1
|
Lei P, Zhang Z, An X, Feng L, Shen X, Xue H, Xu L, Shao J, Yu F, Liu X. HLS1 interacts with ATG8 to negatively regulate the ABS3-mediated plant senescence pathway. Cell Rep 2025; 44:115507. [PMID: 40215167 DOI: 10.1016/j.celrep.2025.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/26/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
In Arabidopsis, late endosome-localized ABNORMAL SHOOT 3 (ABS3) promotes senescence through a direct interaction with AUTOPHAGY8 (ATG8). However, the molecular mechanisms underlying the regulation of the ABS3-mediated senescence pathway are not well understood. Here, we report that HOOKLESS 1 (HLS1) acts as a negative regulator of plant senescence and the ABS3-mediated senescence pathway. We identify the localizations of HLS1 at the plasma membrane and endosomes in addition to the nucleus. Mechanistically, non-nucleus-localized HLS1 directly interacts with ATG8, attenuates the ABS3-ATG8 interaction, and inhibits the vacuolar degradation of ABS3, thereby antagonizing the senescence-promoting role of ABS3. Additionally, we show that the stability of HLS1 itself is negatively regulated during carbon deprivation-induced senescence. Finally, we find that HLS1 homologs in both Arabidopsis and wheat play a conserved role in senescence regulation. In summary, our findings show the functional link between HLS1, ABS3, and ATG8 in plant senescence regulation.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaoliang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixuan Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liangchen Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Scheuring D, Hillmer S, Schumacher K. In memoriam: David G. Robinson. PROTOPLASMA 2025:10.1007/s00709-025-02059-9. [PMID: 40195162 DOI: 10.1007/s00709-025-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
We are deeply saddened to report that David Gordon Robinson passed away on Tuesday, 5 November 2024. He has left behind his wife and three children. Without doubt, David was one of Europe's leading plant cell biologists and electron microscopists, best known for his research on intracellular trafficking and cellular organization. He is leaving a legacy of groundbreaking research and influence in the field. In this obituary, we want to recapitulate the most important stages from the impressive career of a truly unique character.
Collapse
Affiliation(s)
- David Scheuring
- Plant Pathology, University of Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - Stefan Hillmer
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Karin Schumacher
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Ahmad I, Sun X, Yu Y, Jia F, Li Y, Lv Q, Hu Y, Bao F, He Y. PpBOR1 is critical for the excess borate tolerance of Physcomitrium patens. PLANT CELL REPORTS 2025; 44:81. [PMID: 40121589 DOI: 10.1007/s00299-025-03473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Functional analysis of BORs in Physcomitrium patens indicates that both PpBOR1 and PpBOR2 possess boron efflux transporter activity, and PpBOR1 is essential for the plant's tolerance to excessive boron stress. Boron (B), an essential plant micronutrient, is crucial for achieving optimal agricultural yield. Although the function of the BOR family proteins as borate efflux transporters has been established in tracheophytes, the role of their counterparts in non-vascular plants has not been thoroughly investigated. Our phylogenetic analysis reveals that bryophyte BOR proteins originated from the basal bryophytes Takakia and Sphagnum, and can be classified into two subclasses. There are two BOR homologs in P. patens: PpBOR1 and PpBOR2, which belong to different subclades. The PpBOR1 and PpBOR2 genes are predominantly expressed in gametophores, with PpBOR1 exhibiting significantly higher expression levels than PpBOR2. Both proteins localize at the plasma membrane and can export borate from yeast cells. Disruption of PpBOR2 expression does not affect plant growth under normal conditions. However, PpBOR1-knockout gametophores exhibit stunted growth under excess boron conditions, whereas PpBOR1-overexpressing plants show enhanced tolerance compared to wild-type plants. In summary, our research suggests that BOR homologous proteins in P. patens have borate efflux activities similar to those of the BOR family members in angiosperms. PpBOR1 is critical in conferring tolerance to excessive boron stress in P. patens.
Collapse
Affiliation(s)
- Ishfaq Ahmad
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuejia Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yangyang Yu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fangni Jia
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yizuo Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Moreira GLLS, Ferreira MEP, Linhares FS. Identity Transitions of Tapetum Phases: Insights into Vesicular Dynamics and in Mortem Support During Pollen Maturation. PLANTS (BASEL, SWITZERLAND) 2025; 14:749. [PMID: 40094707 PMCID: PMC11902102 DOI: 10.3390/plants14050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025]
Abstract
Flower development progresses through twelve distinct stages, meticulously regulated to optimize plant reproductive success. At stage 5, the initiation of anther development occurs, which is further categorized into 14 stages divided into two defined phases: phase 1, known as microsporogenesis, and phase 2, termed microgametogenesis-encompassing pollen maturation and anther dehiscence. The maturation of pollen grains must be temporally synchronized with anther dehiscence, with auxin serving as a pivotal spatio-temporal link between these processes, coordinating various aspects of anther development, including stamen elongation, anther dehiscence, and tapetum development. The tapetum, a secretory tissue adjacent to the meiocytes, is essential for nurturing developing pollen grains by secreting components of the pollen wall and ultimately undergoing programmed cell death (PCD). This review primarily focuses on microgametogenesis, the identity and function of the tapetum during the different progression phases, the role of vesicular signaling in delivering external components crucial for pollen grain maturation, and the distinctive process of PCD associated with these developmental processes.
Collapse
Affiliation(s)
| | | | - Francisco S. Linhares
- Laboratório de Biologia do Desenvolvimento e Estrutura Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba 13400-970, SP, Brazil; (G.L.L.S.M.); (M.E.P.F.)
| |
Collapse
|
5
|
Fu H, Chen Q, Yong S, Dang J, He Q, Jing D, Wu D, Liang G, Guo Q. The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109411. [PMID: 39729968 DOI: 10.1016/j.plaphy.2024.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C. Their functional specificity is often attributed to their cellular localization. This paper reviews provides a comprehensive review of the pivotal roles played by Rab GTPases in plant intracellular transport and their significant contributions to abiotic stress responses. Additionally, it critically examines the identified activators and effectors associated with these proteins. In the context of abiotic stress, Rab GTPases play a crucial role in regulating vesicle transport and secretion, thereby enhancing plant adaptability and survival under adverse conditions such as drought, salt stress, and low temperatures. By mediating these intricate processes, Rab GTPases actively contribute to maintaining cellular homeostasis and improving stress resilience - factors that are indispensable for sustainable agricultural development and ecosystem stability.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Jiangbo Dang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Qiao He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China.
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Zhang Q, Shen L, Lin F, Liao Q, Xiao S, Zhang W. Anionic phospholipid-mediated transmembrane transport and intracellular membrane trafficking in plant cells. THE NEW PHYTOLOGIST 2025; 245:1386-1402. [PMID: 39639545 DOI: 10.1111/nph.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Cellular membranes primarily consist of proteins and lipids. These proteins perform cellular functions such as metabolic regulation, environmental and hormonal signal sensing, and nutrient transport. There is increasing experimental evidence that certain lipids, particularly anionic phospholipids, can act as signaling molecules. Specific examples of functional regulation by anionic phospholipids in plant cells have been reported for transporters, channels, and even receptors. By regulating the structure and activity of membrane-integral proteins, these phospholipids mediate the transport of phytohormones and ions, and elicit physiological responses to developmental and environmental cues. Phospholipids also control membrane protein abundance and lipid composition and abundance by facilitating vesicular trafficking. In this review, we discuss recent research that elucidates the mechanisms by which membrane-integral transporters and channels are controlled via phospholipid signaling, as well as the regulation of membrane protein accumulation by phospholipids through coordinated removal, recycling, and degradation processes.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Like Shen
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lin
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Liao
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhua Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Laboratory, Nanjing, 210095, China
| |
Collapse
|
7
|
Baral A, Gendre D, Aryal B, Fougère L, Di Fino LM, Ohori C, Sztojka B, Uemura T, Ueda T, Marhavý P, Boutté Y, Bhalerao RP. TYPHON proteins are RAB-dependent mediators of the trans-Golgi network secretory pathway. THE PLANT CELL 2024; 37:koae280. [PMID: 39405432 DOI: 10.1093/plcell/koae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
The trans-Golgi network (TGN), a key compartment in endomembrane trafficking, participates in both secretion to and endocytosis from the plasma membrane. Consequently, the TGN plays a key role in plant growth and development. Understanding how proteins are sorted for secretion or endocytic recycling at the TGN is critical for elucidating mechanisms of plant development. We previously showed that the protein ECHIDNA is essential for phytohormonal control of hypocotyl bending because it mediates secretion of cell wall components and the auxin influx carrier AUXIN RESISTANT 1 (AUX1) from the TGN. Despite the critical role of ECHIDNA in TGN-mediated trafficking, its mode of action remains unknown in Arabidopsis (Arabidopsis thaliana). We therefore performed a suppressor screen on the ech mutant. Here, we report the identification of TGN-localized TYPHON 1 (TPN1) and TPN2 proteins. A single amino acid change in either TPN protein causes dominant suppression of the ech mutant's defects in growth and AUX1 secretion, while also restoring wild-type (WT)-like ethylene-responsive hypocotyl bending. Importantly, genetic and cell biological evidence shows that TPN1 acts through RAS-ASSOCIATED BINDING H1b (RABH1b), a TGN-localized RAB-GTPase. These results provide insights into ECHIDNA-mediated secretory trafficking of cell wall and auxin carriers at the TGN, as well as its role in controlling plant growth.
Collapse
Affiliation(s)
- Anirban Baral
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Delphine Gendre
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Bibek Aryal
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Louise Fougère
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon 33140, France
| | - Luciano Martin Di Fino
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Chihiro Ohori
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Bernadette Sztojka
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Tomohiro Uemura
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Peter Marhavý
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| | - Yohann Boutté
- Laboratoire de Biogénèse Membranaire, UMR5200, Université de Bordeaux, CNRS, Villenave d'Ornon 33140, France
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 87, Sweden
| |
Collapse
|
8
|
Yoshinari A, Shimizu Y, Hosokawa T, Nakano A, Uemura T, Takano J. Rapid Vacuolar Sorting of the Borate Transporter BOR1 Requires the Adaptor Protein Complex AP-4 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1801-1811. [PMID: 39215599 DOI: 10.1093/pcp/pcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Plants maintain nutrient homeostasis by controlling the activities and abundance of nutrient transporters. In Arabidopsis thaliana, the borate (B) transporter BOR1 plays a role in the efficient translocation of B under low-B conditions. BOR1 undergoes polyubiquitination in the presence of sufficient B and is then transported to the vacuole via multivesicular bodies (MVBs) to prevent B accumulation in tissues at a toxic level. A previous study indicated that BOR1 physically interacts with µ subunits of adaptor protein complexes AP-3 and AP-4, both involved in vacuolar sorting pathways. In this study, we investigated the roles of AP-3 and AP-4 subunits in BOR1 trafficking in Arabidopsis. The lack of AP-3 subunits did not affect either vacuolar sorting or polar localization of BOR1-GFP, whereas the absence of AP-4 subunits resulted in a delay in high-B-induced vacuolar sorting without affecting polar localization. Super-resolution microscopy revealed a rapid sorting of BOR1-GFP into AP-4-positive spots in the trans-Golgi network (TGN) upon high-B supply. These results indicate that AP-4 is involved in sequestration of ubiquitinated BOR1 into a TGN-specific subdomain 'vacuolar-trafficking zone', and is required for efficient sorting of MVB and vacuole. Our findings have thus helped elucidate the rapid vacuolar sorting process facilitated by AP-4 in plant nutrient transporters.
Collapse
Affiliation(s)
- Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Nagoya, Aichi, 464-0814 Japan
| | - Yutaro Shimizu
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takuya Hosokawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
| | - Tomohiro Uemura
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, 112-8610 Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531 Japan
| |
Collapse
|
9
|
Zhang L, Zhang M, Yong K, Zhang L, Wang S, Liang M, Yan B, Li H, Cao L, Lu M. SlECA4, an epsin-like clathrin adaptor protein, improves tomato heat tolerance via clathrin-mediated endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7031-7045. [PMID: 39269332 DOI: 10.1093/jxb/erae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Clathrin-mediated endocytosis (CME) is one of the main pathways for plant cells to internalize membrane proteins in response to changing environmental conditions. The Epsin-like Clathrin Adaptor (ECA) proteins play important roles in the assembly of the clathrin coat; however, their involvement in plant responses to heat stress remains unclear. Here we report that in tomato (Solanum lycopersicum), Epsin-like Clathrin Adaptor 4 (SlECA4) expression responded to heat stress. The silencing and knockout of SlECA4 increased tomato sensitivity to heat stress while the overexpression of SlECA4 enhanced tomato tolerance to heat stress. Treatment with a CME inhibitor, ES9-17, reduced tomato heat tolerance. SlECA4 localized to the plasma membrane, the trans-Golgi network/early endosomes, and the prevacuolar compartment/late endosomes. In a SlECA4 knockout line, both CME and recycling from the trans-Golgi network/early endosomes to the plasma membrane were inhibited. These data indicate that SlECA4 is involved in CME. After heat treatment, more punctate structures of SlECA4-green fluorescent protein accumulated in tobacco leaf epidermal cells by transient expression. Furthermore, compared with wild type, the rate of CME was inhibited under heat stress in the SlECA4 knockout line. Taken together, the ECA protein SlECA4 plays a positive role in tomato tolerance to heat stress via the CME pathway.
Collapse
Affiliation(s)
- Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sitian Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minmin Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bentao Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Scheuring D, Minina EA, Krueger F, Lupanga U, Krebs M, Schumacher K. Light at the end of the tunnel: FRAP assays combined with super resolution microscopy confirm the presence of a tubular vacuole network in meristematic plant cells. THE PLANT CELL 2024; 36:4683-4691. [PMID: 39305130 PMCID: PMC11635288 DOI: 10.1093/plcell/koae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024]
Abstract
Plant vacuoles play key roles in cellular homeostasis, performing catabolic and storage functions, and regulating pH and ion balance. Despite their essential role, there is still no consensus on how vacuoles are established. A model proposing that the endoplasmic reticulum is the main contributor of membrane for growing vacuoles in meristematic cells has been challenged by a study proposing that plant vacuoles are formed de novo by homotypic fusion of multivesicular bodies (MVBs). Here, we use the Arabidopsis thaliana root as a model system to provide a systematic overview of successive vacuole biogenesis stages, starting from the youngest cells proximate to the quiescent center. We combine in vivo high- and super-resolution (STED) microscopy to demonstrate the presence of tubular and connected vacuolar structures in all meristematic cells. Using customized fluorescence recovery after photobleaching (FRAP) assays, we establish different modes of connectivity and demonstrate that thin, tubular vacuoles, as observed in cells near the quiescent center, form an interconnected network. Finally, we argue that a growing body of evidence indicates that vacuolar structures cannot originate from MVBs alone but receive membrane material from different sources simultaneously.
Collapse
Affiliation(s)
- David Scheuring
- Plant Pathology, University of Kaiserslautern-Landau, Paul-Ehrlich Straße 22, 67663 Kaiserslautern, Germany
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, P.O. Box 7015, Uppsala SE-750 07, Sweden
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Falco Krueger
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Upendo Lupanga
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Giovannoni M, Scafati V, Rodrigues Pousada RA, Benedetti M, De Lorenzo G, Mattei B. The Vacuolar H +-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109117. [PMID: 39293143 DOI: 10.1016/j.plaphy.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
12
|
Cermesoni C, Grefen C, Ricardi MM. Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102571. [PMID: 38896926 DOI: 10.1016/j.pbi.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Martiniano M Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany.
| |
Collapse
|
13
|
Lewis CD, Tierney ML. Contrasting Retromer with a Newly Described Retriever in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2470. [PMID: 39273954 PMCID: PMC11397296 DOI: 10.3390/plants13172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The tight regulation of protein composition within the plasma membranes of plant cells is crucial for the proper development of plants and for their ability to respond to a changing environment. Upon being endocytosed, integral membrane proteins can be secreted, sorted into multivesicular bodies/late endosomes, and degraded in the lytic vacuole, or recycled back to the plasma membrane to continue functioning. The evolutionarily conserved retromer complex has attracted the interest of plant cell biologists for over a decade as it has emerged as a key regulator of the trafficking of endocytosed integral plasma membrane proteins. Recently, a related recycling complex that shares a subunit with retromer was described in metazoan species. Named "retriever", homologs to the proteins that comprise this new recycling complex and its accessory proteins are found within plant lineages. Initial experiments indicate that there is conservation of function between metazoan and plant retriever proteins, suggesting that it is prudent to re-evaluate the available plant retromer data with the added potential of a plant retriever complex.
Collapse
Affiliation(s)
- Connor D Lewis
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| | - Mary L Tierney
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Toshima JY, Toshima J. Transport mechanisms between the endocytic, recycling, and biosynthetic pathways via endosomes and the trans-Golgi network. Front Cell Dev Biol 2024; 12:1464337. [PMID: 39291266 PMCID: PMC11405242 DOI: 10.3389/fcell.2024.1464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
After the endocytic and biosynthetic pathway converge, they partially share the route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory pathways also partially share the route to the plasma membrane. The interaction of these transport pathways is mediated by endosomes and the trans-Golgi network (TGN), which act as sorting stations in endocytic and biosynthesis pathway, and endosomes has a bidirectional transport to and from the TGN. In mammalian cells endosomes can be largely classified as early/sorting, late, and recycling endosomes, based on their morphological features and localization of Rab family proteins, which are key factors in vesicular trafficking. However, these endosomes do not necessarily represent specific compartments that are comparable among different species. For instance, Rab5 localizes to early endosomes in mammalian cells but is widely localized to early-to-late endosomes in yeast, and to pre-vacuolar endosomes and the TGN in plant cells. The SNARE complexes are also key factors widely conserved among species and localized specifically to the endosomal membrane, but the localization of respective homologs is not necessarily consistent among species. These facts suggest that endosomes should be classified more inclusively across species. Here we reconsider the mammalian endosome system based on findings in budding yeast and other species and discuss the differences and similarities between them.
Collapse
Affiliation(s)
- Junko Y Toshima
- School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
15
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
16
|
Muro K, Segami S, Kawachi M, Horikawa N, Namiki A, Hashiguchi K, Maeshima M, Takano J. Localization of the MTP4 transporter to trans-Golgi network in pollen tubes of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:939-950. [PMID: 39069582 DOI: 10.1007/s10265-024-01559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.
Collapse
Affiliation(s)
- Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Miki Kawachi
- Division of Crop Plant Genetics, Georg-August-Universität Göttingen, 37075, Göttingen, Germany
| | - Nodoka Horikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan
| | - Ayane Namiki
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Komachi Hashiguchi
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayoshi Maeshima
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan.
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
17
|
Lan HJ, Ran J, Wang WX, Zhang L, Wu NN, Zhao YT, Huang MJ, Ni M, Liu F, Cheng N, Nakata PA, Pan J, Whitham SA, Baker BJ, Liu JZ. Clathrin light chains negatively regulate plant immunity by hijacking the autophagy pathway. PLANT COMMUNICATIONS 2024; 5:100937. [PMID: 38693694 PMCID: PMC11369776 DOI: 10.1016/j.xplc.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The crosstalk between clathrin-mediated endocytosis (CME) and the autophagy pathway has been reported in mammals; however, the interconnection of CME with autophagy has not been established in plants. Here, we report that the Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopies Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants in both autoimmunity and nutrient sensitivity. Accordingly, the autophagy pathway is significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, multiple assays demonstrate that CLC2 directly interacts with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP are subjected to autophagic degradation, and degradation of GFP-ATG8h is significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneous knockout of ATG8h and ATG8i by CRISPR-Cas9 results in enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results reveal a link between the function of CLCs and the autophagy pathway in Arabidopsis.
Collapse
Affiliation(s)
- Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Ran
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wen-Xu Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Ting Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min Ni
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianwei Pan
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Barbara J Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, CA 94706, USA
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
18
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
19
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Yu J, Yuan Q, Chen C, Xu T, Jiang Y, Hu W, Liao A, Zhang J, Le X, Li H, Wang X. A root-knot nematode effector targets the Arabidopsis cysteine protease RD21A for degradation to suppress plant defense and promote parasitism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1500-1515. [PMID: 38516730 DOI: 10.1111/tpj.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.
Collapse
Affiliation(s)
- Jiarong Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qing Yuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Wenjun Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Aolin Liao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xiuhu Le
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
22
|
Song C, Xie K, Chen H, Xu S, Mao H. Wheat ESCRT-III protein TaSAL1 regulates male gametophyte transmission and controls tillering and heading date. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2372-2384. [PMID: 38206130 DOI: 10.1093/jxb/erae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Lathe RS, McFarlane HE, Kesten C, Wang L, Khan GA, Ebert B, Ramírez-Rodríguez EA, Zheng S, Noord N, Frandsen K, Bhalerao RP, Persson S. NKS1/ELMO4 is an integral protein of a pectin synthesis protein complex and maintains Golgi morphology and cell adhesion in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2321759121. [PMID: 38579009 PMCID: PMC11009649 DOI: 10.1073/pnas.2321759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.
Collapse
Affiliation(s)
- Rahul S. Lathe
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Heather E. McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Christopher Kesten
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Liu Wang
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC3086, Australia
| | - Berit Ebert
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum44780, Germany
| | | | - Shuai Zheng
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Niels Noord
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Kristian Frandsen
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, University of AdelaideJoint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
24
|
Fougère L, Mongrand S, Boutté Y. The function of sphingolipids in membrane trafficking and cell signaling in plants, in comparison with yeast and animal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159463. [PMID: 38281556 DOI: 10.1016/j.bbalip.2024.159463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sphingolipids are essential membrane components involved in a wide range of cellular, developmental and signaling processes. Sphingolipids are so essential that knock-out mutation often leads to lethality. In recent years, conditional or weak allele mutants as well as the broadening of the pharmacological catalog allowed to decipher sphingolipid function more precisely in a less invasive way. This review intends to provide a discussion and point of view on the function of sphingolipids with a main focus on endomembrane trafficking, Golgi-mediated protein sorting, cell polarity, cell-to-cell communication and cell signaling at the plasma membrane. While our main angle is the plant field research, we will constantly refer to and compare with the advances made in the yeast and animal field. In this review, we will emphasize the role of sphingolipids not only as a membrane component, but also as a key player at a center of homeostatic regulatory networks involving direct or indirect interaction with other lipids, proteins and ion fluxes.
Collapse
Affiliation(s)
- Louise Fougère
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Univ. Bordeaux, UMR 5200 CNRS, Villenave d'Ornon, France.
| |
Collapse
|
25
|
Yin GM, Fang YR, Wang JG, Liu Y, Xiang X, Li S, Zhang Y. Arabidopsis HAPLESS13/AP-1µ is critical for pollen sac formation and tapetal function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111998. [PMID: 38307351 DOI: 10.1016/j.plantsci.2024.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
The production of excess and viable pollen grains is critical for reproductive success of flowering plants. Pollen grains are produced within anthers, the male reproductive organ whose development involves precisely controlled cell differentiation, division, and intercellular communication. In Arabidopsis thaliana, specification of an archesporial cell (AC) at four corners of a developing anther, followed by programmed cell divisions, generates four pollen sacs, walled by four cell layers among which the tapetum is in close contact with developing microspores. Tapetum secretes callose-dissolving enzymes to release microspores at early stages and undergoes programmed cell death (PCD) to deliver nutrients and signals for microspore development at later stages. Except for transcription factors, plasma membrane (PM)-associated and secretory peptides have also been demonstrated to mediate anther development. Adaptor protein complexes (AP) recruit both cargos and coat proteins during vesicle trafficking. Arabidopsis AP-1µ/HAPLESS13 (HAP13) is a core component of AP-1 for protein sorting at the trans-Golgi network/early endosomes (TGN/EE). We report here that Arabidopsis HAP13 is critical for pollen sac formation and for sporophytic control of pollen production. Functional loss of HAP13 causes a reduction in pollen sac number. It also results in the dysfunction of tapetum such that secretory function of tapetum at early stages and PCD of tapetum at later stages are both compromised. We further show that the expression of SPL, the polar distribution of auxin maximum, as well as the asymmetric distribution of PIN1 are interfered in hap13 anthers, which in combination may lead to male sterility in hap13.
Collapse
Affiliation(s)
- Gui-Min Yin
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yi-Ru Fang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia-Gang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaojiao Xiang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Rzepecka N, Ito Y, Yura K, Ito E, Uemura T. Identification of a novel Golgi-localized putative glycosyltransferase protein in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:35-44. [PMID: 39464868 PMCID: PMC11500582 DOI: 10.5511/plantbiotechnology.23.1214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 10/29/2024]
Abstract
SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized Arabidopsis thaliana protein reported to interact with a trans-Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP (Arabidopsis thaliana GlycosylTransferase-Like Protein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis. AtGTLP is a membrane-anchored protein, which exhibits a type II-like topology, with a single transmembrane helix and a globular domain in the C-terminal part of its amino acid sequence. Colocalization data we collected suggest that AtGTLP should localize mainly to Golgi apparatus, especially to certain zones of trans-Golgi. As single atgtlp-/- mutants showed no obvious difference in phenotype (primary root length and fresh mass), AtGTLP and proteins related to AtGTLP with high similarity in amino acid sequences may have redundant functions.
Collapse
Affiliation(s)
- Natalia Rzepecka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Emi Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
27
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
28
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
29
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
30
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
31
|
Nagasato D, Sugita Y, Tsuno Y, Tanaka R, Fukuda M, Matsuoka K. Glycosylphosphatidylinositol-anchoring is required for the proper transport and extensive glycosylation of a classical arabinogalactan protein precursor in tobacco BY-2 cells. Biosci Biotechnol Biochem 2023; 87:991-1008. [PMID: 37348475 DOI: 10.1093/bbb/zbad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Many precursors of plant arabinogalactan proteins (AGPs) contain a C-terminal glycosylphosphatidylinositol (GPI)-anchoring signal. Using NtAGP1, a classical tobacco AGP, as a model, and green fluorescent protein (GFP) and sweet potato sporamin (SPO) as tags, we analyzed the localization and modification of AGP and its mutant without GPI-anchoring signal (AGPΔC) in tobacco BY-2 cells. The NtAGP1 fusion proteins migrated as large smear on SDS-polyacrylamide gel, and these proteins also localized preferentially to the plasma membrane. In contrast, fusions of AGPΔC with GFP and SPO yielded several forms: The largest were secreted, whereas others were recovered in the endomembrane organelles, including vacuoles. Comparison of the glycan structures of the microsomal SPO-AGP and the secreted SPO-AGPΔC using antibodies against the glycan epitopes of AGP indicated that the glycan structures of these proteins are different. These observations indicate that GPI-anchoring is required for the proper transport and glycosylation of the AGP precursor.
Collapse
Affiliation(s)
- Daiki Nagasato
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuto Sugita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuhei Tsuno
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | | | - Maki Fukuda
- School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- School of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
33
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
34
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
35
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
36
|
Ito Y, Uemura T. Super resolution live imaging: The key for unveiling the true dynamics of membrane traffic around the Golgi apparatus in plant cells. FRONTIERS IN PLANT SCIENCE 2022; 13:1100757. [PMID: 36618665 PMCID: PMC9818705 DOI: 10.3389/fpls.2022.1100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In contrast to the relatively static image of the plants, the world inside each cell is surprisingly dynamic. Membrane-bounded organelles move actively on the cytoskeletons and exchange materials by vesicles, tubules, or direct contact between each other. In order to understand what is happening during those events, it is essential to visualize the working components in vivo. After the breakthrough made by the application of fluorescent proteins, the development of light microscopy enabled many discoveries in cell biology, including those about the membrane traffic in plant cells. Especially, super-resolution microscopy, which is becoming more and more accessible, is now one of the most powerful techniques. However, although the spatial resolution has improved a lot, there are still some difficulties in terms of the temporal resolution, which is also a crucial parameter for the visualization of the living nature of the intracellular structures. In this review, we will introduce the super resolution microscopy developed especially for live-cell imaging with high temporal resolution, and show some examples that were made by this tool in plant membrane research.
Collapse
Affiliation(s)
- Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
37
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
38
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
39
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
40
|
Jiang H, Ren Y, Guo J, Yang H, Zhu X, Li W, Tao L, Zhan Y, Wang Q, Wu Y, Liu B, Ye Y. CEF3 is involved in membrane trafficking and essential for secondary cell wall biosynthesis and its mutation enhanced biomass enzymatic saccharification in rice. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:111. [PMID: 36242043 PMCID: PMC9569061 DOI: 10.1186/s13068-022-02205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Background As one of the most important staple food crops, rice produces large of agronomic biomass residues that contain lots of secondary cell walls (SCWs). Membrane trafficking plays key roles in SCWs biosynthesis, but information association membrane trafficking and SCWs formation in plants is limited. Results In this study, we report the function characterization of a rice mutant, culm easily fragile 3 (cef3), that exhibits growth retardation and fragile culm phenotype with significantly altered cell wall composition and reduced secondary wall thickness. Map-based cloning revealed that CEF3 encodes a homologous protein of Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). The saccharification assays revealed that CEF3 mutation can improve biomass enzymatic saccharification. Expression pattern analysis indicated that CEF3 is ubiquitously expressed in many organs at different developmental stages. Subcellular localization revealed that CEF3 is a Golgi-localized protein. The FM4-64 uptake assay revealed CEF3 is involved in endocytosis. Furthermore, mutation of CEF3 not only affected cellulose synthesis-related genes expression, but also altered the abundance of cellulose synthase catalytic subunit 9 (OsCESA9) in the PM and in the endomembrane systems. Conclusions This study has demonstrated that CEF3 participates in the membrane trafficking that is essential for normal cellulose and other polysaccharides biosynthesis of the secondary cell wall, thereby manipulation of CEF3 could alter cellulose content and enhance biomass enzymatic saccharification in rice plants. Therefore, the study of the function of CEF3 can provide a strategy for genetic modification of SCWs in bioenergy crops. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02205-y.
Collapse
Affiliation(s)
- Hongrui Jiang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yan Ren
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Junyao Guo
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Huijie Yang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Xiaotong Zhu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wenhao Li
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Liangzhi Tao
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yue Zhan
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Qi Wang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yuejin Wu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Binmei Liu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yafeng Ye
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
41
|
Zhou L, Xue X, Yang K, Feng Z, Liu M, Pastor-Pareja JC. Convergence of secretory, endosomal, and autophagic routes in trans-Golgi-associated lysosomes. J Cell Biol 2022; 222:213547. [PMID: 36239631 PMCID: PMC9577102 DOI: 10.1083/jcb.202203045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
At the trans-Golgi, complex traffic connections exist to the endolysosomal system additional to the main Golgi-to-plasma membrane secretory route. Here, we investigated three hits in a Drosophila screen displaying secretory cargo accumulation in autophagic vesicles: ESCRT-III component Vps20, SNARE-binding Rop, and lysosomal pump subunit VhaPPA1-1. We found that Vps20, Rop, and lysosomal markers localize near the trans-Golgi. Furthermore, we document that the vicinity of the trans-Golgi is the main cellular location for lysosomes and that early, late, and recycling endosomes associate as well with a trans-Golgi-associated degradative compartment where basal microautophagy of secretory cargo and other materials occurs. Disruption of this compartment causes cargo accumulation in our hits, including Munc18 homolog Rop, required with Syx1 and Syx4 for Rab11-mediated endosomal recycling. Finally, besides basal microautophagy, we show that the trans-Golgi-associated degradative compartment contributes to the growth of autophagic vesicles in developmental and starvation-induced macroautophagy. Our results argue that the fly trans-Golgi is the gravitational center of the whole endomembrane system.
Collapse
Affiliation(s)
- Lingjian Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xutong Xue
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C. Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Institute of Neurosciences, Consejo Superior de Investigaciones Científicas–Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
42
|
Shimizu Y, Uemura T. The sorting of cargo proteins in the plant trans-Golgi network. FRONTIERS IN PLANT SCIENCE 2022; 13:957995. [PMID: 36035717 PMCID: PMC9402974 DOI: 10.3389/fpls.2022.957995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
Membrane trafficking contributes to distinct protein compositions of organelles and is essential for proper organellar maintenance and functions. The trans-Golgi network (TGN) acts as a sorting station where various cargo proteins are sorted and directed to post-Golgi compartments, such as the multivesicular body or pre-vacuolar compartment, vacuoles, and plasma membrane. The spatial and temporal segregation of cargo proteins within the TGN, which is mediated with different sets of regulators including small GTPases and cargo adaptors, is a fundamental process in the sorting machinery. Recent studies with powerful imaging technologies have suggested that the TGN possesses spatially distinct subdomains or zones for different trafficking pathways. In this review, we will summarize the spatially and dynamically characteristic features of the plant TGN and their relation to cargo protein trafficking.
Collapse
Affiliation(s)
- Yutaro Shimizu
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
43
|
Xu M, Yan X, Wang Y, Liu C, Yang Q, Tian D, Bednarek SY, Pan J, Wang C. ADAPTOR PROTEIN-1 complex-mediated post-Golgi trafficking is critical for pollen wall development in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:472-487. [PMID: 35451504 PMCID: PMC9545562 DOI: 10.1111/nph.18170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 05/16/2023]
Abstract
Primexine deposition is essential for the formation of pollen wall patterns and is precisely regulated by the tapetum and microspores. While tapetum- and/or microspore-localized proteins are required for primexine biosynthesis, how their trafficking is established and controlled is poorly understood. In Arabidopsis thaliana, AP1σ1 and AP1σ2, two genes encoding the σ subunit of the trans-Golgi network/early endosome (TGN/EE)-localized ADAPTOR PROTEIN-1 complex (AP-1), are partially redundant for plant viability, and the loss of AP1σ1 function reduces male fertility due to defective primexine formation. Here, we investigated the role of AP-1 in pollen wall formation. The deposition of Acyl-CoA SYNTHETASE5 (ACOS5) and type III LIPID TRANSFER PROTEINs (LTPs) secreted from the anther tapetum, which are involved in exine formation, were impaired in ap1σ1 mutants. In addition, the microspore plasma membrane (PM) protein RUPTURED POLLEN GRAIN1 (RPG1), which regulates primexine deposition, accumulated abnormally at the TGN/EE in ap1σ1 mutants. We show that AP-1μ recognizes the YXXΦ motif of RPG1, thereby regulating its PM abundance through endocytic trafficking, and that loss of AP1σ1 decreases the levels of other AP-1 subunits at the TGN/EE. Our observations show that AP-1-mediated post-Golgi trafficking plays a vital role in pollen wall development by regulating protein transport in tapetal cells and microspores.
Collapse
Affiliation(s)
- Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Qian Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | | | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
- College of Life SciencesShaoxing UniversityShaoxingZhejiang312000China
| |
Collapse
|
44
|
Bassham DC. An unexpected function for an ESCRT protein. Proc Natl Acad Sci U S A 2022; 119:e2207055119. [PMID: 35700356 PMCID: PMC9245635 DOI: 10.1073/pnas.2207055119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
45
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|
46
|
Pottier M, Le Thi VA, Primard-Brisset C, Marion J, Wolf Bianchi M, Victor C, Déjardin A, Pilate G, Thomine S. Duplication of NRAMP3 gene in poplars generated two homologous transporters with distinct functions. Mol Biol Evol 2022; 39:msac129. [PMID: 35700212 PMCID: PMC9234761 DOI: 10.1093/molbev/msac129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.
Collapse
Affiliation(s)
- Mathieu Pottier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Van Anh Le Thi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine Primard-Brisset
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Marion
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michele Wolf Bianchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cindy Victor
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | | | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
47
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
48
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
49
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
50
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|