1
|
Jeong J, Lee Y, Choi G. Both phytochrome A and phyB interact with PHYTOCHROME-INTERACTING FACTORs through an evolutionary conserved phy OPM-APA interaction. Nat Commun 2025; 16:3946. [PMID: 40287465 PMCID: PMC12033333 DOI: 10.1038/s41467-025-59327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Phytochrome A (phyA) and phyB are red and far-red photoreceptors that interact with PHYTOCHROME-INTERACTING FACTORs (PIFs) via active phyA-binding (APA) or active phyB-binding (APB) motifs. While APB interacts with the N-terminal photosensory module of phyB (phyBPSM), it remains unclear whether APA interacts with phyAPSM. We report that both phyA and phyB interact with APA through C-terminal output module of phy (phyOPM), while phyB interacts additionally with APB through phyBPSM. Marchantia Mp-phy also interacts with PIFs via the phyOPM-APA interaction. The phyBOPM-APA interaction promotes PIF3 degradation but not mutual phyB destruction. The full-length phy-APA interaction is light-dependent, whereas the underlying phyOPM-APA interaction is not. We show that the Pr form, not the Pfr, of phyPSM competes with APA for phyOPM binding, explaining how the light-dependent phy-APA interaction arises from the light-independent phyOPM-APA interaction. Together, our results suggest that the phyOPM-APA interaction is an ancient feature conserved in both Arabidopsis phyA, phyB and Marchantia Mp-phy.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Yongju Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
2
|
Huerta-Venegas PI, Raya-González J, Ruíz-Herrera LF, López-Bucio J. PHYTOCHROME A controls the DNA damage response and cell death tolerance within the Arabidopsis root meristem. PLANT, CELL & ENVIRONMENT 2024; 47:1513-1525. [PMID: 38251425 DOI: 10.1111/pce.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.
Collapse
Affiliation(s)
- Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
3
|
Kwon Y, Kim C, Choi G. Phytochrome B photobody components. THE NEW PHYTOLOGIST 2024; 242:909-915. [PMID: 38477037 DOI: 10.1111/nph.19675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Phytochrome B (phyB) is a red and far-red photoreceptor that promotes light responses. Upon photoactivation, phyB enters the nucleus and forms a molecular condensate called a photobody through liquid-liquid phase separation. Phytochrome B photobody comprises phyB, the main scaffold molecule, and at least 37 client proteins. These clients belong to diverse functional categories enriched with transcription regulators, encompassing both positive and negative light signaling factors, with the functional bias toward the negative factors. The functionally diverse clients suggest that phyB photobody acts either as a trap to capture proteins, including negatively acting transcription regulators, for processes such as sequestration, modification, or degradation or as a hub where proteins are brought into close proximity for interaction in a light-dependent manner.
Collapse
Affiliation(s)
- Yongmin Kwon
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Chanhee Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
4
|
Deivanai S, Sng BJR, Van Vu K, Shibu TSM, Jang IC, Ramachandran S. EMS-induced mutagenesis in Choy sum (Brassica chinensis var. parachinensis) and selection for low light tolerance using abiotic stress indices. BMC PLANT BIOLOGY 2023; 23:581. [PMID: 37985970 PMCID: PMC10662144 DOI: 10.1186/s12870-023-04570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Choy Sum (Brassica rapa ssp. chinensis var. parachinensis), grown in a controlled environment, is vulnerable to changes in indoor light quality and displays distinct photo-morphogenesis responses. The scarcity of Choy Sum germplasm for indoor cultivation necessitates the development of new cultivars. Hence, this study attempted to develop mutants through chemical mutagenesis and select low-light-tolerant mutants by using abiotic stress tolerance indices. RESULTS A mutant population of Choy Sum created using 1.5% ethyl methane sulfonate (EMS) at 4 h was manually pollinated to obtain the M2 generation. 154 mutants with reduced hypocotyl length were initially isolated from 3600 M2 seedlings screened under low light (R: FR = 0.5). Five mutants that showed reduced plant height at mature stages were selected and screened directly for shade tolerance in the M3 generation. Principal component analysis based on phenotypic data distinguished the M3 mutants from the wild type. Abiotic stress tolerance indices such as relative stress index (RSI), stress tolerance index (STI), geometric mean productivity (GMP), yield stability index (YSI), and stress resistance index (SRI) showed significant (P < 0.05), and positive associations with leaf yield under shade. M3-12-2 was selected as a shade-tolerant mutant based on high values of STI, YSI, and SRI with low values for tolerance (TOL) and stress susceptibility index (SSI). CONCLUSIONS The results demonstrate that mutation breeding can be used to create dominant mutants in Choy Sum. Furthermore, we show that screening for low light and selection based on abiotic tolerance indices allowed the identification of mutants with high resilience under shade. This method should apply to developing new cultivars in other crop plants that can be suitable for controlled environments with stable yield performance.
Collapse
Affiliation(s)
- Subramanian Deivanai
- School of Applied Sciences, Republic Polytechnic, 9 Woodlands Ave 9, Singapore, 738964 , Singapore.
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Kien Van Vu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Thankaraj Salammal Maria Shibu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore.
| |
Collapse
|
5
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
6
|
Ranade SS, García-Gil MR. Clinal variation in PHY (PAS domain) and CRY (CCT domain)-Signs of local adaptation to light quality in Norway spruce. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37291974 DOI: 10.1111/pce.14638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Detection of the genomic basis of local adaptation to environmental conditions is challenging in forest trees. Phytochromes (PHY) and cryptochromes (CRY) perceive the red (R)/far-red (FR) and blue light respectively, thus playing a fundamental role in regulating plant growth and development. PHYO and PHYP from conifers are the equivalents of PHYA/PHYC and PHYB in angiosperms, respectively. Norway spruce shows an adaptive latitudinal cline for shade (low R:FR or FR-enriched light) tolerance and requirement of FR light for its growth. We analyzed the exome capture data that included a uniquely large data set of 1654 Norway spruce trees sampled across many latitudes in Sweden to capture the natural clines for photoperiod and FR light exposure during the growth season. Statistically significant clinal variation was detected in allele and genotype frequencies of missense mutations in coding regions belonging to well-defined functional domains of PHYO (PAS-B), PHYP2 (PAS fold-2), CRY1 (CCT1) and CRY2 (CCT2) that strongly correlates with the latitudinal gradient in response to variable light quality in Norway spruce. The missense SNP in PHYO resulting in Asn835Ser, displayed the steepest cline among all other polymorphisms. We propose that these variations in the photoreceptors represent signs of local adaptation to light quality.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
7
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
8
|
Woods DP, Li W, Sibout R, Shao M, Laudencia-Chingcuanco D, Vogel JP, Dubcovsky J, Amasino RM. PHYTOCHROME C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLoS Genet 2023; 19:e1010706. [PMID: 37163541 PMCID: PMC10171608 DOI: 10.1371/journal.pgen.1010706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023] Open
Abstract
Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.
Collapse
Affiliation(s)
- Daniel P. Woods
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Versailles Cedex, France
- UR1268 BIA, INRAE, Nantes, France
| | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Debbie Laudencia-Chingcuanco
- USDA-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- DOE Joint Genome Institute, Berkeley, California, United States of America
| | - Jorge Dubcovsky
- Dept. Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Balderrama D, Barnwell S, Carlson KD, Salido E, Guevara R, Nguyen C, Madlung A. Phytochrome F mediates red light responsiveness additively with phytochromes B1 and B2 in tomato. PLANT PHYSIOLOGY 2023; 191:2353-2366. [PMID: 36670526 PMCID: PMC10069882 DOI: 10.1093/plphys/kiad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Phytochromes are red light and far-red light sensitive, plant-specific light receptors that allow plants to orient themselves in space and time. Tomato (Solanum lycopersicum) contains a small family of five phytochrome genes, for which to date stable knockout mutants are only available for three of them. Using CRISPR technology, we created multiple alleles of SlPHYTOCHROME F (phyF) mutants to determine the function of this understudied phytochrome. We report that SlphyF acts as a red/far-red light reversible low fluence sensor, likely through the formation of heterodimers with SlphyB1 and SlphyB2. During photomorphogenesis, phyF functions additively with phyB1 and phyB2. Our data further suggest that phyB2 requires the presence of either phyB1 or phyF during seedling de-etiolation in red light, probably via heterodimerization, while phyB1 homodimers are required and sufficient to suppress hypocotyl elongation in red light. During the end-of-day far-red response, phyF works additively with phyB1 and phyB2. In addition, phyF plays a redundant role with phyB1 in photoperiod detection and acts additively with phyA in root patterning. Taken together, our results demonstrate various roles for SlphyF during seedling establishment, sometimes acting additively, other times acting redundantly with the other phytochromes in tomato.
Collapse
|
10
|
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, Kou X, Deng XW, Zhong S. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 2023; 186:1230-1243.e14. [PMID: 36931246 DOI: 10.1016/j.cell.2023.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| |
Collapse
|
11
|
Choi DM, Kim SH, Han YJ, Kim JI. Regulation of Plant Photoresponses by Protein Kinase Activity of Phytochrome A. Int J Mol Sci 2023; 24:ijms24032110. [PMID: 36768431 PMCID: PMC9916439 DOI: 10.3390/ijms24032110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.
Collapse
Affiliation(s)
- Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
13
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Viczián A, Klose C, Hiltbrunner A, Nagy F. Editorial: Plant Phytochromes: From Structure to Signaling and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:811379. [PMID: 34956300 PMCID: PMC8698484 DOI: 10.3389/fpls.2021.811379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Affiliation(s)
- András Viczián
- Biological Research Centre, Institute of Plant Biology, Laboratory of Photo- and Chronobiology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology II, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg im Breisgau, Germany
| | - Ferenc Nagy
- Biological Research Centre, Institute of Plant Biology, Laboratory of Photo- and Chronobiology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| |
Collapse
|
15
|
Pashkovskiy P, Kreslavski VD, Ivanov Y, Ivanova A, Kartashov A, Shmarev A, Strokina V, Kuznetsov VV, Allakhverdiev SI. Influence of Light of Different Spectral Compositions on the Growth, Photosynthesis, and Expression of Light-Dependent Genes of Scots Pine Seedlings. Cells 2021; 10:cells10123284. [PMID: 34943792 PMCID: PMC8699472 DOI: 10.3390/cells10123284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Varying the spectral composition of light is one of the ways to accelerate the growth of conifers under artificial conditions for the development of technologies and to obtain sustainable seedlings required to preserve the existing areas of forests. We studied the influence of light of different quality on the growth, gas exchange, fluorescence indices of Chl a, and expression of key light-dependent genes of Pinus sylvestris L. seedlings. It was shown that in plants growing under red light (RL), the biomass of needles and root system increased by more than two and three times, respectively, compared with those of the white fluorescent light (WFL) control. At the same time, the rates of photosynthesis and respiration in RL and blue light (BL) plants were lower than those of blue red light (BRL) plants, and the difference between the rates of photosynthesis and respiration, which characterizes the carbon balance, was maximum under RL. RL influenced the number of xylem cells, activated the expression of genes involved in the transduction of cytokinin (Histidine-containing phosphotransfer 1, HPT1, Type-A Response Regulators, RR-A) and auxin (Auxin-induced protein 1, Aux/IAA) signals, and reduced the expression of the gene encoding the transcription factor phytochrome-interacting factor 3 (PIF3). It was suggested that RL-induced activation of key genes of cytokinin and auxin signaling might indicate a phytochrome-dependent change in cytokinins and auxins activity.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
- Correspondence: (P.P.); (S.I.A.)
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexander Shmarev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Valeriya Strokina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
- Correspondence: (P.P.); (S.I.A.)
| |
Collapse
|
16
|
von Horsten S, Essen LO. Conformational Change of Tetratricopeptide Repeats Region Triggers Activation of Phytochrome-Associated Protein Phosphatase 5. FRONTIERS IN PLANT SCIENCE 2021; 12:733069. [PMID: 34721460 PMCID: PMC8551457 DOI: 10.3389/fpls.2021.733069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Phytochrome activity is not only controlled by light but also by post-translational modifications, e. g. phosphorylation. One of the phosphatases responsible for plant phytochrome dephosphorylation and thereby increased activity is the phytochrome-associated protein phosphatase 5 (PAPP5). We show that PAPP5 recognizes phospho-site mimicking mutants of phytochrome B, when being activated by arachidonic acid (AA). Addition of AA to PAPP5 decreases the α-helical content as tracked by CD-spectroscopy. These changes correspond to conformational changes of the regulatory tetratricopeptide repeats (TPR) region as shown by mapping data from hydrogen deuterium exchange mass spectrometry onto a 3.0 Å crystal structure of PAPP5. Surprisingly, parts of the linker between the TPR and PP2A domains and of the so-called C-terminal inhibitory motif exhibit reduced deuterium uptake upon AA-binding. Molecular dynamics analyses of PAPP5 complexed to a phyB phosphopeptide show that this C-terminal motif remains associated with the TPR region in the substrate bound state, suggesting that this motif merely serves for restricting the orientations of the TPR region relative to the catalytic PP2A domain. Given the high similarity to mammalian PP5 these data from a plant ortholog show that the activation mode of these PPP-type protein phosphatases is highly conserved.
Collapse
Affiliation(s)
- Silke von Horsten
- Department of Biochemistry, Faculty of Chemistry, Philipps-University, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-University, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University, Marburg, Germany
| |
Collapse
|
17
|
Pardi SA, Nusinow DA. Out of the Dark and Into the Light: A New View of Phytochrome Photobodies. FRONTIERS IN PLANT SCIENCE 2021; 12:732947. [PMID: 34531891 PMCID: PMC8438518 DOI: 10.3389/fpls.2021.732947] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
Light is a critical environmental stimulus for plants, serving as an energy source via photosynthesis and a signal for developmental programming. Plants perceive light through various light-responsive proteins, termed photoreceptors. Phytochromes are red-light photoreceptors that are highly conserved across kingdoms. In the model plant Arabidopsis thaliana, phytochrome B serves as a light and thermal sensor, mediating physiological processes such as seedling germination and establishment, hypocotyl growth, chlorophyll biogenesis, and flowering. In response to red light, phytochromes convert to a biologically active form, translocating from the cytoplasm into the nucleus and further compartmentalizes into subnuclear compartments termed photobodies. PhyB photobodies regulate phytochrome-mediated signaling and physiological outputs. However, photobody function, composition, and biogenesis remain undefined since their discovery. Based on photobody cellular dynamics and the properties of internal components, photobodies have been suggested to undergo liquid-liquid phase separation, a process by which some membraneless compartments form. Here, we explore photobodies as environmental sensors, examine the role of their protein constituents, and outline the biophysical perspective that photobodies may be undergoing liquid-liquid phase separation. Understanding the molecular, cellular, and biophysical processes that shape how plants perceive light will help in engineering improved sunlight capture and fitness of important crops.
Collapse
Affiliation(s)
- Sarah A. Pardi
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Hoang QTN, Cho JY, Choi DM, Shin AY, Kim JA, Han YJ, Kim JI. Protein Kinase Activity of Phytochrome A Positively Correlates With Photoresponses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:706316. [PMID: 34394163 PMCID: PMC8362889 DOI: 10.3389/fpls.2021.706316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plant phytochromes are known as autophosphorylating serine/threonine protein kinases. However, the functional importance of their kinase activity is not fully elucidated. Previously, the kinase activity is shown to be necessary for the function of Avena sativa phytochrome A (AsphyA) using transgenic plants with mutants displaying reduced kinase activity, such as K411L and T418D. In this study, we isolated and analyzed two AsphyA mutants, K411R and T418V, that showed increased kinase activity. Transgenic phyA-201 plants with these mutants showed hypersensitive responses to far-red (FR) light, such as shorter hypocotyls and more expanded cotyledons than those of control plant (i.e., transgenic phyA-201 plant with wild-type AsphyA). Contrary to the mutants with reduced kinase activity, these mutants accelerated FR-induced phosphorylation and subsequent degradation of phytochrome-interacting factor 3 (PIF3) in Arabidopsis. Moreover, elongated hypocotyl 5 (HY5), a critical positive regulator of photoresponses in plants, accumulated in higher amounts in the transgenic plants under FR light than in the control plant. In addition, PIF1 degradation was accelerated in the transgenic plants. Consequently, the transgenic plants exhibit higher germination frequencies than the control plant. Collectively, our results demonstrate that the AsphyA mutants with increased kinase activity are hyperactive in plants, supporting a positive relationship between the kinase activity of phytochromes and photoresponses in plants.
Collapse
Affiliation(s)
- Quyen T. N. Hoang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jae-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin A. Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeollabuk-do, South Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
19
|
Ikeda H, Suzuki T, Oka Y, Gustafsson ALS, Brochmann C, Mochizuki N, Nagatani A. Divergence in red light responses associated with thermal reversion of phytochrome B between high- and low-latitude species. THE NEW PHYTOLOGIST 2021; 231:75-84. [PMID: 33817798 DOI: 10.1111/nph.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light-limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light-limited and warm conditions in the phyB-deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome-related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Collapse
Affiliation(s)
- Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Tomomi Suzuki
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - A Lovisa S Gustafsson
- Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, NO-0318, Norway
| | - Christian Brochmann
- Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, NO-0318, Norway
| | - Nobuyoshi Mochizuki
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
20
|
Abstract
The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Inyup Paik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
21
|
Burgie ES, Gannam ZTK, McLoughlin KE, Sherman CD, Holehouse AS, Stankey RJ, Vierstra RD. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. Proc Natl Acad Sci U S A 2021; 118:e2105649118. [PMID: 34039713 PMCID: PMC8179155 DOI: 10.1073/pnas.2105649118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many aspects of photoperception by plants and microorganisms are initiated by the phytochrome (Phy) family of photoreceptors that detect light through interconversion between red light- (Pr) and far-red light-absorbing (Pfr) states. Plants synthesize a small family of Phy isoforms (PhyA to PhyE) that collectively regulate photomorphogenesis and temperature perception through redundant and unique actions. While the selective roles of these isoforms have been partially attributed to their differing abundances, expression patterns, affinities for downstream partners, and turnover rates, we show here from analysis of recombinant Arabidopsis chromoproteins that the Phy isoforms also display distinct biophysical properties. Included are a hypsochromic shift in the Pr absorption for PhyC and varying rates of Pfr to Pr thermal reversion, part of which can be attributed to the core photosensory module in each. Most strikingly, PhyB combines strong temperature dependence of thermal reversion with an order-of-magnitude faster rate to likely serve as the main physiological thermosensor, whereby thermal reversion competes with photoconversion. In addition, comparisons of Pfr occupancies for PhyA and PhyB under a range of red- and white-light fluence rates imply that low-light environments are effectively sensed by PhyA, while high-light environments, such as full sun, are effectively sensed by PhyB. Parallel analyses of the Phy isoforms from potato and maize showed that the unique features within the Arabidopsis family are conserved, thus indicating that the distinct biophysical properties among plant Phy isoforms emerged early in Phy evolution, likely to enable full interrogation of their light and temperature environments.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Zira T K Gannam
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | | | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63110
| | - Robert J Stankey
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130;
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
22
|
Hernando CE, Murcia MG, Pereyra ME, Sellaro R, Casal JJ. Phytochrome B links the environment to transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4068-4084. [PMID: 33704448 DOI: 10.1093/jxb/erab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome B (phyB) senses the difference between darkness and light, the level of irradiance, the red/far-red ratio, and temperature. Thanks to these sensory capacities, phyB perceives whether plant organs are buried in the soil, exposed to full sunlight, in the presence of nearby vegetation, and/or under risk of heat stress. In some species, phyB perceives seasonal daylength cues. phyB affects the activity of several transcriptional regulators either by direct physical interaction or indirectly by physical interaction with proteins involved in the turnover of transcriptional regulators. Typically, interaction of a protein with phyB has either negative or positive effects on the interaction of the latter with a third party, this being another protein or DNA. Thus, phyB mediates the context-dependent modulation of the transcriptome underlying changes in plant morphology, physiology, and susceptibility to biotic and abiotic stress. phyB operates as a dynamic switch that improves carbon balance, prioritizing light interception and photosynthetic capacity in open places and the projection of the shoot towards light in the soil, under shade and in warm conditions.
Collapse
Affiliation(s)
- Carlos Esteban Hernando
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Mauro Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Matías Ezequiel Pereyra
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Jorge José Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
23
|
Battle MW, Vegliani F, Jones MA. Shades of green: untying the knots of green photoperception. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5764-5770. [PMID: 32619226 PMCID: PMC7541914 DOI: 10.1093/jxb/eraa312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/04/2023]
Abstract
The development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants' perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct 'green' and 'yellow' light-induced responses. This distinction will enable clearer interpretation of plants' behaviour in response to green light as we seek to optimize plant growth and nutritional quality in horticultural contexts.
Collapse
Affiliation(s)
- Martin W Battle
- School of Life Sciences, University of Essex, Colchester, UK
| | - Franco Vegliani
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow, UK
| | - Matthew A Jones
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow, UK
- Correspondence:
| |
Collapse
|
24
|
Hu W, Figueroa‐Balderas R, Chi‐Ham C, Lagarias JC. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. PLANT DIRECT 2020; 4:e00210. [PMID: 32346668 PMCID: PMC7184922 DOI: 10.1002/pld3.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
The constitutively active missense allele of Arabidopsis phytochrome B, AtPHYBY276H or AtYHB, encodes a polypeptide that adopts a light-insensitive, physiologically active conformation capable of sustaining photomorphogenesis in darkness. Here, we show that the orthologous OsYHB allele of rice phytochrome B (OsPHYBY283H ) also encodes a dominant "constitutively active" photoreceptor through comparative phenotypic analyses of AtYHB and OsYHB transgenic lines of four eudicot species, Arabidopsis thaliana, Nicotiana tabacum (tobacco), Nicotiana sylvestris and Solanum lycopersicum cv. MicroTom (tomato), and of two monocot species, Oryza sativa ssp. japonica and Brachypodium distachyon. Reciprocal transformation experiments show that the gain-of-function constitutive photomorphogenic (cop) phenotypes by YHB expression are stronger in host plants within the same class than across classes. Our studies also reveal additional YHB-dependent traits in adult plants, which include extreme shade tolerance, both early and late flowering behaviors, delayed leaf senescence, reduced tillering, and even viviparous seed germination. However, the strength of these gain-of-function phenotypes depends on the specific combination of YHB allele and species/cultivar transformed. Flowering and tillering of OsYHB- and OsPHYB-expressing lines of rice Nipponbare and Kitaake cultivars were compared, also revealing differences in YHB/PHYB allele versus genotype interaction on the phenotypic behavior of the two rice cultivars. In view of recent evidence that the regulatory activity of AtYHB is not only light insensitive but also temperature insensitive, selective YHB expression is expected to yield improved agronomic performance of both dicot and monocot crop plant species not possible with wild-type PHYB alleles.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Rosa Figueroa‐Balderas
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCAUSA
| | - Cecilia Chi‐Ham
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
| | - J. Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
25
|
Wen J, Herron SA, Yang X, Liu BB, Zuo YJ, Harris AJ, Kalburgi Y, Johnson G, Zimmer EA. Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. FRONTIERS IN PLANT SCIENCE 2020; 11:263. [PMID: 32256506 PMCID: PMC7092692 DOI: 10.3389/fpls.2020.00263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/19/2020] [Indexed: 05/31/2023]
Abstract
Despite the commercial importance of the Concord grape, its origin has remained unresolved for over 150 years without a comprehensive phylogenetic analysis. In this study we aimed to reconstruct the evolutionary history of the Concord grape using sequence data from four nuclear markers (AT103, GAI1, PHYA, and SQD1), six plastid markers (matK, psbA-trnH, petN-trnC, ycf1, trnL-F, and trnS-G), and the plastid genome. We sampled extensively the Vitis species native to northeastern North America as well as representative species from Europe and Asia, including the commercially important Vitis vinifera (wine grape), a native European species with hermaphroditic flowers, and its wild progenitor, V. vinifera subsp. sylvestris. We also sequenced the plastid genome of one accession of the Concord grape and compared the plastid genome data to the recently published data set of Vitis plastomes. Phylogenetic analyses of the plastid and nuclear data using maximum likelihood and Bayesian inference support the hybrid origin of the Concord grape. The results clearly pinpoint the wine grape, V. vinifera, as the maternal donor and the fox grape, Vitis labrusca, which is common in northeastern North America, as the paternal donor. Moreover, we infer that the breeding history of the Concord grape must have involved the backcrossing of the F1 hybrid with the paternal parent V. labrusca. This backcrossing also explains the higher morphological similarity of the Concord grape to V. labrusca than to V. vinifera. This study provides concrete genetic evidence for the hybrid origin of a widespread Vitis cultivar and is, therefore, promising for similar future studies focused on resolving ambiguous origins of major crops or to create successful hybrid fruit crops.
Collapse
Affiliation(s)
- Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | | | - Xue Yang
- Agriculture School, Kunming University, Kunming, China
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yun-Juan Zuo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - AJ Harris
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, United States
- Key Laboratory for Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yash Kalburgi
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
26
|
Klose C, Nagy F, Schäfer E. Thermal Reversion of Plant Phytochromes. MOLECULAR PLANT 2020; 13:386-397. [PMID: 31812690 DOI: 10.1016/j.molp.2019.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany.
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Carlson KD, Bhogale S, Anderson D, Zaragoza-Mendoza A, Madlung A. Subfunctionalization of phytochrome B1/B2 leads to differential auxin and photosynthetic responses. PLANT DIRECT 2020; 4:e00205. [PMID: 32128473 PMCID: PMC7047017 DOI: 10.1002/pld3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members: PHYA, PHYB1, PHYB2, PHYE, and PHYF. The most recent gene duplication within this family was in the ancestral PHYB gene. Using transcriptome profiling, co-expression network analysis, and physiological and molecular experimentation, we show that tomato SlPHYB1 and SlPHYB2 exhibit both common and non-redundant functions. Specifically, PHYB1 appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, while PHYB1 and PHYB2 regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.
Collapse
Affiliation(s)
- Keisha D Carlson
- Department of Biology University of Puget Sound Tacoma Washington
| | - Sneha Bhogale
- Department of Biology University of Puget Sound Tacoma Washington
| | - Drew Anderson
- Department of Biology University of Puget Sound Tacoma Washington
| | | | - Andreas Madlung
- Department of Biology University of Puget Sound Tacoma Washington
| |
Collapse
|
28
|
Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun 2019; 10:5219. [PMID: 31745087 PMCID: PMC6864062 DOI: 10.1038/s41467-019-13045-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
Phytochromes are bilin-binding photosensory receptors which control development over a broad range of environmental conditions and throughout the whole plant life cycle. Light-induced conformational changes enable phytochromes to interact with signaling partners, in particular transcription factors or proteins that regulate them, resulting in large-scale transcriptional reprograming. Phytochromes also regulate promoter usage, mRNA splicing and translation through less defined routes. In this review we summarize our current understanding of plant phytochrome signaling, emphasizing recent work performed in Arabidopsis. We compare and contrast phytochrome responses and signaling mechanisms among land plants and highlight open questions in phytochrome research.
Collapse
|
29
|
Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gomez-Cadenas A, Tsiantis M, Rodríguez-Concepción M, Martínez-García JF. Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. THE PLANT CELL 2019; 31:2649-2663. [PMID: 31530733 PMCID: PMC6881134 DOI: 10.1105/tpc.19.00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.
Collapse
Affiliation(s)
- Maria Jose Molina-Contreras
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Sandi Paulišić
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Christiane Then
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Luca Morelli
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Irma Roig-Villanova
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Huw Jenkins
- Department of Plant Sciences, University of Oxford, Oxford OX1 3BR, United Kingdom
| | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Aurelio Gomez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castello de la Plana, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
30
|
He T, Hill CB, Angessa TT, Zhang XQ, Chen K, Moody D, Telfer P, Westcott S, Li C. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5603-5616. [PMID: 31504706 PMCID: PMC6812734 DOI: 10.1093/jxb/erz332] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 05/10/2023]
Abstract
Single-marker genome-wide association studies (GWAS) have successfully detected associations between single nucleotide polymorphisms (SNPs) and agronomic traits such as flowering time and grain yield in barley. However, the analysis of individual SNPs can only account for a small proportion of genetic variation, and can only provide limited knowledge on gene network interactions. Gene-based GWAS approaches provide enormous opportunity both to combine genetic information and to examine interactions among genetic variants. Here, we revisited a previously published phenotypic and genotypic data set of 895 barley varieties grown in two years at four different field locations in Australia. We employed statistical models to examine gene-phenotype associations, as well as two-way epistasis analyses to increase the capability to find novel genes that have significant roles in controlling flowering time in barley. Genetic associations were tested between flowering time and corresponding genotypes of 174 putative flowering time-related genes. Gene-phenotype association analysis detected 113 genes associated with flowering time in barley, demonstrating the unprecedented power of gene-based analysis. Subsequent two-way epistasis analysis revealed 19 pairs of gene×gene interactions involved in controlling flowering time. Our study demonstrates that gene-based association approaches can provide higher capacity for future crop improvement to increase crop performance and adaptation to different environments.
Collapse
Affiliation(s)
- Tianhua He
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Kefei Chen
- SAGI-WEST, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | | | - Paul Telfer
- Australian Grain Technologies Pty Ltd (AGT), SA, Australia
| | - Sharon Westcott
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Hubei Jingzhou, China
- Correspondence:
| |
Collapse
|
31
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
32
|
Ranade SS, Delhomme N, García-Gil MR. Transcriptome analysis of shade avoidance and shade tolerance in conifers. PLANTA 2019; 250:299-318. [PMID: 31028482 DOI: 10.1007/s00425-019-03160-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 05/26/2023]
Abstract
Gymnosperms respond differently to light intensity and R:FR; although some aspects of shade response appear conserved, yet underlying mechanisms seem to be diverse in gymnosperms as compared to angiosperms. Shade avoidance syndrome (SAS) is well-characterized in the shade intolerant model species Arabidopsis thaliana whereas much less is known about shade tolerance response (STR), yet regulation of SAS and STR with reference to conifers remains poorly understood. We conducted a comparative study of two conifer species with contrasting responses to shade, Scots pine (shade-intolerant) and Norway spruce (shade-tolerant), with the aim to understand mechanisms behind SAS and STR in conifers. Pine and spruce seedlings were grown under controlled light and shade conditions, and hypocotyl and seedling elongation following different light treatments were determined in both species as indicators of shade responses. Red to far-red light ratio (R:FR) was shown to trigger the shade response in Norway spruce. In Scots pine, we observed an interaction between R:FR and light intensity. RNA sequencing (RNA-Seq) data revealed that SAS and STR responses included changes in expression of genes involved primarily in hormone signalling and pigment biosynthesis. From the RNA-Seq analysis, we propose that although some aspects of shade response appear to be conserved in angiosperms and gymnosperms, yet the underlying mechanisms may be different in gymnosperms that warrants further research.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
33
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: 10.1134/s0006297919050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sineshchekov VA, Belyaeva OB. Regulation of Chlorophyll Biogenesis by Phytochrome A. BIOCHEMISTRY (MOSCOW) 2019; 84:491-508. [DOI: https:/doi.org/10.1134/s0006297919050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2023]
|
35
|
Inoue K, Nishihama R, Araki T, Kohchi T. Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2019; 60:1136-1145. [PMID: 30816950 DOI: 10.1093/pcp/pcz029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 05/15/2023]
Abstract
Land plants have evolved a series of photoreceptors to precisely perceive environmental information. Among these, phytochromes are the sole photoreceptors for red light (R) and far-red light (FR), and play pivotal roles in modulating various developmental processes. Most extant land plants possess multiple phytochromes that probably evolved from a single phytochrome in the common ancestor of land plants. However, the ancestral phytochrome signaling mechanism remains unknown due to a paucity of knowledge regarding phytochrome functions in basal land plants. It has recently been reported that Mpphy, a single phytochrome in the liverwort Marchantia polymorpha, regulates typical photoreversible responses collectively classified as low fluence response (LFR). Here, we show that Mpphy also regulates the gametangiophore formation analogous to the mode of action of the far-red high irradiance response (FR-HIR) in angiosperms. Our phenotypic analyses using mutant plants obtained by CRISPR/Cas9-based genome editing revealed that MpFHY1, an ortholog of FAR-RED ELONGATED HYPOCOTYL1, as well as Mpphy is critical for the FR-HIR signaling in M. polymorpha. In addition, knockout of MpPIF, a single PHYTOCHROME INTERACTING FACTOR gene in M. polymorpha, completely abolished the FR-HIR-dependent gametangiophore formation, while overexpression of MpPIF accelerated the response. FR-HIR-dependent transcriptional regulation was also disrupted in the Mppif mutant. Our findings suggest that plants had already acquired the FR-HIR signaling mediated by phytochrome and PIF at a very early stage during the course of land plant evolution, and that a single phytochrome in the common ancestor of land plants could mediate both LFR and FR-HIR.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proc Natl Acad Sci U S A 2018; 115:12823-12828. [PMID: 30482859 PMCID: PMC6294885 DOI: 10.1073/pnas.1809526115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Light enhances the translation efficiency of thousands of mRNAs during photomorphogenic development in Arabidopsis, but the underlying molecular mechanism remains elusive. Here we show that light activates the auxin-target of rapamycin (TOR)-ribosome protein S6 (RPS6) pathway to enhance translation in deetiolating Arabidopsis. We discovered that CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) represses TOR activity in dark-grown seedlings. The perception of far-red and blue light by photoreceptors inactivates COP1, which leads to the derepression of the auxin-TOR-RPS6 pathway and enhanced de novo protein synthesis. Our study revealed a light-triggered signaling pathway for translational regulation. This sophisticated regulation also functions to ensure that young seedlings have strict skotomorphogenic development in the dark and a timely switch to photomorphogenic development. Deetiolation is an essential developmental process transforming young plant seedlings into the vegetative phase with photosynthetic activities. Light signals initiate this important developmental process by triggering massive reprogramming of the transcriptome and translatome. Compared with the wealth of knowledge of transcriptional regulation, the molecular mechanism underlying this light-triggered translational enhancement remains unclear. Here we show that light-enhanced translation is orchestrated by a light perception and signaling pathway composed of photoreceptors, CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), the phytohormone auxin, target of rapamycin (TOR), and ribosomal protein S6 (RPS6). In deetiolating Arabidopsis seedlings, photoreceptors, including phytochrome A and cryptochromes, perceive far-red and blue light to inactivate the negative regulator COP1, which leads to activation of the auxin pathway for TOR-dependent phosphorylation of RPS6. Arabidopsis mutants defective in TOR, RPS6A, or RPS6B exhibited delayed cotyledon opening, a characteristic of the deetiolating process to ensure timely vegetative development of a young seedling. This study provides a mechanistic view of light-triggered translational enhancement in deetiolating Arabidopsis.
Collapse
|
37
|
Ibrahim A, Harrison M, Meinke H, Fan Y, Johnson P, Zhou M. A regulator of early flowering in barley (Hordeum vulgare L.). PLoS One 2018; 13:e0200722. [PMID: 30016338 PMCID: PMC6049932 DOI: 10.1371/journal.pone.0200722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Heading date (HD) of cereals is an important trait for adaptation to diverse environments and is critical for determining yield and quality and the number of genes and gene combinations that confer earliness in barley under short days is limited. In our study, a QTL for early flowering was identified from the cross between an Australian malting barley cultivar and a Chinese landrace. Four sets of near isogenic lines (NILs) were developed with a QTL located on chromosome 5H at the interval of 122.0-129.0 cM. Further experiments were conducted to investigate how this gene was regulated by photoperiod using the NILs with three sowing dates from autumn to summer. The NILs carrying the earliness allele were significantly earlier than the late genotype at all sowing dates. This gene was different from previously reported vernalisation genes that are located at a similar position as no vernalisation was required for all the NILs. The difference between this gene and Eam5 (HvPHYC) locus which also located between two co-segregated markers (3398516S5, 122.5 cM, and 4014046D5, 126.1 cM), is that with the existence of Ppd-H1 (Eam1), Eam5 has no effect on ear emergence under long days while the gene from TX9425 still reduced the time to ear emergency. The locus showed no pleiotropic effects on grain pasting properties and agronomic traits except for spike length and number of spikelets per spike, and thus can be effectively used in breeding programs. The array of early heading dates caused by interactions of Eam5 gene with other maturity genes provides an opportunity to better fine tune heading dates with production environments, which can be critical factor in barley breeding.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
- Department of Plant Science, Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Holger Meinke
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Yun Fan
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| |
Collapse
|
38
|
Ichihashi Y, Kusano M, Kobayashi M, Suetsugu K, Yoshida S, Wakatake T, Kumaishi K, Shibata A, Saito K, Shirasu K. Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense. PLANT & CELL PHYSIOLOGY 2018; 59:724-733. [PMID: 29281058 PMCID: PMC6018956 DOI: 10.1093/pcp/pcx200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 05/22/2023]
Abstract
Most plants show remarkable developmental plasticity in the generation of diverse types of new organs upon external stimuli, allowing them to adapt to their environment. Haustorial formation in parasitic plants is an example of such developmental reprogramming, but its molecular mechanism is largely unknown. In this study, we performed field-omics using transcriptomics and metabolomics to profile the molecular switch occurring in haustorial formation of the root parasitic plant, Thesium chinense, collected from its natural habitat. RNA-sequencing with de novo assembly revealed that the transcripts of very long chain fatty acid (VLCFA) biosynthesis genes, auxin biosynthesis/signaling-related genes and lateral root developmental genes are highly abundant in the haustoria. Gene co-expression network analysis identified a network module linking VLCFAs and the auxin-responsive lateral root development pathway. GC-TOF-MS analysis consistently revealed a unique metabolome profile with many types of fatty acids in the T. chinense root system, including the accumulation of a 25-carbon long chain saturated fatty acid in the haustoria. Our field-omics data provide evidence supporting the hypothesis that the molecular developmental machinery used for lateral root formation in non-parasitic plants has been co-opted into the developmental reprogramming of haustorial formation in the linage of parasitic plants.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kie Kumaishi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675 Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| |
Collapse
|
39
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
40
|
Burgie ES, Bussell AN, Lye SH, Wang T, Hu W, McLoughlin KE, Weber EL, Li H, Vierstra RD. Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Sci Rep 2017; 7:13648. [PMID: 29057954 PMCID: PMC5651913 DOI: 10.1038/s41598-017-14037-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Adam N Bussell
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shu-Hui Lye
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Tong Wang
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,CUNY Advanced Science Research Center, The City University of New York, New York, New York, 10031, USA
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Erin L Weber
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA. .,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
41
|
Biological activity and dimerization state of modified phytochrome A proteins. PLoS One 2017; 12:e0186468. [PMID: 29049346 PMCID: PMC5648194 DOI: 10.1371/journal.pone.0186468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
To assess potential physical interactions of type I phyA with the type II phyB-phyE phytochromes in vivo, transgenes expressing fusion gene forms of phyA were introduced into the Arabidopsis phyA mutant background. When a single c-Myc (myc) epitope is added to either the N- or C-terminus of phyA, the constructs completely complement phyA mutant phenotypes. However, addition of larger tags, such as six consecutive myc epitopes or the yellow fluorescent protein sequence, result in fusion proteins that show reduced activity. All the tagged phyA proteins migrate as dimers on native gels and co-immunoprecipitation reveals no binding interaction of phyA to any of the type II phys in the dark or under continuous far-red light. Dimers of the phyA 1–615 amino acid N-terminal photosensory domain (NphyA), generated in vivo with a yeast GAL4 dimerization domain and attached to a constitutive nuclear localization sequence, are expressed at a low level and, although they cause a cop phenotype in darkness and mediate a very low fluence response to pulses of FR, have no activity under continuous FR. It is concluded that type I phyA in its Pr form is present in plants predominantly or exclusively as a homodimer and does not stably interact with type II phys in a dimer-to-dimer manner. In addition, its activity in mediating response to continuous FR is sensitive to modification of its N- or C-terminus.
Collapse
|
42
|
Kim JY, Song JT, Seo HS. COP1 regulates plant growth and development in response to light at the post-translational level. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4737-4748. [PMID: 28992300 DOI: 10.1093/jxb/erx312] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoreceptors perceive different wavelengths of light and transduce light signals downstream via a range of proteins. COP1, an E3 ubiquitin ligase, regulates light signaling by mediating the ubiquitination and subsequent proteasomal degradation of photoreceptors such as phytochromes and cryptochromes, as well as various development-related proteins including other light-responsive proteins. COP1 is itself regulated by direct interactions with several signaling molecules that modulate its activity. The control of photomorphogenesis by COP1 is also regulated by its localization to the cytoplasm in response to light. COP1 thus acts as a tightly regulated switch that determines whether development is skotomorphogenic or photomorphogenic. In this review, we discuss the effects of COP1 on the abundance and activity of various development-related proteins, including photoreceptors, and summarize the regulatory mechanisms that influence COP1 activity and stability in plants.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
43
|
Ferradás Y, Martínez Ó, Rey M, González MV. Identification and expression analysis of photoreceptor genes in kiwifruit leaves under natural daylength conditions and their relationship with other genes that regulate photoperiodic flowering. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:108-121. [PMID: 28363189 DOI: 10.1016/j.jplph.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/17/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Kiwifruit (Actinidia chinensis var. deliciosa (A. Chev) A. Chev.) is a dioecious vine highly dependent on pollination, which is limited by a lack of synchrony of flowering time between male and female plants. In many plant species, the regulation of the timing of flowering depends largely on seasonal cues such as photoperiod, which is detected by photoreceptors. In this report, we determined the full sequences of the PHYB (AcPHYB) and PHYA (AcPHYA) genes and a partial sequence of the CRY2 (AcCRY2) gene in kiwifruit. Next, we monitored the expression patterns of these photoreceptor genes (AcPHYA, AcPHYB and AcCRY2) as well as other genes involved in flowering regulation (AcCO-like and AcFT) in the leaves of kiwifruit plants grown under natural photoperiods in the field. The annual expression patterns of AcPHYB, AcPHYA and AcCRY2 genes showed that they were significantly highly expressed from late flower development until full bloom and fitting with floral evocation, closely matching the peaks of expression detected for the AcFT and AcCO-like genes. In addition, the daily expression patterns of AcPHYB, AcPHYA and AcCRY2 were analyzed in leaves collected under different daylength conditions. Under long-day (LD) conditions, maximum expression levels were detected in the middle of the day in April (before full bloom), while their expression lost their daily rhythmic patterns in June (after full bloom) and were consistently expressed at low levels. Under short-day (SD) conditions, AcPHYB, AcPHYA and AcCRY2 gene expression patterns were the opposite of those observed in April. With respect to AcFT, no expression was detected in SD conditions. In contrast, the AcCO-like gene oscillated for all daylength conditions with the same daily rhythm. Our results seem to indicate the involvement of photoreceptor genes in kiwifruit flowering regulation. The different daily expression patterns detected for AcPHYA, AcPHYB, AcCRY2 and AcFT under different daylength conditions suggest that photoperiod regulates their expression, while the uniform expression of the AcCO-like gene is in agreement with its reported regulation by the circadian clock.
Collapse
Affiliation(s)
- Yolanda Ferradás
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
| | - M Victoria González
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain.
| |
Collapse
|
44
|
Budde KB, González-Martínez SC, Navascués M, Burgarella C, Mosca E, Lorenzo Z, Zabal-Aguirre M, Vendramin GG, Verdú M, Pausas JG, Heuertz M. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. ANNALS OF BOTANY 2017; 119:1061-1072. [PMID: 28159988 PMCID: PMC5604561 DOI: 10.1093/aob/mcw286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. METHODS Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. KEY RESULTS Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. CONCLUSIONS An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits.
Collapse
Affiliation(s)
- Katharina B. Budde
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
- For correspondence. E-mail or
| | - Santiago C. González-Martínez
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
| | | | - Concetta Burgarella
- INRA, UMR 1334 AGAP, 34060 Montpellier, France
- Present address: IRD, UMR DIADE, BP 64501, Montpellier, France
| | - Elena Mosca
- Faculty of Science and Technology, Free University of Bolzano, piazza Università 1, 39100 Bolzano, Italy
| | - Zaida Lorenzo
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
| | - Mario Zabal-Aguirre
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
| | - Giovanni G. Vendramin
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Moncada (Valencia), Spain
| | - Juli G. Pausas
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC), 46113 Moncada (Valencia), Spain
| | - Myriam Heuertz
- INIA Forest Research Centre, Department of Forest Ecology and Genetics, Carretera A Coruña km 7·5, 28040 Madrid, Spain
- INRA, Université de Bordeaux, UMR 1202 BIOGECO, 33610 Cestas, France
- For correspondence. E-mail or
| |
Collapse
|
45
|
Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Fragoso V, Oh Y, Kim SG, Gase K, Baldwin IT. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:205-224. [PMID: 28009482 DOI: 10.1111/jipb.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Phytochromes mainly function in photoautotrophic organisms to adjust growth in response to fluctuating light signals. The different isoforms of plant phytochromes often display both conserved and divergent roles, presumably to fine-tune plant responses to environmental signals and optimize fitness. Here we describe the distinct, yet partially redundant, roles of phytochromes NaPHYA, NaPHYB1 and NaPHYB2 in a wild tobacco species, Nicotiana attenuata using RNAi-silenced phytochrome lines. Consistent with results reported from other species, silencing the expression of NaPHYA or NaPHYB2 in N. attenuata had mild or no influence on plant development as long as NaPHYB1 was functional; whereas silencing the expression of NaPHYB1 alone strongly altered flowering time and leaf morphology. The contribution of NaPHYB2 became significant only in the absence of NaPHYB1; plants silenced for both NaPHYB1 and NaPHYB2 largely skipped the rosette-stage of growth to rapidly produce long, slender stalks that bore flowers early: hallmarks of the shade-avoidance responses. The phenotyping of phytochrome-silenced lines, combined with sequence and transcript accumulation analysis, suggest the independent functional diversification of the phytochromes, and a dominant role of NaPHYB1 and NaPHYB2 in N. attenuata's vegetative and reproductive development.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
47
|
Possart A, Xu T, Paik I, Hanke S, Keim S, Hermann HM, Wolf L, Hiß M, Becker C, Huq E, Rensing SA, Hiltbrunner A. Characterization of Phytochrome Interacting Factors from the Moss Physcomitrella patens Illustrates Conservation of Phytochrome Signaling Modules in Land Plants. THE PLANT CELL 2017; 29:310-330. [PMID: 28123107 PMCID: PMC5354185 DOI: 10.1105/tpc.16.00388] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/22/2016] [Accepted: 01/22/2017] [Indexed: 05/19/2023]
Abstract
Across the plant kingdom, phytochrome (PHY) photoreceptors play an important role during adaptive and developmental responses to light. In Arabidopsis thaliana, light-activated PHYs accumulate in the nucleus, where they regulate downstream signaling components, such as phytochrome interacting factors (PIFs). PIFs are transcription factors that act as repressors of photomorphogenesis; their inhibition by PHYs leads to substantial changes in gene expression. The nuclear function of PHYs, however, has so far been investigated in only a few non-seed plants. Here, we identified putative target genes of PHY signaling in the moss Physcomitrella patens and found light-regulated genes that are putative orthologs of PIF-controlled genes in Arabidopsis. Phylogenetic analyses revealed that an ancestral PIF-like gene was already present in streptophyte algae, i.e., before the water-to-land transition of plants. The PIF homologs in the genome of P. patens resemble Arabidopsis PIFs in their protein domain structure, molecular properties, and physiological effects, albeit with notable differences in the motif-dependent PHY interaction. Our results suggest that P. patens PIFs are involved in PHY signaling. The PHY-PIF signaling node that relays light signals to target genes has been largely conserved during land plant evolution, with evidence of lineage-specific diversification.
Collapse
Affiliation(s)
- Anja Possart
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tengfei Xu
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Sebastian Hanke
- Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Sarah Keim
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Helen-Maria Hermann
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Luise Wolf
- Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Manuel Hiß
- Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Stefan A Rensing
- Faculty of Biology, University of Marburg, 35043 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Mapping light-driven conformational changes within the photosensory module of plant phytochrome B. Sci Rep 2016; 6:34366. [PMID: 27694986 PMCID: PMC5046071 DOI: 10.1038/srep34366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/09/2016] [Indexed: 12/04/2022] Open
Abstract
Organisms developed different photoreceptors to be able to adapt to changing environmental light conditions. Phytochromes are red/far-red (r/fr) photochromic photoreceptors that belong to the classical photoreceptors along with cryptochromes and phototropins. They convert absorbed light into a biological signal by switching between two states in a light-dependent manner therefore enabling the light control downstream signalling. Their Pfr conformation is the biological active form in plants, but until now only a structure of the ground state (Pr) was solved. Here, the authors provide information about structural changes occurring during photoconversion within phytochrome B and identify possible interaction sites for its N-terminal extension (NTE) utilising hydrogen/deuterium exchange rate analyses of its amide backbone. Especially, the newly identified light-dependency of two regions in the NTE are of particular interest for understanding the involvement of the phytochrome’s NTE in the regulation of its downstream signalling.
Collapse
|
49
|
Jeong AR, Lee SS, Han YJ, Shin AY, Baek A, Ahn T, Kim MG, Kim YS, Lee KW, Nagatani A, Kim JI. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity. PLANT PHYSIOLOGY 2016; 171:2826-40. [PMID: 27325667 PMCID: PMC4972268 DOI: 10.1104/pp.16.00342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/17/2016] [Indexed: 05/22/2023]
Abstract
Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation.
Collapse
Affiliation(s)
- A-Reum Jeong
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Si-Seok Lee
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Ayoung Baek
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Taeho Ahn
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Min-Gon Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Keun Woo Lee
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Akira Nagatani
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| |
Collapse
|
50
|
Mikołajczak K, Ogrodowicz P, Gudyś K, Krystkowiak K, Sawikowska A, Frohmberg W, Górny A, Kędziora A, Jankowiak J, Józefczyk D, Karg G, Andrusiak J, Krajewski P, Szarejko I, Surma M, Adamski T, Guzy-Wróbelska J, Kuczyńska A. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars. PLoS One 2016; 11:e0155938. [PMID: 27227880 PMCID: PMC4881963 DOI: 10.1371/journal.pone.0155938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi).
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Wojciech Frohmberg
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Kędziora
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Janusz Jankowiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Damian Józefczyk
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Grzegorz Karg
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Joanna Andrusiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
- * E-mail: (AK); (JGW)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- * E-mail: (AK); (JGW)
| |
Collapse
|