1
|
Xiao F, Zhou H, Lin H. Decoding small peptides: Regulators of plant growth and stress resilience. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:596-631. [PMID: 40059863 PMCID: PMC11951405 DOI: 10.1111/jipb.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant-microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Huapeng Zhou
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| | - Honghui Lin
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| |
Collapse
|
2
|
Guillou M, Gaucher M, Vergne E, Renou J, Brisset M, Aubourg S. Phytocytokine genes newly discovered in Malus domestica and their regulation in response to Erwinia amylovora and acibenzolar-S-methyl. THE PLANT GENOME 2025; 18:e20540. [PMID: 39648642 PMCID: PMC11726410 DOI: 10.1002/tpg2.20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.
Collapse
Affiliation(s)
| | - Matthieu Gaucher
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Emilie Vergne
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Jean‐Pierre Renou
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | | | - Sébastien Aubourg
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| |
Collapse
|
3
|
Huang H, Liu J, Wu W, Lu J. VvprePIP, the Precursor of a PAMP-Induced Secreted Peptide, Stimulates Defence Responses and Improves Resistance to Plasmopora viticola in Grapevine. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39981652 DOI: 10.1111/pce.15439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.
Collapse
Affiliation(s)
- Huimin Huang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Wang S, Ge S, Liu X, Cheng L, Li R, Liu Y, Cai Y, Meng S, Tan C, Jiang CZ, Qi M, Li T, Xu T. A regulatory network involving calmodulin controls phytosulfokine peptide processing during drought-induced flower abscission. THE PLANT CELL 2024; 37:koaf013. [PMID: 39792565 PMCID: PMC11760522 DOI: 10.1093/plcell/koaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/04/2024] [Accepted: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum). Due to partial functional redundancy with SlCaM6, we generated the Slcam2 Slcam6 double mutant, which showed minimal flower drop under drought. SlCaM2 and SlCaM6 interacted with the transcription factor signal responsive 3L (SlSR3L), with the 3 proteins operating in the same pathway, based on genetic data. We identified Protease inhibitor26 (SlPI26) as a target gene of SlSR3L by DNA affinity purification sequencing and transcriptome analysis. SlPI26 specifically inhibited the activity of the phytaspase SlPhyt2, hence preventing the generation of active phytosulfokine peptide and negatively regulating drought-induced flower drop. SlCaM2 and SlCaM6 enhanced the repression of SlPI26 expression by SlSR3L, promoting drought-induced flower drop. In addition, the nonphototropic hypocotyl3 (SlNPH3)-Cullin3 (SlCUL3) complex, which relies on auxin, interacted with SlSR3L to induce its degradation. However, under drought conditions, SlNPH3-SlCUL3 function is compromised due to lower auxin concentration. These results uncover a regulatory network that precisely controls floral drop in response to drought stress.
Collapse
Affiliation(s)
- Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture Agricultural Research Service, Crops Pathology and Genetic Research Unit, Davis, Califonia 95616, USA
- Department of Plant Sciences, University of California at Davis, Califonia 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agriculture University, Shenyang, 110866, China
| |
Collapse
|
6
|
Taylor IW, Patharkar OR, Mijar M, Hsu CW, Baer J, Niederhuth CE, Ohler U, Benfey PN, Walker JC. Arabidopsis uses a molecular grounding mechanism and a biophysical circuit breaker to limit floral abscission signaling. Proc Natl Acad Sci U S A 2024; 121:e2405806121. [PMID: 39453742 PMCID: PMC11536089 DOI: 10.1073/pnas.2405806121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/27/2024] Open
Abstract
Abscission is the programmed separation of plant organs. It is widespread in the plant kingdom with important functions in development and environmental response. In Arabidopsis, abscission of floral organs (sepals, petals, and stamens) is controlled by two receptor-like protein kinases HAESA (HAE) and HAESA LIKE-2 (HSL2), which orchestrate the programmed dissolution of the abscission zone connecting floral organs to the developing fruit. In this work, we use single-cell RNA sequencing to characterize the core HAE/HSL2 abscission gene expression program. We identify the MAP KINASE PHOSPHATASE-1/MKP1 gene as a negative regulator of this pathway. MKP1 acts prior to activation of HAE/HSL2 signaling to establish a signaling threshold required for the initiation of abscission. Furthermore, we use single-cell data to identify genes expressed in two subpopulations of abscission zone cells: those proximal and those distal to the plane of separation. We identify INFLORESCENCE DEFICIENT IN ABSCISSION/IDA family genes, encoding activating ligands of HAE/HSL2, as enriched in distal abscission zone cells at the base of the abscising organs. We show how this expression pattern forms a biophysical circuit breaker whereby, when the organ is shed, the source of the IDA peptides is removed, leading to cessation of HAE/HSL2 signaling. Overall, this work provides insight into the multiple control mechanisms acting on the abscission-signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - John Baer
- Washington University in St Louis, Saint Louis, MO63105
| | | | - Uwe Ohler
- Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin10115, Germany
| | | | | |
Collapse
|
7
|
Liu Z, Wang P, Goh T, Nakajima K, Kang BH. Mucilage secretion from the root cap requires the NAC family transcription factor BEARSKIN2. PLANT PHYSIOLOGY 2024; 196:1180-1195. [PMID: 39116186 DOI: 10.1093/plphys/kiae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
The root cap secretes mucilage and sheds border cells (border-like cells, BLCs) in Arabidopsis (Arabidopsis thaliana). These mucilage and root cap-derived cells form a defensive barrier against soil pathogens. BEARSKIN1 (BRN1) and BRN2 are 2 homologous NAM, ATAF1/2, and CUC2 (NAC) family transcription factors of Arabidopsis, and mucilage secretion is inhibited in the brn1/2 double mutant. BRN1 and BRN2 are also involved in the expression of a pectin-digesting enzyme, POLYGALACTURONASE (RCPG), that facilitates BLC shedding. To further explore the connection between mucilage secretion and BLC shedding, we examined mucilage production in Arabidopsis lines displaying altered BLC detachment. Inactivation of BRN2 blocked mucilage synthesis and secretion, while inactivation of BRN1 and RCPG did not. Interestingly, RCPG sorted into mucilage-carrying vesicles budding from the Golgi and inhibited mucilage secretion in brn2-delayed BLC detachment. The root cap of a germinating seedling is initially covered with a cuticle, which is replaced by mucilage from BLCs as the seedling begins to shed these cells. Ectopic expression of RCPG in germinating seedlings caused early BLC formation and accelerated the cuticle-to-mucilage transition, indicating that RCPG expression and mucilage secretion are co-regulated. Furthermore, brn2 roots exhibited slower growth and increased cell death when subjected to salt or osmotic stress. Our research suggests that BRN2-mediated mucilage secretion contributes to BLC release to build an extracellular defense zone surrounding the root cap.
Collapse
Affiliation(s)
- Zhongyuan Liu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
8
|
Yun J, Lee I, Lee JH, Kim S, Jung SH, Oh SA, Lee J, Park SK, Soh MS, Lee Y, Kwak JM. The single RRM domain-containing protein SARP1 is required for establishment of the separation zone in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:558-570. [PMID: 39061105 DOI: 10.1111/nph.19997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.
Collapse
Affiliation(s)
- Ju Yun
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Inhye Lee
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Jae Ho Lee
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Seonghwan Kim
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Su Hyun Jung
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, 42988, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Division of Integrative Bioscience and Bioengineering, Sejong University, Seoul, 05006, Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, 42988, Korea
- Center for Cell Fate Control and Reprogramming, DGIST, Daegu, 42988, Korea
| |
Collapse
|
9
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
10
|
Li J, Su S. Abscission in plants: from mechanism to applications. ADVANCED BIOTECHNOLOGY 2024; 2:27. [PMID: 39883313 PMCID: PMC11740850 DOI: 10.1007/s44307-024-00033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 01/31/2025]
Abstract
Abscission refers to the natural separation of plant structures from their parent plants, regulated by external environmental signals or internal factors such as stress and aging. It is an advantageous process as it enables plants to shed unwanted organs, thereby regulating nutrient allocation and ensuring the dispersal of fruits and seeds from the parent. However, in agriculture and horticulture, abscission can severely reduce crop quality and yield. In this review, we summarize the recent advances in plant abscission from the perspectives of developmental and molecular biology, emphasizing the diverse regulatory networks across different plant lineages, from model plants to crops. The sophisticated process of plant abscission involves several overlapping steps, including the differentiation of the abscission zone, activation of abscission, tissue detachment, and formation of a protective layer. Finally, we discuss the potential applications of physiological modifications and genetic manipulations of plant abscission in sustainable agriculture in the future.
Collapse
Affiliation(s)
- Jiahuizi Li
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shihao Su
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Wang F, Liang Z, Ma X, He Z, Li J, Zhao M. LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi. MOLECULAR HORTICULTURE 2024; 4:29. [PMID: 39103914 DOI: 10.1186/s43897-024-00109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Galindo-Trigo S, Khandare V, Roosjen M, Adams J, Wangler AM, Bayer M, Borst JW, Smakowska-Luzan E, Butenko MA. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr Biol 2024; 34:3020-3030.e7. [PMID: 38917797 DOI: 10.1016/j.cub.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Virendrasinh Khandare
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Mark Roosjen
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Alexa-Maria Wangler
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Martin Bayer
- University of Tuebingen, Centre for Plant Molecular Biology, 72076 Tuebingen, Germany
| | - Jan Willem Borst
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Elwira Smakowska-Luzan
- Wageningen University & Research, Laboratory of Biochemistry, 6708 WE Wageningen, the Netherlands
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
13
|
Lalun VO, Breiden M, Galindo-Trigo S, Smakowska-Luzan E, Simon RGW, Butenko MA. A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level. eLife 2024; 12:RP87912. [PMID: 38896460 PMCID: PMC11186634 DOI: 10.7554/elife.87912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.
Collapse
Affiliation(s)
- Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Maike Breiden
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| | - Elwira Smakowska-Luzan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | - Rüdiger GW Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine UniversityDüsseldorfGermany
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
14
|
Ma X, He Z, Yuan Y, Liang Z, Zhang H, Lalun VO, Liu Z, Zhang Y, Huang Z, Huang Y, Li J, Zhao M. The transcriptional control of LcIDL1-LcHSL2 complex by LcARF5 integrates auxin and ethylene signaling for litchi fruitlet abscission. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1206-1226. [PMID: 38517216 DOI: 10.1111/jipb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission. Specifically, litchi IDA-like 1 (LcIDL1) interacts with the receptor HAESA-like 2 (LcHSL2). Through in vitro and in vivo experiments, we determined that the auxin response factor LcARF5 directly binds and activates both LcIDL1 and LcHSL2. Furthermore, we found that the ETHYLENE INSENSITIVE 3-like transcription factor LcEIL3 directly binds and activates LcIDL1. The expression of IDA and HSL2 homologs was enhanced in LcARF5 and LcEIL3 transgenic Arabidopsis plants, but reduced in ein3 eil1 mutants. Consistently, the expressions of LcIDL1 and LcHSL2 were significantly decreased in LcARF5- and LcEIL3-silenced fruitlet abscission zones (FAZ), which correlated with a lower rate of fruitlet abscission. Depletion of auxin led to an increase in 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene) levels in the litchi FAZ, followed by abscission activation. Throughout this process, LcARF5 and LcEIL3 were induced in the FAZ. Collectively, our findings suggest that the molecular interactions between litchi AUXIN RESPONSE FACTOR 5 (LcARF5)-LcIDL1/LcHSL2 and LcEIL3-LcIDL1 signaling modules play a role in regulating fruitlet abscission in litchi and provide a long-sought mechanistic explanation for how the interplay between auxin and ethylene is translated into the molecular events that initiate abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Yuan
- Dongguan Botanical Garden, Dongguan, 523128, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Vilde Olsson Lalun
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0316, Norway
| | - Zhuoyi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhiqiang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yulian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
15
|
Guo Z, Xu Z, Li L, Xu KW. Species-Specific miRNAs Contribute to the Divergence between Deciduous and Evergreen Species in Ilex. PLANTS (BASEL, SWITZERLAND) 2024; 13:1429. [PMID: 38891238 PMCID: PMC11174832 DOI: 10.3390/plants13111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression, playing crucial roles in plant developmental processes and environmental responses. However, the function of miRNAs in influencing deciduous traits has been little explored. Here, we utilized sRNA-seq on two deciduous species, Ilex polyneura (Hand.-Mazz.) S. Y. Hu and Ilex asprella Champ. ex Benth., along with an evergreen species, Ilex latifolia Thunb., to identify and annotate miRNAs within these species. Our analysis revealed 162 species-specific miRNAs (termed SS-miRNAs) from 120 families, underscoring the fundamental roles and potential influence of SS-miRNAs on plant phenotypic diversity and adaptation. Notably, three SS-miRNAs in I. latifolia were found to target crucial genes within the abscission signaling pathway. Analysis of cis-regulatory elements suggested a novel regulatory relationship that may contribute to the evergreen phenotype of I. latifolia by modulating the abscission process in a light-independent manner. These findings propose a potential mechanism by which SS-miRNAs can influence the conserved abscission pathway, contributing to the phenotypic divergence between deciduous and evergreen species within the genus Ilex.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| |
Collapse
|
16
|
Sun Y, Chen J, Yuan Y, Jiang N, Liu C, Zhang Y, Mao X, Zhang Q, Fang Y, Sun Z, Gai S. Auxin efflux carrier PsPIN4 identified through genome-wide analysis as vital factor of petal abscission. FRONTIERS IN PLANT SCIENCE 2024; 15:1380417. [PMID: 38799094 PMCID: PMC11116700 DOI: 10.3389/fpls.2024.1380417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
PIN-FORMED (PIN) proteins, which function as efflux transporters, play many crucial roles in the polar transportation of auxin within plants. In this study, the exogenous applications of auxin IAA and TIBA were found to significantly prolong and shorten the florescence of tree peony (Paeonia suffruticosa Andr.) flowers. This finding suggests that auxin has some regulatory influence in petal senescence and abscission. Further analysis revealed a total of 8 PsPINs distributed across three chromosomes, which could be categorized into two classes based on phylogenetic and structural analysis. PsPIN1, PsPIN2a-b, and PsPIN4 were separated into the "long" PIN category, while PsPIN5, PsPIN6a-b, and PsPIN8 belonged to the "short" one. Additionally, the cis-regulatory elements of PsPIN promoters were associated with plant development, phytohormones, and environmental stress. These genes displayed tissue-specific expression, and phosphorylation sites were abundant throughout the protein family. Notably, PsPIN4 displayed distinct and elevated expression levels in roots, leaves, and flower organs. Expression patterns among the abscission zone (AZ) and adjacent areas during various flowering stages and IAA treatment indicate that PsPIN4 likely influences the initiation of peony petal abscission. The PsPIN4 protein was observed to be co-localized on both the plasma membrane and the cell nucleus. The ectopic expression of PsPIN4 reversed the premature flower organs abscission in the Atpin4 and significantly protracted florescence when introduced to Col Arabidopsis. Our findings established a strong basis for further investigation of PIN gene biological functions, particularly concerning intrinsic relationship between PIN-mediated auxin polar.
Collapse
Affiliation(s)
- Yin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Junqiang Chen
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Yanchao Yuan
- University Key Laboratory of Plant Biotechnology in Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Nannan Jiang
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Chunying Liu
- University Key Laboratory of Plant Biotechnology in Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuxi Zhang
- University Key Laboratory of Plant Biotechnology in Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiuhong Mao
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Qian Zhang
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Yifu Fang
- Shandong Provincial Key Laboratory of Forest Genetic Improvement, Yellow River delta forest ecosystem positioning research station, Shandong Provincial Academy of Forestry, Jinan, China
| | - Zhenyuan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shupeng Gai
- University Key Laboratory of Plant Biotechnology in Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Erokhina TN, Ryazantsev DY, Zavriev SK, Morozov SY. Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long "Non-Coding" RNAs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1137. [PMID: 38674546 PMCID: PMC11055055 DOI: 10.3390/plants13081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Generally, lncPEPs (peptides encoded by long non-coding RNAs) have been identified in many plant species of several families and in some animal species. Importantly, molecular mechanisms of the miPEPs (peptides encoded by primary microRNAs, pri-miRNAs) are often poorly understood in different flowering plants. Requirement for the additional studies in these directions is highlighted by alternative findings concerning positive regulation of pri-miRNA/miRNA expression by synthetic miPEPs in plants. Further extensive studies are also needed to understand the full set of their roles in eukaryotic organisms. This review mainly aims to consider the available data on the regulatory functions of the synthetic miPEPs. Studies of chemically synthesized miPEPs and analyzing the fine molecular mechanisms of their functional activities are reviewed. Brief description of the studies to identify lncORFs (open reading frames of long non-coding RNAs) and the encoded protein products is also provided.
Collapse
Affiliation(s)
- T. N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - D. Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - S. K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - S. Y. Morozov
- Biological Faculty, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Galindo-Trigo S, Bågman AM, Ishida T, Sawa S, Brady SM, Butenko MA. Dissection of the IDA promoter identifies WRKY transcription factors as abscission regulators in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2417-2434. [PMID: 38294133 PMCID: PMC11016851 DOI: 10.1093/jxb/erae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
19
|
Dong X, Liu X, Cheng L, Li R, Ge S, Wang S, Cai Y, Liu Y, Meng S, Jiang CZ, Shi CL, Li T, Fu D, Qi M, Xu T. SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:749-770. [PMID: 38420861 DOI: 10.1111/jipb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
Collapse
Affiliation(s)
- Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Washington, DC, 20250, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| |
Collapse
|
20
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
22
|
Zhang Y, Ma Y, Zhao D, Tang Z, Zhang T, Zhang K, Dong J, Zhang H. Genetic regulation of lateral root development. PLANT SIGNALING & BEHAVIOR 2023; 18:2081397. [PMID: 35642513 PMCID: PMC10761116 DOI: 10.1080/15592324.2022.2081397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Lateral roots (LRs) are an important part of plant root systems. In dicots, for example, after plants adapted from aquatic to terrestrial environments, filamentous pseudorhizae evolved to allow nutrient absorption. A typical plant root system comprises a primary root, LRs, root hairs, and a root cap. Classical plant roots exhibit geotropism (the tendency to grow downward into the ground) and can synthesize plant hormones and other essential substances. Root vascular bundles and complex spatial structures enable plants to absorb water and nutrients to meet their nutrient quotas and grow. The primary root carries out most functions during early growth stages but is later overtaken by LRs, underscoring the importance of LR development water and mineral uptake and the soil fixation capacity of the root. LR development is modulated by endogenous plant hormones and external environmental factors, and its underlying mechanisms have been dissected in great detail in Arabidopsis, thanks to its simple root anatomy and the ease of obtaining mutants. This review comprehensively and systematically summarizes past research (largely in Arabidopsis) on LR basic structure, development stages, and molecular mechanisms regulated by different factors, as well as future prospects in LR research, to provide broad background knowledge for root researchers.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuru Ma
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Dan Zhao
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengteng Zhang
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Ministry of Education, Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
24
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
25
|
Alling R, Galindo-Trigo S. Reproductive defects in the abscission mutant ida-2 are caused by T-DNA-induced genomic rearrangements. PLANT PHYSIOLOGY 2023; 193:2292-2297. [PMID: 37555453 PMCID: PMC10663105 DOI: 10.1093/plphys/kiad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Affiliation(s)
- Renate Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
26
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC PLANT BIOLOGY 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
Collapse
|
27
|
Koenig M, Moser D, Leusner J, Depotter JRL, Doehlemann G, Misas Villamil J. Maize Phytocytokines Modulate Pro-Survival Host Responses and Pathogen Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:592-604. [PMID: 37102770 DOI: 10.1094/mpmi-01-23-0005-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytocytokines are signaling peptides that alert plant cells of danger. However, the downstream responses triggered by phytocytokines and their effect on plant survival are still largely unknown. Here, we have identified three biologically active maize orthologues of phytocytokines previously described in other plants. The maize phytocytokines show common features with microbe-associated molecular patterns (MAMPs), including the induction of immune-related genes and activation of papain-like cysteine proteases. In contrast to MAMPs, phytocytokines do not promote cell death in the presence of wounding. In infection assays with two fungal pathogens, we found that phytocytokines affect the development of disease symptoms, likely due to the activation of phytohormonal pathways. Collectively, our results show that phytocytokines and MAMPs trigger unique and antagonistic features of immunity. We propose a model in which phytocytokines activate immune responses partially similar to MAMPs but, in contrast to microbial signals, they act as danger and survival molecules to the surrounding cells. Future studies will focus on the components determining the divergence of signaling outputs upon phytocytokine activation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Maurice Koenig
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Moser
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Julian Leusner
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Johana Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
29
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Wu H, He Q, Wang Q. Advances in Rice Seed Shattering. Int J Mol Sci 2023; 24:ijms24108889. [PMID: 37240235 DOI: 10.3390/ijms24108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Seed shattering is an important trait that wild rice uses to adapt to the natural environment and maintain population reproduction, and weedy rice also uses it to compete with the rice crop. The loss of shattering is a key event in rice domestication. The degree of shattering is not only one of the main reasons for rice yield reduction but also affects its adaptability to modern mechanical harvesting methods. Therefore, it is important to cultivate rice varieties with a moderate shattering degree. In this paper, the research progress on rice seed shattering in recent years is reviewed, including the physiological basis, morphological and anatomical characteristics of rice seed shattering, inheritance and QTL/gene mapping of rice seed shattering, the molecular mechanism regulating rice seed shattering, the application of seed-shattering genes, and the relationship between seed-shattering genes and domestication.
Collapse
Affiliation(s)
- Hao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agricultural Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Wang P, Wu T, Jiang C, Huang B, Li Z. Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111642. [PMID: 36804389 DOI: 10.1016/j.plantsci.2023.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.
Collapse
Affiliation(s)
- Pingyu Wang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Ting Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Chen Jiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
32
|
Hill T, Cassibba V, Joukhadar I, Tonnessen B, Havlik C, Ortega F, Sripolcharoen S, Visser BJ, Stoffel K, Thammapichai P, Garcia-Llanos A, Chen S, Hulse-Kemp A, Walker S, Van Deynze A. Genetics of destemming in pepper: A step towards mechanical harvesting. Front Genet 2023; 14:1114832. [PMID: 37007971 PMCID: PMC10064014 DOI: 10.3389/fgene.2023.1114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The majority of peppers in the US for fresh market and processing are handpicked, and harvesting can account for 20-50% of production costs. Innovation in mechanical harvesting would increase availability; lower the costs of local, healthy vegetable products; and perhaps improve food safety and expand markets. Most processed peppers require removal of pedicels (stem and calyx) from the fruit, but lack of an efficient mechanical process for this operation has hindered adoption of mechanical harvest. In this paper, we present characterization and advancements in breeding green chile peppers for mechanical harvesting. Specifically, we describe inheritance and expression of an easy-destemming trait derived from the landrace UCD-14 that facilitates machine harvest of green chiles. Methods: A torque gauge was used for measuring bending forces similar to those of a harvester and applied to two biparental populations segregating for destemming force and rate. Genotyping by sequencing was used to generate genetic maps for quantitative trait locus (QTL) analyses. Results: A major destemming QTL was found on chromosome 10 across populations and environments. Eight additional population and/or environment-specific QTL were also identified. Chromosome 10 QTL markers were used to help introgress the destemming trait into jalapeño-type peppers. Low destemming force lines combined with improvements in transplant production enabled mechanical harvest of destemmed fruit at a rate of 41% versus 2% with a commercial jalapeńo hybrid. Staining for the presence of lignin at the pedicel/fruit boundary indicated the presence of an abscission zone and homologs of genes known to affect organ abscission were found under several QTL, suggesting that the easy-destemming trait may be due to the presence and activation of a pedicel/fruit abscission zone. Conclusion: Presented here are tools to measure the easy-destemming trait, its physiological basis, possible molecular pathways, and expression of the trait in various genetic backgrounds. Mechanical harvest of destemmed mature green chile fruits was achieved by combining easy-destemming with transplant management.
Collapse
Affiliation(s)
- Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Vincenzo Cassibba
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Israel Joukhadar
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Bradley Tonnessen
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Charles Havlik
- Los Lunas Agricultural Science Center, Los Lunas, NM, United States
| | - Franchesca Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | | | | | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Paradee Thammapichai
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Amanda Hulse-Kemp
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. PLANTS (BASEL, SWITZERLAND) 2023; 12:185. [PMID: 36616314 PMCID: PMC9823658 DOI: 10.3390/plants12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The unwanted detachment of organs such as flowers, leaves, and fruits from the main body of a plant (abscission) has significant effects on agricultural practice. Both timely and precise regulation of organ abscission from a plant is crucial as it influences the agricultural yield. The tomato (Solanum lycopersicum) has become a model system for research on organ abscission. Here, we characterized four tomato natural abscission variants named jointless (j), functionally impaired jointless (fij), functionally impaired jointless like (fij like), and normal joint (NJ), based on their cellular features within the flower abscission zones (AZ). Using eight INFLORESCENCE DEFICIENT IN ABSCISSION (SlIDA) genes and eight HAESA genes (SlHAE) identified in the genome sequence of tomato, we analyzed the pattern of gene expression during flower abscission. The AZ-specific expression for three tomato abscission polygalacturonases (SlTAPGs) in the development of flower AZ, and the progression of abscission validated our natural abscission system. Compared to that of j, fij, and fij like variants, the AZ-specific expression for SlIDA, SlIDL2, SlIDL3, SlIDL4, and SlIDL5 in the NJ largely corelated and increased with the process of abscission. Of eight SlHAE genes examined, the expression for SlHSL6 and SlHSL7 were found to be AZ-specific and increased as abscission progressed in the NJ variant. Unlike the result of gene expression obtained from natural abscission system, an in silico analysis of transcriptional binding sites uncovered that SlIDA genes (SlIDA, SlIDL6, and SlIDL7) are predominantly under the control of environmental stress, while most of the SlHSL genes are affiliated with the broader context in developmental processes and stress responses. Our result presents the potential bimodal transcriptional regulation of the tomato IDA-HAE module associated with flower abscission in tomatoes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Samiah Arif
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - June Woo Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
- Quality Assurance Team, Quality Assurance Department, Nongwoobio Co., Ltd., Yeoju 12655, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Mark Leo Tucker
- Soybean Genomics and Improvement Lab, Agriculture Research Service, United States Department of Agriculture, Building 006, BARC-West, Beltsville, MD 20705, USA
| | - Joonyup Kim
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
35
|
Wu J, Liu H, Ren S, Li P, Li X, Lin L, Sun Q, Zhang L, Lin C, Wang Y. Generating an oilseed rape mutant with non-abscising floral organs using CRISPR/Cas9 technology. PLANT PHYSIOLOGY 2022; 190:1562-1565. [PMID: 35951752 PMCID: PMC9614459 DOI: 10.1093/plphys/kiac364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape plants with abscission-defective floral organs acquired through genome editing show less susceptibility to Sclerotinia sclerotiorum infection and longer flowering-period for flower tourism.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Huimin Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xue Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qinfu Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Long Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
36
|
Crick J, Corrigan L, Belcram K, Khan M, Dawson JW, Adroher B, Li S, Hepworth SR, Pautot V. Floral organ abscission in Arabidopsis requires the combined activities of three TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6150-6169. [PMID: 35689803 DOI: 10.1093/jxb/erac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Floral organ abscission is a separation process in which sepals, petals, and stamens detach from the plant at abscission zones. Here, we investigated the collective role of three amino-acid-loop-extension (TALE) homeobox genes ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), KNAT6 (for KNOTTED LIKE from Arabidopsis thaliana) and KNAT2, which form a module that patterns boundaries under the regulation of BLADE-ON-PETIOLE 1 and 2 (BOP1/2) co-activators. These TALE homeodomain transcription factors were shown to maintain boundaries in the flower, functioning as a unit to coordinate the growth, patterning, and activity of abscission zones. Together with BOP1 and BOP2, ATH1 and its partners KNAT6 and KNAT2 collectively contribute to the differentiation of lignified and separation layers of the abscission zone. The genetic interactions of BOP1/2 and ATH1 with INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) were also explored. We showed that BOP1/2 co-activators and ATH1 converge with the IDA signalling pathway to promote KNAT6 and KNAT2 expression in the abscission zone and cell separation. ATH1 acts as a central regulator in floral organ abscission as it controls the expression of other TALE genes in abscission zone cells.
Collapse
Affiliation(s)
- Jennifer Crick
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura Corrigan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jeff W Dawson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sibei Li
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Véronique Pautot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
37
|
Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102274. [PMID: 35977439 DOI: 10.1016/j.pbi.2022.102274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Post-translationally modified peptides (PMPs) are important regulators of plant growth and development. They are derived from larger inactive precursors by post-translational modification (PTM) and proteolytic processing to result in the bioactive peptide signals. We discuss how and why these modifications contribute to the bioactivity of inflorescence deficient in abscission (IDA), phytosulfokine (PSK), and peptides of the Casparian strip integrity factor (CIF) family, as signaling molecules during reproductive development. The emerging picture suggests that PTMs evolved to increase the specificity of interaction of PMPs with cognate receptors and of PMP precursors with processing proteases. Cleavage sites in PMP precursors are recognized by subtilases (SBTs) in a highly specific manner. SBT-mediated processing results in the activation of PMP signals regulating stress-induced flower drop, the formation of the embryonic cuticle, and pollen development.
Collapse
Affiliation(s)
- Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
38
|
Tian D, Xie Q, Deng Z, Xue J, Li W, Zhang Z, Dai Y, Zheng B, Lu T, De Smet I, Guo Y. Small secreted peptides encoded on the wheat ( triticum aestivum L.) genome and their potential roles in stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1000297. [PMID: 36212358 PMCID: PMC9532867 DOI: 10.3389/fpls.2022.1000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Small secreted peptides (SSPs) are important signals for cell-to-cell communication in plant, involved in a variety of growth and developmental processes, as well as responses to stresses. While a large number of SSPs have been identified and characterized in various plant species, little is known about SSPs in wheat, one of the most important cereal crops. In this study, 4,981 putative SSPs were identified on the wheat genome, among which 1,790 TaSSPs were grouped into 38 known SSP families. The result also suggested that a large number of the putaitive wheat SSPs, Cys-rich peptides in particular, remained to be characterized. Several TaSSP genes were found to encode multiple SSP domains, including CLE, HEVEIN and HAIRPININ domains, and two potentially novel TaSSP family DYY and CRP8CI were identified manually among unpredicted TaSSPs. Analysis on the transcriptomic data showed that a great proportion of TaSSPs were expressed in response to abiotic stresses. Exogenous application of the TaCEPID peptide encoded by TraesCS1D02G130700 enhanced the tolerance of wheat plants to drought and salinity, suggesting porential roles of SSPs in regulating stress responses in wheat.
Collapse
Affiliation(s)
- Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Xie
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jin Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
39
|
Lee J, Chen H, Lee G, Emonet A, Kim S, Shim D, Lee Y. MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2466-2480. [PMID: 35689444 PMCID: PMC9543660 DOI: 10.1111/nph.18303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 06/14/2023]
Abstract
The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
| | - Huize Chen
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi ProvinceShanxi Normal UniversityTaiyuan030000ShanxiChina
| | - Gisuk Lee
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Aurélia Emonet
- Department of Plant Molecular BiologyUniversity of Lausanne1015LausanneSwitzerland
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityDaejeon34134Korea
| | - Yuree Lee
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
- School of Biological SciencesSeoul National UniversitySeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826Korea
| |
Collapse
|
40
|
Liu X, Cheng L, Li R, Cai Y, Wang X, Fu X, Dong X, Qi M, Jiang CZ, Xu T, Li T. The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. PLANT PHYSIOLOGY 2022; 189:2396-2412. [PMID: 35522030 PMCID: PMC9342995 DOI: 10.1093/plphys/kiac212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Plant organ abscission, a process that is important for development and reproductive success, is inhibited by the phytohormone auxin and promoted by another phytohormone, jasmonic acid (JA). However, the molecular mechanisms underlying the antagonistic effects of auxin and JA in organ abscission are unknown. We identified a tomato (Solanum lycopersicum) class III homeodomain-leucine zipper transcription factor, HOMEOBOX15A (SlHB15A), which was highly expressed in the flower pedicel abscission zone and induced by auxin. Knocking out SlHB15A using clustered regularly interspaced short palindromic repeats-associated protein 9 technology significantly accelerated abscission. In contrast, overexpression of microRNA166-resistant SlHB15A (mSlHB15A) delayed abscission. RNA sequencing and reverse transcription-quantitative PCR analyses showed that knocking out SlHB15A altered the expression of genes related to JA biosynthesis and signaling. Furthermore, functional analysis indicated that SlHB15A regulates abscission by depressing JA-isoleucine (JA-Ile) levels through inhabiting the expression of JASMONATE-RESISTANT1 (SlJAR1), a gene involved in JA-Ile biosynthesis, which could induce abscission-dependent and abscission-independent ethylene signaling. SlHB15A bound directly to the SlJAR1 promoter to silence SlJAR1, thus delaying abscission. We also found that flower removal enhanced JA-Ile content and that application of JA-Ile severely impaired the inhibitory effects of auxin on abscission. These results indicated that SlHB15A mediates the antagonistic effect of auxin and JA-Ile during tomato pedicel abscission, while auxin inhibits abscission through the SlHB15A-SlJAR1 module.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, California 95616, USA
- Crops Pathology and Genetic Research Unit, USDA-ARS, Davis, California 95616, USA
| | - Tao Xu
- Author for correspondence: (T.L.), (T.X.)
| | - Tianlai Li
- Author for correspondence: (T.L.), (T.X.)
| |
Collapse
|
41
|
Regulatory network for FOREVER YOUNG FLOWER-like genes in regulating Arabidopsis flower senescence and abscission. Commun Biol 2022; 5:662. [PMID: 35790878 PMCID: PMC9256709 DOI: 10.1038/s42003-022-03629-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
FOREVER YOUNG FLOWER (FYF) has been reported to play an important role in regulating flower senescence/abscission. Here, we functionally analyzed five Arabidopsis FYF-like genes, two in the FYF subgroup (FYL1/AGL71 and FYL2/AGL72) and three in the SOC1 subgroup (SOC1/AGL20, AGL19, and AGL14/XAL2), and showed their involvement in the regulation of flower senescence and/or abscission. We demonstrated that in FYF subgroup, FYF has both functions in suppressing flower senescence and abscission, FYL1 only suppresses flower abscission and FYL2 has been converted as an activator to promote flower senescence. In SOC1 subgroup, AGL19/AGL14/SOC1 have only one function in suppressing flower senescence. We also found that FYF-like proteins can form heterotetrameric complexes with different combinations of A/E functional proteins (such as AGL6 and SEP1) and AGL15/18-like proteins to perform their functions. These findings greatly expand the current knowledge behind the multifunctional evolution of FYF-like genes and uncover their regulatory network in plants.
Collapse
|
42
|
Guo C, Li X, Zhang Z, Wang Q, Zhang Z, Wen L, Liu C, Deng Z, Chu Y, Liu T, Guo Y. The INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 Peptide Functions as a Positive Modulator of Leaf Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:909378. [PMID: 35845701 PMCID: PMC9280484 DOI: 10.3389/fpls.2022.909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a highly coordinated process and has a significant impact on agriculture. Plant peptides are known to act as important cell-to-cell communication signals that are involved in multiple biological processes such as development and stress responses. However, very limited number of peptides has been reported to be associated with leaf senescence. Here, we report the characterization of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE6 (IDL6) peptide as a regulator of leaf senescence. The expression of IDL6 was up-regulated in senescing leaves. Exogenous application of synthetic IDL6 peptides accelerated the process of leaf senescence. The idl6 mutant plants showed delayed natural leaf senescence as well as senescence included by darkness, indicating a regulatory role of IDL6 peptides in leaf senescence. The role of IDL6 as a positive regulator of leaf senescence was further supported by the results of overexpression analysis and complementation test. Transcriptome analysis revealed differential expression of phytohormone-responsive genes in idl6 mutant plants. Further analysis indicated that altered expression of IDL6 led to changes in leaf senescence phenotypes induced by ABA and ethylene treatments. The results from this study suggest that the IDL6 peptide positively regulates leaf senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Cun Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zenglin Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Qi Wang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Zhenbiao Zhang
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Wen
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- QuJing Tobacco Company, Qujing, China
| | - Zhichao Deng
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Chu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| | - Tao Liu
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Guo
- Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Qingdao, China
| |
Collapse
|
43
|
Badola PK, Sharma A, Gautam H, Trivedi PK. MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. PLANT PHYSIOLOGY 2022; 189:1397-1415. [PMID: 35325214 PMCID: PMC9237717 DOI: 10.1093/plphys/kiac138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/02/2023]
Abstract
Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.
Collapse
Affiliation(s)
| | | | - Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
44
|
Rhodes J, Roman AO, Bjornson M, Brandt B, Derbyshire P, Wyler M, Schmid MW, Menke FLH, Santiago J, Zipfel C. Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. eLife 2022; 11:74687. [PMID: 35617122 PMCID: PMC9191895 DOI: 10.7554/elife.74687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.
Collapse
Affiliation(s)
- Jack Rhodes
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Andra-Octavia Roman
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Marta Bjornson
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Brandt
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cyril Zipfel
- Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Zhang L, Yang Y, Mu C, Liu M, Ishida T, Sawa S, Zhu Y, Pi L. Control of Root Stem Cell Differentiation and Lateral Root Emergence by CLE16/17 Peptides in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:869888. [PMID: 35519820 PMCID: PMC9062579 DOI: 10.3389/fpls.2022.869888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Secreted peptide-mediated cell-to-cell communication plays a crucial role in the development of multicellular organisms. A large number of secreted peptides have been predicated by bioinformatic approaches in plants. However, only a few of them have been functionally characterized. In this study, we show that two CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides CLE16/17 are required for both stem cell differentiation and lateral root (LR) emergence in Arabidopsis. We further demonstrate that the CLE16/17 peptides act through the CLAVATA1-ARABIDOPSIS CRINKLY4 (CLV1-ACR4) protein kinase complex in columella stem cell (CSC) differentiation, but not in LR emergence. Furthermore, we show that CLE16/17 promote LR emergence probably via activating the expression of HAESA/HAESA-LIKE2 (HAE/HSL2) required for cell wall remodeling. Collectively, our results reveal a CLV1-ACR4-dependent and -independent dual-function of the CLE16/17 peptides in root development.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Changqing Mu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Mingyu Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Ercoli MF, Luu DD, Rim EY, Shigenaga A, Teixeira de Araujo A, Chern M, Jain R, Ruan R, Joe A, Stewart V, Ronald P. Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proc Natl Acad Sci U S A 2022; 119:e2121568119. [PMID: 35131901 PMCID: PMC8872720 DOI: 10.1073/pnas.2121568119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
In this article, we describe the development of the plant immunity field, starting with efforts to understand the genetic basis for disease resistance, which ∼30 y ago led to the discovery of diverse classes of immune receptors that recognize and respond to infectious microbes. We focus on knowledge gained from studies of the rice XA21 immune receptor that recognizes RaxX (required for activation of XA21 mediated immunity X), a sulfated microbial peptide secreted by the gram-negative bacterium Xanthomonas oryzae pv. oryzae. XA21 is representative of a large class of plant and animal immune receptors that recognize and respond to conserved microbial molecules. We highlight the complexity of this large class of receptors in plants, discuss a possible role for RaxX in Xanthomonas biology, and draw attention to the important role of sulfotyrosine in mediating receptor-ligand interactions.
Collapse
Affiliation(s)
- María Florencia Ercoli
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Dee Dee Luu
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Ellen Youngsoo Rim
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Alexandra Shigenaga
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Artur Teixeira de Araujo
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Rashmi Jain
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Randy Ruan
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Anna Joe
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Valley Stewart
- Department of Microbiology and Molecular Genetics, University of California, Davis 95616, CA
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616;
- The Genome Center, University of California, Davis, CA 95616
| |
Collapse
|
47
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
48
|
Ma X, Ying P, He Z, Wu H, Li J, Zhao M. The LcKNAT1-LcEIL2/3 Regulatory Module Is Involved in Fruitlet Abscission in Litchi. FRONTIERS IN PLANT SCIENCE 2022; 12:802016. [PMID: 35126427 PMCID: PMC8813966 DOI: 10.3389/fpls.2021.802016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 06/12/2023]
Abstract
Large and premature organ abscission may limit the industrial development of fruit crops by causing serious economic losses. It is well accepted that ethylene (ET) is a strong inducer of organ abscission in plants. However, the mechanisms underlying the control of organ abscission by ET are largely unknown. We previously revealed that LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein, acted as a negative regulator in control of fruitlet abscission through suppressing the expression of ET biosynthetic genes in litchi. In this study, we further reported that LcKNAT1 could also directly repress the transcription of LcEIL2 and LcEIL3, two ETHYLENE INSENSITIVE 3-like (EIL) homologs in litchi, which functioned as positive regulators in ET-activated fruitlet abscission by directly promoting the expression of genes responsible for ET biosynthesis and cell wall degradation. The expression level of LcKNAT1 was downregulated, while LcEIL2/3 was upregulated at the abscission zone (AZ) accompanying the fruitlet abscission in litchi. The results of electrophoretic mobility shift assays (EMSAs) and transient expression showed that LcKNAT1 could directly bind to the promoters of LcEIL2 and LcEIL3 and repress their expression. Furthermore, the genetic cross demonstrated that the β-glucuronidase (GUS) expression driven by the promoters of LcEIL2 or LcEIL3 at the floral AZ was obviously suppressed by LcKNAT1 under stable transformation in Arabidopsis. Taken together, our findings suggest that the LcKNAT1-LcEIL2/3 regulatory module is likely involved in the fruitlet abscission in litchi, and we propose that LcKNAT1 could suppress both ET biosynthesis and signaling to regulate litchi fruit abscission.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
50
|
Ma X, Li C, Yuan Y, Zhao M, Li J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. PHYSIOLOGIA PLANTARUM 2021; 173:1136-1146. [PMID: 34302699 DOI: 10.1111/ppl.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Organ abscission in plants requires the hydrolysis of cell wall components, mainly including celluloses, pectins, and xyloglucans. However, how the genes that encode those hydrolytic enzymes are regulated and their function in abscission remains unclear. Previously we revealed that two cellulase genes LcCEL2/8 and two polygalacturonase genes LcPG1/2 were responsible for the degradation of celluloses and pectins, respectively, during fruitlet abscission in litchi. Here, we further identified three xyloglucan endotransglucosylase/hydrolase genes (LcXTH4, LcXTH7, LcXTH19) that are also involved in this process. Nineteen LcXTHs, named LcXTH1-19, were identified in the litchi genome. Transcriptome data and qRT-PCR confirmed that LcXTH4/7/19 were significantly induced at the abscission zone (AZ) during fruitlet abscission in litchi. The GUS reporter driven by each promoter of LcXTH4/7/19 was specifically expressed at the floral abscission zone of Arabidopsis, and importantly ectopic expression of LcXTH19 in Arabidopsis resulted in precocious floral organ abscission. Moreover, electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter analysis showed that the expression of LcXTH4/7/19 could be directly activated by two ETHYLENE INSENSITIVE 3-like (EIL) transcription factors LcEIL2/3. Collectively, we propose that LcXTH4/7/19 are involved in fruitlet abscission, and LcEIL2/3-mediated transcriptional regulation of diverse cell wall hydrolytic genes is responsible for this process in litchi.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ye Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|