1
|
Petay M, Tang E, Bouderlique E, Zaworski J, Dazzi A, Letavernier E, Bazin D, Mathurin J, Deniset-Besseau A. Nano-Investigation of Mineralized Biological Samples Chemical Composition: Experimental Challenges, Constraints, and Considerations. Anal Chem 2025; 97:4954-4961. [PMID: 40028890 DOI: 10.1021/acs.analchem.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the chemical composition of calcifications in biological tissues at the nanoscale is crucial for deciphering their formation processes and possible pathological implications. Atomic Force Microscopy Infrared Spectroscopy (AFM-IR), by allowing IR spectroscopy at the nanoscale, is thus a promising strategy to access such highly spatially resolved chemical information. However, these specimens' inherent morphological and mechanical heterogeneities pose significant challenges for standard resonance-enhanced (RE-AFM-IR) and tapping AFM-IR acquisition modes. This study introduces a dual-mode approach combining tapping and RE-AFM-IR to address these challenges. Tapping AFM-IR is first employed to acquire the topography of the soft and rough surfaces, while RE-AFM-IR provides chemical description at the submicrometric scale through hyperspectral (HS) imaging. This dual-mode methodology is validated on different mineralized biological samples, including breast microcalcifications, revealing the local chemical heterogeneous distribution within the calcium phosphate matrice. Our results outline that dual-mode AFM-IR, coupled with HS imaging, enables robust chemical characterization of highly heterogeneous biomaterials and offers a more comprehensive description compared to conventional AFM-IR single-wavenumber mapping and local spectra.
Collapse
Affiliation(s)
- Margaux Petay
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ellie Tang
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Elise Bouderlique
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Jeremy Zaworski
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Alexandre Dazzi
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Letavernier
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020 Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Li J, Kasal B. Review on the Structure-Property Relationship of Lignocellulosic Materials Measured by Atomic Force Microscopy. Biomacromolecules 2025; 26:1404-1418. [PMID: 39945405 PMCID: PMC11898059 DOI: 10.1021/acs.biomac.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 03/11/2025]
Abstract
In this review, we provide an overview of how atomic force microscopy (AFM) measurements on wood or other plant fibers help us understand the structure-property relationship in growing plants, matured wood material, and wood modifications and aging. We selected wood as a model material that can represent a number of lignocellulosic systems and attempted to address the structure-property relationship, as studied in situ. We selected AFM because it allows scientists to study materials in an unaltered, in situ form and relate chemical composition to material properties at a nanoscale level. We summarized the high-resolution measurements of wood cell walls such as topography, adhesion force, modulus, and chemical functional groups using AFM. Our three focus areas were: (1) how the cell wall develops its structure and property in living trees; (2) how the ultrastructure determines cell wall property; and (3) how the modification/aging of the cell wall changes its property in application scenarios.
Collapse
Affiliation(s)
- Juan Li
- Fraunhofer
Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Bohumil Kasal
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaska 8, SI-6000 Koper, Slovenia
| |
Collapse
|
3
|
Ashe P, Tu K, Stobbs JA, Dynes JJ, Vu M, Shaterian H, Kagale S, Tanino KK, Wanasundara JPD, Vail S, Karunakaran C, Quilichini TD. Applications of synchrotron light in seed research: an array of x-ray and infrared imaging methodologies. FRONTIERS IN PLANT SCIENCE 2025; 15:1395952. [PMID: 40034948 PMCID: PMC11873090 DOI: 10.3389/fpls.2024.1395952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Synchrotron radiation (SR) provides a wide spectrum of bright light that can be tailored to test myriad research questions. SR provides avenues to illuminate structure and composition across scales, making it ideally suited to the study of plants and seeds. Here, we present an array of methodologies and the data outputs available at a light source facility. Datasets feature seed and grain from a range of crop species including Citrullus sp. (watermelon), Brassica sp. (canola), Pisum sativum (pea), and Triticum durum (wheat), to demonstrate the power of SR for advancing plant science. The application of SR micro-computed tomography (SR-µCT) imaging revealed internal seed microstructures and their three-dimensional morphologies in exquisite detail, without the need for destructive sectioning. Spectroscopy in the infrared spectrum probed sample biochemistry, detailing the spatial distribution of seed macronutrients such as lipid, protein and carbohydrate in the embryo, endosperm and seed coat. Methods using synchrotron X-rays, including X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) imaging revealed elemental distributions, to spatially map micronutrients in seed subcompartments and to determine their speciation. Synchrotron spectromicroscopy (SM) allowed chemical composition to be resolved at the nano-scale level. Diverse crop seed datasets showcase the range of structural and chemical insights provided by five beamlines at the Canadian Light Source, and the potential for synchrotron imaging for informing plant and agricultural research.
Collapse
Affiliation(s)
- Paula Ashe
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | | | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Hamid Shaterian
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Sally Vail
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | | | - Teagen D. Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Pu J, Ma J, Zhai H, Wu S, Wang Y, Putnis CV, Wang L, Zhang W. Atomic force microscopy imaging of plant cell walls. PLANT PHYSIOLOGY 2025; 197:kiae655. [PMID: 39928583 DOI: 10.1093/plphys/kiae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 02/12/2025]
Abstract
Plant cell walls are highly dynamic, complex structures composed of multiple biopolymers that form a scaffold surrounding the plant cell. A nanoscale understanding of their architecture, mechanical properties, and formation/degradation dynamics is crucial for revealing structure-function relationships, mechanisms of shape formation, and cell development. Although imaging techniques have been extensively used in recent decades to reveal the structural organization and chemical compositions of cell walls, observing the detailed native architecture and identifying the physicochemical properties of plant cell walls remains challenging. Atomic force microscopy (AFM) is a powerful tool for simultaneously characterizing the morphology, nanomechanical properties, single-molecule interactions, and surface potentials of living biological systems. However, studies employing AFM to investigate plant cell walls have been relatively scarce. In this review, we discuss the latest advancements in AFM for in situ imaging of the multidimensional structure of the cell wall, measuring the mechanical properties of plant tissues or single cells, specific single-molecule recognition of cell wall-related enzymes-polysaccharides, and detecting the Kelvin potential of plant cell walls. We emphasize the fundamental challenges of AFM in characterizing plant cell walls and review potential applications for state-of-the-art AFM-based infrared/Raman spectroscopy toward answering open questions in plant biology.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Hang Zhai
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Shanshan Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Youmei Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Christine V Putnis
- Institut für Mineralogie, University of Münster, Münster 48149, Germany
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Yamagishi S, Kojima M, Kuroda K, Abe H, Sano Y. Seasonal variation of vessel pits in sapwood: microscopical analyses of the morphology and chemical components of pit membrane encrustations in Fraxinus mandschurica. ANNALS OF BOTANY 2024; 134:561-576. [PMID: 39052329 PMCID: PMC11523616 DOI: 10.1093/aob/mcae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Pit pairs and their filter-like partition, i.e. pit membranes, play important roles as water pathways, barriers and regulators in the water-conducting system of angiosperms. In Fraxinus species, the intervessel and vessel-parenchyma pit membranes in sapwood are normally encrusted during winter. Although these encrustations inevitably influence the performance of pits, their properties and functions remain unclear. This study aimed to reveal the morphological and chemical characteristics of encrustations in F. mandshurica in order to deepen understanding of the seasonal encrustation of pit membranes. METHODS Seasonal and positional variations in the presence and morphology of encrustations were examined by field-emission scanning electron microscopy (FE-SEM). Cryo-FE-SEM for freeze-fixed greenwood samples was conducted to clarify whether encrustations were present in living trees. Chemical components were examined by histochemical staining using light and electron microscopy, immunofluorescence labelling and ultraviolet microspectroscopy. KEY RESULTS Encrustations began to deposit in autumn before leaf senescence and disappeared in spring before bud flushing. They infiltrated within the pit membranes, which suggested that they severely limit the permeation of pits. The encrustations differed in morphology among positions: they entirely filled the pit chambers in latewood, while they covered the pit membranes in earlywood. The encrustations were similarly observed in the samples that were freeze-fixed immediately after collection, indicating that they are present in living trees. The encrustations contained polysaccharides, including xyloglucan and homogalacturonan, and phenolic compounds, possibly including flavonoids and coumarins. These chemical components were also detected in droplets found in the latewood vessels with the encrustations, suggesting that the materials constituting encrustations were supplied through the vessel lumens. CONCLUSIONS Encrustations undoubtedly cover the pit membranes in living F. mandshurica trees in winter and their morphology and chemical composition indicate that they are impermeable, have positional differences in function and are characterized by elaborate deposition/removal processes.
Collapse
Affiliation(s)
- Shohei Yamagishi
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Miho Kojima
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Katsushi Kuroda
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Hisashi Abe
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Yuzou Sano
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
6
|
de Carvalho LAEB, Cinque G, de Carvalho ALMB, Marques J, Frogley MD, Vondracek H, Marques MPM. Synchrotron nano-FTIR spectroscopy for probing anticancer drugs at subcellular scale. Sci Rep 2024; 14:17166. [PMID: 39060284 PMCID: PMC11282259 DOI: 10.1038/s41598-024-67386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cellular response to cisplatin was assessed in human osteosarcoma cells, using synchrotron-based (SR) Fourier Transform InfraRed nanospectroscopy (nano-FTIR) at the MIRIAM beamline B22 of Diamond Light Source (UK). This label-free mapping method delivered simultaneous morphological and biochemical information on a subcellular level (i.e. 100 s nanometer or better). Based on specific spectral biomarkers, the main biochemical constituents affected by the drug were identified at distinct locations within the cell´s inner body. Cisplatin was shown to have a noteworthy effect on proteins, mostly within the cytoplasm. A clear drug impact on cellular lipids was also observed. Within current literature on s-SNOM, this nanospectroscopy work represents a first successful application in life sciences providing full fingerprint nano-FTIR spectra across intact human cancer cells.
Collapse
Affiliation(s)
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton - Didcot, OX11 0DE, Oxfordshire, UK.
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | | | - Joana Marques
- Department of Chemistry, Química-Física Molecular, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton - Didcot, OX11 0DE, Oxfordshire, UK
| | - Hendrik Vondracek
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton - Didcot, OX11 0DE, Oxfordshire, UK
| | - Maria Paula M Marques
- Department of Chemistry, Química-Física Molecular, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
7
|
Santos TM, Lordano S, Mayer RA, Volpe L, Rodrigues GM, Meyer B, Westfahl H, Freitas RO. Synchrotron infrared nanospectroscopy in fourth-generation storage rings. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:547-556. [PMID: 38630437 DOI: 10.1107/s1600577524002364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024]
Abstract
Fourth-generation synchrotron storage rings represent a significant milestone in synchrotron technology, offering outstandingly bright and tightly focused X-ray beams for a wide range of scientific applications. However, due to their inherently tight magnetic lattices, these storage rings have posed critical challenges for accessing lower-energy radiation, such as infrared (IR) and THz. Here the first-ever IR beamline to be installed and to operate at a fourth-generation synchrotron storage ring is introduced. This work encompasses several notable advancements, including a thorough examination of the new IR source at Sirius, a detailed description of the radiation extraction scheme, and the successful validation of our optical concept through both measurements and simulations. This optimal optical setup has enabled us to achieve an exceptionally wide frequency range for our nanospectroscopy experiments. Through the utilization of synchrotron IR nanospectroscopy on biological and hard matter samples, the practicality and effectiveness of this beamline has been successfully demonstrated. The advantages of fourth-generation synchrotron IR sources, which can now operate with unparalleled stability as a result of the stringent requirements for producing low-emittance X-rays, are emphasized.
Collapse
Affiliation(s)
- Thiago M Santos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Sérgio Lordano
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Rafael A Mayer
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Lucas Volpe
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Gustavo M Rodrigues
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Bernd Meyer
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Harry Westfahl
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
8
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Ma L, Meng Q, Jiang X, Ge Z, Cao Z, Wei Y, Jiao L, Yin Y, Guo J. Spatial organization and connectivity of wood rays in Pinus massoniana xylem based on high-resolution μCT-assisted network analysis. PLANTA 2023; 258:28. [PMID: 37358610 DOI: 10.1007/s00425-023-04185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Spatial organization and connectivity of wood rays in Pinus massoniana was comprehensively viewed and regarded as anatomical adaptions to ensure the properties of rays in xylem. Spatial organization and connectivity of wood rays are essential for understanding the wood hierarchical architecture, but the spatial information is ambiguous due to small cell size. Herein, 3D visualization of rays in Pinus massoniana was performed using high-resolution μCT. We found brick-shaped rays were 6.5% in volume fractions, nearly twice the area fractions estimated by 2D levels. Uniseriate rays became taller and wider during the transition from earlywood to latewood, which was mainly contributed from the height increment of ray tracheids and widened ray parenchyma cells. Furthermore, both volume and surface area of ray parenchyma cells were larger than ray tracheids, so ray parenchyma took a higher proportion in rays. Moreover, three different types of pits for connectivity were segmented and revealed. Pits in both axial tracheids and ray tracheids were bordered, but the pit volume and pit aperture of earlywood axial tracheids were almost tenfold and over fourfold larger than ray tracheids. Contrarily, cross-field pits between ray parenchyma and axial tracheids were window-like with the principal axis of 31.0 μm, but its pit volume was approximately one-third of axial tracheids. Additionally, spatial organization of rays and axial resin canal was analyzed by a curved surface reformation tool, providing the first evidence of rays close to epithelial cells inward through the resin canal. Epithelial cells had various morphologies and large variations in cell size. Our results give new insights into the organization of radial system of xylem, especially the connectivity of rays with adjacent cells.
Collapse
Affiliation(s)
- Lingyu Ma
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Qiulu Meng
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Xiaomei Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Zhedong Ge
- School of Information and Electrical Engineering, Shandong Jianzhu University, No.1000, Fengming Road, Lingang Development Zone, Jinan, 250101, Shandong, China
| | - Zixiong Cao
- Object Research Systems (ORS) Inc., 460 Ste-Catherine West, #600, Montreal, QC, H3B 1A7, Canada
| | - Yupei Wei
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Yafang Yin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Juan Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China.
| |
Collapse
|
10
|
Xia F, Youcef-Toumi K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. BIOSENSORS 2022; 12:1116. [PMID: 36551083 PMCID: PMC9775674 DOI: 10.3390/bios12121116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Visualization of biomedical samples in their native environments at the microscopic scale is crucial for studying fundamental principles and discovering biomedical systems with complex interaction. The study of dynamic biological processes requires a microscope system with multiple modalities, high spatial/temporal resolution, large imaging ranges, versatile imaging environments and ideally in-situ manipulation capabilities. Recent development of new Atomic Force Microscopy (AFM) capabilities has made it such a powerful tool for biological and biomedical research. This review introduces novel AFM functionalities including high-speed imaging for dynamic process visualization, mechanobiology with force spectroscopy, molecular species characterization, and AFM nano-manipulation. These capabilities enable many new possibilities for novel scientific research and allow scientists to observe and explore processes at the nanoscale like never before. Selected application examples from recent studies are provided to demonstrate the effectiveness of these AFM techniques.
Collapse
|
11
|
Yin L, Jiang X, Ma L, Liu S, He T, Jiao L, Yin Y, Yao L, Guo J. Anatomical adaptions of pits in two types of ray parenchyma cells in Populus tomentosa during the xylem differentiation. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153830. [PMID: 36195007 DOI: 10.1016/j.jplph.2022.153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Pits in ray parenchyma cells are important to understand the functional anatomy of the ray parenchyma network in the xylem but have been less studied. Herein, pits in two types of ray parenchyma cells, contact cells and isolation cells, across different developmental stages were qualitatively studied using 48-year-old Populus tomentosa trees. The timing of differentiation and death was determined by histochemical staining and polarized light microscopy. The dimension, shape and density of pits as well as cell wall thickness were measured using SEM and optical microscopy images of semi-thin radial sections and macerated ray parenchyma cells, and analyzed by multi-factor analyses of variance. Results showed that secondary wall thickening and lignification of contact cells begun near the cambium, contrarily those of isolation cells have started until the transition zone. But even in the sapwood, contact cell walls were still much thinner than isolation cell walls. Moreover, district anatomical adaptions of pits during the xylem differentiation were present between horizontal walls and tangential walls, between contact cells and isolation cells. Ray pits were simple to slightly bordered, whereas sieve-like pits were only shown on tangential walls of isolation cells. Pit density of horizontal walls was similar between contact cells and isolation cells, nevertheless greater pits were present on tangential walls, especially for isolation cells. In addition, pits of ray parenchyma cells in the heartwood were smaller and more bordered than those in the sapwood, particularly on the horizontal walls. Moreover, isolation cells had pits with the smaller dimensions, greater pits on the tangential walls, more bordered pits on horizontal walls, as well as longer and narrower cell morphology with much thicker cell walls than contact cells. To a certain extent, all these anatomical adaptations were developed to ensure distinct functions of the two types of ray parenchyma cells in the xylem and finally to support tree growth in demand.
Collapse
Affiliation(s)
- Lijuan Yin
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Xiaomei Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lingyu Ma
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Shoujia Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Tuo He
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Yafang Yin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China
| | - Lihong Yao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Juan Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, Dongxiaofu No.1, Beijing, 100091, China.
| |
Collapse
|
12
|
Melelli A, Jamme F, Beaugrand J, Bourmaud A. Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydr Polym 2022; 291:119584. [DOI: 10.1016/j.carbpol.2022.119584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
13
|
Wang H, Xie Q, Xu XG. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv Drug Deliv Rev 2022; 180:114080. [PMID: 34906646 DOI: 10.1016/j.addr.2021.114080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Small biomolecules at the subcellular level are building blocks for the manifestation of complex biological activities. However, non-intrusive in situ investigation of biological systems has been long daunted by the low spatial resolution and poor sensitivity of conventional light microscopies. Traditional infrared (IR) spectro-microscopy can enable label-free visualization of chemical bonds without extrinsic labeling but is still bound by Abbe's diffraction limit. This review article introduces a way to bypass the optical diffraction limit and improve the sensitivity for mid-IR methods - using tip-enhanced light nearfield in atomic force microscopy (AFM) operated in tapping and peak force tapping modes. Working principles of well-established scattering-type scanning near-field optical microscopy (s-SNOM) and two relatively new techniques, namely, photo-induced force microscopy (PiFM) and peak force infrared (PFIR) microscopy, will be briefly presented. With ∼ 10-20 nm spatial resolution and monolayer sensitivity, their recent applications in revealing nanoscale chemical heterogeneities in a wide range of biological systems, including biomolecules, cells, tissues, and biomaterials, will be reviewed and discussed. We also envision several future improvements of AFM-based tapping and peak force tapping mode nano-IR methods that permit them to better serve as a versatile platform for uncovering biological mechanisms at the fundamental level.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
14
|
Wang C, Qi C. Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood. RSC Adv 2022; 12:11391-11401. [PMID: 35425055 PMCID: PMC8996127 DOI: 10.1039/d2ra01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Copper-based preservatives consisting of micronized and nanoscale copper particles have been widely used in applications for wood protection. The widespread use of these preservatives along with the potential release of copper-containing nanoparticles (Cu NPs) during the life cycle of treated wood, has raised concerns over the impacts on the environment and occupational exposure. Along with assessing the potential hazards of these materials, a critical step is determining the chemical and morphological characteristics of the copper species released from copper-treated wood. Therefore, a combination of scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) was utilized to characterize and differentiate the released copper-containing particles based on their structures, sizing, and chemical properties. Airborne wood dust samples were collected during the abrasion and sawing of micronized copper (MC) treated wood in a laboratory testing system. Based on the signature Cu L2,3 edge of EEL spectra, three different copper species (i.e., basic copper carbonate, copper, and copper–wood complex) were identified as major components of the embedded particles in wood dust. In addition, two types of individual Cu NPs consisting of basic copper carbonate and copper were identified. The variation of morphologies and chemical properties of copper-containing particles indicates the importance of copper–wood interactions to determine the formation and distribution of copper species in wood components. Our findings will advance the fundamental understanding of their released forms, potential transformation, and environmental fate during the life cycle. A combination of analytical electron microscopy and electron energy loss spectroscopy enables effective speciation and characterization of airborne copper nanoparticles released from copper-treated wood.![]()
Collapse
Affiliation(s)
- Chen Wang
- The Health Effects Lab Division, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226, USA
| | - Chaolong Qi
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226, USA
| |
Collapse
|
15
|
Bilkey N, Li H, Borodinov N, Ievlev AV, Ovchinnikova OS, Dixit R, Foston M. Correlated mechanochemical maps of Arabidopsis thaliana primary cell walls using atomic force microscope infrared spectroscopy. QUANTITATIVE PLANT BIOLOGY 2022; 3:e31. [PMID: 37077971 PMCID: PMC10095902 DOI: 10.1017/qpb.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 10/07/2022] [Indexed: 05/03/2023]
Abstract
Spatial heterogeneity in composition and organisation of the primary cell wall affects the mechanics of cellular morphogenesis. However, directly correlating cell wall composition, organisation and mechanics has been challenging. To overcome this barrier, we applied atomic force microscopy coupled with infrared (AFM-IR) spectroscopy to generate spatially correlated maps of chemical and mechanical properties for paraformaldehyde-fixed, intact Arabidopsis thaliana epidermal cell walls. AFM-IR spectra were deconvoluted by non-negative matrix factorisation (NMF) into a linear combination of IR spectral factors representing sets of chemical groups comprising different cell wall components. This approach enables quantification of chemical composition from IR spectral signatures and visualisation of chemical heterogeneity at nanometer resolution. Cross-correlation analysis of the spatial distribution of NMFs and mechanical properties suggests that the carbohydrate composition of cell wall junctions correlates with increased local stiffness. Together, our work establishes new methodology to use AFM-IR for the mechanochemical analysis of intact plant primary cell walls.
Collapse
Affiliation(s)
- Natasha Bilkey
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Huiyong Li
- Department of Energy, Environmental and Chemical Engineering, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Nikolay Borodinov
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Anton V. Ievlev
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
| | - Ram Dixit
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri63130, USA
- Author for correspondence: M. Foston, E-mail:
| |
Collapse
|
16
|
Lemaire C, Quilichini Y, Brunel-Michac N, Santini J, Berti L, Cartailler J, Conchon P, Badel É, Herbette S. Plasticity of the xylem vulnerability to embolism in Populus tremula x alba relies on pit quantity properties rather than on pit structure. TREE PHYSIOLOGY 2021; 41:1384-1399. [PMID: 33554260 DOI: 10.1093/treephys/tpab018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Knowledge on variations of drought resistance traits are needed to predict the potential of trees to acclimate to coming severe drought events. Xylem vulnerability to embolism is a key parameter related to such droughts, and its phenotypic variability relies mainly on environmental plasticity. We investigated the structural determinants controlling the plasticity of vulnerability to embolism, focusing on the key elements involved in the air bubble entry in vessels, especially the intervessel pits. Poplar saplings (Populus tremula x alba (Aiton) Sm., 1804) grown in contrasted water availability or light exposure exhibited differences in the vulnerability to embolism (P50) in a range of 0.76 MPa. We then characterized the structural changes in features related to pit quantity and pit structure, from the pit ultrastructure to the organization of xylem vessels, using different microscopy techniques (transmission electron microscopy, scanning electron microscopy, light microscopy). A multispectral combination of X-ray microtomography and light microscopy analysis allowed measuring the vulnerability of each single vessel and testing some of the relationships between structural traits and vulnerability to embolism inside the xylem. The pit ultrastructure did not change, whereas the vessel dimensions increased with the vulnerability to embolism and the grouping index and fraction of intervessel cell wall both decreased with the vulnerability to embolism. These findings hold when comparing between trees or between the vessels inside the xylem of an individual tree. These results evidenced that plasticity of vulnerability to embolism in hybrid poplar occurs through changes in the pit quantity properties such as pit area and vessel grouping rather than changes on the pit structure.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Yann Quilichini
- CNRS-Università di Corsica, UMR 6134 SPE, 20250 Corti, France
| | | | - Jérémie Santini
- CNRS-Università di Corsica, UMR 6134 SPE, 20250 Corti, France
| | - Liliane Berti
- CNRS-Università di Corsica, UMR 6134 SPE, 20250 Corti, France
| | - Julien Cartailler
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Pierre Conchon
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Éric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Sonawane BV, Koteyeva NK, Johnson DM, Cousins AB. Differences in leaf anatomy determines temperature response of leaf hydraulic and mesophyll CO 2 conductance in phylogenetically related C 4 and C 3 grass species. THE NEW PHYTOLOGIST 2021; 230:1802-1814. [PMID: 33605441 DOI: 10.1111/nph.17287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Leaf hydraulic and mesophyll CO2 conductance are both influenced by leaf anatomical traits, however it is poorly understood how the temperature response of these conductances differs between C4 and C3 species with distinct leaf anatomy. This study investigated the temperature response of leaf hydraulic conductance (Kleaf ), stomatal (gs ) and mesophyll (gm ) conductance to CO2 , and leaf anatomical traits in phylogenetically related Panicum antidotale (C4 ) and P. bisulcatum (C3 ) grasses. The C4 species had lower hydraulic conductance outside xylem (Kox ) and Kleaf compared with the C3 species. However, the C4 species had higher gm compared with the C3 species. Traits associated with leaf water movement, Kleaf and Kox , increased with temperature more in the C3 than in the C4 species, whereas traits related to carbon uptake, Anet and gm , increased more with temperature in the C4 than the C3 species. Our findings demonstrate that, in addition to a CO2 concentrating mechanism, outside-xylem leaf anatomy in the C4 species P. antidotale favours lower water movement through the leaf and stomata that provides an additional advantage for greater leaf carbon uptake relative to water loss with increasing leaf temperature than in the C3 species P. bisulcatum.
Collapse
Affiliation(s)
- Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, V. L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, St Petersburg, 197376, Russia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
18
|
Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. NANOMATERIALS 2021; 11:nano11051353. [PMID: 34065487 PMCID: PMC8190638 DOI: 10.3390/nano11051353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
Researches of cellulose nanomaterials have seen nearly exponential growth over the past several decades for versatile applications. The characterization of nanostructural arrangement and local chemical distribution is critical to understand their role when developing cellulose materials. However, with the development of current characterization methods, the simultaneous morphological and chemical characterization of cellulose materials at nanoscale resolution is still challenging. Two fundamentally different nanoscale infrared spectroscopic techniques, namely atomic force microscope based infrared spectroscopy (AFM-IR) and infrared scattering scanning near field optical microscopy (IR s-SNOM), have been established by the integration of AFM with IR spectroscopy to realize nanoscale spatially resolved imaging for both morphological and chemical information. This review aims to summarize and highlight the recent developments in the applications of current state-of-the-art nanoscale IR spectroscopy and imaging to cellulose materials. It briefly outlines the basic principles of AFM-IR and IR s-SNOM, as well as their advantages and limitations to characterize cellulose materials. The uses of AFM-IR and IR s-SNOM for the understanding and development of cellulose materials, including cellulose nanomaterials, cellulose nanocomposites, and plant cell walls, are extensively summarized and discussed. The prospects of future developments in cellulose materials characterization are provided in the final part.
Collapse
|
19
|
Zancajo VMR, Lindtner T, Eisele M, Huber AJ, Elbaum R, Kneipp J. FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls. Anal Chem 2020; 92:13694-13701. [PMID: 32847355 DOI: 10.1021/acs.analchem.0c00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant tissues are complex composite structures of organic and inorganic components whose function relies on molecular heterogeneity at the nanometer scale. Scattering-type near-field optical microscopy (s-SNOM) in the mid-infrared (IR) region is used here to collect IR nanospectra from both fixed and native plant samples. We compared structures of chemically extracted silica bodies (phytoliths) to silicified and nonsilicified cell walls prepared as a flat block of epoxy-embedded awns of wheat (Triticum turgidum), thin sections of native epidermis cells from sorghum (Sorghum bicolor) comprising silica phytoliths, and isolated cells from awns of oats (Avena sterilis). The correlation of the scanning-probe IR images and the mechanical phase image enables a combined probing of mechanical material properties together with the chemical composition and structure of both the cell walls and the phytolith structures. The data reveal a structural heterogeneity of the different silica bodies in situ, as well as different compositions and crystallinities of cell wall components. In conclusion, IR nanospectroscopy is suggested as an ideal tool for studies of native plant materials of varied origins and preparations and could be applied to other inorganic-organic hybrid materials.
Collapse
Affiliation(s)
- Victor M R Zancajo
- School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.,BAM Federal Institute for Materials Research and Testing, 12489 Berlin, Germany
| | - Tom Lindtner
- School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Max Eisele
- Neaspec GmbH, Eglfinger Weg 2, D-85540 Munich-Haar, Germany
| | | | - Rivka Elbaum
- School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Janina Kneipp
- School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Chemistry Department, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
20
|
Gusenbauer C, Jakob DS, Xu XG, Vezenov DV, Cabane É, Konnerth J. Nanoscale Chemical Features of the Natural Fibrous Material Wood. Biomacromolecules 2020; 21:4244-4252. [PMID: 32852940 PMCID: PMC7556540 DOI: 10.1021/acs.biomac.0c01028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peak force infrared (PFIR) microscopy is a recently developed approach to acquire multiple chemical and physical material properties simultaneously and with nanometer resolution: topographical features, infrared (IR)-sensitive maps, adhesion, stiffness, and locally resolved IR spectra. This multifunctional mapping is enabled by the ability of an atomic force microscope tip in the peak force tapping mode to detect photothermal expansion of the sample. We report the use of the PFIR to characterize the chemical modification of bio-based native and intact wooden matrices, which has evolved into an increasingly active research field. The distribution of functional groups of wood cellulose aggregates, either in native or carboxylated states, was detected with a remarkable spatial resolution of 16 nm. Furthermore, mechanical and chemical maps of the distinct cell wall layers were obtained on polymerized wooden matrices to localize the exact position of the modified regions. These findings shall support the development and understanding of functionalized wood materials.
Collapse
Affiliation(s)
- Claudia Gusenbauer
- Institute of Wood Technology and Renewable Materials, Department of Materials Sciences and Process Engineering, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Devon S Jakob
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dmitri V Vezenov
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Étienne Cabane
- Institute for Building Materials, ETH Zürich, Stefano-Franscini-Platz 3, 8093 Zürich, Switzerland.,EMPA-Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 29, 8600 Dübendorf, Switzerland
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable Materials, Department of Materials Sciences and Process Engineering, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
21
|
Bock P, Nousiainen P, Elder T, Blaukopf M, Amer H, Zirbs R, Potthast A, Gierlinger N. Infrared and Raman spectra of lignin substructures: Dibenzodioxocin. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2020; 51:422-431. [PMID: 32214622 PMCID: PMC7079546 DOI: 10.1002/jrs.5808] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 05/05/2023]
Abstract
Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer-G-DHP). Raman spectra of DBDO and G-DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.
Collapse
Affiliation(s)
- Peter Bock
- Institute of BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Thomas Elder
- USDA Forest ServiceSouthern Research StationAuburnAlabama
| | - Markus Blaukopf
- Institute of Organic ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Hassan Amer
- Institute of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life SciencesViennaAustria
- Department of Natural and Microbial Products ChemistryNational Research CentreGizaEgypt
| | - Ronald Zirbs
- Institute of Biologically Inspired MaterialsUniversity of Natural Resources and Life SciencesViennaAustria
| | - Antje Potthast
- Institute of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Notburga Gierlinger
- Institute of BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
22
|
Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. Investigating Effects of Bordered Pit Membrane Morphology and Properties on Plant Xylem Hydraulic Functions-A Case Study from 3D Reconstruction and Microflow Modelling of Pit Membranes in Angiosperm Xylem. PLANTS (BASEL, SWITZERLAND) 2020; 9:E231. [PMID: 32054100 PMCID: PMC7076482 DOI: 10.3390/plants9020231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Pit membranes in between neighboring conduits of xylem play a crucial role in plant water transport. In this review, the morphological characteristics, chemical composition and mechanical properties of bordered pit membranes were summarized and linked with their functional roles in xylem hydraulics. The trade-off between xylem hydraulic efficiency and safety was closely related with morphology and properties of pit membranes, and xylem embolism resistance was also determined by the pit membrane morphology and properties. Besides, to further investigate the effects of bordered pit membranes morphology and properties on plant xylem hydraulic functions, here we modelled three-dimensional structure of bordered pit membranes by applying a deposition technique. Based on reconstructed 3D pit membrane structures, a virtual fibril network was generated to model the microflow pattern across inter-vessel pit membranes. Moreover, the mechanical behavior of intervessel pit membranes was estimated from a single microfibril's mechanical property. Pit membranes morphology varied among different angiosperm and gymnosperm species. Our modelling work suggested that larger pores of pit membranes do not necessarily contribute to major flow rate across pit membranes; instead, the obstructed degree of flow pathway across the pit membranes plays a more important role. Our work provides useful information for studying the mechanism of microfluid flow transport across pit membranes and also sheds light on investigating the response of pit membranes both at normal and stressed conditions, thus improving our understanding on functional roles of pit membranes in xylem hydraulic function. Further work could be done to study the morphological and mechanical response of bordered pit membranes under different dehydrated conditions, as well as the related microflow behavior, based on our constructed model.
Collapse
Affiliation(s)
- Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Liping Deng
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing 100083, China;
| | - Yujun Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
23
|
Maceda A, Soto-Hernández M, Peña-Valdivia CB, Trejo C, Terrazas T. Differences in the Structural Chemical Composition of the Primary Xylem of Cactaceae: A Topochemical Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:1497. [PMID: 31850014 PMCID: PMC6892835 DOI: 10.3389/fpls.2019.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/29/2019] [Indexed: 05/25/2023]
Abstract
The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species (p < 0.05), except in the hemicelluloses. Through a principal component analysis, it was found that the amount of extractive-free stem and hot water-soluble extractives were the variables that separated the species, followed by cellulose and hemicelluloses since the seedlings developed mainly parenchyma cells and the conductive tissue showed vessel elements and wide-band tracheids, both with annular and helical thickenings in secondary walls. The type of lignin with the highest percentage was guaiacyl-type, which is accumulated mainly in the vessels, providing rigidity. Whereas in the wide-band tracheids from metaxylem, syringyl lignin accumulated in the secondary walls S2 and S3, which permits an efficient flow of water and gives the plant the ability to endure difficult conditions during seedling development. Only one species can be considered to have paedomorphosis since the conductive elements had a similar chemistry in primary and secondary xylem.
Collapse
Affiliation(s)
- Agustín Maceda
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | | | - Carlos Trejo
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
Hochberg U, Ponomarenko A, Zhang YJ, Rockwell FE, Holbrook NM. Visualizing Embolism Propagation in Gas-Injected Leaves. PLANT PHYSIOLOGY 2019; 180:874-881. [PMID: 30842264 PMCID: PMC6548249 DOI: 10.1104/pp.18.01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/20/2019] [Indexed: 05/15/2023]
Abstract
Because the xylem in leaves is thought to be at the greatest risk of cavitation, reliable and efficient methods to characterize leaf xylem vulnerability are of interest. We report a method to generate leaf xylem vulnerability curves (VCs) by gas injection. Using optical light transmission, we visualized embolism propagation in grapevine (Vitis vinifera) and red oak (Quercus rubra) leaves injected with positive gas pressure. This resulted in a rapid, stepwise reduction of transmitted light, identical to that observed during leaf dehydration, confirming that the optical method detects gas bubbles and provides insights into the air-seeding hypothesis. In red oak, xylem VCs generated using gas injection were similar to those generated using bench dehydration, but indicated 50% loss of conductivity at lower tension (∼0.4 MPa) in grapevine. In determining VC, this method eliminates the need to ascertain xylem tension, thus avoiding potential errors in water potential estimations. It is also much faster (1 h per VC). However, severing the petiole and applying high-pressure gas could affect air-seeding and the generated VC. We discuss potential artifacts arising from gas injection and recommend comparison of this method with a more standard procedure before it is assumed to be suitable for a given species.
Collapse
Affiliation(s)
- Uri Hochberg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- ARO Volcani Center, Institute of Soil, Water and Environmental Sciences, Bet Dagan, 7505101 Israel
| | - Alexandre Ponomarenko
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Yong-Jiang Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
25
|
Dinant S, Wolff N, De Marco F, Vilaine F, Gissot L, Aubry E, Sandt C, Bellini C, Le Hir R. Synchrotron FTIR and Raman spectroscopy provide unique spectral fingerprints for Arabidopsis floral stem vascular tissues. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:871-884. [PMID: 30407539 DOI: 10.1093/jxb/ery396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/30/2018] [Indexed: 05/22/2023]
Abstract
Cell walls are highly complex structures that are modified during plant growth and development. For example, the development of phloem and xylem vascular cells, which participate in the transport of sugars and water as well as providing support, can be influenced by cell-specific wall composition. Here, we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) and Raman spectroscopy to analyse the cell wall composition of floral stem vascular tissues of wild-type Arabidopsis and the double-mutant sweet11-1 sweet12-1, which has impaired sugar transport. The SR-FTIR spectra showed that in addition to modified xylem cell wall composition, phloem cell walls in the double-mutant line were characterized by modified hemicellulose composition. Combining Raman spectroscopy with a classification and regression tree (CART) method identified combinations of Raman shifts that could distinguish xylem vessels and fibers. In addition, the disruption of the SWEET11 and SWEET12 genes impacted on xylem wall composition in a cell-specific manner, with changes in hemicelluloses and cellulose observed at the xylem vessel interface. These results suggest that the facilitated transport of sugars by transporters that exist between vascular parenchyma cells and conducting cells is important in ensuring correct phloem and xylem cell wall composition.
Collapse
Affiliation(s)
- S Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - N Wolff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - F De Marco
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - F Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - L Gissot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - E Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| | - C Sandt
- Synchrotron SOLEIL, Ligne SMIS, L'Orme des Merisiers, Gif sur Yvette, France
| | - C Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - R Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,Versailles, France
| |
Collapse
|
26
|
Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FDV, Cordoba EC, Fagundes MV, Garcia S, Guimaraes ZTM, Hertel M, Schietti J, Rodrigues-Souza J, Poorter L. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. THE NEW PHYTOLOGIST 2019; 221:1457-1465. [PMID: 30295938 DOI: 10.1111/nph.15463] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
Species distribution is strongly driven by local and global gradients in water availability but the underlying mechanisms are not clear. Vulnerability to xylem embolism (P50 ) is a key trait that indicates how species cope with drought and might explain plant distribution patterns across environmental gradients. Here we address its role on species sorting along a hydro-topographical gradient in a central Amazonian rainforest and examine its variance at the community scale. We measured P50 for 28 tree species, soil properties and estimated the hydrological niche of each species using an indicator of distance to the water table (HAND). We found a large hydraulic diversity, covering as much as 44% of the global angiosperm variation in P50 . We show that P50 : contributes to species segregation across a hydro-topographic gradient in the Amazon, and thus to species coexistence; is the result of repeated evolutionary adaptation within closely related taxa; is associated with species tolerance to P-poor soils, suggesting the evolution of a stress-tolerance syndrome to nutrients and drought; and is higher for trees in the valleys than uplands. The large observed hydraulic diversity and its association with topography has important implications for modelling and predicting forest and species resilience to climate change.
Collapse
Affiliation(s)
- Rafael S Oliveira
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Flavia R C Costa
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Emma van Baalen
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Arjen de Jonge
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Paulo R Bittencourt
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Yanina Almanza
- Instituto de Biociencias, Universidade Federal de Mato Grosso, Av. Fernando Correa, CEP 78060-900, Cuiabá, Brazil
| | - Fernanda de V Barros
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Edher C Cordoba
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Marina V Fagundes
- Restoration Ecology Research Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, CEP 59072970, Natal, RN, Brazil
| | - Sabrina Garcia
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Zilza T M Guimaraes
- Programa de Pós-Graduação em Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia, CEP 69080-971, Manaus, Brazil
| | - Mariana Hertel
- Laboratório de Fisiologia Vegetal, Universidade Estadual de Londrina, Londrina, CEP 86097850, PR, Brazil
| | - Juliana Schietti
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Jefferson Rodrigues-Souza
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Lourens Poorter
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
27
|
Piqueras S, Füchtner S, Rocha de Oliveira R, Gómez-Sánchez A, Jelavić S, Keplinger T, de Juan A, Thygesen LG. Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy. FRONTIERS IN PLANT SCIENCE 2019; 10:1701. [PMID: 32117328 PMCID: PMC7008386 DOI: 10.3389/fpls.2019.01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/03/2019] [Indexed: 05/03/2023]
Abstract
Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm-1 and an increase in a peak at approximately 1640 cm-1. There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.
Collapse
Affiliation(s)
- Sara Piqueras
- Biomass Science and Technology Group, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Sara Piqueras,
| | - Sophie Füchtner
- Biomass Science and Technology Group, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | | | - Adrián Gómez-Sánchez
- Chemometrics Group, Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Stanislav Jelavić
- Nano-Science Center, Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for GeoGenetics, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Keplinger
- Wood Material Science Group, Department of Construction, Environment and Geomatics, Institute for Building Materials (IfB), ETH Zürich, Zürich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, EMPA, Dübendorf, Switzerland
| | - Anna de Juan
- Chemometrics Group, Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Lisbeth Garbrecht Thygesen
- Biomass Science and Technology Group, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|