1
|
Pérez-Moro C, D'Esposito D, Capuozzo C, Guadagno A, Pérez-de-Castro A, Ercolano MR. Discovery of variation in genes related to agronomic traits by sequencing the genome of Cucurbita pepo varieties. BMC Genomics 2025; 26:335. [PMID: 40181258 PMCID: PMC11969804 DOI: 10.1186/s12864-025-11370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/14/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Cucurbita pepo L. cultivars display high morphological traits variation. In addition, C. pepo faces numerous threats, such as viral and fungal infections, which significantly influence crop cultivation. Recent genomic advancements improved the understanding of genetic diversity and stress responses in this crop. We investigated genetic variations related to plant morphology and quality traits. Additionally, the inclusion of both powdery mildew (PM) and Zucchini yellow mosaic virus (ZYMV) susceptible and tolerant varieties facilitated the examination of genetic diversity concerning biotic stress. RESULTS The sequencing of eight Cucurbita pepo varieties produced an average of 40 million raw reads with a coverage of reference genome ranging from 22 to 40X. More than 4.7 million genomic variants were identified in all genomes. Based on admixture and PCA analysis, the eight C. pepo genotypes were grouped in two clusters belonging to Cocozelle and Zucchini groups, with "Whitaker" separated from the rest of the accessions. Genes involved in pathways related to gibberellin regulation, leaf development, and pigment accumulation resulted highly affected by variation suggesting that the diversity observed among varieties in plant and fruit morphology could be related to variants identified in such genes. Each variety showed its own set of genetic differences. The genomic comparison of 381e, 968Rb and SPQ allowed the identification of variants in chromosome regions affecting response to Zucchini yellow mosaic virus (ZYMV) and powdery mildew (PM). Variants in key genes associated with resistant traits were identified, suggesting potential pathways and mechanisms involved in biotic stress response and plant immunity. CONCLUSIONS Genetic variations affecting morphology and fruit quality in C. pepo emphasize their significance for breeding efforts. Furthermore, the genomic comparison of 381e, 968Rb and SPQ highlighted variants in chromosomal regions influencing zucchini's response to PM and ZYMV. These findings could pave the way for more targeted and effective genetic improvement strategies, thereby potentially leading to increased agricultural productivity and quality.
Collapse
Affiliation(s)
- C Pérez-Moro
- COMAV, Instituto de Conservación y Mejora de la Agroaffiliationersidad, Universitat Politècnica de València, Cno. de Vera, s.n, València, 46022, Spain
| | - D D'Esposito
- Institute for Sustainable Plant Protection, National Research Council, Portici, Na, 80055, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - C Capuozzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - A Guadagno
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy
| | - A Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agroaffiliationersidad, Universitat Politècnica de València, Cno. de Vera, s.n, València, 46022, Spain
| | - M R Ercolano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Na, Italy.
| |
Collapse
|
2
|
Wang Q, Tang Y, Li Y, Ren J, Zuo H, Cheng P, Li Q, Wang B. Abscisic acid-, stress-, ripening-induced 2 like protein, TaASR2L, promotes wheat resistance to stripe rust. MOLECULAR PLANT PATHOLOGY 2024; 25:e70028. [PMID: 39523576 PMCID: PMC11551255 DOI: 10.1111/mpp.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases. The plant hormone abscisic acid (ABA) plays a key regulatory role in plant response to stress. ABA-, stress-, ripening-induced proteins (ASR) have been shown to be abundantly induced in response to biotic and abiotic stresses to protect plants from damage. However, the function of wheat ASR2-like protein (TaASR2L) in plants under biotic stress remains unclear. In this study, transient silencing of TaASR2L using a virus-induced gene silencing system substantially reduced wheat resistance to Pst. TaASR2L interaction with serine/arginine-rich splicing factor SR30-like (TaSR30) was validated mainly in the nucleus. Knockdown of TaSR30 expression substantially reduced wheat resistance to Pst. Overexpression of TaASR2L and TaSR30 demonstrated that they can promote the expression of ABA- and resistance-related genes to enhance wheat resistance to Pst. In addition, the expression levels of TaSR30 and TaASR2L were substantially increased by exogenous ABA, and the resistance of wheat to Pst was increased, and the expression of PR genes was induced. Therefore, these results suggest that TaASR2L interacts with TaSR30 by promoting PR genes expression and enhancing wheat resistance to Pst.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaqi Tang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ying Li
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Ren
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Hongxu Zuo
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Cheng
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Li
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Baotong Wang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
3
|
Suraj HM, van Kan JAL. Baking bad: plants in a toasty world with necrotrophs. THE NEW PHYTOLOGIST 2024; 243:2066-2072. [PMID: 39039780 DOI: 10.1111/nph.19980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Rising global temperatures pose a threat to plant immunity, making them more susceptible to diseases. The impact of temperature on plant immunity against biotrophic and hemi-biotrophic pathogens is well documented, while its effect on necrotrophs remains poorly understood. We venture into the uncharted territory of necrotrophic fungal pathogens in the face of rising temperatures. We discuss the role of the plant hormones salicylic acid (SA) and jasmonic acid (JA) in providing resistance to necrotrophs and delve into the temperature sensitivity of the SA pathway. Additionally, we explore the repercussions of increased temperatures on plant susceptibility to necrotrophs. We put forward a research agenda with an experimental framework aimed at providing a comprehensive understanding of how plants and pathogens adapt to increasing temperatures.
Collapse
Affiliation(s)
- H M Suraj
- Laboratory of Phytopathology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
4
|
Yu XN, Guo Y, Yang Q, Yu H, Lu MJ, Zhao L, Jin ZS, Xu XN, Feng JY, Wen YQ. Chimeric mutations in grapevine ENHANCED DISEASE RESISTANCE1 improve resistance to powdery mildew without growth penalty. PLANT PHYSIOLOGY 2024; 195:1995-2015. [PMID: 38507576 DOI: 10.1093/plphys/kiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.
Collapse
Affiliation(s)
- Xue-Na Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Qianling Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Haiyan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Meng-Jiao Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Zhuo-Shuai Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xiang-Nan Xu
- Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Shuguanghuayuan Mid Road 9, Haidian District, Beijing 100097, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Li H, Men W, Ma C, Liu Q, Dong Z, Tian X, Wang C, Liu C, Gill HS, Ma P, Zhang Z, Liu B, Zhao Y, Sehgal SK, Liu W. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat Commun 2024; 15:2449. [PMID: 38503771 PMCID: PMC10951266 DOI: 10.1038/s41467-024-46814-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.
Collapse
Affiliation(s)
- Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, PR China
| | - Xiubin Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, PR China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, PR China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
6
|
Fodor J, Nagy JK, Király L, Mészáros K, Bányai J, Cséplő MK, Schwarczinger I, Künstler A. Heat Treatments at Varying Ambient Temperatures and Durations Differentially Affect Plant Defense to Blumeria hordei in a Resistant and a Susceptible Hordeum vulgare Line. PHYTOPATHOLOGY 2024; 114:418-426. [PMID: 37665321 DOI: 10.1094/phyto-06-23-0191-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Our previous research showed that a powdery mildew resistant barley line (MvHV07-17) maintains its resistance to Blumeria hordei (Bh) even if plants are exposed to a long-term high temperature of 35°C for 120 h before Bh inoculation, whereas such high temperature pretreatment further increases susceptibility to infection in the susceptible barley line MvHV118-17. In the present study, we extended this approach using short-term high-temperature water treatment (49°C for 30 s) to determine how it affects powdery mildew resistance in these barley lines. We found that this short-term heat shock (HS) impaired plant defense responses, as reflected by development of Bh colonies and visible necrotic spots on leaves of MvHV07-17, which does not develop visible symptoms upon Bh inoculation under optimal growth conditions. In contrast, both HS and long-term heat stress enhanced susceptibility to Bh in MvHV118-17 plants. These results were supported by the measurement of Bh biomass using a qPCR method. Furthermore, microscopic examinations showed that HS elevated the rate of successful Bh penetration events and the spread of cell death in the surrounding mesophyll area and allowed for colony formation and sporulation in resistant barley, whereas early and effective plant defense responses, such as papilla formation and single-cell epidermal hypersensitive response, were significantly reduced. Furthermore, we found that the accumulation of hydrogen peroxide in both resistant and susceptible barley was correlated with susceptibility induced by HS and long-term heat-stress. This study may contribute to a better understanding of plant defense responses to Bh in barley exposed to heat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- József Fodor
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Judit Kolozsváriné Nagy
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Lóránt Király
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Klára Mészáros
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Judit Bányai
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Mónika Károlyiné Cséplő
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Ildikó Schwarczinger
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - András Künstler
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| |
Collapse
|
7
|
Huang Z, Wang C, Li H, Zhou Y, Duan Z, Bao Y, Hu Q, Powell CA, Chen B, Zhang J, Zhang M, Yao W. Small secreted effector protein from Fusarium sacchari suppresses host immune response by inhibiting ScPi21-induced cell death. MOLECULAR PLANT PATHOLOGY 2024; 25:e13414. [PMID: 38279852 PMCID: PMC10782473 DOI: 10.1111/mpp.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Caixia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Huixue Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yuming Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Zhenzhen Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| |
Collapse
|
8
|
Yang X, Zhao J, Xiong X, Hu Z, Sun J, Su H, Liu Y, Xiang L, Zhu Y, Li J, Bhutto SH, Li G, Zhou S, Li C, Pu M, Wang H, Zhao Z, Zhang J, Huang Y, Fan J, Wang W, Li Y. Broad-spectrum resistance gene RPW8.1 balances immunity and growth via feedback regulation of WRKYs. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:116-130. [PMID: 37752622 PMCID: PMC10754005 DOI: 10.1111/pbi.14172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.
Collapse
Affiliation(s)
- Xue‐Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jing‐Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xiao‐Yu Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Zhang‐Wei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ji‐Fen Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Hao Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yan‐Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ling Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jin‐Lu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Sadam Hussain Bhutto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Guo‐Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Shi‐Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Chi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Zhi‐Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ji‐Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yan‐Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Wen‐Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
9
|
Mei S, Song Y, Zhang Z, Cui H, Hou S, Miao W, Rong W. WRR4B contributes to a broad-spectrum disease resistance against powdery mildew in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2024; 25:e13415. [PMID: 38279853 PMCID: PMC10777751 DOI: 10.1111/mpp.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024]
Abstract
Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis. The expression of WRR4B was upregulated by O. heveae inoculation, and WRR4B positively regulated the expression of genes involved in SA biosynthesis, such as EDS1, PAD4, ICS1 (ISOCHORISMATE SYNTHASE 1), SARD1 (SYSTEMIC-ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN-BINDING PROTEIN 60 G). Furthermore, WRR4B triggered self-amplification, suggesting that WRR4B mediated plant resistance through taking part in the SA-based positive feedback loop. In addition, WRR4B induced an EDS1-dependent hypersensitive response in Nicotiana benthamiana and contributed to disease resistance against three other PM species: Podosphaera xanthii, Erysiphe quercicola and Erysiphe neolycopersici, indicating that WRR4B is a broad-spectrum disease resistance gene against PMs.
Collapse
Affiliation(s)
- Shuangshuang Mei
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Yuxin Song
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Zuer Zhang
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Haitao Cui
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandongChina
| | - Shuguo Hou
- Institute of Advanced Agricultural SciencesPeking UniversityWeifangShandongChina
| | - Weiguo Miao
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Wei Rong
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| |
Collapse
|
10
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
11
|
Yu M, Fan Y, Li X, Chen X, Yu S, Wei S, Li S, Chang W, Qu C, Li J, Lu K. LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic acid-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5620-5634. [PMID: 37480841 DOI: 10.1093/jxb/erad295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Rapeseed (Brassica napus) is a major edible oilseed crop consumed worldwide. However, its yield is seriously affected by infection from the broad-spectrum non-obligate pathogen Sclerotinia sclerotiorum due to a lack of highly resistant germplasm. Here, we identified a Sclerotinia-resistant and light-dependent lesion mimic mutant from an ethyl methanesulfonate-mutagenized population of the rapeseed inbred Zhongshuang 11 (ZS11) named lesion mimic mutant 1 (lmm1). The phenotype of lmm1 is controlled by a single recessive gene, named LESION MIMIC MUTANT 1 (LMM1), which mapped onto chromosome C04 by bulked segregant analysis within a 2.71-Mb interval. Histochemical analysis indicated that H2O2 strongly accumulated and cell death occurred around the lesion mimic spots. Among 877 differentially expressed genes (DEGs) between ZS11 and lmm1 leaves, 188 DEGs were enriched in the defense response, including 95 DEGs involved in systemic acquired resistance, which is consistent with the higher salicylic acid levels in lmm1. Combining bulked segregant analysis and transcriptome analysis, we identified a significantly up-regulated gene, BnaC4.PR2, which encodes β-1,3-glucanase, as the candidate gene for LMM1. Overexpression of BnaC4.PR2 may induce a reactive oxygen species burst to trigger partial cell death and systemic acquired resistance. Our study provides a new genetic resource for S. sclerotiorum resistance as well as new insights into disease resistance breeding in B. napus.
Collapse
Affiliation(s)
- Mengna Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xingyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shijie Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Siyu Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shengting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
12
|
Chen X, Zou K, Li X, Chen F, Cheng Y, Li S, Tian L, Shang S. Transcriptomic Analysis of the Response of Susceptible and Resistant Bitter Melon ( Momordica charantia L.) to Powdery Mildew Infection Revealing Complex Resistance via Multiple Signaling Pathways. Int J Mol Sci 2023; 24:14262. [PMID: 37762563 PMCID: PMC10532008 DOI: 10.3390/ijms241814262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The challenge of mitigating the decline in both yield and fruit quality due to the intrusion of powdery mildew (PM) fungus looms as a pivotal concern in the domain of bitter melon cultivation. Yet, the intricate mechanisms that underlie resistance against this pathogen remain inscrutable for the vast majority of bitter melon variants. In this inquiry, we delve deeply into the intricate spectrum of physiological variations and transcriptomic fluctuations intrinsic to the PM-resistant strain identified as '04-17-4' (R), drawing a sharp contrast with the PM-susceptible counterpart, designated as '25-15' (S), throughout the encounter with the pathogenic agent Podosphaera xanthii. In the face of the challenge presented by P. xanthii, the robust cultivar displays an extraordinary capacity to prolong the initiation of the pathogen's primary growth stage. The comprehensive exploration culminates in the discernment of 6635 and 6954 differentially expressed genes (DEGs) in R and S strains, respectively. Clarification through the lens of enrichment analyses reveals a prevalence of enriched DEGs in pathways interconnected with phenylpropanoid biosynthesis, the interaction of plants with pathogens, and the signaling of plant hormones. Significantly, in the scope of the R variant, DEGs implicated in the pathways of plant-pathogen interaction phenylpropanoid biosynthesis, encompassing components such as calcium-binding proteins, calmodulin, and phenylalanine ammonia-lyase, conspicuously exhibit an escalated tendency upon the encounter with P. xanthii infection. Simultaneously, the genes governing the synthesis and transduction of SA undergo a marked surge in activation, while their counterparts in the JA signaling pathway experience inhibition following infection. These observations underscore the pivotal role played by SA/JA signaling cascades in choreographing the mechanism of resistance against P. xanthii in the R variant. Moreover, the recognition of 40 P. xanthii-inducible genes, encompassing elements such as pathogenesis-related proteins, calmodulin, WRKY transcription factors, and Downy mildew resistant 6, assumes pronounced significance as they emerge as pivotal contenders in the domain of disease control. The zenith of this study harmonizes multiple analytical paradigms, thus capturing latent molecular participants and yielding seminal resources crucial for the advancement of PM-resistant bitter melon cultivars.
Collapse
Affiliation(s)
- Xuanyu Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kaixi Zou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xuzhen Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feifan Chen
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuyu Cheng
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanming Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Libo Tian
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- The Key Laboratory of Tropical Horticultural Crops Quality Regulation of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Sang Shang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Yang S, Cai W, Wu R, Huang Y, Lu Q, Hui Wang, Huang X, Zhang Y, Wu Q, Cheng X, Wan M, Lv J, Liu Q, Zheng X, Mou S, Guan D, He S. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions. Nat Commun 2023; 14:4477. [PMID: 37491353 PMCID: PMC10368638 DOI: 10.1038/s41467-023-40251-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, PR China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yapeng Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qing Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xingge Cheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Xiang Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shaoliang Mou
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
| |
Collapse
|
14
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
15
|
Kongala SI, Mamidala P. Harpin-loaded chitosan nanoparticles induced defense responses in tobacco. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
16
|
Zhang T, Cui H, Luan F, Liu H, Ding Z, Amanullah S, Zhang M, Ma T, Gao P. A recessive gene Cmpmr2F confers powdery mildew resistance in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:4. [PMID: 36651949 DOI: 10.1007/s00122-023-04269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Identified a recessive gene (Cmpmr2F) associated with resistance to infection by the powdery mildew causing agent Podosphaera xanthii race 2F. Powdery mildew (PM) is one of the most destructive fungal diseases of melon, which significantly reduces the crop yield and quality. Multiple studies are being performed for in-depth genetic understandings of PM-susceptibility or -resistance mechanisms in melon plants, but the holistic knowledge of the precise genetic basis of PM-resistance is unexplored. In this study, we characterized the recessive gene "Cmpmr2F" and found its association with resistance against the PM causative agent "Podosphaera xanthii race 2F." Fine genetic mapping revealed the major-effect region of a 26.25-kb interval on chromosome 12, which harbored the Cmpmr2F gene corresponding to the MELO3C002403, encoding allantoate amidohydrolase. The functional gene annotation, expression pattern, and sequence alignment analyses were carried out using two contrast parent lines of melon "X055" PM-susceptible and "PI 124112" PM-resistant. Further, gene silencing of Cmpmr2F using virus-induced gene silencing (VIGS) significantly increased PM-resistance in the susceptible plant. In contrast to the previously reported studies, we identified that Cmpmr2F-silenced plants showed no impairment in growth due to less apparent negative effects in silenced melon plants. So, it is believed that the Cmpmr2F gene has great potential for further breeding studies to increase the P. xanthii race 2F resistance in melon. In short, our study provides new genetic resources and a solid foundation for further functional analysis of PM-resistance genes in melon, as well as powerful molecular markers for marker-assisted breeding aimed at developing new melon varieties resistant to PM infection.
Collapse
Affiliation(s)
- Taifeng Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Haonan Cui
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Zhuo Ding
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Manlin Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Tingting Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150036, Heilongjiang, China.
| |
Collapse
|
17
|
Qiu J, Liu Z, Xie J, Lan B, Shen Z, Shi H, Lin F, Shen X, Kou Y. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. PLANT, CELL & ENVIRONMENT 2022; 45:3399-3411. [PMID: 36175003 DOI: 10.1111/pce.14452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Humidity is a critical environmental factor affecting the epidemic of plant diseases. However, it is still unclear how ambient humidity affects the occurrence of diseases in plants. In this study, we show that high ambient humidity enhanced blast development in rice plants under laboratory conditions. Furthermore, we found that high ambient humidity enhanced the virulence of Magnaporthe oryzae by promoting conidial germination and appressorium formation. In addition, the results of RNA-sequencing analysis and the ethylene content assessment revealed that high ambient humidity suppressed the accumulation of ethylene and the activation of ethylene signaling pathway induced by M. oryzae in rice. Knock out of ethylene signaling genes OsEIL1 and OsEIN2 or exogenous application of 1-methylcyclopropene (ethylene inhibitor) and ethephon (ethylene analogues) eliminated the difference of blast resistance between the 70% and 90% relative humidity conditions, suggesting that the activation of ethylene signaling contributes to humidity-modulated basal resistance against M. oryzae in rice. In conclusion, our results demonstrated that high ambient humidity enhances the virulence of M. oryzae and compromises basal resistance by reducing the activation of ethylene biosynthesis and signaling in rice. Results from this study provide cues for novel strategies to control rice blast under global environmental changes.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiquan Liu
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhui Xie
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Bo Lan
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenan Shen
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Yanjun Kou
- State Key Laboratory Of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
18
|
Wang W, Wang S, Gong W, Lv L, Xu L, Nie J, Huang L. Valsa mali secretes an effector protein VmEP1 to target a K homology domain-containing protein for virulence in apple. MOLECULAR PLANT PATHOLOGY 2022; 23:1577-1591. [PMID: 35851537 PMCID: PMC9562843 DOI: 10.1111/mpp.13248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The K homology (KH) repeat is an RNA-binding motif that exists in various proteins, some of which participate in plant growth. However, the function of KH domain-containing proteins in plant defence is still unclear. In this study, we found that a KH domain-containing protein in apple (Malus domestica), HEN4-like (MdKRBP4), is involved in the plant immune response. Silencing of MdKRBP4 compromised reactive oxygen species (ROS) production and enhanced the susceptibility of apple to Valsa mali, whereas transient overexpression of MdKRBP4 stimulated ROS accumulation in apple leaves, indicating that MdKRBP4 is a positive immune regulator. Additionally, MdKRBP4 was proven to interact with the VmEP1 effector secreted by V. mali, which led to decreased accumulation of MdKRBP4. Coexpression of MdKRBP4 with VmEP1 inhibited cell death and ROS production induced by MdKRBP4 in Nicotiana benthamiana. These results indicate that MdKRBP4 functions as a novel positive regulatory factor in plant immunity in M. domestica and is a virulence target of the V. mali effector VmEP1.
Collapse
Affiliation(s)
- Weidong Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shuaile Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wan Gong
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Luqiong Lv
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
19
|
Li X, He Q, Liu Y, Xu X, Xie Q, Li Z, Lin C, Liu W, Chen D, Li X, Miao W. Ectopic Expression of HbRPW8-a from Hevea brasiliensis Improves Arabidopsis thaliana Resistance to Powdery Mildew Fungi (Erysiphe cichoracearum UCSC1). Int J Mol Sci 2022; 23:ijms232012588. [PMID: 36293447 PMCID: PMC9603905 DOI: 10.3390/ijms232012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.
Collapse
Affiliation(s)
- Xiaoli Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Qiguang He
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuhan Liu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xinze Xu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Qingbiao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhigang Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Wenbo Liu
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Daipeng Chen
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiao Li
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- School of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
20
|
Wang Q, Guo J, Jin P, Guo M, Guo J, Cheng P, Li Q, Wang B. Glutathione S-transferase interactions enhance wheat resistance to powdery mildew but not wheat stripe rust. PLANT PHYSIOLOGY 2022; 190:1418-1439. [PMID: 35876538 PMCID: PMC9516745 DOI: 10.1093/plphys/kiac326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Wheat stripe rust and powdery mildew are important worldwide diseases of wheat (Triticum aestivum). The wheat cultivar Xingmin318 (XM318) is resistant to both wheat stripe rust and powdery mildew, which are caused by Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt), respectively. To explore the difference between wheat defense response against Pst and Bgt, quantitative proteomic analyses of XM318 inoculated with either Pst or Bgt were performed using tandem mass tags technology. A total of 741 proteins were identified as differentially accumulated proteins (DAPs). Bioinformatics analyses indicated that some functional categories, including antioxidant activity and immune system process, exhibited obvious differences between Pst and Bgt infections. Intriguingly, only 42 DAPs responded to both Pst and Bgt infections. Twelve DAPs were randomly selected for reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, and the mRNA expression levels of 11 were consistent with their protein expression. Furthermore, gene silencing using the virus-induced gene silencing system indicated that glutathione S-transferase (TaGSTU6) has an important role in resistance to Bgt but not to Pst. TaGSTU6 interacted with the cystathionine beta-synthase (CBS) domain-containing protein (TaCBSX3) in both Pst and Bgt infections. Knockdown of TaCBSX3 expression only reduced wheat resistance to Bgt infection. Overexpression of TaGSTU6 and TaCBSX3 in Arabidopsis (Arabidopsis thaliana) promoted plant resistance to Pseudomonas syringae pv. Tomato DC3000. Our results indicate that TaGSTU6 interaction with TaCBSX3 only confers wheat resistance to Bgt, suggesting that wheat has different response mechanisms to Pst and Bgt stress.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengying Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- Authors for correspondence: (B.W.); (Q.L.)
| | | |
Collapse
|
21
|
Zhao Z, Fan J, Yang P, Wang Z, Opiyo SO, Mackey D, Xia Y. Involvement of Arabidopsis Acyl Carrier Protein 1 in PAMP-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:681-693. [PMID: 35343247 DOI: 10.1094/mpmi-02-22-0049-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant fatty acids (FAs) and lipids are essential in storing energy and act as structural components for cell membranes and signaling molecules for plant growth and stress responses. Acyl carrier proteins (ACPs) are small acidic proteins that covalently bind the fatty acyl intermediates during the elongation of FAs. The Arabidopsis thaliana ACP family has eight members. Through reverse genetic, molecular, and biochemical approaches, we have discovered that ACP1 localizes to the chloroplast and limits the magnitude of pattern-triggered immunity (PTI) against the bacterial pathogen Pseudomonas syringae pv. tomato. Mutant acp1 plants have reduced levels of linolenic acid (18:3), which is the primary precursor for biosynthesis of the phytohormone jasmonic acid (JA), and a corresponding decrease in the abundance of JA. Consistent with the known antagonistic relationship between JA and salicylic acid (SA), acp1 mutant plants also accumulate a higher level of SA and display corresponding shifts in JA- and SA-regulated transcriptional outputs. Moreover, methyl JA and linolenic acid treatments cause an apparently enhanced decrease of resistance against P. syringae pv. tomato in acp1 mutants than that in WT plants. The ability of ACP1 to prevent this hormone imbalance likely underlies its negative impact on PTI in plant defense. Thus, ACP1 links FA metabolism to stress hormone homeostasis to be negatively involved in PTI in Arabidopsis plant defense. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Jiangbo Fan
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Piao Yang
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Stephen Obol Opiyo
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, U.S.A
| |
Collapse
|
22
|
Gupta A, Awasthi P, Sharma N, Parveen S, Vats RP, Singh N, Kumar Y, Goel A, Chandran D. Medicarpin confers powdery mildew resistance in Medicago truncatula and activates the salicylic acid signalling pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:966-983. [PMID: 35263504 PMCID: PMC9190973 DOI: 10.1111/mpp.13202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Powdery mildew (PM) caused by the obligate biotrophic fungal pathogen Erysiphe pisi is an economically important disease of legumes. Legumes are rich in isoflavonoids, a class of secondary metabolites whose role in PM resistance is ambiguous. Here we show that the pterocarpan medicarpin accumulates at fungal infection sites, as analysed by fluorescein-tagged medicarpin, and provides penetration and post-penetration resistance against E. pisi in Medicago truncatula in part through the activation of the salicylic acid (SA) signalling pathway. Comparative gene expression and metabolite analyses revealed an early induction of isoflavonoid biosynthesis and accumulation of the defence phytohormones SA and jasmonic acid (JA) in the highly resistant M. truncatula genotype A17 but not in moderately susceptible R108 in response to PM infection. Pretreatment of R108 leaves with medicarpin increased SA levels, SA-associated gene expression, and accumulation of hydrogen peroxide at PM infection sites, and reduced fungal penetration and colony formation. Strong parallels in the levels of medicarpin and SA, but not JA, were observed on medicarpin/SA treatment pre- or post-PM infection. Collectively, our results suggest that medicarpin and SA may act in concert to restrict E. pisi growth, providing new insights into the metabolic and signalling pathways required for PM resistance in legumes.
Collapse
Affiliation(s)
- Arunima Gupta
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Pallavi Awasthi
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Neha Sharma
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
| | - Sajiya Parveen
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Ravi P. Vats
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Nirpendra Singh
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
- Present address:
Institute of Stem Cell Science and Regenerative MedicineBangaloreKarnatakaIndia
| | - Yashwant Kumar
- Translational Health Science and Technology InstituteNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Atul Goel
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Divya Chandran
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| |
Collapse
|
23
|
Zheng Q, Bertran A, Brand A, van Schaik CC, van de Ruitenbeek SJS, Smant G, Goverse A, Sterken MG. Comparative Transcriptome Analysis Reveals the Specific Activation of Defense Pathways Against Globodera pallida in Gpa2 Resistant Potato Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:909593. [PMID: 35783958 PMCID: PMC9248836 DOI: 10.3389/fpls.2022.909593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyst nematodes are considered a dominant threat to yield for a wide range of major food crops. Current control strategies are mainly dependent on crop rotation and the use of resistant cultivars. Various crops exhibit single dominant resistance (R) genes that are able to activate effective host-specific resistance to certain cyst nematode species and/or populations. An example is the potato R gene Gpa2, which confers resistance against the potato cyst nematode (PCN), Globodera pallida population D383. Activation of Gpa2 results in a delayed resistance response, which is characterized by a layer of necrotic cells formed around the developing nematode feeding structure. However, knowledge about the Gpa2-induced defense pathways is still lacking. Here, we uncover the transcriptional changes and gene expression network induced upon Gpa2 activation in potato roots infected with G. pallida. To this end, in vitro-grown Gpa2-resistant potato roots were infected with the avirulent population D383 and virulent population Rookmaker. Infected root segments were harvested at 3 and 6 dpi and sent for RNA sequencing. Comparative transcriptomics revealed a total of 1,743 differentially expressed genes (DEGs) upon nematode infection, of which 559 DEGs were specifically regulated in response to D383 infection. D383-specific DEGs associated with Gpa2-mediated defense mainly relates to calcium-binding activity, salicylic acid (SA) biosynthesis, and systemic acquired resistance (SAR). These data reveal that cyst nematode resistance in potato roots depends on conserved downstream signaling pathways involved in plant immunity, which are also known to contribute to R genes-mediated resistance against other pathogens with different lifestyles.
Collapse
|
24
|
Dongus JA, Bhandari DD, Penner E, Lapin D, Stolze SC, Harzen A, Patel M, Archer L, Dijkgraaf L, Shah J, Nakagami H, Parker JE. Cavity surface residues of PAD4 and SAG101 contribute to EDS1 dimer signaling specificity in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1415-1432. [PMID: 35324052 DOI: 10.1111/tpj.15747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins (EDS1, PAD4, and SAG101) and two subfamilies of HET-S/LOB-B (HeLo)-domain "helper" nucleotide-binding/leucine-rich repeats (ADR1s and NRG1s). EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4-mediated pathogen resistance, but are dispensable for the PAD4-mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4R314A and SAG101M304R EPD variants maintain interaction with EDS1 but lose association, respectively, with helper nucleotide-binding/leucine-rich repeats ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.
Collapse
Affiliation(s)
- Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6700, AA Wageningen, The Netherlands
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Plant Research Laboratory, Michigan State University, 612, Wilson Road, East Lansing, Michigan, 48824, USA
| | - Eva Penner
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Sara C Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Monika Patel
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, 1511 West Sycamore, Denton, 76201, Texas, USA
| | - Lani Archer
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, 1511 West Sycamore, Denton, 76201, Texas, USA
| | - Lucas Dijkgraaf
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Plant-Microbe Interactions, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, 1511 West Sycamore, Denton, 76201, Texas, USA
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Li Y, Li T, He X, Zhu Y, Feng Q, Yang X, Zhou X, Li G, Ji Y, Zhao J, Zhao Z, Pu M, Zhou S, Zhang J, Huang Y, Fan J, Wang W. Blocking Osa-miR1871 enhances rice resistance against Magnaporthe oryzae and yield. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:646-659. [PMID: 34726307 PMCID: PMC8989506 DOI: 10.1111/pbi.13743] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/31/2021] [Accepted: 10/24/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in plant development and defence responses against various stresses. Here, we show that blocking miR1871 improves rice resistance against Magnaporthe oryzae and enhances grain yield simultaneously. The transgenic lines overexpressing miR1871 (OX1871) exhibit compromised resistance, suppressed defence responses and reduced panicle number resulting in slightly decreased yield. In contrast, the transgenic lines blocking miR1871 (MIM1871) show improved resistance, enhanced defence responses and significantly increased panicle number leading to enhanced yield per plant. The RNA-seq assay and defence response assays reveal that blocking miR1871 resulted in the enhancement of PAMP-triggered immunity (PTI). Intriguingly, miR1871 suppresses the expression of LOC_Os06g22850, which encodes a microfibrillar-associated protein (MFAP1) locating nearby the cell wall and positively regulating PTI responses. The mutants of MFAP1 resemble the phenotype of OX1871. Conversely, the transgenic lines overexpressing MFAP1 (OXMFAP1) or overexpressing both MFAP1 and miR1871 (OXMFAP1/OX1871) resemble the resistance of MIM1871. The time-course experiment data reveal that the expression of miR1871 and MFAP1 in rice leaves, panicles and basal internode is dynamic during the whole growth period to manipulate the resistance and yield traits. Our results suggest that miR1871 regulates rice yield and immunity via MFAP1, and the miR8171-MFAP1 module could be used in rice breeding to improve both immunity and yield.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ting‐Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xiao‐Rong He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Qin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xue‐Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Xin‐Hui Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Guo‐Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yun‐Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jing‐Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Zhi‐Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Shi‐Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Ji‐Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Yan‐Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| | - Wen‐Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
| |
Collapse
|
26
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
27
|
Jin P, Chao K, Li J, Wang Z, Cheng P, Li Q, Wang B. Functional Verification of Two Genes Related to Stripe Rust Resistance in the Wheat- Leymus mollis Introgression Line M8664-3. FRONTIERS IN PLANT SCIENCE 2021; 12:754823. [PMID: 34759947 PMCID: PMC8574815 DOI: 10.3389/fpls.2021.754823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive fungal diseases of wheat worldwide. The cultivation and growth of resistant wheat varieties are the most economical, effective, and environmental friendly methods to control stripe rust. Therefore, it is necessary to use new resistance genes to breed resistant wheat varieties. A single dominant gene temporarily designated as YrM8664-3, from a wheat-Leymus mollis introgression line M8664-3 highly resistant to Chinese predominant Pst races, is a potentially valuable source of stripe rust resistance for breeding. Herein, based on previous YrM8664-3 chromosome location results (bin 4AL13-0.59-0.66 close to 4AL12-0.43-0.59) and expression change information of candidate genes and bioinformatics analysis, several candidate genes with significantly different expression changes were then selected and verified by virus-induced gene silencing (VIGS). Two of the candidate genes temporarily designated as TaFBN [containing plastid lipid-associated proteins (PAP)_fibrillin domain in its protein] and Ta_Pes_BRCT [containing Pescadillo and breast cancer tumour suppressor protein C-terminus (BRCT) domain in its protein], produced the most significant resistance changes in the wheat-Pst interaction system after silencing. These two genes were further verified by Agrobacterium-mediated wheat genetic transformation technology. According to the identification of disease resistance, the resistance function of the candidate gene TaFBN was further verified. Then, the expression of TaFBN under hormone treatment indicated that TaFBN may be related to the salicylic acid (SA) and abscisic acid (ABA) signaling pathways. Combined with the expression of TaFBN in response to environmental stress stimulation, it can be reasonably speculated that TaFBN plays an important role in the resistance of wheat to Pst and is involved in abiotic stress pathways.
Collapse
Affiliation(s)
- Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kaixiang Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Dingxi Plant Protection and Quarantine Station, Dingxi, China
| | - Zihao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
28
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
29
|
Wang Y, Qi C, Luo Y, Zhang F, Dai Z, Li M, Qu S. Identification and mapping of CpPM10.1, a major gene involved in powdery mildew (race 2 France of Podosphaera xanthii) resistance in zucchini (Cucurbita pepo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2531-2545. [PMID: 33914112 DOI: 10.1007/s00122-021-03840-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Powdery mildew resistance in zucchini is controlled by one major dominant locus, CpPM10.1. CpPM10.1 was fine mapped. The expression of candidate gene Cp4.1LG10g02780 in resistant individuals was significantly upregulated after inoculation with the powdery mildew. Powdery mildew (PM) is one of the most destructive fungal diseases, reducing the productivity of Cucurbita crops globally. PM influences the photosynthesis, growth and development of infected zucchini and seriously reduces fruit yield and quality. In the present study, the zucchini inbred line 'X10' had highly stable PM resistance, and the inbred line 'Jin234' was highly susceptible to PM in the seedling stage and adult stages. Genetic analysis revealed that PM resistance in 'X10' is controlled by one major dominant locus. Based on the strategy of QTL-seq combined with linkage analysis and developed molecular markers, the major locus was found to be located in a 382.9-kb candidate region on chromosome 10; therefore, the major locus was named CpPM10.1. Using 1,400 F2 individuals derived from a cross between 'X10' and 'JIN234' and F2:3 offspring of the recombinants, the CpPM10.1 locus was defined in a region of approximately 20.9 kb that contained 5 coding genes. Among them, Cp4.1LG10g02780 contained a conserved domain (RPW8), which controls resistance to a broad range of PM pathogens. Cp4.1LG10g02780 also had nonsynonymous SNPs between the resistant 'X10' and susceptible 'Jin234.' Furthermore, the expression of Cp4.1LG10g02780 was strongly positively involved in PM resistance in the key period of inoculation. Further allelic diversity analysis in zucchini germplasm resources indicated that PM resistance was associated with two SNPs in the Cp4.1LG10g02780 RPW8 domain. This study not only provides highly stable PM resistance gene resources for cucurbit crops but also lays the foundation for the functional analysis of PM resistance and resistance breeding in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Man Li
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
30
|
Hu Y, Cheng Y, Yu X, Liu J, Yang L, Gao Y, Ke G, Zhou M, Mu B, Xiao S, Wang Y, Wen YQ. Overexpression of two CDPKs from wild Chinese grapevine enhances powdery mildew resistance in Vitis vinifera and Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:2029-2046. [PMID: 33595857 DOI: 10.1111/nph.17285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine. Here, we report that VpCDPK9 and VpCDPK13, two paralogous CDPKs from Vitis pseudoreticulata accession Baihe-35-1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of 'Baihe-35-1' were differentially induced upon powdery mildew infection. Overexpression of VpCDPK9-YFP or VpCDPK13-YFP in the V. vinifera susceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2 O2 and callose in penetrated epidermal cells and/or the mesophyll cells underneath. Ectopic expression of VpCDPK9-YFP in Arabidopsis resulted in varied degrees of reduced stature, pre-mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished in VpCDPK9-YFP transgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2 in vivo (ACS, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase; MAPK, mitogen-activated protein kinase). These results suggest that VpCDPK9 and VpCDPK13 contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Xuena Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Lushan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yurong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Guihua Ke
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Min Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Bo Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Yang C, Fernando WGD. Analysis of the Oxidative Burst and Its Relevant Signaling Pathways in Leptosphaeria maculans-Brassica napus Pathosystem. Int J Mol Sci 2021; 22:4812. [PMID: 34062819 PMCID: PMC8125350 DOI: 10.3390/ijms22094812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
An oxidative burst is an early response of plants to various biotic/abiotic stresses. In plant-microbe interactions, the plant body can induce oxidative burst to activate various defense mechanisms to combat phytopathogens. A localized oxidative burst is also one of the typical behaviors during hypersensitive response (HR) caused by gene-for-gene interaction. In this study, the occurrence of oxidative burst and its signaling pathways was studied from different levels of disease severity (i.e., susceptible, intermediate, and resistant) in the B. napus-L. maculans pathosystem. Canola cotyledons with distinct levels of resistance exhibited differential regulation of the genes involved in reactive oxygen species (ROS) accumulation and responses. Histochemical assays were carried out to understand the patterns of H2O2 accumulation and cell death. Intermediate and resistant genotypes exhibited earlier accumulation of H2O2 and emergence of cell death around the inoculation origins. The observations also suggested that the cotyledons with stronger resistance were able to form a protective region of intensive oxidative bursts between the areas with and without hyphal intrusions to block further fungal advancement to the uninfected regions. The qPCR analysis suggested that different onset patterns of some marker genes in ROS accumulation/programmed cell death (PCD) such as RBOHD, MPK3 were associated with distinct levels of resistance from B. napus cultivars against L. maculans. The observations and datasets from this article indicated the distinct differences in ROS-related cellular behaviors and signaling between compatible and incompatible interactions.
Collapse
Affiliation(s)
| | - W. G. Dilantha Fernando
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
32
|
Zhao ZX, Xu YJ, Lei Y, Li Q, Zhao JQ, Li Y, Fan J, Xiao S, Wang WM. ANNEXIN 8 negatively regulates RPW8.1-mediated cell death and disease resistance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:378-392. [PMID: 33073904 DOI: 10.1111/jipb.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.
Collapse
Affiliation(s)
- Zhi-Xue Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Lei
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, Maryland, 20850, USA
| | - Wen-Ming Wang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
33
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
34
|
Yang L, Wang Z, Hua J. A Meta-Analysis Reveals Opposite Effects of Biotic and Abiotic Stresses on Transcript Levels of Arabidopsis Intracellular Immune Receptor Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:625729. [PMID: 33747005 PMCID: PMC7969532 DOI: 10.3389/fpls.2021.625729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 05/06/2023]
Abstract
Plant intracellular immune receptor NLR (nucleotide-binding leucine-rich repeat) proteins sense the presence of pathogens and trigger strong and robust immune responses. NLR genes are known to be tightly controlled at the protein level, but little is known about their dynamics at the transcript level. In this study, we presented a meta-analysis of transcript dynamics of all 207 NLR genes in the Col-0 accession of Arabidopsis thaliana under various biotic and abiotic stresses based on 88 publicly available RNA sequencing datasets from 27 independent studies. We find that about two thirds of the NLR genes are generally induced by pathogens, immune elicitors, or salicylic acid (SA), suggesting that transcriptional induction of NLR genes might be an important mechanism in plant immunity regulation. By contrast, NLR genes induced by biotic stresses are often repressed by abscisic acid, high temperature and drought, suggesting that transcriptional regulation of NLR genes might be important for interaction between abiotic and biotic stress responses. In addition, pathogen-induced expression of some NLR genes are dependent on SA induction. Interestingly, a small group of NLR genes are repressed under certain biotic stress treatments, suggesting an unconventional function of this group of NLRs. This meta-analysis thus reveals the transcript dynamics of NLR genes under biotic and abiotic stress conditions and suggests a contribution of NLR transcript regulation to plant immunity as well as interactions between abiotic and biotic stress responses.
Collapse
|
35
|
Aoun N, Desaint H, Boyrie L, Bonhomme M, Deslandes L, Berthomé R, Roux F. A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. MOLECULAR PLANT PATHOLOGY 2020; 21:1405-1420. [PMID: 32914940 PMCID: PMC7548995 DOI: 10.1111/mpp.12964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
Plant immunity is often negatively impacted by heat stress. However, the underlying molecular mechanisms remain poorly characterized. Based on a genome-wide association mapping approach, this study aims to identify in Arabidopsis thaliana the genetic bases of robust resistance mechanisms to the devastating pathogen Ralstonia solanacearum under heat stress. A local mapping population was phenotyped against the R. solanacearum GMI1000 strain at 27 and 30 °C. To obtain a precise description of the genetic architecture underlying natural variation of quantitative disease resistance (QDR), we applied a genome-wide local score analysis. Alongside an extensive genetic variation found in this local population at both temperatures, we observed a playful dynamics of quantitative trait loci along the infection stages. In addition, a complex genetic network of interacting loci could be detected at 30 °C. As a first step to investigate the underlying molecular mechanisms, the atypical meiotic cyclin SOLO DANCERS gene was validated by a reverse genetic approach as involved in QDR to R. solanacearum at 30 °C. In the context of climate change, the complex genetic architecture underlying QDR under heat stress in a local mapping population revealed candidate genes with diverse molecular functions.
Collapse
Affiliation(s)
- Nathalie Aoun
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Henri Desaint
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
- SYNGENTA seedsSarriansFrance
| | - Léa Boyrie
- LRSVUniversité de ToulouseCNRSUniversité Paul SabatierCastanet‐TolosanFrance
| | - Maxime Bonhomme
- LRSVUniversité de ToulouseCNRSUniversité Paul SabatierCastanet‐TolosanFrance
| | | | | | - Fabrice Roux
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| |
Collapse
|
36
|
Wan DY, Guo Y, Cheng Y, Hu Y, Xiao S, Wang Y, Wen YQ. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine ( Vitis vinifera). HORTICULTURE RESEARCH 2020; 7:116. [PMID: 32821399 PMCID: PMC7395163 DOI: 10.1038/s41438-020-0339-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera), one of the most economically important fruit crops in the world, suffers significant yield losses from powdery mildew, a major fungal disease caused by Erysiphe necator. In addition to suppressing host immunity, phytopathogens modulate host proteins termed susceptibility (S) factors to promote their proliferation in plants. In this study, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) technology was used to enable the targeted mutagenesis of MLO (mildew resistance Locus O) family genes that are thought to serve as S factors for powdery mildew fungi. Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes, VvMLO3 and VvMLO4, in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless. The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%. Among the 20 VvMLO3/4-edited lines obtained, one was homozygous for a single mutation, three harbored biallelic mutations, seven were heterozygous for the mutations, and nine were chimeric, as indicated by the presence of more than two mutated alleles in each line. Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth, while the remaining lines exhibited senescence-like chlorosis and necrosis. Importantly, four VvMLO3-edited lines showed enhanced resistance to powdery mildew, which was associated with host cell death, cell wall apposition (CWA) and H2O2 accumulation. Taken together, our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance, such as disease resistance in grapevines.
Collapse
Affiliation(s)
- Dong-Yan Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850 USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| |
Collapse
|
37
|
Shen L, Yang S, Yang F, Guan D, He S. CaCBL1 Acts as a Positive Regulator in Pepper Response to Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:945-957. [PMID: 32209000 DOI: 10.1094/mpmi-08-19-0241-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is an important disease of pepper (Capsicum annuum), an economically important solanaceous vegetable worldwide, in particular, under high temperature (HT) conditions. However, the molecular mechanism underlying pepper immunity against bacterial wilt remains poorly understood. Herein, CaCBL1, a putative calcineurin B-like protein, was functionally characterized in the pepper response to R. solanacearum inoculation (RSI) under HT (RSI/HT). CaCBL1 was significantly upregulated by RSI at room temperature (RSI/RT), HT, or RSI/HT. CaCBL1-GFP fused protein targeted to whole epidermal cells of Nicotiana benthamiana when transiently overexpressed. CaCBL1 silencing by virus-induced gene silencing significantly enhanced pepper susceptibility to RSI under RT or HT, while its transient overexpression triggered hypersensitive response mimic cell death and upregulation of immunity-associated marker genes, including CabZIP63, CaWRKY40, and CaCDPK15, the positive regulators in the pepper response to RSI or HT found in our previous studies. In addition, by chromatin immunoprecipitation PCR and electrophoretic mobility shift assay, CaCBL1 was found to be directly targeted by CaWRKY40, although not by CaWRKY27 or CaWRKY58, via the W-box-2 within its promoter, and its transcription was found to be downregulated by silencing of CaWRKY40 while it was enhanced by its transient overexpression. These results suggest that CaCBL1 acts as a positive regulator in pepper immunity against R. solanacearum infection, constituting a positive feedback loop with CaWRKY40.
Collapse
Affiliation(s)
- Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Feng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
38
|
Li XP, Ma XC, Wang H, Zhu Y, Liu XX, Li TT, Zheng YP, Zhao JQ, Zhang JW, Huang YY, Pu M, Feng H, Fan J, Li Y, Wang WM. Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and Yield. RICE (NEW YORK, N.Y.) 2020; 13:38. [PMID: 32524307 PMCID: PMC7287001 DOI: 10.1186/s12284-020-00396-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/27/2020] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in rice immunity against Magnaporthe oryzae, the causative agent of rice blast disease. Here we demonstrate that Osa-miR162a fine-tunes rice immunity against M. oryzae and yield traits. Overexpression of Osa-miR162a enhances rice resistance to M. oryzae accompanying enhanced induction of defense-related genes and accumulation of hydrogen peroxide (H2O2). In contrast, blocking Osa-miR162 by overexpressing a target mimic of Osa-miR162a enhances susceptibility to blast fungus associating with compromised induction of defense-related gene expression and H2O2 accumulation. Moreover, the transgenic lines overexpressing Osa-miR162a display decreased seed setting rate resulting in slight reduced yield per plant, whereas the transgenic lines blocking Osa-miR162 show an increased number of grains per panicle, resulting in increased yield per plant. Altered accumulation of Osa-miR162 had a limited impact on the expression of rice Dicer-like 1 (OsDCL1) in these transgenic lines showing normal gross morphology, and silencing of OsDCL1 led to enhanced resistance to blast fungus similar to that caused by overexpression of Osa-miR162a, suggesting the involvement of OsDCL1 in Osa-miR162a-regulated resistance. Together, our results indicate that Osa-miR162a is involved in rice immunity against M. oryzae and fine-tunes resistance and yield.
Collapse
Affiliation(s)
- Xu-Pu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Chun Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ting-Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ya-Ping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Qun Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
39
|
Wang D, Wang B, Wang J, Wang S, Wang W, Niu Y. Exogenous Application of Harpin Protein Hpa1 onto Pinellia ternata Induces Systemic Resistance Against Tobacco Mosaic Virus. PHYTOPATHOLOGY 2020; 110:1189-1198. [PMID: 32141384 DOI: 10.1094/phyto-12-19-0463-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.
Collapse
Affiliation(s)
- Defu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Baoxia Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jiangran Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Shuting Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weiyu Wang
- Rongcheng Plant Protection Station, Rongcheng 264300, Shandong, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
40
|
Fu H, Zhao M, Xu J, Tan L, Han J, Li D, Wang M, Xiao S, Ma X, Deng Z. Citron C-05 inhibits both the penetration and colonization of Xanthomonas citri subsp. citri to achieve resistance to citrus canker disease. HORTICULTURE RESEARCH 2020; 7:58. [PMID: 32377349 PMCID: PMC7193574 DOI: 10.1038/s41438-020-0278-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a serious bacterial disease that affects citrus production worldwide. Citron C-05 (Citrus medica) is the only germplasm in the Citrus genus that has been identified to exhibit strong resistance to Xcc. However, it has not been determined when, where, and how Xcc is restricted in the tissues of Citron C-05 during the infection process. In the present study, we investigated the spatiotemporal growth dynamics of an eGFP-labeled virulent Xcc (eGFP-Xcc) strain in Citron C-05 along with five susceptible biotypes (i.e., lemon, pummelo, sour orange, sweet orange, and ponkan mandarin) upon inoculation via the spraying or leaf infiltration of a bacterial suspension. The results from extensive confocal laser scanning microscopy analyses showed that while Xcc grew rapidly in plants of all five susceptible genotypes, Xcc was severely restricted in the epidermal and mesophyll cell layers of the leaves of Citron C-05 in the early stage of infection. Not surprisingly, resistance against Xcc in Citron C-05 was found to be associated with the production of reactive oxygen species and hypersensitive response-like cell death, as well as greater upregulation of several defense-related genes, including a pathogenesis-related gene (PR1) and a glutathione S-transferase gene (GST1), compared with sweet orange as a susceptible control. Taken together, our results not only provide further valuable details of the spatiotemporal dynamics of the host entry, propagation, and spread of Xcc in both resistant and susceptible citrus plants but also suggest that resistance to Xcc in Citron C-05 may be attributed to the activation of multiple defense mechanisms.
Collapse
Affiliation(s)
- Hongyan Fu
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Mingming Zhao
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Jing Xu
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Limei Tan
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Jian Han
- Hunan Horticultural Research Institute, 410125 Changsha, Hunan China
| | - Dazhi Li
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Meijun Wang
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850 USA
| | - Xianfeng Ma
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| | - Ziniu Deng
- College of Horticulture, Hunan Agricultural University, 410128 Changsha, Hunan China
- National Center for Citrus Improvement, 410128 Changsha, Hunan China
| |
Collapse
|
41
|
Li L, Habring A, Wang K, Weigel D. Atypical Resistance Protein RPW8/HR Triggers Oligomerization of the NLR Immune Receptor RPP7 and Autoimmunity. Cell Host Microbe 2020; 27:405-417.e6. [PMID: 32101702 DOI: 10.1016/j.chom.2020.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023]
Abstract
In certain plant hybrids, immunity signaling is initiated when immune components interact in the absence of a pathogen trigger. In Arabidopsis thaliana, such autoimmunity and cell death are linked to variants of the NLR RPP7 and the RPW8 proteins involved in broad-spectrum resistance. We uncover the molecular basis for this autoimmunity and demonstrate that a homolog of RPW8, HR4Fei-0, can trigger the assembly of a higher-order RPP7 complex, with autoimmunity signaling as a consequence. HR4Fei-0-mediated RPP7 oligomerization occurs via the RPP7 C-terminal leucine-rich repeat (LRR) domain and ATP-binding P-loop. RPP7 forms a higher-order complex only in the presence of HR4Fei-0 and not with the standard HR4 variant, which is distinguished from HR4Fei-0 by length variation in C-terminal repeats. Additionally, HR4Fei-0 can independently form self-oligomers, which directly kill cells in an RPP7-independent manner. Our work provides evidence for a plant resistosome complex and the mechanisms by which RPW8/HR proteins trigger cell death.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Kai Wang
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
42
|
A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 2020; 11:680. [PMID: 32015344 PMCID: PMC6997164 DOI: 10.1038/s41467-020-14294-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.
Collapse
|
43
|
Wang J, Tian W, Tao F, Wang J, Shang H, Chen X, Xu X, Hu X. TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1679. [PMID: 32010164 PMCID: PMC6974556 DOI: 10.3389/fpls.2019.01679] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 05/13/2023]
Abstract
RPM1 is a CC-NBS-LRR protein that was first shown to be required for resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Our previous study showed that TaRPM1 gene in wheat was upregulated about six times following infection by Puccinia striiformis f. sp. tritici (Pst) under high temperature, compared with normal temperature. To study the function of TaRPM1 in wheat high-temperature seedling-plant (HTSP) resistance to Pst, the full length of TaRPM1 was cloned, with three copies each located on chromosomes 1A, 1B, and 1D. Transient expression of the TaRPM1-GFP fusion protein in Nicotiana benthamiana indicated that TaRPM1 localizes in the cytoplasm and nucleus. Profiling TaRPM1 expression indicated that TaRPM1 transcription was rapidly upregulated upon Pst inoculation under high temperature. In addition, TaRPM1 was induced by exogenous salicylic acid hormone application. Silencing TaRPM1 in wheat cultivar Xiaoyan 6 (XY 6) resulted in reduced HTSP resistance to Pst in terms of reduced number of necrotic cells and increased uredinial length, whereas no obvious phenotypic changes were observed in TaRPM1-silenced leaves under normal temperature. Related defense genes TaPR1 and TaPR2 were downregulated in TaRPM1-silenced plants under high temperature. We conclude that TaRPM1 is involved in HTSP resistance to Pst in XY 6.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East Malling Research, Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Andolfo G, Villano C, Errico A, Frusciante L, Carputo D, Aversano R, Ercolano MR. Inferring RPW8-NLRs's evolution patterns in seed plants: case study in Vitis vinifera. PLANTA 2019; 251:32. [PMID: 31823009 DOI: 10.1007/s00425-019-03324-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants. To trace the diversification of RNL gene subfamily, we scanned the NLR proteins of 73 plant genomes belonging to 29 taxa, revealing a noticeable diversification across species and within the same genus or botanic family together with a conspicuous expansion in important crop species. To explore the RNL variability in Vitis vinifera and gain information with respect to their structure, evolutionary diversification of five grape genomes ('Aglianico', 'Falanghina', 'Sultanina', 'Tannat', and 'Nebbiolo') has been compared to the reference genome ('Pinot Noir'). The number of RNLs ranged from 6 ('Sultanina') to 14 ('Nebbiolo'), in contrast to the 10 'Pinot Noir' RNLs. The phylogenetic study on grapevine RNLs revealed that all collapsed into NRG1-clade, rather than four. To investigate more in depth the means of intraspecific variability of grape RNL copies, a transcriptomic profiling in response to powdery mildew (PM) infection was carried out through qRT-PCRs and public databases interrogation. The RNL expression variability identified in transcriptome data sets supports the hypothesis of a functional expansion/contraction in grapevine varieties. Although no direct correlations between grapevine PM-resistance and RNL expression was identified, our work can provide good candidates for functional studies able to elucidate the putative "helper" role of RNLs in grape immune signalling.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Clizia Villano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Angela Errico
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Luigi Frusciante
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Domenico Carputo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Riccardo Aversano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| | - Maria R Ercolano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
45
|
Hu Y, Gao YR, Yang LS, Wang W, Wang YJ, Wen YQ. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:244-253. [PMID: 31593897 DOI: 10.1016/j.plaphy.2019.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The wild Chinese grapevines (Vitis spp.) show varying levels of resistance to powdery mildew caused by Erysiphe necator that is an economically important disease of cultivated grapevines (Vitis vinifera). However, little information is available regarding the cytological mechanisms of powdery mildew resistance in these wild relatives. Here, we studied the cytological responses of three wild Chinese grapevine accessions after they were infected with E. necator (En) NAFU1 in comparison to the susceptible V. vinifera cv. 'Thompson Seedless' grape. The hyphal growth and sporulation of En NAFU1 were significantly restricted in wild species compared to 'Thompson Seedless', which appears to be associated with early cell wall deposition at the attempt sites, encasement of haustoria, and hypersensitive response-like cell death of penetrated epidermal cells. Moreover, endogenous free salicylic acid (SA) was more abundant in wild Chinese Vitis species than in 'Thompson Seedless' under pathogen-free condition. During En NAFU1 colonization, SA conjugates accumulated higher in wild grapevines than in 'Thompson Seedless'. In addition, the species-specific expression patterns of defense-associated genes during En NAFU1 colonization indicated that mechanisms underlying powdery mildew resistance are divergent among different wild Chinese Vitis species. These results contribute to understanding of mechanisms underlying defense responses of wild Chinese Vitis species against powdery mildew.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Lu-Shan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Huang YY, Zhang LL, Ma XF, Zhao ZX, Zhao JH, Zhao JQ, Fan J, Li Y, He P, Xiao S, Wang WM. Multiple intramolecular trafficking signals in RESISTANCE TO POWDERY MILDEW 8.2 are engaged in activation of cell death and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:55-70. [PMID: 30552775 DOI: 10.1111/tpj.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.
Collapse
Affiliation(s)
- Yan-Yan Huang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling-Li Zhang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Feng Ma
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Zhi-Xue Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Hao Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Wen-Ming Wang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
47
|
Scotti R, D’Agostino N, Zaccardelli M. Gene expression profiling of tomato roots interacting with Pseudomonas fluorescens unravels the molecular reprogramming that occurs during the early phases of colonization. Symbiosis 2019. [DOI: 10.1007/s13199-019-00611-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Lai Y, Cuzick A, Lu XM, Wang J, Katiyar N, Tsuchiya T, Le Roch K, McDowell JM, Holub E, Eulgem T. The Arabidopsis RRM domain protein EDM3 mediates race-specific disease resistance by controlling H3K9me2-dependent alternative polyadenylation of RPP7 immune receptor transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:646-660. [PMID: 30407670 PMCID: PMC7138032 DOI: 10.1111/tpj.14148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
The NLR-receptor RPP7 mediates race-specific immunity in Arabidopsis. Previous screens for enhanced downy mildew (edm) mutants identified the co-chaperone SGT1b (EDM1) and the PHD-finger protein EDM2 as critical regulators of RPP7. Here, we describe a third edm mutant compromised in RPP7 immunity, edm3. EDM3 encodes a nuclear-localized protein featuring an RNA-recognition motif. Like EDM2, EDM3 promotes histone H3 lysine 9 dimethylation (H3K9me2) at RPP7. Global profiling of H3K9me2 showed EDM3 to affect this silencing mark at a large set of loci. Importantly, both EDM3 and EDM2 co-associate in vivo with H3K9me2-marked chromatin and transcripts at a critical proximal polyadenylation site of RPP7, where they suppress proximal transcript polyadeylation/termination. Our results highlight the complexity of plant NLR gene regulation, and establish a functional and physical link between a histone mark and NLR-transcript processing.
Collapse
Affiliation(s)
- Yan Lai
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
| | - Alayne Cuzick
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Xueqing M Lu
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Jianqiang Wang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Neerja Katiyar
- Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Karine Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24060-0329, USA
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California at Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
49
|
Ashraf MF, Yang S, Wu R, Wang Y, Hussain A, Noman A, Khan MI, Liu Z, Qiu A, Guan D, He S. Capsicum annuum HsfB2a Positively Regulates the Response to Ralstonia solanacearum Infection or High Temperature and High Humidity Forming Transcriptional Cascade with CaWRKY6 and CaWRKY40. PLANT & CELL PHYSIOLOGY 2018; 59:2608-2623. [PMID: 30169791 DOI: 10.1093/pcp/pcy181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH. CaHsfB2a is transcriptionally induced in pepper plants by RSI or HTHH and by exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), or abscisic acid (ABA). Virus-induced gene silencing (VIGS) of CaHsfB2a significantly impaired pepper immunity to RSI, hampered HTHH tolerance, and curtailed expression of immunity- and thermotolerance-associated marker genes such as CaHIR1, CaNPR1, CaABR1, and CaHSP24. Likewise, transient overexpression of CaHsfB2a in pepper leaves induced hypersensitive response (HR)-like cell death and H2O2 accumulation and upregulated the above-mentioned marker genes as well as CaWRKY6 and CaWRKY40. Chromatin immunoprecipitation (ChIP) and microscale thermophoresis (MST) analysis revealed that CaHsfB2a bound the promoters of both CaWRKY6 and CaWRKY40. In a parallel experiment, we determined by ChIP-PCR and MST that CaHsfB2a was regulated directly by CaWRKY40 but indirectly by CaWRKY6. Cumulatively, our results suggest that CaHsfB2a positively regulates plant immunity against RSI and tolerance to HTHH, via transcriptional cascades and positive feedback loops involving CaWRKY6 and CaWRKY40.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruijie Wu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuzhu Wang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ali Noman
- Department of Botany Government College University, Faisalabad, Pakistan
| | - Muhammad Ifnan Khan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ailian Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
50
|
Wei W, Cui MY, Hu Y, Gao K, Xie YG, Jiang Y, Feng JY. Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:60-74. [PMID: 30107882 DOI: 10.1016/j.plantsci.2018.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 05/17/2023]
Abstract
WRKY transcription factors play a critical role in biotic and abiotic stress responses in plants, but very few WRKYs have been reported in strawberry plants. Here, a multiple stress-inducible gene, FvWRKY42, was isolated from the wild diploid woodland strawberry (accession Heilongjiang-3). FvWRKY42 expression was induced by treatment with powdery mildew, salt, drought, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), and ethylene. The protein interaction network analysis showed that the FvWRKY42 protein interacts with various stress-related proteins. Overexpression of FvWRKY42 in Arabidopsis resulted in cell death, sporulation, slow hypha growth, and enhanced resistance to powdery mildew that was concomitant with increased expression of PR1 genes in Arabidopsis. Overexpression also led to enhanced salt and drought stress tolerance, increased primary root length and germination rate, decreased water loss rate, reduced relative electrolyte leakage, and malondialdehyde accumulation, and upregulation of superoxide dismutase and catalase activity. Additionally, FvWRKY42-overexpressing Arabidopsis plants showed increased ABA sensitivity during seed germination and seedling growth, increased stomatal closure after ABA and drought treatment, and altered expression of ABA-responsive genes. Collectively, our data demonstrate that FvWRKY42 may play an important role in powdery mildew infection and the regulation of salt and drought stress responses in plants.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Meng-Yuan Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuan Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yin-Ge Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ying Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|