1
|
Salem F, ElGamal A, Zhang Z, Kong W. Integrative multi-transcriptomic analysis uncovers core genes and potential defense mechanisms in rice-Magnoporthe oryzae interaction. PLANT CELL REPORTS 2025; 44:114. [PMID: 40332586 DOI: 10.1007/s00299-025-03490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
KEY MESSAGE Multiple transcriptomic comprehensive analyses highlight key genes and cast new light on multifaceted pathways that may be important arenas in rice innate immunity against Magnoporthe oryzae blast disease. Magnaporthe oryzae (MOR) poses a significant threat to rice production worldwide. However, defense mechanisms in rice against MOR remain inadequately defined. In this study, a multi-transcriptomic integrative analysis on 441 samples from diverse microarrays and RNA-seq sets was conducted to reveal critical factors in rice defense against MOR infection. A robust pattern of 3534 upregulated genes and 2920 repressed genes was commonly identified across all MOR-infected arrays and RNA-seq profiles. Interestingly, enrichment analysis revealed a consistent triggering of endoplasmic reticulum (ER)-related mechanisms and citric acid cycle (TCA) influx in rice response to MOR infection across all the transcriptome profiles, suggesting their critical role in modulating rice immunity against the pathogen. By contrast, chloroplast and photosynthesis pathways were frequently repressed across all the profiles. Among ER-related mechanisms, the phagosome pathway involved in the activation of NADPH oxidase was highly triggered in early response to MOR infection. Moreover, WGCNA analysis highlighted four key co-expressed gene modules and 80 significant hub genes associated with MOR infection. Among the core genes, Sec61 gene involved in the ER-translocation process was identified along with OsMFP (peroxisomal oxidation gene) and OSAHH gene (involved in cyclic-trans-methylation). Furthermore, MPK6, WRKY24, NUP35, and NPR1 genes were observed as core co-expressed genes, suggesting their significance in regulating rice immunity against MOR. Our findings elucidate key genes and multifaceted mechanisms in rice-MOR interaction, proposing new informative clues that can be exploited to improve rice resistance against blast disease.
Collapse
Affiliation(s)
- Fatma Salem
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ahmed ElGamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zujian Zhang
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weiwen Kong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Liu J, Zhao G, Zheng Y, Xu Y, Wang M, Li L, Sun C, He Q, Apuli RP, Jong JJY, Ngiam JJ, Vaulin A, Tham RJK, Jia L, Chen Z, Salojärvi J. Genetic diversity and adaptive evolutionary history of Sapindus in China: insights from whole-genome resequencing of 100 representative individuals. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40159695 DOI: 10.1111/pbi.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Sapindus is an important forest tree genus with utility in biodiesel, biomedicine, biochemistry and forestry. Similar to many perennial crop plants, its breeding is hampered by long generation times and lack of genetic resources. To understand the genome evolution underlying the important bioeconomic traits, we carried out a common garden experiment with 100 Sapindus core germplasm individuals representing three endemic species and 60 populations sampled throughout China. Whole genome sequencing identified a split into six populations according to species and geography. The previously uncharacterized S. delavayi and S. rarak are diploid species, and here we propose hypotheses for their speciation. Selective sweeps suggested stress responses as well as alleles of the genes CYP716A, CAMTA and HD-ZIP involved in triterpenoid saponin biosynthesis to have been under selection in natural populations, while genome-wide association analysis revealed several homologues of fatty acid biosynthesis genes to be associated with kernel fatty acid quality. Our findings elucidate the genetic structure of Sapindus in China, provide target loci for selection and suggest cultivar materials for genetic improvement.
Collapse
Affiliation(s)
- Jiming Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Guochun Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Yulin Zheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Yuanyuan Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Mianzhi Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Lu Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Caowen Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Qiuyang He
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
- China Jiliang University, Hangzhou, China
| | - Rami-Petteri Apuli
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joan Jing Yi Jong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jia Jun Ngiam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrey Vaulin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Roy Jun Kai Tham
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liming Jia
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-Food Biomass, Beijing Forestry University, Beijing, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Zhang B, Huang S, Guo S, Meng Y, Tian Y, Zhou Y, Chen H, Li X, Zhou J, Chen W. ATG6 interacting with NPR1 increases Arabidopsis thaliana resistance to Pst DC3000/ avrRps4 by increasing its nuclear accumulation and stability. eLife 2025; 13:RP97206. [PMID: 40036061 DOI: 10.7554/elife.97206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Shuyu Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Hang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Chen Y, Zhou Y, Chen J, Cai H, Yang R, Zhang D, Huang Y. Mechanisms of Chinese Hickory Resistance to Dry Rot Disease by Botryosphaeria dothidea: A Comprehensive Analysis from Gene Expression to Non-Coding RNAs. PLANTS (BASEL, SWITZERLAND) 2025; 14:793. [PMID: 40094748 PMCID: PMC11901809 DOI: 10.3390/plants14050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Chinese hickory (Carya cathayensis) is an important tree species for agriculture, but dry rot disease, caused by Botryosphaeria dothidea, threatens its viability. To study the interactions between the tree and the pathogen, transcriptomic sequencing was conducted on infected and healthy tissues from field-grown hickory. Differential gene expression analysis identified key defense pathways and genes activated during infection. The study also explored the roles of non-coding RNAs, such as lncRNAs and circRNAs, in the tree's defense. The results showed that during the early and mid stages of infection, the tree defends itself through mechanisms like enhanced lignin synthesis and increased peroxidase activity. Non-coding RNAs contribute to disease resistance by reinforcing the cell wall, increasing oxidase activity, and promoting the synthesis of antibiotic-related secondary metabolites. Additionally, gene expression patterns at these stages differ significantly from those at the late stage of infection, when most disease resistance pathways are suppressed, and genes like PR1 and WRKY2 show a decline. These findings offer valuable insights into the pathogenesis of Chinese hickory dry rot disease and potential strategies for improving resistance.
Collapse
Affiliation(s)
- Yingshan Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuke Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiahui Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Haoming Cai
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Ruifeng Yang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Da Zhang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Youjun Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Javed T, Wang W, Yang B, Shen L, Sun T, Gao SJ, Zhang S. Pathogenesis related-1 proteins in plant defense: regulation and functional diversity. Crit Rev Biotechnol 2025; 45:305-313. [PMID: 38719539 DOI: 10.1080/07388551.2024.2344583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 05/14/2024]
Abstract
Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.
Collapse
Affiliation(s)
- Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Linbo Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
6
|
Xin K, Wu Y, Ikram AU, Jing Y, Liu S, Zhang Y, Chen J. Salicylic acid cooperates with different small molecules to control biotic and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154406. [PMID: 39700900 DOI: 10.1016/j.jplph.2024.154406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Salicylic acid (SA) is a phytohormone that plays a critical role in plant growth, development, and response to unfavorable conditions. Over the past three decades, researches on SA have deeply elucidated the mechanism of its function in plants tolerance to infection by biotrophic and hemibiotrophic pathogens. Recent studies have found that SA also plays an important role in regulating plants response to abiotic stress. It is emerging as a strong tool for alleviating adverse effects of biotic and abiotic stresses in crop plants. During SA-mediated stress responses, many small molecules participate in the SA modification or signaling, which play important regulatory roles. The cooperations of small molecules in SA pathway remain least discussed, especially in terms of SA-induced abiotic stress tolerance. This review provides an overview of the recent studies about SA and its relationship with different small molecules and highlights the critical functions of small molecules in SA-mediated plant stress responses.
Collapse
Affiliation(s)
- Kexing Xin
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yining Wu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yanping Jing
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yawen Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Galicia-Campos E, Velasco AGV, Lucas JA, Gutiérrez-Mañero FJ, Ramos-Solano B. The Crossregulation Triggered by Bacillus Strains Is Strain-Specific and Improves Adaptation to Biotic and Abiotic Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3565. [PMID: 39771263 PMCID: PMC11677973 DOI: 10.3390/plants13243565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Plants are sessile organisms that overcome environmental stress by activating specific metabolic pathways, leading to adaptation and survival. In addition, they recruit beneficial bacterial strains to further improve their performance. As plant-growth-promoting rhizobacteria (PGPR) are able to trigger multiple targets to improve plant fitness, finding effective isolates for this purpose is of paramount importance. This metabolic activation involves the following two stages: the priming pre-challenge with no evident changes, and the post-challenge, which is characterized by a faster and more intense response. Eight Bacillus strains, obtained in a previous study, were tested for their ability to improve plant growth, and to protect Arabidopsis thaliana plants against biotic and abiotic stress. After the 16S rRNA gene sequencing, three isolates were selected for their ability to improve growth (G7), and to protect against biotic and abiotic stress (H47, mild protection, with a similar intensity for biotic and abiotic stress; L44, the highest protection to both); moreover the expression of Non-Expresser of Protein Resistance Gene 1 (NPR1) and Protein resistance (PR1) as markers of the Salicylic Acid (SA) pathway, and lipooxygenase (LOX2) and plant defensin gene (PDF1) as markers of the Ethylene/Jasmonic Acid (Et/Ja) pathway, was determined 24 h after the stress challenge and compared to the expression in non-stressed plants. The results indicated that (i) the three strains prime Arabidopsis according to the more marked and faster increases in gene expression upon stress challenge, (ii) all three strains activate the SA-mediated and the Et/Ja-mediated pathways, therefore conferring a wide protection against stress, and (iii) PR1 and PDF1, traditionally associated to Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR) protection against pathogenic stress, are also overexpressed under abiotic stress conditions. Therefore, it appears that the priming of the plant adaptive metabolism is strain-dependent, although each stress factor determines the intensity in the response of the expression of each gene; hence, the response is determined by the following three factors: the PGPR, the plant, and the stress factor.
Collapse
Affiliation(s)
| | | | | | | | - Beatriz Ramos-Solano
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Madrid, Spain; (E.G.-C.); (A.G.-V.V.); (J.A.L.); (F.J.G.-M.)
| |
Collapse
|
8
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Ochakovski R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. MOLECULAR PLANT 2024; 17:1558-1572. [PMID: 39180213 PMCID: PMC11540436 DOI: 10.1016/j.molp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Roni Ochakovski
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Fu X, Feng Y, Zhang Y, Bi H, Ai X. Salicylic acid improves chilling tolerance via CsNPR1-CsICE1 interaction in grafted cucumbers. HORTICULTURE RESEARCH 2024; 11:uhae231. [PMID: 39434831 PMCID: PMC11492142 DOI: 10.1093/hr/uhae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Salicylic acid (SA) plays a role in the regulation of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2 ·-) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1-CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1-CsICE1 transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yiqing Feng
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yanyan Zhang
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
- Institute of Peanut, Tai’an Academy of Agricultural Sciences, Tai’an, Shandong 271000, China
| | - Huangai Bi
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xizhen Ai
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
10
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
12
|
Zhang Y, Li J, Guo K, Wang T, Gao L, Sun Z, Ma C, Wang C, Tian Y, Zheng X. Strigolactones alleviate AlCl 3 stress by vacuolar compartmentalization and cell wall blocking in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:197-217. [PMID: 38565306 DOI: 10.1111/tpj.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Poor management and excess fertilization of apple (Malus domestica Borkh.) orchards are causing increasingly serious soil acidification, resulting in Al toxicity and direct poisoning of roots. Strigolactones (SLs) are reported to be involved in plant responses to abiotic stress, but their role and mechanism under AlCl3 stress remain unknown. Here, we found that applying 1 μm GR24 (an SL analoge) significantly alleviated AlCl3 stress of M26 apple rootstock, mainly by blocking the movement of Al through cell wall and by vacuolar compartmentalization of Al. RNA-seq analysis identified the core transcription factor gene MdWRKY53, and overexpressing MdWRKY53 enhanced AlCl3 tolerance in transgenic apple plants through the same mechanism as GR24. Subsequently, we identified MdPMEI45 (encoding pectin methylesterase inhibitor) and MdALS3 (encoding an Al transporter) as downstream target genes of MdWRKY53 using chromatin immunoprecipitation followed by sequencing (ChIP-seq). GR24 enhanced the interaction between MdWRKY53 and the transcription factor MdTCP15, further increasing the binding of MdWRKY53 to the MdPMEI45 promoter and inducing MdPMEI45 expression to prevent Al from crossing cell wall. MdWRKY53 also bound to the promoter of MdALS3 and enhanced its transcription to compartmentalize Al in vacuoles under AlCl3 stress. We therefore identified two modules involved in alleviating AlCl3 stress in woody plant apple: the SL-WRKY+TCP-PMEI module required for excluding external Al by blocking the entry of Al3+ into cells and the SL-WRKY-ALS module allowing internal detoxification of Al through vacuolar compartmentalization. These findings lay a foundation for the practical application of SLs in agriculture.
Collapse
Affiliation(s)
- Yong Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kexin Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Lijie Gao
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| |
Collapse
|
13
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
14
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Zhang D, Zhu Z, Yang B, Li X, Zhang H, Zhu H. CsWRKY11 cooperates with CsNPR1 to regulate SA-triggered leaf de-greening and reactive oxygen species burst in cucumber. MOLECULAR HORTICULTURE 2024; 4:21. [PMID: 38773570 PMCID: PMC11110285 DOI: 10.1186/s43897-024-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Salicylic acid (SA) is a multi-functional phytohormone, regulating diverse processes of plant growth and development, especially triggering plant immune responses and initiating leaf senescence. However, the early SA signaling events remain elusive in most plant species apart from Arabidopsis, and even less is known about the multi-facet mechanism underlying SA-regulated processes. Here, we report the identification of a novel regulatory module in cucumber, CsNPR1-CsWRKY11, which mediates the regulation of SA-promoted leaf senescence and ROS burst. Our analyses demonstrate that under SA treatment, CsNPR1 recruits CsWRKY11 to bind to the promoter of CsWRKY11 to activate its expression, thus amplifying the primary SA signal. Then, CsWRKY11 cooperates with CsNPR1 to directly regulate the expression of both chlorophyll degradation and ROS biosynthesis related genes, thereby inducing leaf de-greening and ROS burst. Our study provides a solid line of evidence that CsNPR1 and CsWRKY11 constitute a key module in SA signaling pathway in cucumber, and gains an insight into the interconnected regulation of SA-triggered processes.
Collapse
Affiliation(s)
- Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ziwei Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Xiaofeng Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
16
|
Yun SH, Khan IU, Noh B, Noh YS. Genomic overview of INA-induced NPR1 targeting and transcriptional cascades in Arabidopsis. Nucleic Acids Res 2024; 52:3572-3588. [PMID: 38261978 DOI: 10.1093/nar/gkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.
Collapse
Affiliation(s)
- Se-Hun Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Irfan Ullah Khan
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Wang X, Qiao Q, Zhao K, Zhai W, Zhang F, Dong H, Lin L, Xing C, Su Z, Pan Z, Zhang S, Huang X. PbWRKY18 promotes resistance against black spot disease by activation of the chalcone synthase gene PbCHS3 in pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112015. [PMID: 38325662 DOI: 10.1016/j.plantsci.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Flavonoids are plant pigments that play a major role in plant defense and have significant health benefits to humans. Chalcone synthase (CHS) is an important enzyme in flavonoid biosynthesis and investigation transcription factors (TFs) regulating its expression and downstream targets is critical to understanding its mechanism. Here, a novel TF, PbWRKY18, was isolated from the pear Pyrus betulaefolia. Its expression was evaluated in various tissues by RT-PCR, particularly in response to Alternaria alternata, the pathogen responsible for black spot disease, and exogenous hormone administration. The PbWRKY18 protein was primarily found in the nucleus where it regulated transcriptional activity. Yeast one-hybrid and dual-luciferase reporter assays showed a strong association between PbWRKY18 and the PbCHS3 promoter, which drives PbCHS3 expression. It was also found that PbCHS3 was critical for the development of resistance against black spot disease. In addition, PbWRKY18 was found to significantly increase the expression of PbCHS3 and salicylic acid-related genes, as well as defense enzyme activity and tolerance to black spot disease. PbWRKY18 or PbCHS3 knockdown in pear attenuates resistance to Alternaria alternata. In summary, the study identified a novel WRKY18-CHS3 axis involved in resistance against black spot disease in pear.
Collapse
Affiliation(s)
- Xin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghai Qiao
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhui Zhai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huizhen Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Likun Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Caihua Xing
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijian Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Pei T, Niu D, Ma Y, Zhan M, Deng J, Li P, Ma F, Liu C. MdWRKY71 promotes the susceptibility of apple to Glomerella leaf spot by controlling salicylic acid degradation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13457. [PMID: 38619873 PMCID: PMC11018250 DOI: 10.1111/mpp.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple (Malus domestica) quality and yield. In this study, we found that the transcription factor MdWRKY71 was significantly induced by C. fructicola infection in the GLS-susceptible apple cultivar Royal Gala. The overexpression of MdWRKY71 in apple leaves resulted in increased susceptibility to C. fructicola, whereas RNA interference of MdWRKY71 in leaves showed the opposite phenotypes. These findings suggest that MdWRKY71 functions as a susceptibility factor for the apple-C. fructicola interaction. Furthermore, MdWRKY71 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (DLO1) and promoted its expression, resulting in a reduced SA level. The sensitivity of 35S:MdWRKY71 leaves to C. fructicola can be effectively alleviated by knocking down MdDLO1 expression, confirming the critical role of MdWRKY71-mediated SA degradation via regulating MdDLO1 expression in GLS susceptibility. In summary, we identified a GLS susceptibility factor, MdWRKY71, that targets the apple SA degradation pathway to promote fungal infection.
Collapse
Affiliation(s)
- Tingting Pei
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Dongshan Niu
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yongxin Ma
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Deng
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Pengmin Li
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Changhai Liu
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
19
|
Wu Y, Fu Y, Zhu Z, Hu Q, Sheng F, Du X. The Mediator Subunit OsMED16 Interacts with the WRKY Transcription Factor OsWRKY45 to Enhance Rice Resistance Against Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2024; 17:23. [PMID: 38558163 PMCID: PMC10984912 DOI: 10.1186/s12284-024-00698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most common and damaging diseases of rice that limits rice yield and quality. The mediator complex plays a vital role in promoting transcription by bridging specific transcription factors and RNA polymerase II. Here, we show that the rice mediator subunit OsMED16 is essential for full induction of the diterpenoid phytoalexin biosynthesis genes and resistance to the ascomycetous fungus M. oryzae. Mutants of Osmed16 show reduced expression of the DP biosynthesis genes and are markedly more susceptible to M. oryzae, while transgenic plants overexpressing OsMED16 increased the expression of the DP biosynthesis genes and significantly enhanced resistance to M. oryzae. Interestingly, OsMED16 is physically associated with the WRKY family transcription factor OsWRKY45, which interacts with the phytoalexin synthesis key regulator transcription factor OsWRKY62. Further, OsMED16-OsWRKY45-OsWRKY62 complex could bind to the promoter regions of phytoalexin synthesis-related genes and activate their gene expression. Our results show that OsMED16 may enhance rice tolerance to M. oryzae via directly manipulating phytoalexin de novo biosynthesis.
Collapse
Affiliation(s)
- Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuquan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhonglin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China.
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
20
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
21
|
Zhao S, Li M, Ren X, Wang C, Sun X, Sun M, Yu X, Wang X. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1355178. [PMID: 38463563 PMCID: PMC10921362 DOI: 10.3389/fpls.2024.1355178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
22
|
Chuan J, Nie J, Cooper WR, Chen W, Hale L, Li X. The functional decline of tomato plants infected by Candidatus Liberbacter solanacearum: an RNA-seq transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1325254. [PMID: 38362455 PMCID: PMC10867784 DOI: 10.3389/fpls.2024.1325254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Introduction Candidatus Liberibacter solanacearum (CLso) is a regulated plant pathogen in European and some Asian countries, associated with severe diseases in economically important Apiaceous and Solanaceous crops, including potato, tomato, and carrot. Eleven haplotypes of CLso have been identified based on the difference in rRNA and conserved genes and host and pathogenicity. Although it is pathogenic to a wide range of plants, the mechanisms of plant response and functional decline of host plants are not well defined. This study aims to describe the underlying mechanism of the functional decline of tomato plants infected by CLso by analyzing the transcriptomic response of tomato plants to CLso haplotypes A and B. Methods Next-generation sequencing (NGS) data were generated from total RNA of tomato plants infected by CLso haplotypes A and B, and uninfected tomato plants, while qPCR analysis was used to validate the in-silico expression analysis. Gene Ontology and KEGG pathways were enriched using differentially expressed genes. Results Plants infected with CLso haplotype B saw 229 genes upregulated when compared to uninfected plants, while 1,135 were downregulated. Healthy tomato plants and plants infected by haplotype A had similar expression levels, which is consistent with the fact that CLso haplotype A does not show apparent symptoms in tomato plants. Photosynthesis and starch biosynthesis were impaired while starch amylolysis was promoted in plants infected by CLso haplotype B compared with uninfected plants. The changes in pathway gene expression suggest that carbohydrate consumption in infected plants was more extensive than accumulation. In addition, cell-wall-related genes, including steroid biosynthesis pathways, were downregulated in plants infected with CLso haplotype B suggesting a reduction in membrane fluidity, cell signaling, and defense against bacteria. In addition, genes in phenylpropanoid metabolism and DNA replication were generally suppressed by CLso infection, affecting plant growth and defense. Discussion This study provides insights into plants' defense and functional decline due to pathogenic CLso using whole transcriptome sequencing and qPCR validation. Our results show how tomato plants react in metabolic pathways during the deterioration caused by pathogenic CLso. Understanding the underlying mechanisms can enhance disease control and create opportunities for breeding resistant or tolerant varieties.
Collapse
Affiliation(s)
- Jiacheng Chuan
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Jingbai Nie
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| | - William Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, United States
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Lawrence Hale
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Xiang Li
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| |
Collapse
|
23
|
Gutsche N, Koczula J, Trupp M, Holtmannspötter M, Appelfeller M, Rupp O, Busch A, Zachgo S. MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 241:1559-1573. [PMID: 38095258 DOI: 10.1111/nph.19472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.
Collapse
Affiliation(s)
- Nora Gutsche
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Jens Koczula
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Melanie Trupp
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | | | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andrea Busch
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
24
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
25
|
Powers J, Zhang X, Reyes AV, Zavaliev R, Xu SL, Dong X. Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574047. [PMID: 38260692 PMCID: PMC10802274 DOI: 10.1101/2024.01.03.574047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1- signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades.
Collapse
Affiliation(s)
- Jordan Powers
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Andres V. Reyes
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Carnegie Institute for Science, Stanford University, Stanford, CA 94305, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
26
|
Shang S, Liu G, Zhang S, Liang X, Zhang R, Sun G. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:82-97. [PMID: 37596985 PMCID: PMC10754009 DOI: 10.1111/pbi.14166] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Colletotrichum fructicola causes a broad range of plant diseases worldwide and secretes many candidate proteinous effectors during infection, but it remains largely unknown regarding their effects in conquering plant immunity. Here, we characterized a novel effector CfEC12 that is required for the virulence of C. fructicola. CfEC12 contains a CFEM domain and is highly expressed during the early stage of host infection. Overexpression of CfEC12 suppressed BAX-triggered cell death, callose deposition and ROS burst in Nicotiana benthamiana. CfEC12 interacted with apple MdNIMIN2, a NIM1-interacting (NIMIN) protein that putatively modulates NPR1 activity in response to SA signal. Transient expression and transgenic analyses showed that MdNIMIN2 was required for apple resistance to C. fructicola infection and rescued the defence reduction in NbNIMIN2-silenced N. benthamiana, supporting a positive role in plant immunity. CfEC12 and MdNPR1 interacted with a common region of MdNIMIN2, indicating that CfEC12 suppresses the interaction between MdNIMIN2 and MdNPR1 by competitive target binding. In sum, we identified a fungal effector that targets the plant salicylic acid defence pathway to promote fungal infection.
Collapse
Affiliation(s)
- Shengping Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangli Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Song Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
27
|
Chakraborty A, Mahajan S, Bisht MS, Sharma VK. Genome sequencing of Syzygium cumini (jamun) reveals adaptive evolution in secondary metabolism pathways associated with its medicinal properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1260414. [PMID: 38046611 PMCID: PMC10693344 DOI: 10.3389/fpls.2023.1260414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world's largest tree genus Syzygium using Oxford Nanopore and 10x Genomics sequencing technologies. We also sequenced and assembled the transcriptome of S. cumini in this study. The tetraploid and highly heterozygous draft genome of S. cumini had a total size of 709.9 Mbp with 61,195 coding genes. The phylogenetic position of S. cumini was established using a comprehensive genome-wide analysis including species from 18 Eudicot plant orders. The existence of neopolyploidy in S. cumini was evident from the higher number of coding genes and expanded gene families resulting from gene duplication events compared to the other two sequenced species from this genus. Comparative evolutionary analyses showed the adaptive evolution of genes involved in the phenylpropanoid-flavonoid (PF) biosynthesis pathway and other secondary metabolites biosynthesis such as terpenoid and alkaloid in S. cumini, along with genes involved in stress tolerance mechanisms, which was also supported by leaf transcriptome data generated in this study. The adaptive evolution of secondary metabolism pathways is associated with the wide range of pharmacological properties, specifically the anti-diabetic property, of this species conferred by the bioactive compounds that act as nutraceutical agents in modern medicine.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
28
|
de Fátima Pereira Silva P, de Resende MLV, Reichel T, de Lima Santos M, Dos Santos Botelho DM, Ferreira EB, Freitas NC. Potassium Phosphite Activates Components Associated with Constitutive Defense Responses in Coffea arabica Cultivars. Mol Biotechnol 2023; 65:1777-1795. [PMID: 36790658 DOI: 10.1007/s12033-023-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Phosphites have been used as inducers of resistance, activating the defense of plants and increasing its ability to respond to the invasion of the pathogen. However, the mode of action of phosphites in defense responses has not yet been fully elucidated. The objective of this study was to evaluate the effect of potassium phosphite (KPhi) in coffee cultivars with different levels of resistance to rust to clarify the mechanism by which KPhi activates the constitutive defense of plants. To this end, we studied the expression of genes and the activity of enzymes involved in the defense pathway of salicylic acid (SA) and reactive oxygen species (ROS), in addition to the levels of total soluble phenolic compounds and soluble lignin. Treatment with KPhi induced constitutive defense responses in cultivars resistant and susceptible to rust. The results suggest that KPhi acts in two parallel defense pathways, SA and ROS, which are essential for the induction of systemic acquired resistance (SAR) when activated simultaneously. The activation of the mechanisms associated with defense routes demonstrates that KPhi is a potential inducer of resistance in coffee plants.
Collapse
Affiliation(s)
- Priscilla de Fátima Pereira Silva
- Department of Phytopathology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil
| | - Mário Lúcio Vilela de Resende
- Department of Phytopathology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil.
| | - Tharyn Reichel
- Department of Phytopathology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil
| | - Mariana de Lima Santos
- Graduate Program in Plant Biotechnology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil
| | - Deila Magna Dos Santos Botelho
- Department of Phytopathology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil
| | - Eric Batista Ferreira
- Department of Statistics, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Centro, Alfenas, Minas Gerais, CEP 37130-001, Brazil
| | - Natália Chagas Freitas
- Department of Phytopathology, Federal University of Lavras, Trevo Rotatório Professor Edmir Sá Santos, Lavras, Minas Gerais, CEP 37203-202, Brazil
| |
Collapse
|
29
|
Bergman ME, Evans SE, Kuai X, Franks AE, Despres C, Phillips MA. Arabidopsis TGA256 Transcription Factors Suppress Salicylic-Acid-Induced Sucrose Starvation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3284. [PMID: 37765448 PMCID: PMC10534317 DOI: 10.3390/plants12183284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Salicylic acid (SA) is produced by plants in response to pathogen infection. SA binds the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family of receptors to regulate both positive (NPR1) and negative (NPR3/4) plant immune responses by interacting with the clade II TGACG (TGA) motif-binding transcription factors (TGA2, TGA5, and TGA6). Here, we report that the principal metabolome-level response to SA treatment in Arabidopsis is a reduction in sucrose and other free sugars. We observed nearly identical effects in the tga256 triple mutant, which lacks all clade II TGA transcription factors. The tga256 mutant presents reduced leaf blade development and elongated hypocotyls, roots, and petioles consistent with sucrose starvation. No changes were detected in auxin levels, and mutant seedling growth could be restored to that of wild-type by sucrose supplementation. Although the retrograde signal 2-C-methyl-D-erythritol-2,4-cyclodiphosphate is known to stimulate SA biosynthesis and defense signaling, we detected no negative feedback by SA on this or any other intermediate of the 2-C-methyl-D-erythritol-4-phosphate pathway. Trehalose, a proxy for the sucrose regulator trehalose-6-phosphate (T6P), was highly reduced in tga256, suggesting that defense-related reductions in sugar availability may be controlled by changes in T6P levels. We conclude that the negative regulatory roles of TGA2/5/6 include maintaining sucrose levels in healthy plants. Disruption of TGA2/5/6-NPR3/4 inhibitory complexes by mutation or SA triggers sucrose reductions in Arabidopsis leaves, consistent with the 'pathogen starvation' hypothesis. These findings highlight sucrose availability as a mechanism by which TGA2/5/6 balance defense and development.
Collapse
Affiliation(s)
- Matthew E. Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Sonia E. Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Xiahezi Kuai
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada (C.D.)
| | - Anya E. Franks
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
| | - Charles Despres
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada (C.D.)
| | - Michael A. Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; (M.E.B.); (S.E.E.); (A.E.F.)
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
30
|
Wang C, Bian C, Li J, Han L, Guo D, Wang T, Sun Z, Ma C, Liu X, Tian Y, Zheng X. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis. PLANT PHYSIOLOGY 2023; 193:821-839. [PMID: 37311207 DOI: 10.1093/plphys/kiad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
Soil acidification in apple (Malus domestica) orchards results in the release of rhizotoxic aluminum ions (Al3+) into soil. Melatonin (MT) participates in plant responses to abiotic stress; however, its role in AlCl3 stress in apple remains unknown. In this study, root application of MT (1 μM) substantially alleviated AlCl3 stress (300 μM) in Pingyi Tiancha (Malus hupehensis), which was reflected by higher fresh and dry weight, increased photosynthetic capacity, and longer and more roots compared with plants that did not receive MT treatment. MT functioned mainly by regulating vacuolar H+/Al3+ exchange and maintaining H+ homeostasis in the cytoplasm under AlCl3 stress. Transcriptome deep sequencing analysis identified the transcription factor gene SENSITIVE TO PROTON RHIZOTOXICITY 1 (MdSTOP1) was induced by both AlCl3 and MT treatments. Overexpressing MdSTOP1 in apple increased AlCl3 tolerance by enhancing vacuolar H+/Al3+ exchange and H+ efflux to the apoplast. We identified 2 transporter genes, ALUMINUM SENSITIVE 3 (MdALS3) and SODIUM HYDROGEN EXCHANGER 2 (MdNHX2), as downstream targets of MdSTOP1. MdSTOP1 interacted with the transcription factor NAM ATAF and CUC 2 (MdNAC2) to induce MdALS3 expression, which reduced Al toxicity by transferring Al3+ from the cytoplasm to the vacuole. Furthermore, MdSTOP1 and MdNAC2 coregulated MdNHX2 expression to increase H+ efflux from the vacuole to the cytoplasm to promote Al3+ compartmentalization and maintain cation balance in the vacuole. Taken together, our findings reveal an MT-STOP1 + NAC2-NHX2/ALS3-vacuolar H+/Al3+ exchange model for the alleviation of AlCl3 stress in apple, laying a foundation for practical applications of MT in agriculture.
Collapse
Affiliation(s)
- Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhijuan Sun
- Laboratory for Agricultural Molecular Biology, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
31
|
Fakih Z, Plourde MB, Germain H. Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress. Biomolecules 2023; 13:1160. [PMID: 37509195 PMCID: PMC10377644 DOI: 10.3390/biom13071160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Upon exposure to biotic and abiotic stress, plants have developed strategies to adapt to the challenges imposed by these unfavorable conditions. The energetically demanding translation process is one of the main elements regulated to reduce energy consumption and to selectively synthesize proteins involved in the establishment of an adequate response. Emerging data have shown that ribosomes remodel to adapt to stresses. In Arabidopsis thaliana, ribosomes consist of approximately eighty-one distinct ribosomal proteins (RPs), each of which is encoded by two to seven genes. Recent research has revealed that a mutation in a given single RP in plants can not only affect the functions of the RP itself but can also influence the properties of the ribosome, which could bring about changes in the translation to varying degrees. However, a pending question is whether some RPs enable ribosomes to preferentially translate specific mRNAs. To reveal the role of ribosomal proteins from the small subunit (RPS) in a specific translation, we developed a novel approach to visualize the effect of RPS silencing on the translation of a reporter mRNA (GFP) combined to the 5'UTR of different housekeeping and defense genes. The silencing of genes encoding for NbRPSaA, NbRPS5A, and NbRPS24A in Nicotiana benthamiana decreased the translation of defense genes. The NbRACK1A-silenced plant showed compromised translations of specific antioxidant enzymes. However, the translations of all tested genes were affected in NbRPS27D-silenced plants. These findings suggest that some RPS may be potentially involved in the control of protein translation.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Mélodie B Plourde
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| |
Collapse
|
32
|
Lin CC, Lee WJ, Zeng CY, Chou MY, Lin TJ, Lin CS, Ho MC, Shih MC. SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice. PNAS NEXUS 2023; 2:pgad229. [PMID: 37492276 PMCID: PMC10364326 DOI: 10.1093/pnasnexus/pgad229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Most rice (Oryza sativa) cultivars cannot survive under prolonged submergence. However, some O. sativa ssp. indica cultivars, such as FR13A, are highly tolerant owing to the SUBMERGENCE 1A-1 (SUB1A-1) allele, which encodes a Group VII ethylene-responsive factor (ERFVII) protein; other submergence-intolerant cultivars contain a SUB1A-2 allele. The two alleles differ only by a single substitution at the 186th amino acid position from serine in SUB1A-1 to proline in SUB1A-2 resulting in only SUB1A-1 being able to be phosphorylated. Two other ERFVIIs, ERF66 and ERF67, function downstream of SUB1A-1 to form a regulatory cascade in response to submergence stress. Here, we show that SUB1A-1, but not SUB1A-2, interacts with ADA2b of the ADA2b-GCN5 acetyltransferase complex, in which GCN5 functions as a histone acetyltransferase. Phosphorylation of SUB1A-1 at serine 186 enhances the interaction of SUB1A-1 with ADA2b. ADA2b and GCN5 expression was induced under submergence, suggesting that these two genes might play roles in response to submergence stress. In transient assays, binding of SUB1A-1 to the ERF67 promoter and ERF67 transcription were highly induced when SUB1A-1 was expressed together with the ADA2b-GCN5 acetyltransferase complex. Taken together, these results suggest that phospho-SUB1A-1 recruits the ADA2-GCN5 acetyltransferase complex to modify the chromatin structure of the ERF66/ERF67 promoter regions and activate gene expression, which in turn enhances rice submergence tolerance.
Collapse
Affiliation(s)
| | | | - Cyong-Yu Zeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jhen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chiao Ho
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| | - Ming-Che Shih
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| |
Collapse
|
33
|
Lu KK, Song RF, Guo JX, Zhang Y, Zuo JX, Chen HH, Liao CY, Hu XY, Ren F, Lu YT, Liu WC. CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. THE PLANT CELL 2023; 35:2570-2591. [PMID: 37040621 PMCID: PMC10291036 DOI: 10.1093/plcell/koad105] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/15/2023]
Abstract
SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.
Collapse
Affiliation(s)
- Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Cai-Yi Liao
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Xiao-Yu Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan
430079, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan
University, Wuhan 430072, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences,
Henan University, Kaifeng 475004, China
| |
Collapse
|
34
|
Zhou P, Zavaliev R, Xiang Y, Dong X. Seeing is believing: Understanding functions of NPR1 and its paralogs in plant immunity through cellular and structural analyses. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102352. [PMID: 36934653 PMCID: PMC10257749 DOI: 10.1016/j.pbi.2023.102352] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/10/2023]
Abstract
In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA
| | - Yezi Xiang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, PO Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
35
|
Wang Z, Li T, Zhang X, Feng J, Liu Z, Shan W, Joosten MHAJ, Govers F, Du Y. A Phytophthora infestans RXLR effector targets a potato ubiquitin-like domain-containing protein to inhibit the proteasome activity and hamper plant immunity. THE NEW PHYTOLOGIST 2023; 238:781-797. [PMID: 36653957 DOI: 10.1111/nph.18749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| |
Collapse
|
36
|
Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, Shi H, Schwender J, Shanklin J. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. THE NEW PHYTOLOGIST 2023; 238:724-736. [PMID: 36683527 DOI: 10.1111/nph.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jantana K Blanford
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Yingqi Cai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jing Sun
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hai Shi
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| |
Collapse
|
37
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
38
|
Guo JX, Song RF, Lu KK, Zhang Y, Chen HH, Zuo JX, Li TT, Li XF, Liu WC. CycC1;1 negatively modulates ABA signaling by interacting with and inhibiting ABI5 during seed germination. PLANT PHYSIOLOGY 2022; 190:2812-2827. [PMID: 36173345 PMCID: PMC9706468 DOI: 10.1093/plphys/kiac456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Regulation of seed germination is important for plant survival and propagation. ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the central transcription factor in the ABA signaling pathway, plays a fundamental role in the regulation of ABA-responsive gene expression during seed germination; however, how ABI5 transcriptional activation activity is regulated remains to be elucidated. Here, we report that C-type Cyclin1;1 (CycC1;1) is an ABI5-interacting partner affecting the ABA response and seed germination in Arabidopsis (Arabidopsis thaliana). The CycC1;1 loss-of-function mutant is hypersensitive to ABA, and this phenotype was rescued by mutation of ABI5. Moreover, CycC1;1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes including ABI5 itself by occupying their promoters and disrupting RNA polymerase II recruitment; thus the cycc1;1 mutant shows increased expression of ABI5 and genes downstream of ABI5. Furthermore, ABA reduces the interaction between CycC1;1 and ABI5, while phospho-mimic but not phospho-dead mutation of serine-42 in ABI5 abolishes CycC1;1 interaction with ABI5 and relieves CycC1;1 inhibition of ABI5-mediated transcriptional activation of downstream target genes. Together, our study illustrates that CycC1;1 negatively modulates the ABA response by interacting with and inhibiting ABI5, while ABA relieves the CycC1;1 interaction with and inhibition of ABI5 to activate ABI5 activity for the ABA response, thereby inhibiting seed germination.
Collapse
Affiliation(s)
- Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue-Feng Li
- Anyang Wenfeng District Natural Resources Bureau, Anyang 455000, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
39
|
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6663-6677. [PMID: 35927220 PMCID: PMC9629790 DOI: 10.1093/jxb/erac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is among the most devastating diseases in Brassica napus worldwide. Conventional breeding for SSR resistance in Brassica species is challenging due to the limited availability of resistant germplasm. Therefore, genetic engineering is an attractive approach for developing SSR-resistant Brassica crops. Compared with the constitutive promoter, an S. sclerotiorum-inducible promoter would avoid ectopic expression of defense genes that may cause plant growth deficits. In this study, we generated a S. sclerotiorum-inducible promoter. pBnGH17D7, from the promoter of B. napus glycosyl hydrolase 17 gene (pBnGH17). Specifically, 5'-deletion and promoter activity analyses in transgenic Arabidopsis thaliana plants defined a 189 bp region of pBnGH17 which was indispensable for S. sclerotiorum-induced response. Compared with pBnGH17, pBnGH17D7 showed a similar response upon S. sclerotiorum infection, but lower activity in plant tissues in the absence of S. sclerotiorum infection. Moreover, we revealed that the transcription factor BnTGA7 directly binds to the TGACG motif in pBnGH17D7 to activate BnGH17. Ultimately, pBnGH17D7 was exploited for engineering Sclerotinia-resistant B. napus via host-induced gene silencing. It induces high expression of siRNAs against the S. sclerotiorum pathogenic factor gene specifically during infection, leading to increased resistance.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jialin Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Keyun Lin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
40
|
Nakano M, Omae N, Tsuda K. Inter-organismal phytohormone networks in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102258. [PMID: 35820321 DOI: 10.1016/j.pbi.2022.102258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Phytohormones are produced by plants and play central roles in interactions with pathogenic and beneficial microbes as well as plant growth and development. Each phytohormone pathway consists of its biosynthesis, transport, perception, and signaling and is intertwined with each other at various levels to form phytohormone networks in plants. Different kinds of microbes also produce phytohormones that exert physiological roles within microbes and manipulate phytohormone networks in plants by using phytohormones, their mimics, and proteinaceous effectors. In turn, plant-derived phytohormones can directly or indirectly through plant signaling networks affect microbial metabolism and community assembly. Therefore, phytohormone networks in plants and microbes are connected through plant and microbial phytohormones and other molecules to form inter-organismal phytohormone networks. In this review, we summarize recent progress on molecular mechanisms of inter-organismal phytohormone networks and discuss future steps necessary for advancing our understanding of phytohormone networks.
Collapse
Affiliation(s)
- Masahito Nakano
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Natsuki Omae
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
41
|
Tian T, Yu R, Suo Y, Cheng L, Li G, Yao D, Song Y, Wang H, Li X, Gao G. A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection. Front Genet 2022; 13:894844. [PMID: 35957683 PMCID: PMC9360622 DOI: 10.3389/fgene.2022.894844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Ruimin Yu
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanyun Suo
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lixiang Cheng
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Guizhi Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Dan Yao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanjie Song
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Huanjun Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xinyu Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
42
|
Tomaž Š, Gruden K, Coll A. TGA transcription factors-Structural characteristics as basis for functional variability. FRONTIERS IN PLANT SCIENCE 2022; 13:935819. [PMID: 35958211 PMCID: PMC9360754 DOI: 10.3389/fpls.2022.935819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.
Collapse
Affiliation(s)
- Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
43
|
Guo B, Duan S, Liu F, Fu ZQ. A vigilant gliding bird protects plants. Trends Biochem Sci 2022; 47:819-821. [PMID: 35792034 DOI: 10.1016/j.tibs.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
The plant hormone salicylic acid (SA) receptor NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) plays a critical role for plant defense against biotrophic and hemi-biotrophic pathogens. In a milestone paper, Kumar, Zavaliev, Wu et al. unraveled the structural basis for the assembly of an enhanceosome by NPR1 in activating the expression of plant defense genes.
Collapse
Affiliation(s)
- Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
44
|
Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr SK, Wildermuth MC, Chen T, MacMicking JD, He SY. Increasing the resilience of plant immunity to a warming climate. Nature 2022; 607:339-344. [PMID: 35768511 PMCID: PMC9279160 DOI: 10.1038/s41586-022-04902-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Christian Danve M Castroverde
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Richard Hilleary
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Adam Seroka
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Reza Sohrabi
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Diana Medina-Yerena
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Bethany Huot
- Department of Biology, Duke University, Durham, NC, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharon K Marr
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mary C Wildermuth
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University, West Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT, USA
- Departments of Immunobiology and Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
45
|
He YL, Lan LM, Zhao L, Cai BH, Qu SC, Wang SH. Comparative transcriptomics analysis reveals MdGRAS53 contributes to disease resistance against Alternaria blotch of apple. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153697. [PMID: 35487008 DOI: 10.1016/j.jplph.2022.153697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Alternaria blotch disease, caused by Alternaria alternata apple pathotype (AAAP), is one of the most prevalent diseases in apple production. To identify AAAP resistance-related genes and provide a theoretical basis for Alternaria blotch disease resistance breeding, we used two apple cultivars, 'Jonathan', a variety resistant to AAAP infection, and 'Starking Delicious', a variety susceptible to AAAP infection, as materials to perform transcriptome sequencing of apple leaves 72 h after AAAP infection. A Venn diagram showed that a total of 5229 DEGs of 'Jonathan' and 4326 DEGs of 'Starking Delicious' were identified. GO analysis showed that these DEGs were clustered into 25 GO terms, primarily "metabolic process" and "catalytic activity." Functional classification analyses of the DEGs indicated that "MAPK signaling pathway-plant pathway" is the most significant metabolic pathway among the top 15 KEGG pathways, followed by the "plant hormone signal transduction" pathway. There are more DEGs in 'Jonathan' that are significantly classified GO terms and KEGG pathways than in 'Starking Delicious'. Specifically, 13 DEGs were identified as involved in the GA-GID1-DELLA module, and the expression of MdGRAS53, a homologous gene of DELLA, was significantly upregulated in 'Jonathan' compared with 'Starking Delicious'. Phenotype analysis revealed that exogenous hormone GA3 suppressed apple resistance to AAAP infection and reduced the expression of MdGRAS53. The opposite result was observed for exogenous spraying of paclobutrazol (PAC), an inhibitor of gibberellin synthesis. Overexpression of MdGRAS53 in apple leaves by transient transformation decreased lesion area and the number of spores in leaves infected with AAAP, while silencing MdGRAS53 showed the opposite result. Meanwhile, SA/JA signaling pathway-related genes were upregulated significantly in MdGRAS53-overexpressed leaves and downregulated significantly in MdGRAS53-silenced leaves. The findings suggest that the GA-GID1-DELLA module is involved in apple resistance to AAAP, and MdGRAS53, a DELLA homologous gene, may play a positive role in this resistance by modulating cooperative JA- and SA-dependent pathways.
Collapse
Affiliation(s)
- You-Lei He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Ming Lan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences of Xuhuai Region of Jiangsu, Xuzhou, 221131, Jiangsu, China
| | - Bin-Hua Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shen-Chun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - San-Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
47
|
Zhang J, Lei W, Meng Y, Zhou C, Zhang B, Yuan J, Wang M, Xu D, Meng X, Chen W. Expression of PEI-coated gold nanoparticles carrying exogenous gene in periwinkle mesophyll cells and its practice in Huanglongbing research. iScience 2022; 25:104479. [PMID: 35712078 PMCID: PMC9192802 DOI: 10.1016/j.isci.2022.104479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, which is mostly caused by Candidatus Liberibacter asiaticus (CLas). To realize the specific application of nano-transgenic technology in HLB, AuNPs-PEI (Gold Nanoparticles-Polyethylenimine) was used to carry foreign genes into the leaves of periwinkle (Catharanthus roseus) by infiltration. Here, we demonstrated that NPR1-GFP protein expression was observed from the 12th hour to the 10th day after infiltrating AuNPs-PEI-pNPR1 (Arabidopsis thaliana nonexpressor of pathogenesis-related gene 1)-GFP. Fluorescence of mCherry was observed 6 h after AuNPs-PEI-pNLS (nuclear localization signal sequence)-mCherry infiltration and fluorescence of FAM was observed in the nucleus 4 h after AuNPs-PEI-FAM-siRNANPR1 infiltration. In addition, NPR1-GFP expression in CLas-infected periwinkle leaves was significantly higher than that in healthy periwinkle leaves after infiltration. Our work confirmed that the expression of exogenous NPR1-GFP could reduce the CLas titers by promoting the expression of PR (pathogenesis related) genes and ICS (isochorismate synthase) gene. AuNPs-PEI-FAM-siRNANPR1 entered the nucleus within 4 h after infiltration AuNPs-PEI-pNLS-mCherry expressed the corresponding protein within 6 h AuNPs-PEI-pNPR1-GFP continued to express the corresponding protein for 14 days After AuNPs-PEI-pNPR1-GFP infiltration for 2 days, CLas titer decreased significantly
Collapse
|
48
|
Yin A, Shen C, Huang Y, Fu H, Liao Q, Xin J, Huang B. Transcriptomic analyses of sweet potato in response to Cd exposure and protective effects of K on Cd-induced physiological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36824-36838. [PMID: 35064501 DOI: 10.1007/s11356-021-18144-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We aimed to understand the molecular mechanism of differential cadmium (Cd) accumulation in two cultivars of sweet potato and to clarify the effects of potassium (K) supply on Cd accumulation. Comparative transcriptomes were employed to identify key genes and pathways using a low-Cd (N88) and a high-Cd cultivar (X16) in a pot experiment. The antioxidant capacity and cell wall components of root tips were analyzed to account for the effect of K regulating Cd accumulation in N88 via a hydroponic experiment. Transcriptome analysis revealed that 29 and 20 genes were differentially expressed in N88 and X16, respectively, when comparing the control with the two Cd treatments. X16 had more differentially expressed genes (DEGs), including 2649 common up-regulated and 3173 common down-regulated than N88 in any treatment. GO and KEGG analyses showed that the DEGs were assigned and enriched in different pathways. Some critical DEGs such as PDR, HMA3, COPT5, CAX3, GAUT, CCR, AUX1, CAT, SOD, GSR, and GST were identified. The DEGs were involved in pathways including heavy metal transport or detoxification, cell wall biosynthesis, plant hormone signal transduction, and glutathione metabolism. Additionally, K supply substantially decreased Cd accumulation and reactive oxygen species production and promoted the production of cellulose, pectin and lignin in the root tips when exposed to Cd. Several critical DEGs associated with heavy metal transport and cell wall biosynthesis were responsible for the difference of Cd accumulation between the two cultivars. Application of K could help decrease Cd accumulation in sweet potato.
Collapse
Affiliation(s)
- Aiguo Yin
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Huiling Fu
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| |
Collapse
|
49
|
Li D, Zhou J, Zheng C, Zheng E, Liang W, Tan X, Xu R, Yan C, Yang Y, Yi K, Liu X, Chen J, Wang X. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. PLANT, CELL & ENVIRONMENT 2022; 45:1584-1602. [PMID: 35141931 DOI: 10.1111/pce.14288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Many TGA transcription factors participate in immune responses in the SA-mediated signaling pathway in Arabidopsis. This study identified a transcription factor OsTGAL1, which is induced upon infection by Xoo. Overexpression of OsTGAL1 increased the susceptibility of rice to Xoo. Plants overexpressing OsTGAL1 could affect the expression of many SA signaling-related genes. OsTGAL1 was able to interact with the promoter of OsSGT1, which encodes a key enzyme for SA metabolism. The transcript of OsSGT1 was induced by Xoo and this responsive expression was further increased in plants overexpressing OsTGAL1. OsSGT1 knockout lines had enhanced resistance to Xoo, and knocking out OsSGT1 in plants overexpressing OsTGAL1 blocked the susceptibility caused by OsTGAL1. Altered expression levels of several OsPRs in all the transgenic plants demonstrated that SA-mediated signaling had been affected. Furthermore, we identified an oxidoreductase of CC-type glutaredoxin, OsGRX17, which interacted with OsTGAL1. OsGRX17 reduced the regulation of OsTGAL1 on OsSGT1, and this may be due to its redox modulation. Thus, our results demonstrate that OsTGAL1 negatively regulates resistance to Xoo by its effects on SA metabolism via the activation of OsSGT1, which provides valuable targets for plant breeders in developing new cultivars that are resistant to Xoo.
Collapse
Affiliation(s)
- Dongyue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaojing Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
50
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|