1
|
Wang B, Kong WF, Dong W, Su LH, Luan JY, Jiang J, Liu GF, Li HY. BpTCP19 targets BpWRKY53 to negatively regulate jasmonic acid- and dark-induced leaf senescence in Betula platyphylla. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109158. [PMID: 39357199 DOI: 10.1016/j.plaphy.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
TCP (TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1) is a plant-specific transcription factor that has garnered significant attention due to its wide-ranging involvement in the regulation of plant growth or developmental processes. However, the molecular mechanisms through which TCP genes orchestrate leaf senescence have not been extensively elucidated. BpTCP19, a member of the PCF subfamily in Betula platyphylla, and has high homology to AtTCP19. BpTCP19 displayed pronounced downregulation in response to methyl jasmonate (MeJA) and dark treatment. Overexpressing BpTCP19 in Betula platyphylla led to a delay in leaf senescence, resulting in prolonged leaf greenness under both MeJA and dark conditions. Transcriptome analysis revealed that overexpression of BpTCP19 induced alterations in the expression levels of genes linked to cell proliferation, hormone signaling transduction, and leaf senescence, including the early responsive factor BpWRKY53. Furthermore, through Yeast one-hybrid assays and GUS analysis, BpTCP19 was shown to bind to the promoter region of BpWRKY53, suppressing its expression and thereby retarding leaf senescence. This study elucidates the physiological and molecular functions of BpTCP19 as a central transcriptional regulatory module in leaf senescence and provides a potential target gene for delaying leaf senescence by mitigating sensitivity to external aging signals such as Jasmonic acid (JA) and darkness.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wei-Feng Kong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wei Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Li-Hui Su
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Yu Luan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Gui-Feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hui-Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Huang D, Chen X, Yun F, Fang H, Wang C, Liao W. Nitric oxide alleviates programmed cell death induced by cadmium in Solanum lycopersicum seedlings through protein S-nitrosylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172812. [PMID: 38703854 DOI: 10.1016/j.scitotenv.2024.172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd), as a non-essential and toxic heavy metal in plants, has deleterious effects on plant physiological and biochemical processes. Nitric oxide (NO) is one of the most important signaling molecules for plants to response diverse stresses. Here, we found that Cd-induced programmed cell death (PCD) was accompanied by NO bursts, which exacerbated cell death when NO was removed and vice versa. Proteomic analysis of S-nitrosylated proteins showed that the differential proteins in Cd-induced PCD and in NO-alleviated PCD mainly exist together in carbohydrate metabolism and amino acid metabolism, while some of the differential proteins exist alone in metabolism of cofactors and vitamins and lipid metabolism. Meanwhile, S-nitrosylation of proteins in porphyrin and chlorophyll metabolism and starch and sucrose metabolism could explain the leaf chlorosis induced by PCD. Moreover, protein transport protein SEC23, ubiquitinyl hydrolase 1 and pathogenesis-related protein 1 were identified to be S-nitrosylated in vivo, and their expressions were increased in Cd-induced PCD while decreased in NO treatment. Similar results were obtained in tomato seedlings with higher S-nitrosylation. Taken together, our results indicate that NO might be involved in the regulation of Cd-induced PCD through protein S-nitrosylation, especially proteins involved in PCD response.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Xinfang Chen
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Fahong Yun
- Pratacultural College, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China.
| |
Collapse
|
4
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
5
|
Yang Q, Tan S, Wang HL, Wang T, Cao J, Liu H, Sha Y, Zhao Y, Xia X, Guo H, Li Z. Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1116-1133. [PMID: 37608617 DOI: 10.1111/nph.19198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9β rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hairong Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueqi Sha
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
6
|
Qiao L, Liu Y, Deng X, Yu W, Wang Y, Li X, Lu L, Liu X. A new strategy for browning regulation: Flos Sophorae Immaturus extract and thermal treatment modulates nitric oxide and reactive oxygen species network in fresh-cut potatoes. J Food Sci 2023; 88:4574-4590. [PMID: 37850398 DOI: 10.1111/1750-3841.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Browning discoloration is a critical issue that negatively affects the quality of fresh-cut products and their industrial growth. Although many individual anti-browning technologies have been adopted, very few reports on the combination use of natural product extracts and physical methods exist. This study investigated the use of Flos Sophorae Immaturus extract in conjunction with thermal treatment and discovered that the combination effectively retarded browning in fresh-cut potatoes. Accordingly, the activities of polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase, as well as phenol accumulation, were effectively regulated. Meanwhile, this combination treatment also allowed for the modulation of nitric oxide synthase, superoxide dismutase, and catalase activities, while also regulating the concentrations of nitric oxide, superoxide anion, and hydrogen peroxide. Furthermore, the duplex treatment also regulated the antioxidant capacity and malondialdehyde concentrations. In addition, 39 phytoactive compounds, including protocatechuic acid, quercetin, (-)-alpha-pinene, and matrine, were identified in the extract, which may function as the anti-browning composition. These findings suggest that the combination technology modulated the dynamic equilibrium of production and clearance of nitric oxide and reactive oxygen species, thereby reducing browning deterioration. This is, to our knowledge, the first report of the combined application of Flos Sophorae Immaturus and thermal treatment, which may offer a novel option for fresh-cut preservation. PRACTICAL APPLICATION: The feasibility of integrating a novel highly efficient, safe, environmentally friendly, and easy-to-operate anti-browning alternative, with the ability to integrate into the existing processing line was investigated. The color of sliced potato chips was significantly improved (73.4%) by dipping them in a 0.01% Flos Sophorae Immaturus solution for 5 min and then in 55°C water for 2 min. In this regard, superior browning alleviation may depend on the regulation of the browning reaction and the NO-ROS network. This method has a promising future for making fresh-cut products more appealing to consumers and may provide guidance for fresh-cut producers and related industries.
Collapse
Affiliation(s)
- Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
- Tianjin Gasin-DH Preservation Technology Co., Ltd., China, P. R. China
| | - Yuhan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Xiuli Deng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Weiyang Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Yanyu Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Xiaokui Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, China, P. R. China
| |
Collapse
|
7
|
Wani KI, Naeem M, Khan MMA, Aftab T. Nitric oxide induces antioxidant machinery, PSII functioning and artemisinin biosynthesis in Artemisia annua under cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111754. [PMID: 37321306 DOI: 10.1016/j.plantsci.2023.111754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Soil contamination by heavy metals poses a significant environmental challenge, as the practical implementation of existing remediation technologies in the field has encountered numerous obstacles. This has necessitated the requirement of finding alternate solutions to reduce the harm caused to plants. In this study, nitric oxide (NO) was investigated for its potential to reduce cadmium (Cd) toxicity in A. annua plants. Although NO plays a vital role in the growth and development of plants, information on its role in reducing abiotic stress in plants is limited. A. annua plants were exposed to 20 and 40 mg/kg Cd regardless of the addition of exogenous sodium nitroprusside (SNP), a NO donor, at 200 µM concentration. Results showed that SNP treatment improved plant growth, photosynthesis, chlorophyll fluorescence, pigment content, and artemisinin production while reducing Cd accumulation and improving membrane stability in A. annua during Cd stress. The results demonstrated that NO can effectively reverse Cd-induced damage in A. annua by modulating the antioxidant system, maintaining redox homeostasis, and improving photosynthetic performance and different fluorescence parameters such as Fv/Fm, ФPSII, and ETR. The supplementation of SNP caused a substantial improvement in chloroplast ultrastructure, stomatal behavior, and different attributes relate to glandular secretory trichomes, which in turn increased artemisinin production; 14.11 % in plants exposed to Cd stress of 20 mg/kg. Our findings highlight that NO could be useful in mediating the repair of Cd-induced damage to A. annua, and suggest that it may play a critical role in plant signaling networks, improving plant adaptability to Cd stress. The results have important implications for developing new strategies to mitigate the negative impacts of environmental contaminants on plant health, and ultimately, the ecosystem.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - M Masroor A Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
8
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
9
|
Arasimowicz-Jelonek M, Jagodzik P, Płóciennik A, Sobieszczuk-Nowicka E, Mattoo A, Polcyn W, Floryszak-Wieczorek J. Dynamics of nitration during dark-induced leaf senescence in Arabidopsis reveals proteins modified by tryptophan nitration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6853-6875. [PMID: 35981877 DOI: 10.1093/jxb/erac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a critical molecule that links plant development with stress responses. Herein, new insights into the role of NO metabolism during leaf senescence in Arabidopsis are presented. A gradual decrease in NO emission accompanied dark-induced leaf senescence (DILS), and a transient wave of peroxynitrite (ONOO-) formation was detected by day 3 of DILS. The boosted ONOO- did not promote tryptophan (Trp) nitration, while the pool of 6-nitroTrp-containing proteins was depleted as senescence progressed. Immunoprecipitation combined with mass spectrometry was used to identify 63 and 4 characteristic 6-nitroTrp-containing proteins in control and individually darkened leaves, respectively. The potential in vivo targets of Trp nitration were mainly related to protein biosynthesis and carbohydrate metabolism. In contrast, nitration of tyrosine-containing proteins was intensified 2-fold on day 3 of DILS. Also, nitrative modification of RNA and DNA increased significantly on days 3 and 7 of DILS, respectively. Taken together, ONOO- can be considered a novel pro-senescence regulator that fine-tunes the redox environment for selective bio-target nitration. Thus, DILS-triggered nitrative changes at RNA and protein levels promote developmental shifts during the plant's lifespan and temporal adjustment in plant metabolism under suboptimal environmental conditions.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Autar Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA
| | - Władysław Polcyn
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | |
Collapse
|
10
|
Wang Z, Gao M, Li Y, Zhang J, Su H, Cao M, Liu Z, Zhang X, Zhao B, Guo YD, Zhang N. The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6207-6225. [PMID: 35696674 DOI: 10.1093/jxb/erac258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Initiation and progression of leaf senescence are triggered by various environmental stressors and phytohormones. Jasmonic acid (JA) and darkness accelerate leaf senescence in plants. However, the mechanisms that integrate these two factors to initiate and regulate leaf senescence have not been identified. Here, we report a transcriptional regulatory module centred on a novel tomato WRKY transcription factor, SlWRKY37, responsible for both JA- and dark-induced leaf senescence. The expression of SlWRKY37, together with SlMYC2, encoding a master transcription factor in JA signalling, was significantly induced by both methyl jasmonate (MeJA) and dark treatments. SlMYC2 binds directly to the promoter of SlWRKY37 to activate its expression. Knock out of SlWRKY37 inhibited JA- and dark-induced leaf senescence. Transcriptome analysis and biochemical experiments revealed SlWRKY53 and SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) as direct transcriptional targets of SlWRKY37 to control leaf senescence. Moreover, SlWRKY37 interacted with a VQ motif-containing protein SlVQ7, and the interaction improved the stability of SlWRKY37 and the transcriptional activation of downstream target genes. Our results reveal the physiological and molecular functions of SlWRKY37 in leaf senescence, and offer a target gene to retard leaf yellowing by reducing sensitivity to external senescence signals, such as JA and darkness.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Su
- College of Horticulture, China Agricultural University, Beijing, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
11
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
12
|
Zhao C, Bao Z, Feng H, Chen L, Li Q. Nitric oxide enhances resistance of Pleurotus eryngii to cadmium stress by alleviating oxidative damage and regulating of short-chain dehydrogenase/reductase family. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53036-53049. [PMID: 35278180 DOI: 10.1007/s11356-022-19613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The function and mechanism of nitric oxide (NO) in regulating Pleurotus eryngii biological response to cadmium (Cd) stress was evaluated by using anti-oxidation and short-chain dehydrogenase/reductase (SDR) family analysis. The fresh biomass of P. eryngii mycelia sharply decreased after treatment with 50 µM Cd; the lipid peroxidation and H2O2 accumulation in P. eryngii were found responsible for it. Proper exogenous supply of NO (150 µM SNP) alleviated the oxidative damage induced by Cd stress in P. eryngii, which reduced the accumulation of thiobarbituric acid reactive substances (TBARS) and H2O2. The activities of antioxidant enzymes (superoxide dismutase, peroxidase) were significantly increased to deal with Cd stress when treated with SNP (150 µM), and the content of proline was also closely related to NO-mediated reduction of Cd toxicity. Moreover, SDR family members were widely involved in the response to Cd stress, especially PleSCH70 gene was observed for the first time in participating in NO-mediated enhancement of Cd tolerance in P. eryngii. Taken together, this study provides new insights in understanding the tolerance mechanisms of P. eryngii to heavy metal and lays a foundation for molecular breeding of P. eryngii to improve its tolerance to environmental stress.
Collapse
Affiliation(s)
- Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Lanchai Chen
- Key Laboratory of Food Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Hussain A, Shah F, Ali F, Yun BW. Role of Nitric Oxide in Plant Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:851631. [PMID: 35463429 PMCID: PMC9022112 DOI: 10.3389/fpls.2022.851631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 05/27/2023]
Abstract
In plants senescence is the final stage of plant growth and development that ultimately leads to death. Plants experience age-related as well as stress-induced developmental ageing. Senescence involves significant changes at the transcriptional, post-translational and metabolomic levels. Furthermore, phytohormones also play a critical role in the programmed senescence of plants. Nitric oxide (NO) is a gaseous signalling molecule that regulates a plethora of physiological processes in plants. Its role in the control of ageing and senescence has just started to be elucidated. Here, we review the role of NO in the regulation of programmed cell death, seed ageing, fruit ripening and senescence. We also discuss the role of NO in the modulation of phytohormones during senescence and the significance of NO-ROS cross-talk during programmed cell death and senescence.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
HuNAC20 and HuNAC25, Two Novel NAC Genes from Pitaya, Confer Cold Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23042189. [PMID: 35216304 PMCID: PMC8876859 DOI: 10.3390/ijms23042189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/21/2022] Open
Abstract
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the gene family play vital roles in regulating plant growth and development processes including biotic/abiotic stress responses. However, little information is available about the NAC family in pitaya. In this study, we conducted a genome-wide analysis and a total of 64 NACs (named HuNAC1-HuNAC64) were identified in pitaya (Hylocereus). These genes were grouped into fifteen subgroups with diversities in gene proportions, exon–intron structures, and conserved motifs. Genome mapping analysis revealed that HuNAC genes were unevenly scattered on all eleven chromosomes. Synteny analysis indicated that the segmental duplication events played key roles in the expansion of the pitaya NAC gene family. Expression levels of these HuNAC genes were analyzed under cold treatments using qRT-PCR. Four HuNAC genes, i.e., HuNAC7, HuNAC20, HuNAC25, and HuNAC30, were highly induced by cold stress. HuNAC7, HuNAC20, HuNAC25, and HuNAC30 were localized exclusively in the nucleus. HuNAC20, HuNAC25, and HuNAC30 were transcriptional activators while HuNAC7 was a transcriptional repressor. Overexpression of HuNAC20 and HuNAC25 in Arabidopsis thaliana significantly enhanced tolerance to cold stress through decreasing ion leakage, malondialdehyde (MDA), and H2O2 and O2− accumulation, accompanied by upregulating the expression of cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47, and AtKIN1). This study presents comprehensive information on the understanding of the NAC gene family and provides candidate genes to breed new pitaya cultivars with tolerance to cold conditions through genetic transformation.
Collapse
|
15
|
Shen J, Chen Q, Li Z, Zheng Q, Xu Y, Zhou H, Mao H, Shen Q, Liu P. Proteomic and metabolomic analysis of Nicotiana benthamiana under dark stress. FEBS Open Bio 2022; 12:231-249. [PMID: 34792288 PMCID: PMC8727940 DOI: 10.1002/2211-5463.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 11/08/2022] Open
Abstract
Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.
Collapse
Affiliation(s)
- Juan‐Juan Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
- Chemistry Research Institution of Henan Academy of SciencesZhengzhouChina
| | - Qian‐Si Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ze‐Feng Li
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Qing‐Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ya‐Long Xu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hui‐Na Zhou
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hong‐Yan Mao
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Qi Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Ping‐Ping Liu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| |
Collapse
|
16
|
Liu Y, Zhang H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. PLANT SIGNALING & BEHAVIOR 2021; 16:1985860. [PMID: 34668846 PMCID: PMC9208772 DOI: 10.1080/15592324.2021.1985860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) have attracted considerable interest from plant pathologists since they regulate plant defenses via the hypersensitive response (HR) and stomatal closure. Here, we introduce the regulatory mechanisms of NO and ROS bursts and discuss the role of such bursts in HR and stomatal closure. It showed that epidermal sections of leaves respond to pathogens by the rapid and intense production of intracellular ROS and NO. Oxidative stress and H2O2 induce stomatal closure. Catalase and peroxidase-deficient plants are also hyperresponsive to pathogen invasion, suggesting a role for H2O2 in HR-mediated cell death. The analysis reveals that ROS and NO play important roles in stomatal closure and HR that involves multiple pathways. Therefore, multi-disciplinary and multi-omics combined analysis is crucial to the advancement of ROS and NO research and their role in plant defense mechanism.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| |
Collapse
|
17
|
Wani KI, Naeem M, Castroverde CDM, Kalaji HM, Albaqami M, Aftab T. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants. Int J Mol Sci 2021; 22:ijms22179656. [PMID: 34502565 PMCID: PMC8432174 DOI: 10.3390/ijms22179656] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
| | - M. Naeem
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
| | | | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
- Correspondence:
| |
Collapse
|
18
|
Overexpressing 7-Hydroxymethyl Chlorophyll a Reductase Alleviates Non-Programmed Cell Death during Dark-Induced Senescence in Intact Arabidopsis Plants. Biomolecules 2021; 11:biom11081143. [PMID: 34439809 PMCID: PMC8394709 DOI: 10.3390/biom11081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, the last stage of leaf development, is a well-regulated and complex process for investigation. For simplification, dark-induced leaf senescence has frequently been used to mimic the natural senescence of leaves because many typical senescence symptoms, such as chlorophyll (Chl) and protein degradation, also occur under darkness. In this study, we compared the phenotypes of leaf senescence that occurred when detached leaves or intact plants were incubated in darkness to induce senescence. We found that the symptoms of non-programmed cell death (non-PCD) with remaining green coloration occurred more heavily in the senescent leaves of whole plants than in the detached leaves. The pheophorbide a (Pheide a) content was also shown to be much higher in senescent leaves when whole plants were incubated in darkness by analyses of leaf Chl and its metabolic intermediates. In addition, more serious non-PCD occurred and more Pheide a accumulated in senescent leaves during dark incubation if the soil used for plant growth contained more water. Under similar conditions, the non-PCD phenotype was alleviated and the accumulation of Pheide a was reduced by overexpressing 7-hydroxymethyl Chl a (HMChl a) reductase (HCAR). Taken together, we conclude that a high soil water content induced non-PCD by decreasing HCAR activity when whole plants were incubated in darkness to induce senescence; thus, the investigation of the fundamental aspects of biochemistry and the regulation of leaf senescence are affected by using dark-induced leaf senescence.
Collapse
|
19
|
Nitrate Modulates Lateral Root Formation by Regulating the Auxin Response and Transport in Rice. Genes (Basel) 2021; 12:genes12060850. [PMID: 34205855 PMCID: PMC8229813 DOI: 10.3390/genes12060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Nitrate (NO3-) plays a pivotal role in stimulating lateral root (LR) formation and growth in plants. However, the role of NO3- in modulating rice LR formation and the signalling pathways involved in this process remain unclear. Phenotypic and genetic analyses of rice were used to explore the role of strigolactones (SLs) and auxin in NO3--modulated LR formation in rice. Compared with ammonium (NH4+), NO3- stimulated LR initiation due to higher short-term root IAA levels. However, this stimulation vanished after 7 d, and the LR density was reduced, in parallel with the auxin levels. Application of the exogenous auxin α-naphthylacetic acid to NH4+-treated rice plants promoted LR initiation to levels similar to those under NO3- at 7 d; conversely, the application of the SL analogue GR24 to NH4+-treated rice inhibited LR initiation to levels similar to those under NO3- supply by reducing the root auxin levels at 10 d. D10 and D14 mutations caused loss of sensitivity of the LR formation response to NO3-. The application of NO3- and GR24 downregulated the transcription of PIN-FORMED 2(PIN2), an auxin efflux carrier in roots. LR number and density in pin2 mutant lines were insensitive to NO3- treatment. These results indicate that NO3- modulates LR formation by affecting the auxin response and transport in rice, with the involvement of SLs.
Collapse
|
20
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
21
|
Wei Q, Yan Z, Xiong Y, Fang Z. Altered Expression of OsAAP3 Influences Rice Lesion Mimic and Leaf Senescence by Regulating Arginine Transport and Nitric Oxide Pathway. Int J Mol Sci 2021; 22:2181. [PMID: 33671705 PMCID: PMC7927093 DOI: 10.3390/ijms22042181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023] Open
Abstract
Persistent lesion mimic can cause leaf senescence, affecting grain yield in crops. However, knowledge about the regulation of lesion mimic and leaf senescence in crop plants is still limited. Here, we report that the amino acid transporter OsAAP3, a negative regulator of tiller bud elongation and rice grain yield, is involved in lesion mimic and leaf senescence. Altered expression of OsAAP3 can initiate the nitric oxide signaling pathway through excessive accumulation of arginine in rice leaves, influencing ROS accumulation, antioxidant enzymes activities, proline concentration, and malondialdehyde concentration. This finally triggers cell death which ultimately leads to lesion mimic and leaf senescence by regulating the degradation of chloroplast and the expression abundance of components in the photosynthetic pathway. Overall, the results not only provide initial insights into the regulatory role of amino acid transport genes in rice growth and development, but also help to understand the factors regulating the leaf senescence.
Collapse
Affiliation(s)
- Qilang Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
| | - Zhenwei Yan
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| | - Yifan Xiong
- Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan 430415, China;
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan 430415, China;
| |
Collapse
|
22
|
Liu J, Zhu XY, Deng LB, Liu HF, Li J, Zhou XR, Wang HZ, Hua W. Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:385-397. [PMID: 33045083 DOI: 10.1093/jxb/eraa456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule regulating several plant developmental and stress responses. Here, we report that NO plays an important role in seed oil content and fatty acid composition. RNAi silencing of Arabidopsis S-nitrosoglutathione reductase 1 (GSNOR1) led to reduced seed oil content. In contrast, nitrate reductase double mutant nia1nia2 had increased seed oil content, compared with wild-type plants. Moreover, the concentrations of palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3) were higher, whereas those of stearic acid (C18:0), oleic acid (C18:1), and arachidonic acid (C20:1) were lower, in seeds of GSNOR1 RNAi lines. Similar results were obtained with rapeseed embryos cultured in vitro with the NO donor sodium nitroprusside (SNP), and the NO inhibitor NG-Nitro-L-arginine Methyl Ester (L-NAME). Compared with non-treated embryos, the oil content decreased in SNP-treated embryos, and increased in L-NAME-treated embryos. Relative concentrations of C16:0, C18:2 and C18:3 were higher, whereas C18:1 concentration decreased in rapeseed embryos treated with SNP. Proteomics and transcriptome analysis revealed that three S-nitrosated proteins and some key genes involved in oil synthesis, were differentially regulated in SNP-treated embryos. Therefore, regulating NO content could be a novel approach to increasing seed oil content in cultivated oil crops.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xiao-Yi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Lin-Bin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
23
|
Chen WW, Zhu HH, Wang JY, Han GH, Huang RN, Hong YG, Yang JL. Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:796893. [PMID: 35126421 PMCID: PMC8813752 DOI: 10.3389/fpls.2021.796893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 05/05/2023]
Abstract
The mechanisms associated with the regulation of iron (Fe) homeostasis have been extensively examined, however, epigenetic regulation of these processes remains largely unknown. Here, we report that a naturally occurring epigenetic mutant, Colorless non-ripening (Cnr), displayed increased Fe-deficiency responses compared to its wild-type Ailsa Craig (AC). RNA-sequencing revealed that a total of 947 and 1,432 genes were up-regulated by Fe deficiency in AC and Cnr roots, respectively, while 923 and 1,432 genes were, respectively, down-regulated. Gene ontology analysis of differentially expressed genes showed that genes encoding enzymes, transporters, and transcription factors were preferentially affected by Fe deficiency. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed differential metabolic responses to Fe deficiency between AC and Cnr. Based on comparative transcriptomic analyses, 24 genes were identified as potential targets of Cnr epimutation, and many of them were found to be implicated in Fe homeostasis. By developing CRISPR/Cas9 genome editing SlSPL-CNR knockout (KO) lines, we found that some Cnr-mediated Fe-deficiency responsive genes showed similar expression patterns between SlSPL-CNR KO plants and the Cnr epimutant. Moreover, both two KO lines displayed Fe-deficiency-induced chlorosis more severe than AC plants. Additionally, the Cnr mutant displayed hypermethylation in the 286-bp epi-mutated region on the SlSPL-CNR promoter, which contributes to repressed expression of SlSPL-CNR when compared with AC plants. However, Fe-deficiency induced no change in DNA methylation both at the 286-bp epi-allele region and the entire region of SlSPL-CNR gene. Taken together, using RNA-sequencing and genetic approaches, we identified Fe-deficiency responsive genes in tomato roots, and demonstrated that SlSPL-CNR is a novel regulator of Fe-deficiency responses in tomato, thereby, paving the way for further functional characterization and regulatory network dissection.
Collapse
Affiliation(s)
- Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Yi Guo Hong,
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li Yang,
| |
Collapse
|
24
|
Feng Y, Fu X, Han L, Xu C, Liu C, Bi H, Ai X. Nitric Oxide Functions as a Downstream Signal for Melatonin-Induced Cold Tolerance in Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:686545. [PMID: 34367212 PMCID: PMC8343141 DOI: 10.3389/fpls.2021.686545] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) and nitric oxide (NO) are two multifunctional signaling molecules that are involved in the response of plants to abiotic stresses. However, how MT and NO synergize in response to cold stress affecting plants is still not clear. In this study, we found that endogenous MT accumulation under cold stress was positively correlated with cold tolerance in different varieties of cucumber seedlings. The data presented here also provide evidence that endogenous NO is involved in the response to cold stress. About 100 μM MT significantly increased the nitrate reductase (NR) activity, NR-relative messenger RNA (mRNA) expression, and endogenous NO accumulation in cucumber seedlings. However, 75 μM sodium nitroprusside (SNP, a NO donor) showed no significant effect on the relative mRNA expression of tryptophan decarboxylase (TDC), tryptamine-5-hydroxylase (T5H), serotonin-N-acetyltransferase (SNAT), or acetylserotonin O-methyltransferase (ASMT), the key genes for MT synthesis and endogenous MT levels. Compared with H2O treatment, both MT and SNP decreased electrolyte leakage (EL), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation by activating the antioxidant system and consequently mitigated cold damage in cucumber seedlings. MT and SNP also enhanced photosynthetic carbon assimilation, which was mainly attributed to an increase in the activity and mRNA expression of the key enzymes in the Calvin-Benson cycle. Simultaneously, MT- and SNP-induced photoprotection for both photosystem II (PSII) and photosystem I (PSI) in cucumber seedlings, by stimulating the PsbA (D1) protein repair pathway and ferredoxin-mediated NADP+ photoreduction, respectively. Moreover, exogenous MT and SNP markedly upregulated the expression of chilling response genes, such as inducer of CBF expression (ICE1), C-repeat-binding factor (CBF1), and cold-responsive (COR47). MT-induced cold tolerance was suppressed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a specific scavenger of NO). However, p-chlorophenylalanine (p-CPA, a MT synthesis inhibitor) did not affect NO-induced cold tolerance. Thus, novel results suggest that NO acts as a downstream signal in the MT-induced plant tolerance to cold stress.
Collapse
|
25
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
26
|
Yang X, Wang R, Jing H, Chen Q, Bao X, Zhao J, Hu G, Liu C, Fu J. Three Novel C-Repeat Binding Factor Genes of Dimocarpus longan Regulate Cold Stress Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1026. [PMID: 32733519 PMCID: PMC7358405 DOI: 10.3389/fpls.2020.01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
Longan (Dimocarpus longan) is a typical southern subtropical fruit tree species that is sensitive to cold stress. C-repeat binding factors (CBFs), as transcription factors, are crucial components involved in the molecular regulation of the plant response to cold stress. However, the role of CBF homologs in the cold response regulation of longan remains largely unknown. Here, three novel CBF genes, DlCBF1, DlCBF2, and DlCBF3, were cloned from longan. DlCBF1 and DlCBF2 contain an AP2 domain and PKKPAGR and DSAWR CBF signature motifs, while DlCBF3 has mutations within these conserved signature motifs. DlCBF1/2/3 were mainly localized in the nucleus and specifically bound to CRT/DRE cis-elements, resulting in strong transcriptional activation. DlCBF1/2 exhibited tissue expression specificity, and their expression was induced by low temperature, while DlCBF3 had no tissue specificity and barely responded to low temperature. DlCBF1, DlCBF2, and DlCBF3 overexpression in Arabidopsis-enhanced cold tolerance by increasing proline accumulation and reducing reactive oxygen species (ROS) content, accompanied by upregulated expression of cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47, and AtKIN1) in the CBF cold stress response signaling pathway. In conclusion, the biological functions of DlCBF1/2/3 were somewhat conserved, but slow expression of DlCBF1/2 and low expression of DlCBF3 may partly cause the cold sensitivity of longan. Collectively, these results indicated that differences exist in the expression and function of CBF orthologs in the cold-sensitive plant species longan, and these findings may help to improve the understanding of the cold response regulation mechanism and provide important theoretical support for cold-tolerant breeding of longan.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Rui Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haohao Jing
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qiuyu Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiuli Bao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chengming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiaxin Fu, ; Chengming Liu,
| | - Jiaxin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiaxin Fu, ; Chengming Liu,
| |
Collapse
|
27
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
28
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
29
|
Zhou Q, Jiang Z, Zhang X, Lai Q, Li Y, Zhao F, Zhao Z. Tree age did not affect the leaf anatomical structure or ultrastructure of Platycladus orientalis L. (Cupressaceae). PeerJ 2019; 7:e7938. [PMID: 31681514 PMCID: PMC6824329 DOI: 10.7717/peerj.7938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
Tree aging is a new research area and has attracted research interest in recent years. Trees show extraordinary longevity; Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees are precious historical heritage and scientific research materials. However, tree aging and tree senescence have different definitions and are poorly understood. Since leaves are the most sensitive organ of a tree, we studied the structural response of leaves to tree age. Experiments investigating the leaf morphological structure, anatomical structure and ultrastructure were conducted in healthy P. orientalis at three different ages (ancient trees >2,000 years, 200 years < middle-aged trees <500 years, young trees <50 years) at the world’s largest planted pure forest in the Mausoleum of the Yellow Emperor, Shaanxi Province, China. Interestingly, tree age did not significantly impact leaf cellular structure. Ancient P. orientalis trees in forests older than 2,000 years still have very strong vitality, and their leaves still maintained a perfect anatomical structure and ultrastructure. Our observations provide new evidence for the unique pattern of tree aging, especially healthy aging. Understanding the relationships between leaf structure and tree age will enhance the understanding of tree aging.
Collapse
Affiliation(s)
- Qianyi Zhou
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Zhaohong Jiang
- College of Life Science, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xin Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Qing Lai
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing, China
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| |
Collapse
|
30
|
Nonogaki H. The Long-Standing Paradox of Seed Dormancy Unfolded? TRENDS IN PLANT SCIENCE 2019; 24:989-998. [PMID: 31327698 DOI: 10.1016/j.tplants.2019.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 05/28/2023]
Abstract
There has been a long-standing question in seed research, why cyanide, a respiration inhibitor, breaks seed dormancy. While the alternative respiratory pathway and reactive oxygen species have been suggested to be part of the mechanism, the cell biological and mechanistic significance of this paradox remains unclear. The outcomes of recent research on mitochondrial RNA processing for the subunits of the electron transport chain complexes seem to offer a logical explanation. This opinion article attempts to integrate the accumulating evidence of mitochondrial involvement in ABA signaling with the frontier of seed research on DELAY OF GERMINATION1, a master regulator of dormancy, to present a coherent model for ABA signaling in seeds, which could also address the old paradox in seed research.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
31
|
Yang X, Wang R, Hu Q, Li S, Mao X, Jing H, Zhao J, Hu G, Fu J, Liu C. DlICE1, a stress-responsive gene from Dimocarpus longan, enhances cold tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:490-499. [PMID: 31442880 DOI: 10.1016/j.plaphy.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
ICE1 (inducer of CBF expression 1) encodes a typical MYC-like basic helix-loop- helix (bHLH) transcription factor that acts as a pivotal component in the cold signalling pathway. In this study, DlICE1, a novel ICE1-like gene, was isolated from the southern subtropical fruit tree longan (Dimocarpus longan Lour.). DlICE1 encodes a nuclear protein with a highly conserved bHLH domain. DlICE1 expression was slightly upregulated under cold stress. Overexpression of DlICE1 in Arabidopsis conferred enhanced cold tolerance via increased proline content, decreased ion leakage, and reduced malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation. Expression of the ICE1-CBF cold signalling pathway genes, including AtCBF1/2/3 and cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47 and AtKIN1), was also significantly higher in DlICE1-overexpressing lines than in wild-type (WT) plants under cold stress. In conclusion, these findings indicate that DlICE1 is a member of the bHLH gene family and positively regulates cold tolerance in D. longan.
Collapse
Affiliation(s)
- Xiaoyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qinglei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Silin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaodan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haohao Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaxin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Chengming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
32
|
Hajiboland R, Rahmat S, Zeinalzadeh N, Farsad-Akhtar N, Hosseinpour-Feizi MA. Senescence is delayed by selenium in oilseed rape plants. J Trace Elem Med Biol 2019; 55:96-106. [PMID: 31345373 DOI: 10.1016/j.jtemb.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/26/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Leaf senescence is a genetically programmed process that can also be induced by nitrogen (N) deficiency. Although selenium (Se) delays leaf senescence, the underlying mechanisms are still unknown. To explore the mechanisms of Se-mediated delay of leaf senescence, we studied the biochemical and molecular events that occur during developmental and N deficiency-induced senescence. Oilseed rape (Brassica napus L.) plants were grown under adequate N (AN, 16 mM) or low N (LN, 4 mM) conditions during the rosette growth stage and treated with Se (15 μg plant-1 as Na2SeO4) either through roots or leaves for four weeks. Shoot dry matter production was not influenced, while the photosynthetic parameters were improved by Se application in both young and old leaves under both AN and LN conditions. The Se treatment rarely influenced the concentrations of reactive oxygen species (ROS), while it increased the nitric oxide (NO) levels in young and old leaves under both AN and LN conditions. The positive correlation between the NO level and leaf photosynthetic parameters in old leaves of LN plants suggested a role for NO boosting, mediated by Se, in the protection of aging leaves from LN-induced accelerated senescence. This implication was further supported by the clear down-regulation of SAG12-1 and up-regulation of Cab, particularly by root application of Se in old leaves of LN plants. Our results provide the first evidence that Se influences the expression of senescence-associated genes and delays senescence through NO signalling but is independent of the ROS defence system.
Collapse
Affiliation(s)
- Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Somayeh Rahmat
- Department of Plant Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | | | - Nader Farsad-Akhtar
- Department of Plant Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | | |
Collapse
|
33
|
Lv SF, Jia MZ, Zhang SS, Han S, Jiang J. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1 (ACS1)-catalysed ACC generation and nitric oxide-associated 1 (NOS1)-dependent NO accumulation in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:595-603. [PMID: 30734982 DOI: 10.1111/plb.12970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 05/29/2023]
Abstract
Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1-aminocyclopropane-1-carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO-associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence. Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography-tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms. Our observations showed that the loss-of-function acs1-1 mutant ameliorated age- or dark-induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1-1 reduced ACC accumulation mainly in mature leaves and that acs1-1-promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO-deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence. These findings suggest that NOA1-dependent NO accumulation blocked the ACS1-induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- S-F Lv
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - M-Z Jia
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - S-S Zhang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - S Han
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - J Jiang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
34
|
Zhan X, Shen Q, Chen J, Yang P, Wang X, Hong Y. Rice sulfoquinovosyltransferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. PLANT, CELL & ENVIRONMENT 2019; 42:2215-2230. [PMID: 30942482 DOI: 10.1111/pce.13554] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/07/2023]
Abstract
Sulfoquinovosyltransferase 2 (SQD2) catalyses the final step in the sulfoquinovosyldiacylglycerol (SQDG) biosynthetic pathway. It is involved in the phosphate starvation response. Here, we show that rice SQD2.1 has dual activities catalysing SQDG synthesis and flavonoid glycosylation. SQD2.1 null mutants (sqd2.1) in rice had decreased levels of glycosidic flavonoids, particularly apigenin 7-O-glucoside (A7G), whereas these metabolites were increased in rice plants overexpressing SQD2.1. The sqd2.1 mutants and SQD2.1 overexpressing lines showed reduced and enhanced, respectively, tolerance to salinity and drought. Treating the sqd2.1 mutants with A7G decreased oxidative damage and restored stress tolerance to the wild-type levels. These findings demonstrate that SQD2.1 has a novel function in the glycosylation of flavonoids that is required for osmotic stress tolerance in rice. The novel activity of SQD2.1 in the production of glycosidic flavonoids improves scavenging of reactive oxygen species and protects against excessive oxidation.
Collapse
Affiliation(s)
- Xinqiao Zhan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingwen Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Yang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri, 63121
- Donald Danforth plant Science Center, St. Louis, Missouri, 63132
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
35
|
Tewari RK, Horemans N, Nauts R, Wannijn J, Van Hees M, Vandenhove H. The nitric oxide suppressed Arabidopsis mutants- Atnoa1 and Atnia1nia2noa1-2 produce nitric oxide in MS growth medium and on uranium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:9-17. [PMID: 31078053 DOI: 10.1016/j.plaphy.2019.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
The mutants Atnoa1 and Atnia1nia2noa1-2 having a defective chloroplast developmental process, showed enhanced chlorophyll levels when they were grown on Murashige and Skoog (MS) medium and on exposure with uranium (U) on Hoagland medium. Thus we hypothesized that these mutants probably produced NO in MS medium and on exposure with U. Wild-type Col-0, Atnoa1, Atnia1nia2noa1-2 plants were cultured on modified Hoagland and 1/10 MS media and NO generation in the roots of these mutants was monitored using NO selective fluorescent dyes, DAF-2DA and Fl2E. Both Atnoa1 and Atnia1nia2noa1-2 triple mutants produced NO as observed by increases in DAF-2T and Fl2E fluorescence when these mutants were grown on MS medium but not on Hoagland medium. In presence of NO scavenger, methylene blue (MB, 200 μM), DAF-2T and Fl2E fluorescence was completely abolished. On the other hand treatment of the plants with 25 μM U triggered NO generation. U-treated Atnoa1 and Atnia1nia2noa1-2 plants upregulated genes (POR B, POR D, CHL D) involved in the chlorophyll biosynthesis. From these results it was concluded that Atnoa1 and Atnia1nia2noa1-2 are conditional NO producers and it appears that NO generation in plants substantially depends on growth medium and NIA1, NIA2 or NOA1 does not appear to be really involved in NO generation in MS medium or after U exposure.
Collapse
Affiliation(s)
- Rajesh Kumar Tewari
- Department of Botany, University of Lucknow, Lucknow, 226007, India; Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Robin Nauts
- Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Jean Wannijn
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Hildegarde Vandenhove
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| |
Collapse
|
36
|
Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019; 8:E167. [PMID: 31181724 PMCID: PMC6616412 DOI: 10.3390/antiox8060167] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Since their first description as atmospheric gases, it turned out that both nitric oxide (NO) and ethylene (ET) are multifunctional plant signals. ET and polyamines (PAs) use the same precursor for their synthesis, and NO can be produced from PA oxidation. Therefore, an indirect metabolic link between NO and ET synthesis can be considered. NO signal is perceived primarily through S-nitrosation without the involvement of a specific receptor, while ET signal is sensed by a well-characterized receptor complex. Both NO and ET are synthetized by plants at various developmental stages (e.g., seeds, fruits) and as a response to numerous environmental factors (e.g., heat, heavy metals) and they mutually regulate each other's levels. Most of the growth and developmental processes (e.g., fruit ripening, de-etiolation) are regulated by NO-ET antagonism, while in abiotic stress responses, both antagonistic (e.g., dark-induced stomatal opening, cadmium-induced cell death) and synergistic (e.g., UV-B-induced stomatal closure, iron deficiency-induced expression of iron acquisition genes) NO-ET interplays have been revealed. Despite the numerous pieces of experimental evidence revealing NO-ET relationships in plants, the picture is far from complete. Understanding the mechanisms of NO-ET interactions may contribute to the increment of yield and intensification of stress tolerance of crop plants in changing environments.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Sao Paulo 05422-970, Brazil.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
37
|
Wang Q, Ye S, Chen X, Xu P, Li K, Zeng S, Huang M, Gao W, Chen J, Zhang Q, Zhong Z, Liu Q. Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3 activity. Biochem Biophys Res Commun 2019; 515:517-523. [PMID: 31153640 DOI: 10.1016/j.bbrc.2019.05.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023]
Abstract
Previous studies have suggested that nitric oxide (NO) which is synthetized by nitric oxide synthase (NOS) is closely related to the carcinogenesis and progression of colon cancer. However, the precise physiopathological role of NO on colon cancer remains unclear, and a lot of related studies focused on NOS2 and NOS3, but little on NOS1. Here, stable overexpression NOS1 of colon cancer cells were constructed to investigate whether NOS1 plays a special role in colon cancer. We observed that NOS1 protein was presented in mitochondria. Both the basal and cisplatin-induced mitochondrial superoxide were inhibited by NOS1, and the cisplatin-induced apoptosis was also inhibited by NOS1. Geldanamycin, a Hsp90 N-terminal inhibitor, was able to impede NOS1 translocation into mitochondria and reverse NOS1-induced apoptosis resistance. Importantly, SIRT3 activity was enhanced by NOS1, which contributes to the low level of mitochondrial superoxide and apoptosis resistance. Our data suggest a link between NOS1 and apoptosis resistance in colon cancer cells through mtNOS1-SIRT3-SOD2 axis. Furthermore, NOS1-induced apoptosis resistance could be reversed by inhibiting mitochondrial translocation of NOS1.
Collapse
Affiliation(s)
- Qianli Wang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou, 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Qianbin Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Qiuzhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou, 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou, 510515, China; Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| |
Collapse
|
38
|
Singh N, Bhatla SC. Hemoglobin as a probe for estimation of nitric oxide emission from plant tissues. PLANT METHODS 2019; 15:39. [PMID: 31043999 PMCID: PMC6480594 DOI: 10.1186/s13007-019-0425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant roots contribute significant amount of nitric oxide (NO) in the rhizosphere as a component of NO in the ecosystem. Various pharmacological investigations on NO research in plants seek to quench endogenous NO by using externally applied NO quenchers, mainly 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) and its more soluble form-carboxy-PTIO (cPTIO). Owing to serious limitations in its application cPTIO is no more a desired compound for such applications. RESULT Present work highlights the significance of using hemoglobin in the bathing solution to not only release endogenous NO from plant tissue but also to quench it in a concentration-dependent manner. CONCLUSION The protocol further demonstrates the diffusibility of NO from intracellular locations in presence of externally provided hemoglobin. The proposed method can have widespread applications as a substitute to debatable and currently used cPTIO as a NO scavenger.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
39
|
Zhou Q, Jiang Z, Zhang X, Zhang T, Zhu H, Cui B, Li Y, Zhao F, Zhao Z. Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). PeerJ 2019; 7:e6766. [PMID: 30997297 PMCID: PMC6462394 DOI: 10.7717/peerj.6766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 01/25/2023] Open
Abstract
Platycladus orientalis L. (Cupressaceae) has a lifespan of thousands of years. Ancient trees have very high scientific, economic and cultural values. The senescence of ancient trees is a new research area but is poorly understood. Leaves are the primary and the most sensitive organ of a tree. To understand leaf structural response to tree senescence in ancient trees, experiments investigating the morphology, anatomy and ultrastructure were conducted with one-year leaves of ancient P. orientalis (ancient tree >2,000 years) at three different tree senescent levels (healthy, sub-healthy and senescent) at the world's largest planted pure forest in the Mausoleum of Yellow Emperor, Shaanxi Province, China. Observations showed that leaf structure significantly changed with the senescence of trees. The chloroplast, mitochondria, vacuole and cell wall of mesophyll cells were the most significant markers of cellular ultrastructure during tree senescence. Leaf ultrastructure clearly reflected the senescence degree of ancient trees, confirming the visual evaluation from above-ground parts of trees. Understanding the relationships between leaf structure and tree senescence can support decision makers in planning the protection of ancient trees more promptly and effectively by adopting the timely rejuvenation techniques before the whole tree irreversibly recesses.
Collapse
Affiliation(s)
- Qianyi Zhou
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Zhaohong Jiang
- College of Life Sciences, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Xin Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Tian Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Hailan Zhu
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Bei Cui
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing, China
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest Agricultural and Forestry University, Yang Ling, Shaanxi, China
| |
Collapse
|
40
|
Ding M, Zhang H, Liu L, Liang R. Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells. Oncol Lett 2019; 17:1531-1536. [PMID: 30675209 PMCID: PMC6341600 DOI: 10.3892/ol.2018.9786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
The expression of nitric oxide synthase 1 (NOS1) and adenosine triphosphate-binding cassette sub-family G member 2 (ABCG2) in cervical cancer tissues was investigated. The messenger ribonucleic acid (mRNA) levels of NOS1 and ABCG2 in 40 cervical cancer specimens and 20 normal cervical specimens were detected via reverse transcription-polymerase chain reaction, and the correlation between them was analyzed via Pearsons correlation analysis. The protein expression levels were detected via western blotting. Moreover, the regulatory mode between NOS1 and ABCG2 and the effects on proliferation and apoptosis of cervical cancer cells were analyzed using the lentiviral transfection technique. The mRNA levels of NOS1 and ABCG2 in the cervical cancer group were significantly increased compared with those in the normal cervical control group (P<0.05). There was a positive correlation between NOS1 and ABCG2 mRNA expression levels in cervical cancer tissues (r=1.246, P=0.014). HeLa and C-33A cell lines with relatively high expression levels of NOS1 and ABCG2 were selected for the in vitro study. After interference in the NOS1 expression in HeLa and C-33A cells with sh-NOS1, the protein expression of ABCG2 was also decreased. However, the protein expression level of NOS1 remained unchanged after interference in the ABCG2 expression (P<0.05). After interference in the NOS1 expression, the proliferation capacities of HeLa and C-33A cells were significantly decreased, but the apoptosis levels were obviously increased (P<0.05). The mRNA expression of NOS1 and ABCG2 in cervical cancer tissues is significantly increased. NOS1, as an upstream signal regulator of ABCG2, regulates the growth and apoptosis of tumor cells. Both NOS1 and ABCG2 are important proliferation-promoting oncogenes in cervical cancer, which are expected to provide a certain theoretical basis for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Mingde Ding
- Department of Gynaecology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Hui Zhang
- Department of Gynaecology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Ruilan Liang
- Department of Gynaecology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
41
|
He Y, Xue H, Li Y, Wang X. Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5141-5155. [PMID: 30053069 PMCID: PMC6184755 DOI: 10.1093/jxb/ery270] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.
Collapse
Affiliation(s)
- Yuqi He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Hua Xue
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Xiaofeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| |
Collapse
|
42
|
OsPIN1b is Involved in Rice Seminal Root Elongation by Regulating Root Apical Meristem Activity in Response to Low Nitrogen and Phosphate. Sci Rep 2018; 8:13014. [PMID: 30158652 PMCID: PMC6115472 DOI: 10.1038/s41598-018-29784-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2018] [Indexed: 01/03/2023] Open
Abstract
The response of plant root development to nutrient deficiencies is critical for crop production. Auxin, nitric oxide (NO), and strigolactones (SLs) are important regulators of root growth under low-nitrogen and -phosphate (LN and LP) conditions. Polar auxin transport in plants, which is mainly dependent on auxin efflux protein PINs, creates local auxin maxima to form the basis for root initiation and elongation; however, the PIN genes that play an important role in LN- and LP-modulated root growth remain unclear. qRT-PCR analysis of OsPIN family genes showed that the expression of OsPIN1b is most abundant in root tip and is significantly downregulated by LN, LP, sodium nitroprusside (SNP, NO donor), and GR24 (analogue of SLs) treatments. Seminal roots in ospin1b mutants were shorter than those of the wild type; and the seminal root, [3H]IAA transport, and IAA concentration responses to LN, LP, SNP, and GR24 application were attenuated in ospin1b-1 mutants. pCYCB1;1::GUS expression was upregulated by LN, LP, SNP, and GR24 treatments in wild type, but not in the ospin1b-1 mutant, suggesting that OsPIN1b is involved in auxin transport and acts as a downstream mediator of NO and SLs to induce meristem activity in root tip in rice under LN and LP.
Collapse
|
43
|
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:28-39. [PMID: 29555593 DOI: 10.1016/j.freeradbiomed.2018.03.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Yue Xu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
44
|
Sun H, Feng F, Liu J, Zhao Q. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply. FRONTIERS IN PLANT SCIENCE 2018; 9:659. [PMID: 29875779 PMCID: PMC5974057 DOI: 10.3389/fpls.2018.00659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) is a major essential nutrient for plant growth, and rice is an important food crop globally. Although ammonium (NH4+) is the main N source for rice, nitrate (NO3-) is also absorbed and utilized. Rice responds to NO3- supply by changing root morphology. However, the mechanisms of rice root growth and formation under NO3- supply are unclear. Nitric oxide (NO) and auxin are important regulators of root growth and development under NO3- supply. How the interactions between NO and auxin in regulating root growth in response to NO3- are unknown. In this study, the levels of indole-3-acetic acid (IAA) and NO in roots, and the responses of lateral roots (LRs) and seminal roots (SRs) to NH4+ and NO3-, were investigated using wild-type (WT) rice, as well as osnia2 and ospin1b mutants. NO3- supply promoted LR formation and SR elongation. The effects of NO donor and NO inhibitor/scavenger supply on NO levels and the root morphology of WT and nia2 mutants under NH4+ or NO3- suggest that NO3--induced NO is generated by the nitrate reductase (NR) pathway rather than the NO synthase (NOS)-like pathway. IAA levels, [3H] IAA transport, and PIN gene expression in roots were enhanced under NO3- relative to NH4+ supply. These results suggest that NO3- regulates auxin transport in roots. Application of SNP under NH4+ supply, or of cPTIO under NO3- supply, resulted in auxin levels in roots similar to those under NO3- and NH4+ supply, respectively. Compared to WT, the roots of the ospin1b mutant had lower auxin levels, fewer LRs, and shorter SRs. Thus, NO affects root growth by regulating auxin transport in response to NO3-. Overall, our findings suggest that NO3- influences LR formation and SR elongation by regulating auxin transport via a mechanism involving NO.
Collapse
Affiliation(s)
- Huwei Sun
- *Correspondence: Huwei Sun, Quanzhi Zhao,
| | | | | | - Quanzhi Zhao
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
45
|
Servillo L, Castaldo D, Giovane A, Casale R, D'Onofrio N, Cautela D, Balestrieri ML. Ophthalmic acid is a marker of oxidative stress in plants as in animals. Biochim Biophys Acta Gen Subj 2018; 1862:991-998. [DOI: 10.1016/j.bbagen.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 01/17/2023]
|
46
|
Liu S, Yang R, Tripathi DK, Li X, He W, Wu M, Ali S, Ma M, Cheng Q, Pan Y. RETRACTED: The interplay between reactive oxygen and nitrogen species contributes in the regulatory mechanism of the nitro-oxidative stress induced by cadmium in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1007-1024. [PMID: 30216961 DOI: 10.1016/j.jhazmat.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 05/26/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor, after consultation with the corresponding author Dr. Shiliang Liu due to image issues. The article reused several images from the author's paper published in Environmental Pollution 239 (2018) 53-68 (which has been retracted due to image issues): Figures 1c, 1d, 2a, 2b, 2c, 4a, 9a and 9b. The article also plagiarized part of a paper from other authors that had appeared in Plant Physiology, 150, 229-243 (2009). The images that were reused were Fig 5 a, 5c, 5e and 5 g. This was brought to the editors’ attention via a letter to the editor. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Durgesh Kumar Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India; Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei He
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingsu Cheng
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
47
|
Abstract
Nitric oxide (NO) is gaining increasing attention as a central molecule with diverse signaling functions. It has been shown that NO acts as a negative regulator of leaf senescence. In this chapter, we describe a highly selective method, electron paramagnetic resonance ([EPR], also known as electron spin resonance [ESR]), for NO determination in leaf senescence. An iron complex of ferrous and mononitrosyl dithiocarbamate (Fe2+(DETC)2) is used as a chelating agent for NO. Using ethyl acetate as extracting solvent, the NOFe2+(DETC)2 complex is extracted and determined by EPR spectrometer.
Collapse
Affiliation(s)
- Aizhen Sun
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
48
|
Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 2017; 73:22-38. [PMID: 29275195 DOI: 10.1016/j.niox.2017.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Nitric oxide (NO) is a major signaling biomolecule associated with signal transduction in plants. The beneficial role of NO in plants, exposed to several abiotic stresses shifted our understanding as it being not only free radical, released from the toxic byproducts of oxidative metabolism but also helps in plant sustenance. An explosion of research in plant NO biology during the last two decades has revealed that NO is a key signal associated with plant growth, germination, photosynthesis, leaf senescence, pollen growth and reorientation. NO is beneficial as well as harmful to plants in a dose-dependent manner. Exogenous application of NO at lower concentrations promotes seed germination, hypocotyl elongation, pollen development, flowering and delays senescence but at higher concentrations it causes nitrosative damage to plants. However, this review concentrates on the beneficial impact of NO in lower concentrations in the plants and also highlights the NO crosstalk of NO with other plant hormones, such as auxins, gibberellins, abscisic acid, cytokinins, ethylene, salicylic acid and jasmonic acid, under diverse stresses. While concentrating on the multidimensional role of NO, an attempt has been made to cover the role of NO-mediated genes associated with plant developmental processes, metal uptake, and plant defense responses as well as stress-related genes. More recently, several NO-mediated post translational modifications, such as S-nitrosylation, N-end rule pathway operates under hypoxia and tyrosine nitration also occurs to modulate plant physiology.
Collapse
Affiliation(s)
- Fareen Sami
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Faizan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Ahmad Faraz
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Yusuf
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
49
|
Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J. The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:100-111. [PMID: 29223331 DOI: 10.1016/j.plantsci.2017.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 05/03/2023]
Abstract
The exponential increase of genomes' sequencing has revealed the presence of NO-Synthases (NOS) throughout the tree of life, uncovering an extraordinary diversity of genetic structure and biological functions. Although NO has been shown to be a crucial mediator in plant physiology, NOS sequences seem present solely in green algae genomes, with a first identification in the picoplankton species Ostreococcus tauri. There is no rationale so far to account for the presence of NOS in this early-diverging branch of the green lineage and its absence in land plants. To address the biological function of algae NOS, we cloned, expressed and characterized the NOS oxygenase domain from Ostreococcus tauri (OtNOSoxy). We launched a phylogenetic and structural analysis of algae NOS, and achieved a 3D model of OtNOSoxy by homology modeling. We used a combination of various spectroscopies to characterize the structural and electronic fingerprints of some OtNOSoxy reaction intermediates. The analysis of OtNOSoxy catalytic activity and kinetic efficiency was achieved by stoichiometric stopped-flow. Our results highlight the conserved and particular features of OtNOSoxy structure that might explain its ultrafast NO-producing capacity. This integrative Structure-Catalysis-Function approach could be extended to the whole NOS superfamily and used for predicting potential biological activity for any new NOS.
Collapse
Affiliation(s)
- Marine Weisslocker-Schaetzel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Nabila Touazi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Noelia Foresi
- Instituto de Investigaciones Biologicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina, Argentina
| | - Mehdi Lembrouk
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Pierre Dorlet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Annie Frelet-Barrand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biologicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina, Argentina
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
50
|
Chaturvedi P, Vanegas DC, Hauser BA, Foster JS, Sepúlveda MS, McLamore ES. Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:6061-6072. [PMID: 39825509 DOI: 10.1039/c7ay01964e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge. Here, we report the development, application, and validation of a self referencing (i.e., oscillating) NO microelectrode for field studies of biological cells and tissues. The durable microelectrode is based on a hybrid nanomaterial composed of nanoceria, reduced graphene oxide and nanoplatinum and is intended for field use. One of the main focuses was to address the common pitfall of high overpotential through use of hydrophobic, and size/charge-selective materials in a thin film coated on top of the nanocatalyst sensor. The sensitivity (0.95 ± 0.03 pA nM-1), response time (1.1 ± 0.1 s), operating potential (+720 mV), and selectivity of the nanomaterial-modified microelectrode are similar to laboratory microelectrode designs, enabling studies of NO flux in field studies. NO efflux was first measured from chitosan and alginate polymers in abiotic studies, and a deterministic model used to determine the effective diffusion coefficient for each polymer composite. To demonstrate the practicality of the sensor, NO flux was quantified in three model organisms with known NO pathways, including: bacteria, plant, and an invertebrate animal. For each organism, an established hypothesis was validated based on NO flux measurement and the results confirm data collected using standard analytical techniques. The sensor can be used to expand our fundamental knowledge of NO transport by facilitating field experiments which are not possible with standard techniques.
Collapse
Affiliation(s)
- P Chaturvedi
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - D C Vanegas
- Food Engineering Department, Universidad del Valle, Cali, Colombia
| | - B A Hauser
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - J S Foster
- Department of Microbiology and Cell Sciences, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - M S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - E S McLamore
- Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|