1
|
Bezvoda R, Landeo‐Ríos YM, Kubátová Z, Kollárová E, Kulich I, Busch W, Žárský V, Cvrčková F. A Genome-Wide Association Screen for Genes Affecting Leaf Trichome Development and Epidermal Metal Accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3708-3734. [PMID: 39812181 PMCID: PMC11963502 DOI: 10.1111/pce.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions. Subsequent GWAS analysis identified 1546 loci with protein sequence-altering SNPs associated with one or more traits, including 5 genes with previously reported relevant mutant phenotypes and 80 additional genes with known or predicted roles in relevant developmental and cellular processes. Some candidates, including GFS9/TT9, exhibited environmentally correlated allele distribution. Several large gene famiLies, namely DUF674, DUF784, DUF1262, DUF1985, DUF3741, cytochrome P450, receptor-Like kinases, Cys/His-rich C1 domain proteins and formins were overrepresented among the candidates for various traits, suggesting epidermal development-related functions. A possible participation of formins in guard cell metal deposition was supported by observations in available loss of function mutants. Screening of candidate gene lists against the STRING interactome database uncovered several predominantly nuclear protein interaction networks with possible novel roles in epidermal development.
Collapse
Affiliation(s)
- Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | | | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesVienna Biocenter (VBC)ViennaAustria
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
- Institute of Experimental BotanyCzech Academy of SciencesPragueCzechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of SciencesCharles UniversityPragueCzechia
| |
Collapse
|
2
|
Fernandez JC, Azim MF, Adams N, Strong M, Piya S, Xu M, Brunkard JO, Hewezi T, Sams CE, Burch-Smith TM. Glucosinolates can act as signals to modulate intercellular trafficking via plasmodesmata. THE NEW PHYTOLOGIST 2025; 246:1163-1182. [PMID: 40095529 DOI: 10.1111/nph.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. In Arabidopsis thaliana embryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between altered ISE2 expression and intercellular trafficking. Gene expression analyses in Arabidopsis tissues where ISE2 expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected. Concomitant with changes in the expression of GLS-related genes, plants with abnormal ISE2 expression contained altered GLS metabolic profiles compared with wild-type (WT) counterparts. Indeed, changes in the expression of GLS-associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking. These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole-type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.
Collapse
Affiliation(s)
- Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Nicole Adams
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Morgan Strong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Min Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI, 53706, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Carl E Sams
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
3
|
Oumaima K, Hossain MS, Ye W, Okuma E, Issak M, Islam MM, Uraji M, Nakamura Y, Mori IC, Munemasa S, Murata Y. TGG1 and TGG2 mutations impair allyl isothiocyanate-mediated stomatal closure in Arabidopsis thaliana. PROTOPLASMA 2025:10.1007/s00709-025-02039-z. [PMID: 39894892 DOI: 10.1007/s00709-025-02039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Myrosinase, referred to as thioglucoside glucohydrolase (TGG), plays a crucial role in plant physiology through catalyzing the hydrolysis of glucosinolates into bioactive isothiocyanates. In Arabidopsis thaliana, the myrosinases TGG1 and TGG2 are essential for abscisic acid- and methyl jasmonate-induced stomata closure. Allyl isothiocyanate (AITC), one of myrosinase products, triggers stomatal closure in A. thaliana. We investigated stomatal responses to AITC to clarify the role of TGG1 and TGG2 in Arabidopsis guard-cell signaling. Allyl isothiocyanate at 50 μM and 100 μM induced stomatal closure in the tgg1 and tgg2 single mutants but not in the tgg1 tgg2 double mutant. Furthermore, AITC at 50 μM induced the production of reactive oxygen species and nitric oxide, cytosolic alkalization, and oscillations in cytosolic free calcium concentration in guard cells of both wild-type and mutant plants. These findings suggest that TGG1 and TGG2 are involved in AITC signaling pathway through interaction with signal component(s) downstream of these signaling events, which is not accompanied by hydrolysis of glucosinolates because of the difference in subcellular localization between enzymes (myrosinases) and substrates (glucosinolates).
Collapse
Affiliation(s)
- Kadri Oumaima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | | | - Wenxiu Ye
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Institute of Advanced Agriculture Science, Peking University, Beijing, 100-871, China
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Mohammad Issak
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Department of Agricultural Botany, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Mohammad Mahbub Islam
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
- Department of Agricultural Botany, Sher-E-Bangla Agricultural University, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Misugi Uraji
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
5
|
Rhaman MS, Ali M, Ye W, Li B. Opportunities and Challenges in Advancing Plant Research with Single-cell Omics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae026. [PMID: 38996445 PMCID: PMC11423859 DOI: 10.1093/gpbjnl/qzae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 07/14/2024]
Abstract
Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.
Collapse
Affiliation(s)
- Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Muhammad Ali
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| |
Collapse
|
6
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1534-1550. [PMID: 37464897 DOI: 10.1093/pcp/pcad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Glucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two β-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification. Thus, in this study, we assessed growth, metabolic and transcriptional phenotypes of mature bglu28/30 double mutants grown under different S conditions. Our results showed that compared to wild-type plants grown under -S, mature bglu28/30 mutants displayed impaired growth and accumulated increased levels of GSL in their reproductive organs and rosette leaves of before-bolting plants. In contrast, the levels of primary S-containing metabolites, glutathione and cysteine decreased in their mature seeds. Furthermore, the transport of GSL from rosette leaves to the reproductive organs was stimulated in the bglu28/30 mutants under -S. Transcriptome analysis revealed that genes related to other biological processes, such as ethylene response, defense response and plant response to heat, responded differentially to -S in the bglu28/30 mutants. Altogether, these findings broadened our understanding of the roles of BGLU28/30-dependent GSL catabolism in plant adaptation to nutrient stress.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuo Enomoto
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimada, 428-8501 Japan
| | - Sho Nishida
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg DK-1871, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg DK-1871, Denmark
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
8
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
9
|
Kliebenstein DJ. Is specialized metabolite regulation specialized? JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4942-4948. [PMID: 37260397 DOI: 10.1093/jxb/erad209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Recent technical and theoretical advances have generated an explosion in the identification of specialized metabolite pathways. In comparison, our understanding of how these pathways are regulated is relatively lagging. This and the relatively young age of specialized metabolite pathways has partly contributed to a default and common paradigm whereby specialized metabolite regulation is theorized as relatively simple with a few key transcription factors and the compounds are non-regulatory end-products. In contrast, studies into model specialized metabolites, such as glucosinolates, are beginning to identify a new understanding whereby specialized metabolites are highly integrated into the plants' core metabolic, physiological, and developmental pathways. This model includes a greatly extended compendium of transcription factors controlling the pathway, key transcription factors that co-evolve with the pathway and simultaneously control core metabolic and developmental components, and finally the compounds themselves evolve regulatory connections to integrate into the plants signaling machinery. In this review, these concepts are illustrated using studies in the glucosinolate pathway within the Brassicales. This suggests that the broader community needs to reconsider how they do or do not integrate specialized metabolism into the regulatory network of their study species.
Collapse
|
10
|
Wang H, Wang Y, Sang T, Lin Z, Li R, Ren W, Shen X, Zhao B, Wang X, Zhang X, Zhou S, Dai S, Hu H, Song CP, Wang P. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2122-2137. [PMID: 37226855 DOI: 10.1111/jipb.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.
Collapse
Affiliation(s)
- Hongliang Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Sang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongxia Li
- Shanghai Bioprofile Technology Company Ltd, Shanghai, 200241, China
| | - Weiwei Ren
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shaojun Dai
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Soengas P, Madloo P, Lema M. Spectral Reflectance Indexes Reveal Differences in the Physiological Status of Brassica oleracea with Contrasting Glucosinolate Content under Biotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2698. [PMID: 37514312 PMCID: PMC10384497 DOI: 10.3390/plants12142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Brassica species produce glucosinolates, a specific group of secondary metabolites present in the Brassicaceae family with antibacterial and antifungal properties. The employment of improved varieties for specific glucosinolates would reduce the production losses caused by pathogen attack. However, the consequences of the increment in these secondary metabolites in the plant are unknown. In this work, we utilized reflectance indexes to test how the physiological status of Brasica oleracea plants changes depending on their constitutive content of glucosinolates under nonstressful conditions and under the attack of the bacteria Xanthomonas campestris pv. campestris and the fungus Sclerotinia sclerotiorum. The modification in the content of glucosinolates had consequences in the resistance to both necrotrophic pathogens, and in several physiological aspects of the plants. By increasing the content in sinigrin and glucobrassicin, plants decrease photosynthesis efficiency (PR531, FvFm), biomass production (CHL-NDVI, SR), pigment content (SIPI, NPQI, RE), and senescence (YI) and increase their water content (WI900). These variables may have a negative impact in the productivity of crops in an agricultural environment. However, when plants are subjected to the attack of both necrotrophic pathogens, an increment of sinigrin and glucobrassicin confers an adaptative advantage to the plants, which compensates for the decay of physiological parameters.
Collapse
Affiliation(s)
- Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Pari Madloo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| | - Margarita Lema
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), 36143 Pontevedra, Spain
| |
Collapse
|
12
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Aihara Y, Maeda B, Goto K, Takahashi K, Nomoto M, Toh S, Ye W, Toda Y, Uchida M, Asai E, Tada Y, Itami K, Sato A, Murakami K, Kinoshita T. Identification and improvement of isothiocyanate-based inhibitors on stomatal opening to act as drought tolerance-conferring agrochemicals. Nat Commun 2023; 14:2665. [PMID: 37188667 DOI: 10.1038/s41467-023-38102-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.
Collapse
Affiliation(s)
- Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
| | - Bumpei Maeda
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Kanna Goto
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Nomoto
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Shigeo Toh
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Environmental Bioscience, Meijo University, Nagoya, Japan
| | - Wenxiu Ye
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Yosuke Toda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Phytometrics Co., Ltd., Hamamatsu, Shizuoka, 435-0036, Japan
| | - Mami Uchida
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Eri Asai
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076, Japan.
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
14
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
15
|
AbdElgawad H, Zinta G, Hornbacher J, Papenbrock J, Markakis MN, Asard H, Beemster GTS. Elevated CO 2 mitigates the impact of drought stress by upregulating glucosinolate metabolism in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2023; 46:812-830. [PMID: 36541032 DOI: 10.1111/pce.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Elevated CO2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Science Faculty, Beni-Suef University, Beni-Suef, Egypt
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, India
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannove, Hannover, Germany
| | - Marios N Markakis
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Zhang Q, Li Y, Cao K, Xu H, Zhou X. Transcriptome and proteome depth analysis indicate ABA, MAPK cascade and Ca 2+ signaling co-regulate cold tolerance in Rhododendron chrysanthum Pall. FRONTIERS IN PLANT SCIENCE 2023; 14:1146663. [PMID: 36895874 PMCID: PMC9989302 DOI: 10.3389/fpls.2023.1146663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress is a global common problem that significantly limits plant development and geographical distribution. Plants respond to low temperature stress by evolving interrelated regulatory pathways to respond and adapt to their environment in a timely manner. Rhodoendron chrysanthum Pall. (R. chrysanthum) is a perennial evergreen dwarf shrub used for adornment and medicine that thrives in the Changbai Mountains at high elevations and subfreezing conditions. METHODS In this study, a comprehensive investigation of cold tolerance (4°C, 12h) in R. chrysanthum leaves under cold using physiological combined with transcriptomic and proteomic approaches. RESULTS There were 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs) in the low temperature (LT) and normal treatment (Control). Integrated transcriptomic and proteomic analyses showed that MAPK cascade, ABA biosynthesis and signaling, plant-pathogen interaction, linoleic acid metabolism and glycerophospholipid metabolism were significantly enriched in response to cold stress of R. chrysanthum leaves. DISCUSSION We analyzed the involvement of ABA biosynthesis and signaling, MAPK cascade, and Ca2+ signaling, that may jointly respond to stomatal closure, chlorophyll degradation, and ROS homeostasis under low temperature stress. These results propose an integrated regulatory network of ABA, MAPK cascade and Ca2+ signaling comodulating the cold stress in R. chrysanthum, which will provide some insights to elucidate the molecular mechanisms of cold tolerance in plants.
Collapse
Affiliation(s)
| | | | | | - Hongwei Xu
- *Correspondence: Xiaofu Zhou, ; Hongwei Xu,
| | | |
Collapse
|
17
|
Proteomic Profiling of Plant and Pathogen Interaction on the Leaf Epidermis. Int J Mol Sci 2022; 23:ijms232012171. [PMID: 36293025 PMCID: PMC9603099 DOI: 10.3390/ijms232012171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The plant epidermis is the first line of plant defense against pathogen invasion, and likely contains important regulatory proteins related to the plant–pathogen interaction. This study aims to identify the candidates of these regulatory proteins expressed in the plant epidermis. We performed comparative proteomic studies to identify rapidly and locally expressed proteins in the leaf epidermis inoculated with fungal phytopathogen. The conidia solutions were dropped onto the Arabidopsis leaf surface, and then, we collected the epidermal tissues from inoculated and mock-treated leaves at 4 and 24 hpi. The label-free quantification methods showed that expressions of Arabidopsis proteins, which are related to defense signals, such as BAK1, MKK5, receptor-like protein kinases, transcription factors, and stomatal functions, were rapidly induced in the epidermal tissues of inoculated leaves. In contrast, most of them were not differentially regulated by fugal inoculation in the whole leaves. These findings clearly indicate that epidermal proteomics can monitor locally expressed proteins in inoculated areas of plant tissues. We also identified the 61 fungal proteins, including effector-like proteins specifically expressed on the Arabidopsis epidermis. Our new findings suggested that epidermal proteomics is useful for understanding the local expressions of plant and fungal proteins related to their interactions.
Collapse
|
18
|
Liang C, Li C, Wu J, Zhao M, Chen D, Liu C, Chu J, Zhang W, Hwang I, Wang M. SORTING NEXIN2 proteins mediate stomatal movement and the response to drought stress by modulating trafficking and protein levels of the ABA exporter ABCG25. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1603-1618. [PMID: 35384109 DOI: 10.1111/tpj.15758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates ion channel activity and stomatal movement in response to drought stress. Cellular ABA levels change depending on cellular and environmental conditions via modulation of its biosynthesis, catabolism and transport. Although factors involved in ABA biosynthesis and degradation have been studied extensively, how ABA transporters are modulated to fine-tune ABA levels, especially under drought stress, remains elusive. Here, we show that Arabidopsis thaliana SORTING NEXIN 2 (SNX2) proteins play a critical role in endosomal trafficking of the ABA exporter ATP BINDING CASETTE G25 (ABCG25) via direct interaction at endosomes, leading to its degradation in the vacuole. In agreement, snx2a and snx2b mutant plants showed enhanced recycling of GFP-ABCG25 from early endosomes to the plasma membrane and higher accumulation of GFP-ABCG25. Phenotypically, snx2a and snx2b plants were highly sensitive to exogenous ABA and displayed enhanced ABA-mediated inhibition of inward K+ currents and ABA-mediated activation of slow anion currents in guard cells, resulting in an increased tolerance to drought stress. Based on these results, we propose that SNX2 proteins play a crucial role in stomatal movement and tolerance to drought stress by modulating the endosomal trafficking of ABCG25 and thus cellular ABA levels.
Collapse
Affiliation(s)
- Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jing Wu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Min Zhao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
19
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
20
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Nieves-Cordones M, Azeem F, Long Y, Boeglin M, Duby G, Mouline K, Hosy E, Vavasseur A, Chérel I, Simonneau T, Gaymard F, Leung J, Gaillard I, Thibaud JB, Véry AA, Boudaoud A, Sentenac H. Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. THE PLANT CELL 2022; 34:2019-2037. [PMID: 35157082 PMCID: PMC9048897 DOI: 10.1093/plcell/koac038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.
Collapse
Affiliation(s)
| | | | | | - Martin Boeglin
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Geoffrey Duby
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Karine Mouline
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | | | - Alain Vavasseur
- CEA Cadarache DSV DEVM LEMS UMR 163, CNRS/CEA, F-13108 St Paul Lez Durance, France
| | - Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Thierry Simonneau
- INRA Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, 2, F-34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jeffrey Leung
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Baptiste Thibaud
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
- Institut des biomolécules Max Mousseron (UMR 5247 CNRS-UM-ENSCM) Campus CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
22
|
Lv Q, Li X, Fan B, Zhu C, Chen Z. The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens. Int J Mol Sci 2022; 23:ijms23031577. [PMID: 35163500 PMCID: PMC8836197 DOI: 10.3390/ijms23031577] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate–myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate–myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate–myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.
Collapse
Affiliation(s)
- Qiaoqiao Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Q.L.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
23
|
Shirakawa M, Tanida M, Ito T. The Cell Differentiation of Idioblast Myrosin Cells: Similarities With Vascular and Guard Cells. FRONTIERS IN PLANT SCIENCE 2022; 12:829541. [PMID: 35082820 PMCID: PMC8784778 DOI: 10.3389/fpls.2021.829541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Idioblasts are defined by abnormal shapes, sizes, and contents that are different from neighboring cells. Myrosin cells are Brassicales-specific idioblasts and accumulate a large amount of thioglucoside glucohydrolases (TGGs, also known as myrosinases) in their vacuoles. Myrosinases convert their substrates, glucosinolates, into toxic compounds when herbivories and pests attack plants. In this review, we highlight the similarities and differences between myrosin cells and vascular cells/guard cells (GCs) because myrosin cells are distributed along vascular cells, especially the phloem parenchyma, and myrosin cells share the master transcription factor FAMA with GCs for their cell differentiation. In addition, we analyzed the overlap of cell type-specific genes between myrosin cells and GCs by using published single-cell transcriptomics (scRNA-seq) data, suggesting significant similarities in the gene expression patterns of these two specialized cells.
Collapse
|
24
|
Chhajed S, Lu LL, Mangual G, Zhu W, Dufresne C, Chen S. Three-in-one method for high throughput plant multi-omics. Methods Enzymol 2022; 683:153-170. [PMID: 37087185 DOI: 10.1016/bs.mie.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multi-omics has gained momentum over the past few years especially in plant single cell-type analysis as they aim to understand cellular molecular networks across different levels of genetic information flow. For multi-omics sample preparation, molecular extractions performed non-simultaneously create rooms for variation, inaccurate data, waste of limited samples, resources and labor. Here we optimized a protocol for 3-in-1 simultaneous extraction of RNA, metabolites, and proteins from the same single cell-type sample. We adapted a commercially available RNA kit with a few modifications to obtain high quality starting materials for sequencing and LC-MS/MS-based metabolomics and proteomics. RNAs are bound to the column, metabolites were extracted in a polar solvent and proteins are precipitated using acetone. This creates an all-in-one workflow using a standard RNA kit. Little training is required to carry out this protocol as it is simple and easy to use. It may be used with a wide range of plant species and different amounts of starting materials, including single cells.
Collapse
|
25
|
Auler PA, Nogueira do Amaral M, Bolacel Braga EJ, Maserti B. Drought stress memory in rice guard cells: Proteome changes and genomic stability of DNA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:49-62. [PMID: 34753074 DOI: 10.1016/j.plaphy.2021.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the major threats for crop plants among them rice, worldwide. The effects of drought vary depending on the plant growth phase and the occurrence of a previous stress, which can leave a memory of the stress. Stomata guard cells perform many essential functions and are highly responsive to hormonal and environmental stimuli. Therefore, information on how guard cells respond to drought might be useful for selecting drought tolerant plants. In this work, physiological analysis, comparative proteomics, gene expression and 5 - methylcytosine (%) analysis were used to elucidate the effects of drought in single stress event at vegetative or reproductive stage or recurrent at both stages in guard cells from rice plants. Photosynthesis and stomatal conductance decreased when drought was applied at reproductive stage in single and recurrent event. Twelve drought-responsive proteins were identified, belonging to photosynthesis pathway, response to oxidative stress, stress signalling and others. The expression of their encoding genes showed a positive relation with the protein abundance. Drought stress increased the total DNA methylation when applied at vegetative stage in single (35%) and recurrent event (18%) and decreased it in plants stressed at reproductive stage (9.8%), with respect to the levels measured in well-watered ones (13.84%). In conclusion, a first drought event seems to induce adaptation to water-deficit conditions through decreasing energy dissipation, increasing ATP energy provision, reducing oxidative damage in GC. Furthermore, the stress memory is associated with epigenetic markers.
Collapse
Affiliation(s)
- Priscila Ariane Auler
- Department of Botany, Biology Institute - Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil; CNR- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), UOS, Firenze, Area della Ricerca CNR di Firenze, via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Marcelo Nogueira do Amaral
- Department of Botany, Biology Institute - Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Biancaelena Maserti
- CNR- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), UOS, Firenze, Area della Ricerca CNR di Firenze, via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
26
|
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction. Ann N Y Acad Sci 2021; 1509:89-112. [PMID: 34766352 DOI: 10.1111/nyas.14708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Summer maize is frequently subjected to waterlogging damage because of increased and variable rainfall during the growing season. The application of 6-benzyladenine (6-BA) can effectively mitigate the waterlogging effects on plant growth and increase the grain yield of waterlogged summer maize. However, the mechanisms underlying this process and the involvement of 6-BA in relevant signal transduction pathways remain unclear. In this study, we explored the effects of 6-BA on waterlogged summer maize using a phosphoproteomic technique to better understand the mechanism by which summer maize growth improves following waterlogging. Application of 6-BA inhibited the waterlogging-induced increase in abscisic acid (ABA) content and increased the phosphorylation levels of proteins involved in ABA signaling; accordingly, stomatal responsiveness to exogenous ABA increased. In addition, the application of 6-BA had a long-term effect on signal transduction pathways and contributed to rapid responses to subsequent stresses. Plants primed with 6-BA accumulated more ethylene and jasmonic acid in response to subsequent waterlogging; accordingly, leaf SPAD, antioxidase activity, and root traits improved by 6-BA priming. These results suggest that the effects of 6-BA on hormone signal transduction pathways are anamnestic, which enables plants to show faster or stronger defense responses to stress.
Collapse
Affiliation(s)
- Juan Hu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baizhao Ren
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
27
|
Simpson T, Ku KM. Metabolomics and Physiological Approach to Understand Allelopathic Effect of Horseradish Extract on Onion Root and Lettuce Seed as Model Organism. PLANTS 2021; 10:plants10101992. [PMID: 34685801 PMCID: PMC8539871 DOI: 10.3390/plants10101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
In the present study, we assessed the allelopathic effects of various concentrations (0%, 0.1%, 0.2%, and 0.3%) of horseradish root extract (HRE) on onion root. The average growth of onion root tips during the 0% HRE treatment (deionized water treatment) was 0.9 cm/day, which was the highest among the growth rates obtained with all HRE treatments. Moreover, the average growth during 0.3% HRE treatment was 0.1 cm/day. During cell cycle analysis, the mitotic phase fraction of the control (deionized water treatment) cells was 6.5% of all dividing cells, with this percentage being the highest among the values obtained for all treatment groups. In the control group, all cell cycle phases were identified; however, in the 0.1%, 0.2%, and 0.3% treatment groups, telophase was not identified. The ROS accumulation area of the onion root decreased, as the HRE treatment concentration increased. In the control root, the area of dead tissue was 0%; however, in the 0.1% and 0.2% HRE treatment roots, the ratio was 5% and 50%, respectively. These findings indicate that the allelopathic effect of HRE depends on the concentration of HRE applied to the onion root.
Collapse
Affiliation(s)
- Tyler Simpson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA;
- Department of Horticulture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61886, Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
28
|
Widemann E, Bruinsma K, Walshe-Roussel B, Rioja C, Arbona V, Saha RK, Letwin D, Zhurov V, Gómez-Cadenas A, Bernards MA, Grbić M, Grbić V. Multiple indole glucosinolates and myrosinases defend Arabidopsis against Tetranychus urticae herbivory. PLANT PHYSIOLOGY 2021; 187:116-132. [PMID: 34618148 PMCID: PMC8418412 DOI: 10.1093/plphys/kiab247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) defenses against herbivores are regulated by the jasmonate (JA) hormonal signaling pathway, which leads to the production of a plethora of defense compounds. Arabidopsis defense compounds include tryptophan-derived metabolites, which limit Arabidopsis infestation by the generalist herbivore two-spotted spider mite, Tetranychus urticae. However, the phytochemicals responsible for Arabidopsis protection against T. urticae are unknown. Here, we used Arabidopsis mutants disrupted in the synthesis of tryptophan-derived secondary metabolites to identify phytochemicals involved in the defense against T. urticae. We show that of the three tryptophan-dependent pathways found in Arabidopsis, the indole glucosinolate (IG) pathway is necessary and sufficient to assure tryptophan-mediated defense against T. urticae. We demonstrate that all three IGs can limit T. urticae herbivory, but that they must be processed by myrosinases to hinder T. urticae oviposition. Putative IG breakdown products were detected in mite-infested leaves, suggesting in planta processing by myrosinases. Finally, we demonstrate that besides IGs, there are additional JA-regulated defenses that control T. urticae herbivory. Together, our results reveal the complexity of Arabidopsis defenses against T. urticae that rely on multiple IGs, specific myrosinases, and additional JA-dependent defenses.
Collapse
Affiliation(s)
- Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brendan Walshe-Roussel
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Natural and Non-Prescription Health Products Directorate Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Repon Kumer Saha
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - David Letwin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Mark A. Bernards
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Author for communication:
| |
Collapse
|
29
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
30
|
Ogran A, Wasserstrom H, Barzilai M, Faraj T, Dai N, Carmi N, Barazani O. Water Deficiency and Induced Defense Against a Generalist Insect Herbivore in Desert and Mediterranean Populations of Eruca sativa. J Chem Ecol 2021; 47:768-776. [PMID: 34185213 DOI: 10.1007/s10886-021-01292-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
In natural and agricultural ecosystems, plants are often simultaneously or sequentially exposed to combinations of stressors. Here we tested whether limited water availability (LWA) affects plant response to insect herbivory using two populations of Eruca sativa from desert and Mediterranean habitats that differ in their induced defenses. Considering that such differences evolved as responses to biotic and possibly abiotic stress factors, the two populations offered an opportunity to study ecological aspects in plant response to combined stresses. Analysis of chemical defense mechanisms showed that LWA significantly induced total glucosinolate concentrations in the Mediterranean plants, but their concentrations were reduced in the desert plants. However, LWA, with and without subsequent jasmonate elicitation, significantly induced the expression of proteinase inhibitor in the desert plants. Results of a no-choice feeding experiment showed that LWA significantly increased desert plant resistance to Spodoptera littoralis larvae, whereas it did not affect the relatively strong basal resistance of the Mediterranean plants. LWA and subsequent jasmonate elicitation increased resistance against the generalist insect in Mediterranean plants, possibly due to both increased proteinase inhibitor expression and glucosinolate accumulation. The effect of LWA on the expression of genes involved in phytohormone signaling, abscisic acid (ABA-1) and jasmonic acid (AOC1), and the jasmonate responsive PDF1.2, suggested the involvement of abscisic acid in the regulation of defense mechanisms in the two populations. Our results indicate that specific genotypic responses should be considered when estimating general patterns in plant response to herbivory under water deficiency conditions.
Collapse
Affiliation(s)
- Ariel Ogran
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Haggai Wasserstrom
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Michal Barzilai
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Tomer Faraj
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Nir Dai
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Oz Barazani
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
31
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
32
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
33
|
Chen D, He L, Lin M, Jing Y, Liang C, Liu H, Gao J, Zhang W, Wang M. A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110858. [PMID: 33775364 DOI: 10.1016/j.plantsci.2021.110858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Drought represents a leading constraint over crop productivity worldwide. The plant response to this stress is centered on the behavior of the cell membrane, where the transduction of abscisic acid (ABA) signaling occurs. Here, the Ras-related small GTP-binding protein RabE1c has been shown able to bind to an ABA receptor in the Arabidopsis thaliana plasma membrane, thereby positively regulating ABA signaling. RabE1c is highly induced by drought stress and expressed abundantly in guard cells. In the loss-of-function rabe1c mutant, both stomatal closure and the whole plant drought stress response showed a reduced sensitivity to ABA treatment, demonstrating that RabE1c is involved in the control over transpirative water loss through the stomata. Impairment of RabE1c's function suppressed the accumulation of the ABA receptor PYL4. The over-expression of RabE1c in A. thaliana enhanced the plants' ability to tolerate drought, and a similar phenotypic effect was achieved by constitutively expressing the gene in Chinese cabbage (Brassica rapassp. pekinensis). The leading conclusion was that RabE1c promotes the degradation of PYL4, suggesting a possible genetic strategy to engineer crop plants to better withstand drought stress.
Collapse
Affiliation(s)
- Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lilong He
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Minyan Lin
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Jing
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
34
|
Ahuja I, Kissen R, Hoang L, Sporsheim B, Halle KK, Wolff SA, Ahmad SJN, Ahmad JN, Bones AM. The Imaging of Guard Cells of thioglucosidase ( tgg) Mutants of Arabidopsis Further Links Plant Chemical Defence Systems with Physical Defence Barriers. Cells 2021; 10:227. [PMID: 33503919 PMCID: PMC7911204 DOI: 10.3390/cells10020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
The glucosinolate-myrosinase system is a well-known plant chemical defence system. Two functional myrosinase-encoding genes, THIOGLUCOSIDASE 1 (TGG1) and THIOGLUCOSIDASE 2 (TGG2), express in aerial tissues of Arabidopsis. TGG1 expresses in guard cells (GCs) and is also a highly abundant protein in GCs. Recently, by studying wild type (WT), tgg single, and double mutants, we showed a novel association between the glucosinolate-myrosinase system defence system, and a physical barrier, the cuticle. In the current study, using imaging techniques, we further analysed stomata and ultrastructure of GCs of WT, tgg1, tgg2 single, and tgg1 tgg2 double mutants. The tgg mutants showed distinctive features of GCs. The GCs of tgg1 and tgg1 tgg2 mutants showed vacuoles that had less electron-dense granular material. Both tgg single mutants had bigger stomata complexes. The WT and tgg mutants also showed variations for cell wall, chloroplasts, and starch grains of GCs. Abscisic acid (ABA)-treated stomata showed that the stomatal aperture was reduced in tgg1 single and tgg1 tgg2 double mutants. The data provides a basis to perform comprehensive further studies to find physiological and molecular mechanisms associated with ultrastructure differences in tgg mutants. We speculate that the absence of myrosinase alters the endogenous chemical composition, hence affecting the physical structure of plants and the plants' physical defence barriers.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (L.H.); (B.S.)
| | - Bjørnar Sporsheim
- Cellular and Molecular Imaging Core Facility (CMIC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (L.H.); (B.S.)
- Central Administration, St Olavs Hospital, The University Hospital in Trondheim, 7030 Trondheim, Norway
| | - Kari K. Halle
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Silje Aase Wolff
- National Centre for STEM Recruitment, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Samina Jam Nazeer Ahmad
- Plant Physiology and Molecular Biology Laboratory, Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan; (S.J.N.A.); (J.N.A.)
- Integrated Genomics, Cellular, Developmental and Biotechnology Laboratory, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jam Nazeer Ahmad
- Plant Physiology and Molecular Biology Laboratory, Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan; (S.J.N.A.); (J.N.A.)
- Integrated Genomics, Cellular, Developmental and Biotechnology Laboratory, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| |
Collapse
|
35
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Salinity Effects on Guard Cell Proteome in Chenopodium quinoa. Int J Mol Sci 2021; 22:ijms22010428. [PMID: 33406687 PMCID: PMC7794931 DOI: 10.3390/ijms22010428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term “response to ABA” were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose–starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions.
Collapse
|
37
|
Czerniawski P, Piasecka A, Bednarek P. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. PHYTOCHEMISTRY 2021; 181:112571. [PMID: 33130372 DOI: 10.1016/j.phytochem.2020.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates are unique thioglucosides that evolved in the order Brassicales. These compounds function in plant adaptation to the environment, including combating plant pathogens, herbivore deterrence and abiotic stress tolerance. In line with their defensive functions glucosinolates usually accumulate constitutively in relatively high amounts in all tissues of Brassicaceae plants. Here we performed glucosinolate analysis in different organs of selected species representing Capsella, Camelina and Neslia genera, which similarly as the model plant Arabidopsis thaliana belong to the Camelineae tribe. We also identified orthologs of A. thaliana glucosinolate biosynthetic genes in the published genomes of some of the investigated species. Subsequent gene expression and phylogenetic analyses enabled us an insight into the evolutionary changes in the transcription of these genes and in the sequences of respective proteins that occurred within the Camelineae tribe. Our results indicated that glucosinolates are highly abundant in siliques and roots of the investigated species but hardly, if at all, produced in leaves. In addition to this unusual tissular distribution we revealed reduced structural diversity of methionine-derived aliphatic glucosinolates (AGs) with elevated accumulation of rare long chain AGs. This preference seems to correlate with evolutionary changes in genes encoding methylthioalkylmalate synthases that are responsible for the elongation of AG side chains. Finally, our results indicate that the biosynthetic pathway for tryptophan-derived indolic glucosinolates likely lost its main functions in immunity and resistance towards sucking insects and is on its evolutionary route to be shut off in the investigated species.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland; Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
38
|
Coleto I, Bejarano I, Marín-Peña AJ, Medina J, Rioja C, Burow M, Marino D. Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. THE NEW PHYTOLOGIST 2021; 229:1021-1035. [PMID: 32901916 DOI: 10.1111/nph.16918] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 05/22/2023]
Abstract
Although ammonium (NH4+ ) is a key intermediate of plant nitrogen metabolism, high concentrations of NH4+ in the soil provoke physiological disorders that lead to the development of stress symptoms. Ammonium nutrition was shown to induce the accumulation of glucosinolates (GSLs) in leaves of different Brassicaceae species. To further understand the link between ammonium nutrition and GSLs, we analysed the ammonium stress response of Arabidopsis mutants impaired in GSL metabolic pathway. We showed that the MYB28 and MYB29 double mutant (myb28myb29), which is almost deprived of aliphatic GSLs, is highly hypersensitive to ammonium nutrition. Moreover, we evidenced that the stress symptoms developed were not a consequence of the lack of aliphatic GSLs. Transcriptomic analysis highlighted the induction of an iron (Fe) deficiency response in myb28myb29 under ammonium nutrition. Consistently, ammonium-grown myb28myb29 plants showed altered Fe accumulation and homeostasis. Interestingly, we showed overall that growing Arabidopsis with increased Fe availability relieved ammonium stress symptoms and that this was associated with MYB28 and MYB29 expression. Taken together, our data indicated that the control of Fe homeostasis was crucial for the Arabidopsis response to ammonium nutrition and evidenced that MYB28 and MYB29 play a role in this control.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Iraide Bejarano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Agustín Javier Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, 28223, Spain
| | - Cristina Rioja
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| |
Collapse
|
39
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Siddiqui MW, Homa F, Hdider C, R'Him T, Lajos H, Lenucci MS. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front Nutr 2020; 7:147. [PMID: 33015121 PMCID: PMC7511755 DOI: 10.3389/fnut.2020.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022] Open
Abstract
Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Zoltán Pék
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Fozia Homa
- Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Thouraya R'Him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Helyes Lajos
- Laboratory of Horticulture, Faculty of Agricultural and Environmental Sciences, Horticultural Institute, Szent István University, Budapest, Hungary
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
40
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 534] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
41
|
Li W, Gupta A, Tian H, Nguyen KH, Tran CD, Watanabe Y, Tian C, Li K, Yang Y, Guo J, Luo Y, Miao Y, Phan Tran LS. Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1789321. [PMID: 32669036 PMCID: PMC8550175 DOI: 10.1080/15592324.2020.1789321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 05/21/2023]
Abstract
Strigolactone and karrikin receptors, DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), respectively, have been shown to positively regulate drought resistance in Arabidopsis thaliana by modulating abscisic acid responsiveness, anthocyanin accumulation, stomatal closure, cell membrane integrity and cuticle formation. Here, we aim to identify genes specifically or commonly regulated by D14 and KAI2 under water scarcity, using comparative analysis of the transcriptome data of the A. thaliana d14-1 and kai2-2 mutants under dehydration conditions. In comparison with wild-type, under dehydration conditions, the expression levels of genes related to photosynthesis and the metabolism of glucosinolates and trehalose were significantly changed in both d14-1 and kai2-2 mutant plants, whereas the transcript levels of genes related to the metabolism of cytokinins and brassinosteroids were significantly altered in the d14-1 mutant plants only. These results suggest that cytokinin and brassinosteroid metabolism might be specifically regulated by the D14 pathway, whereas photosynthesis and metabolism of glucosinolates and trehalose are potentially regulated by both D14 and KAI2 pathways in plant response to water scarcity.
Collapse
Affiliation(s)
- Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | - Hongtao Tian
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Yong Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
- Henan Joint International Laboratory for Crop Multi-Omics Research, Henan University, Kaifeng, China
- CONTACT Yuchen Miao Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng475001, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Lam-Son Phan Tran ; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Yokohama 230-0045, Japan
| |
Collapse
|
42
|
Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, Li J, Kirst M, Assmann SM, Chen S. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C 3 to CAM transition. PLANT MOLECULAR BIOLOGY 2020; 103:653-667. [PMID: 32468353 DOI: 10.1007/s11103-020-01016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/17/2020] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.
Collapse
Affiliation(s)
- Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Dan Zhu
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Jerald D Noble
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Theresa M Kelley
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, USA.
| |
Collapse
|
43
|
Rasouli F, Kiani-Pouya A, Zhang H, Shabala S. Developing and validating protocols for mechanical isolation of guard-cell enriched epidermal peels for omics studies. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:803-814. [PMID: 32513383 DOI: 10.1071/fp20085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Stomata, which are microscopic valves on the leaf surface formed by two guard cells (GC), play a critical role in the regulation of leaf water and gas exchange and, hence, determine plant adaptive potential. However, little data is available on GC biochemistry, protein abundance and gene expression, mainly due to technical difficulties and challenges in isolating sufficient amounts of high-quality pure GC. In the present study we applied some modifications to the mechanical isolation of guard-cell to generalise this method for diverse growth conditions as well as plant species. Epidermal peel fragments enriched in guard cells were mechanically isolated from quinoa, spinach and sugar beet leaves grown at two conditions (normal and salt stress). Multiple analysis was performed to confirm the suitability and superiority of the modified technique to the original method. At the first step, the viability and purity of GC-enriched epidermal fragments were assessed under the microscope. Then, the RNA integrity, gene expression, and 1D SDS-PAGE tests were performed to validate the suitability of this technique for omics studies. The data revealed a wide range of proteins as well as a high integrity of RNA extracted from guard cell samples. The expression level of several GC-specific genes and mesophyll-dominant genes were investigated using a comparative analysis of transcriptome datasets of GC and whole-leaf samples. We found that Rubisco and photosynthesis-related proteins such as chlorophyll a/b binding protein were substantially higher in the whole leaf compared with the GCs. More importantly, GC-specific genes such as OST1, SLAC1, MYB60, FAMA and HT1 were highly expressed in the GCs, confirming that our guard cell preparation was highly enriched in GC gene transcripts. Real-time quantitative reverse transcription PCR further confirmed the efficacy of the GC isolation technique for exploring responses of GC to diverse types of stress at the molecular level.
Collapse
Affiliation(s)
- Fatemeh Rasouli
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Ali Kiani-Pouya
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Heng Zhang
- Shanghai Centre for Plant Stress Biology and CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, 528000 Foshan, China; and Corresponding author.
| |
Collapse
|
44
|
Katz E, Bagchi R, Jeschke V, Rasmussen ARM, Hopper A, Burow M, Estelle M, Kliebenstein DJ. Diverse Allyl Glucosinolate Catabolites Independently Influence Root Growth and Development. PLANT PHYSIOLOGY 2020; 183:1376-1390. [PMID: 32321840 PMCID: PMC7333702 DOI: 10.1104/pp.20.00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 05/15/2023]
Abstract
Glucosinolates (GSLs) are sulfur-containing defense metabolites produced in the Brassicales, including the model plant Arabidopsis (Arabidopsis thaliana). Previous work suggests that specific GSLs may function as signals to provide direct feedback regulation within the plant to calibrate defense and growth. These GSLs include allyl-GSL, a defense metabolite that is one of the most widespread GSLs in Brassicaceae and has also been associated with growth inhibition. Here we show that at least three separate potential catabolic products of allyl-GSL or closely related compounds affect growth and development by altering different mechanisms influencing plant development. Two of the catabolites, raphanusamic acid and 3-butenoic acid, differentially affect processes downstream of the auxin signaling cascade. Another catabolite, acrylic acid, affects meristem development by influencing the progression of the cell cycle. These independent signaling events propagated by the different catabolites enable the plant to execute a specific response that is optimal to any given environment.
Collapse
Affiliation(s)
- Ella Katz
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Rammyani Bagchi
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Verena Jeschke
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | | | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Meike Burow
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
45
|
Fichtner F, Olas JJ, Feil R, Watanabe M, Krause U, Hoefgen R, Stitt M, Lunn JE. Functional Features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an Essential Enzyme in Arabidopsis. THE PLANT CELL 2020; 32:1949-1972. [PMID: 32276986 PMCID: PMC7268806 DOI: 10.1105/tpc.19.00837] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 05/19/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Justyna J Olas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
46
|
Ye W, Ando E, Rhaman MS, Tahjib-Ul-Arif M, Okuma E, Nakamura Y, Kinoshita T, Murata Y. Inhibition of light-induced stomatal opening by allyl isothiocyanate does not require guard cell cytosolic Ca2+ signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2922-2932. [PMID: 32103265 PMCID: PMC7260714 DOI: 10.1093/jxb/eraa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/26/2020] [Indexed: 05/20/2023]
Abstract
The glucosinolate-myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening. This study investigated the role of Ca2+ in AITC-induced stomatal closure and inhibition of light-induced stomatal opening. AITC induced stomatal closure and inhibited light-induced stomatal opening in a dose-dependent manner. A Ca2+ channel inhibitor, La3+, a Ca2+chelator, EGTA, and an inhibitor of Ca2+ release from internal stores, nicotinamide, inhibited AITC-induced [Ca2+]cyt elevation and stomatal closure, but did not affect inhibition of light-induced stomatal opening. AITC activated non-selective Ca2+-permeable cation channels and inhibited inward-rectifying K+ (K+in) channels in a Ca2+-independent manner. AITC also inhibited stomatal opening induced by fusicoccin, a plasma membrane H+-ATPase activator, but had no significant effect on fusicoccin-induced phosphorylation of the penultimate threonine of H+-ATPase. Taken together, these results suggest that AITC induces Ca2+ influx and Ca2+ release to elevate [Ca2+]cyt, which is essential for AITC-induced stomatal closure but not for inhibition of K+in channels and light-induced stomatal opening.
Collapse
Affiliation(s)
- Wenxiu Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
- Institute of Transformative Bio-Molecule, Nagoya University, Chikusa, Nagoya, Japan
| | - Eigo Ando
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Mohammad Saidur Rhaman
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Md Tahjib-Ul-Arif
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecule, Nagoya University, Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
- Correspondence:
| |
Collapse
|
47
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
48
|
Rhaman MS, Nakamura T, Nakamura Y, Munemasa S, Murata Y. The Myrosinases TGG1 and TGG2 Function Redundantly in Reactive Carbonyl Species Signaling in Arabidopsis Guard Cells. PLANT & CELL PHYSIOLOGY 2020; 61:967-977. [PMID: 32145024 DOI: 10.1093/pcp/pcaa024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/22/2020] [Indexed: 05/14/2023]
Abstract
Myrosinase (β-thioglucoside glucohydrolase, enzyme nomenclature, EC 3.2.1.147, TGG) is a highly abundant protein in Arabidopsis guard cells, of which TGG1 and TGG2 function redundantly in abscisic acid (ABA)- and methyl jasmonate-induced stomatal closure. Reactive carbonyl species (RCS) are α,β-unsaturated aldehydes and ketones, which function downstream of reactive oxygen species (ROS) production in the ABA signalling pathway in guard cells. Among the RCS, acrolein is the most highly reactive, which is significantly produced in ABA-treated guard cells. To clarify the ABA signal pathway downstream of ROS production, we investigated the responses of tgg mutants (tgg1-3, tgg2-1 and tgg1-3 tgg2-1) to acrolein. Acrolein induced stomatal closure and triggered cytosolic alkalization in wild type (WT), tgg1-3 single mutants and in tgg2-1 single mutants, but not in tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ induced stomatal closure and cytosolic alkalization not only in WT but also in all of the mutants. Acrolein- and Ca2+-induced stomatal closures were inhibited by an intracellular acidifying agent, butyrate, a Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA) and a Ca2+ channel blocker, LaCl3. Acrolein induced cytosolic free calcium concentration ([Ca2+]cyt) elevation in guard cells of WT plants but not in the tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ elicited [Ca2+]cyt elevation in guard cells of WT and tgg1-3 tgg2-1. Our results suggest that TGG1 and TGG2 function redundantly, not between ROS production and RCS production, but downstream of RCS production in the ABA signal pathway in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Mohammad Saidur Rhaman
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, 700-8530 Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, 700-8530 Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, 700-8530 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, 700-8530 Japan
| |
Collapse
|
49
|
Ding L, Chaumont F. Are Aquaporins Expressed in Stomatal Complexes Promising Targets to Enhance Stomatal Dynamics? FRONTIERS IN PLANT SCIENCE 2020; 11:458. [PMID: 32373147 PMCID: PMC7186399 DOI: 10.3389/fpls.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
The opening and closure of stomata depend on the turgor pressure adjustment by the influx or efflux of ions and water in guard cells. In this process, aquaporins may play important roles by facilitating the transport of water and other small molecules. In this perspective, we consider the potential roles of aquaporins in the membrane diffusion of different molecules (H2O, CO2, and H2O2), processes dependent on abscisic acid and CO2 signaling in guard cells. While the limited data already available emphasizes the roles of aquaporins in stomatal movement, we propose additional approaches to elucidate the specific roles of single or several aquaporin isoforms in the stomata and evaluate the perspectives aquaporins might offer to improve stomatal dynamics.
Collapse
|
50
|
Sugar Beet ( Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. Int J Mol Sci 2020; 21:ijms21072331. [PMID: 32230932 PMCID: PMC7212754 DOI: 10.3390/ijms21072331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO2 intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as "stress proteins" were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.
Collapse
|