylethanolamine-binding domain protein (PEBP) family. The PEBP gene family contains FT-, TFL1-, and MOTHER OF FT AND TFL1 (MFT)-like clades. Evolutionary analysis suggests that FT- and TFL1-like clades arose from an ancient MFT-like clade. The protein movement of the PEBP family is an evolutionarily conserved mechanism in many plants; however, the mRNA movement of the PEBP family remains controversial. Here, we examined the mRNA movement of PEBP genes in different plant species. We identified a tobacco (Nicotiana sylvestris) CENTRORADIALIS-like1 gene, denoted NsCET1, and showed that NsCET1 is an ortholog of the Arabidopsis (Arabidopsis thaliana) antiflorigen ATC In tobacco, NsCET1 acts as a mobile molecule that non-cell-autonomously inhibits flowering. Grafting experiments showed that endogenous and ectopically expressed NsCET1 mRNAs move long distances in tobacco and Arabidopsis. Heterografts of tobacco and tomato (Solanum lycopersicum) showed that, in addition to NsCET1, multiple members of the FT-, TFL1-, and MFT-like clades of tobacco and tomato PEBP gene families are mobile mRNAs. Our results suggest that the mRNA mobility is a common feature of the three clades of PEBP-like genes among different plant species.
Collapse
Affiliation(s)
- Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
44
|
Winter N, Kragler F. Conceptual and Methodological Considerations on mRNA and Proteins as Intercellular and Long-Distance Signals. PLANT & CELL PHYSIOLOGY 2018; 59:1700-1713. [PMID: 30020523 DOI: 10.1093/pcp/pcy140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
High-throughput studies identified approximately one-fifth of Arabidopsis protein-encoding transcripts to be graft transmissible and to move over long distances in the phloem. In roots, one-fifth of transcription factors were annotated as non-cell autonomous, moving between cells. Is this massive transport a way of interorgan and cell-cell communication or does it serve different purposes? On the tissue level, many microRNAs (miRNAs) and all small interfering RNAs (siRNAs) act non-cell autonomously. Why are these RNAs and proteins not just expressed in cells where they exert their function? Short- and long-distance transport of these macromolecules raises the question of whether all mobile mRNAs and transcription factors could be defined as signaling molecules. Since the answer is not clear yet, we will discuss in this review conceptual approaches to this phenomenon using a single mobile signaling macromolecule, FLOWERING LOCUS T, which has been characterized extensively. We conclude that careful individual studies of mobile macromolecules are necessary to uncover their biological function and the observed massive mobility. To stimulate such studies, we provide a review summarizing the resourceful wealth of experimental approaches to this intriguing question and discuss methodological scopes and limits.
Collapse
Affiliation(s)
- Nikola Winter
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Potsdam - Golm, Germany
| |
Collapse
|
45
|
Boavida LC. Live-Cell Imaging of Mobile RNAs in Plants. PLANT PHYSIOLOGY 2018; 177:441-442. [PMID: 29899053 PMCID: PMC6001345 DOI: 10.1104/pp.18.00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Leonor C Boavida
- Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
46
|
Singh R, Rojas CM. Dissecting the functional domains of the Arabidopsis thaliana nonhost resistance 2B (AtNHR2B) protein. PLANT SIGNALING & BEHAVIOR 2018; 13:e1530024. [PMID: 30325257 PMCID: PMC6279337 DOI: 10.1080/15592324.2018.1530024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis thaliana nonhost resistant 2B (AtNHR2B) is involved in plant defense responses by mediating the deposition of the ß-1,3-glucan polymer callose to the cell wall in response to bacterial pathogens. Despite having a critical role in plant immunity, the exact mechanism of how this protein functions is not known and its protein sequence does not have any similarity to known proteins characterized to date. Using in silico analysis we identified three transmembrane domains and two nuclear localization signals (NLS). To validate these predictions, we generated truncated versions of the protein fused to the green fluorescent protein (GFP) to analyze their subcellular localization by laser scanning confocal microscopy. We found that the in silico predictions matched the subcellular localization of the truncated versions. Specifically, the presence of at least one of the transmembrane domain was required for membrane-bound subcellular compartments. Intriguingly, the localization of the transmembrane domains and the nuclear localization signals correspond to overlapping regions of the protein at the C-terminus and found one truncation that enabled protein localization to the nucleus. These results highlight that AtNHR2B is a unique protein composed of various domains that enable the protein to localize to diverse subcellular compartments and, by virtue of these multiple localizations, likely functions in multiple biological processes.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Clemencia M. Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
- CONTACT Clemencia M. RojasDepartment of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|