1
|
Serna L. At least two functions for BdMUTE during the development of stomatal complexes in Brachypodium distachyon. THE NEW PHYTOLOGIST 2025; 245:2373-2376. [PMID: 39809725 DOI: 10.1111/nph.20396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Laura Serna
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, E-45071, Toledo, Spain
| |
Collapse
|
2
|
Zubairova US, Fomin IN, Koloshina KA, Barchuk AI, Erst TV, Chalaya NA, Gerasimova SV, Doroshkov AV. Image-Based Quantitative Analysis of Epidermal Morphology in Wild Potato Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:3084. [PMID: 39520002 PMCID: PMC11548698 DOI: 10.3390/plants13213084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The epidermal leaf patterns of plants exhibit remarkable diversity in cell shapes, sizes, and arrangements, driven by environmental interactions that lead to significant adaptive changes even among closely related species. The Solanaceae family, known for its high diversity of adaptive epidermal structures, has traditionally been studied using qualitative phenotypic descriptions. To advance this, we developed a workflow combining multi-scale computer vision, image processing, and data analysis to extract digital descriptors for leaf epidermal cell morphology. Applied to nine wild potato species, this workflow quantified key morphological parameters, identifying descriptors for trichomes, stomata, and pavement cells, and revealing interdependencies among these traits. Principal component analysis (PCA) highlighted two main axes, accounting for 45% and 21% of variance, corresponding to features such as guard cell shape, trichome length, stomatal density, and trichome density. These axes aligned well with the historical and geographical origins of the species, separating southern from Central American species, and forming distinct clusters for monophyletic groups. This workflow thus establishes a quantitative foundation for investigating leaf epidermal cell morphology within phylogenetic and geographic contexts.
Collapse
Affiliation(s)
- Ulyana S. Zubairova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan N. Fomin
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Kristina A. Koloshina
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alisa I. Barchuk
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatyana V. Erst
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia;
| | - Sophia V. Gerasimova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Maranas CJ, George W, Scallon SK, VanGilder S, Nemhauser JL, Guiziou S. A history-dependent integrase recorder of plant gene expression with single-cell resolution. Nat Commun 2024; 15:9362. [PMID: 39472426 PMCID: PMC11522408 DOI: 10.1038/s41467-024-53716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
During development, most cells experience a progressive restriction of fate that ultimately results in a fully differentiated mature state. Understanding more about the gene expression patterns that underlie developmental programs can inform engineering efforts for new or optimized forms. Here, we present a four-state integrase-based recorder of gene expression history and demonstrate its use in tracking gene expression events in Arabidopsis thaliana in two developmental contexts: lateral root initiation and stomatal differentiation. The recorder uses two serine integrases to mediate sequential DNA recombination events, resulting in step-wise, history-dependent switching between expression of fluorescent reporters. By using promoters that express at different times along each of the two differentiation pathways to drive integrase expression, we tie fluorescent status to an ordered progression of gene expression along the developmental trajectory. In one snapshot of a mature tissue, our recorder is able to reveal past gene expression with single cell resolution. In this way, we are able to capture heterogeneity in stomatal development, confirming the existence of two alternate paths of differentiation.
Collapse
Affiliation(s)
| | - Wesley George
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sarah K Scallon
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sydney VanGilder
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich, UK.
| |
Collapse
|
4
|
Kim ED, Torii KU. Stomatal cell fate commitment via transcriptional and epigenetic control: Timing is crucial. PLANT, CELL & ENVIRONMENT 2024; 47:3288-3298. [PMID: 37996970 DOI: 10.1111/pce.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
The formation of stomata presents a compelling model system for comprehending the initiation, proliferation, commitment and differentiation of de novo lineage-specific stem cells. Precise, timely and robust cell fate and identity decisions are crucial for the proper progression and differentiation of functional stomata. Deviations from this precise specification result in developmental abnormalities and nonfunctional stomata. However, the molecular underpinnings of timely cell fate commitment have just begun to be unravelled. In this review, we explore the key regulatory strategies governing cell fate commitment, emphasizing the distinctions between embryonic and postembryonic stomatal development. Furthermore, the interplay of transcription factors and cell cycle machineries is pivotal in specifying the transition into differentiation. We aim to synthesize recent studies utilizing single-cell as well as cell-type-specific transcriptomics, epigenomics and chromatin accessibility profiling to shed light on how master-regulatory transcription factors and epigenetic machineries mutually influence each other to drive fate commitment and maintenance.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Institute of Transformative Biomolecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Ramachandra A, Vijayaraghavareddy P, Purushothama C, Nagaraju S, Sreeman S. Decoding stomatal characteristics regulating water use efficiency at leaf and plant scales in rice genotypes. PLANTA 2024; 260:56. [PMID: 39039321 DOI: 10.1007/s00425-024-04488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
MAIN CONCLUSION Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 μm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 μmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.
Collapse
Affiliation(s)
- Abhishree Ramachandra
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | - Spoorthi Nagaraju
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
| |
Collapse
|
6
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
7
|
Falquetto-Gomes P, Silva WJ, Siqueira JA, Araújo WL, Nunes-Nesi A. From epidermal cells to functional pores: Understanding stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154163. [PMID: 38118303 DOI: 10.1016/j.jplph.2023.154163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.
Collapse
Affiliation(s)
- Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Welson Júnior Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Ning C, Yang Y, Chen Q, Zhao W, Zhou X, He L, Li L, Zong D, Chen J. An R2R3 MYB transcription factor PsFLP regulates the symmetric division of guard mother cells during stomatal development in Pisum sativum. PHYSIOLOGIA PLANTARUM 2023; 175:e13943. [PMID: 37260122 DOI: 10.1111/ppl.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetrical division of guard mother cells (GMCs), and abiotic stress response in Arabidopsis thaliana. Only one orthologue gene of FLP was identified in pea (Pisum sativum FLP; PsFLP). In this study, we explored the gene function of PsFLP by virus-induced gene silencing (VIGS) technology. The phenotypic analysis displayed that the silencing of PsFLP expression led to the abnormal development of stomata and the emergence of multiple guard cells tightly united. In addition, the abnormal stomata of flp could be fully rescued by PsFLP driven by the FLP promoter. In conclusion, the results showed that PsFLP plays a conservative negative role in regulating the symmetric division of GMC during stomatal development. Based on real-time quantitative PCR, the relative expressions of AAO3, NCED3, and SnRK2.3 significantly increased in the flp pFLP::PsFLP plants compared to mutant, indicating that PsFLP might be involved in drought stress response. Thus, PsFLP regulates the genes related to cell cycle division during the stomatal development of peas and participates in response to drought stress. The study provides a basis for further research on its function and application in leguminous crop breeding.
Collapse
Affiliation(s)
- Conghui Ning
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yating Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiyi Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xuan Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Laigeng Li
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Zong
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Wall S, Cockram J, Vialet-Chabrand S, Van Rie J, Gallé A, Lawson T. The impact of growth at elevated [CO2] on stomatal anatomy and behavior differs between wheat species and cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2860-2874. [PMID: 36633860 PMCID: PMC10134898 DOI: 10.1093/jxb/erad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 06/06/2023]
Abstract
The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp. Dicoccoides, and T. turgidum ssp. dicoccon) and five elite bread wheat T. aestivum cultivars. Exploiting a range of different species and ploidy, we identified key differences in photosynthetic capacity between elite hexaploid wheat and wheat relatives. We also report differences in the speed of stomatal responses which were found to be faster in wheat relatives than in elite cultivars, a trait that could be useful for enhanced photosynthetic carbon gain and water use efficiency. Furthermore, these traits do not all appear to be influenced by elevated [CO2], and determining the underlying genetics will be critical for future breeding programmes.
Collapse
Affiliation(s)
- Shellie Wall
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Jeroen Van Rie
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alexander Gallé
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | | |
Collapse
|
11
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
13
|
Tsai M, Kuan C, Guo Z, Yang H, Chung K, Ho CK. Stomatal clustering in Begonia improves water use efficiency by modulating stomatal movement and leaf structure. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:141-154. [PMID: 37283607 PMCID: PMC10168073 DOI: 10.1002/pei3.10086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/08/2023]
Abstract
Stomata are a pivotal adaptation of land plants and control gas exchange. While most plants present solitary stomata, some plant species experiencing chronic water deficiency display clustered stomata on their epidermis; for instance, limestone-grown begonias. Moreover, the membrane receptor TOO MANY MOUTHS (TMM) plays a major role in spacing stomata on the epidermis in Arabidopsis, but the function of its Begonia orthologs is unknown. We used two Asian begonias, Begonia formosana (single stomata) and B. hernandioides (clustered stomata), to explore the physiological function of stomatal clustering. We also introduced the Begonia TMMs into Arabidopsis tmm mutants to study the function of Begonia TMMs. B. hernandioides showed higher water use efficiency under high light intensity, smaller stomata, and faster pore opening than B. formosana. The short distance between stomata in a cluster may facilitate cell-to-cell interactions to achieve synchronicity in stomatal movement. Begonia TMMs function similarly to Arabidopsis TMM to inhibit stomatal formation, although complementation by TMM from the clustered species was only partial. Stomatal clustering in begonias may represent a developmental strategy to build small and closer stomata to achieve fast responses to light which provides tight support between stomatal development and environmental adaption.
Collapse
Affiliation(s)
- Meng‐Ying Tsai
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
- Research Museum and Herbarium (HAST)Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Chi Kuan
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Zheng‐Lin Guo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Hsun‐An Yang
- Research Museum and Herbarium (HAST)Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Kuo‐Fang Chung
- Research Museum and Herbarium (HAST)Biodiversity Research Center, Academia SinicaTaipeiTaiwan
| | | |
Collapse
|
14
|
Clark JW, Harris BJ, Hetherington AJ, Hurtado-Castano N, Brench RA, Casson S, Williams TA, Gray JE, Hetherington AM. The origin and evolution of stomata. Curr Biol 2022; 32:R539-R553. [PMID: 35671732 DOI: 10.1016/j.cub.2022.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The acquisition of stomata is one of the key innovations that led to the colonisation of the terrestrial environment by the earliest land plants. However, our understanding of the origin, evolution and the ancestral function of stomata is incomplete. Phylogenomic analyses indicate that, firstly, stomata are ancient structures, present in the common ancestor of land plants, prior to the divergence of bryophytes and tracheophytes and, secondly, there has been reductive stomatal evolution, especially in the bryophytes (with complete loss in the liverworts). From a review of the evidence, we conclude that the capacity of stomata to open and close in response to signals such as ABA, CO2 and light (hydroactive movement) is an ancestral state, is present in all lineages and likely predates the divergence of the bryophytes and tracheophytes. We reject the hypothesis that hydroactive movement was acquired with the emergence of the gymnosperms. We also conclude that the role of stomata in the earliest land plants was to optimise carbon gain per unit water loss. There remain many other unanswered questions concerning the evolution and especially the origin of stomata. To address these questions, it will be necessary to: find more fossils representing the earliest land plants, revisit the existing early land plant fossil record in the light of novel phylogenomic hypotheses and carry out more functional studies that include both tracheophytes and bryophytes.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alexander J Hetherington
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Hurtado-Castano
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert A Brench
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart Casson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julie E Gray
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
15
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Torii KU. Stomatal development in the context of epidermal tissues. ANNALS OF BOTANY 2021; 128:137-148. [PMID: 33877316 PMCID: PMC8324025 DOI: 10.1093/aob/mcab052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Stomata are adjustable pores on the surface of plant shoots for efficient gas exchange and water control. The presence of stomata is essential for plant growth and survival, and the evolution of stomata is considered as a key developmental innovation of the land plants, allowing colonization on land from aquatic environments some 450 million years ago. In the past two decades, molecular genetic studies using the model plant Arabidopsis thaliana identified key genes and signalling modules that regulate stomatal development: master regulatory transcription factors that orchestrate cell state transitions and peptide-receptor signal transduction pathways, which, together, enforce proper patterning of stomata within the epidermis. Studies in diverse plant species, ranging from bryophytes to angiosperm grasses, have begun to unravel the conservation and uniqueness of the core modules in stomatal development. SCOPE Here, I review the mechanisms of stomatal development in the context of epidermal tissue patterning. First, I introduce the core regulatory mechanisms of stomatal patterning and differentiation in the model species A. thaliana. Subsequently, experimental evidence is presented supporting the idea that different cell types within the leaf epidermis, namely stomata, hydathodes pores, pavement cells and trichomes, either share developmental origins or mutually influence each other's gene regulatory circuits during development. Emphasis is placed on extrinsic and intrinsic signals regulating the balance between stomata and pavement cells, specifically by controlling the fate of stomatal-lineage ground cells (SLGCs) to remain within the stomatal cell lineage or differentiate into pavement cells. Finally, I discuss the influence of intertissue layer communication between the epidermis and underlying mesophyll/vascular tissues on stomatal differentiation. Understanding the dynamic behaviours of stomatal precursor cells and their differentiation in the broader context of tissue and organ development may help design plants tailored for optimal growth and productivity in specific agricultural applications and a changing environment.
Collapse
Affiliation(s)
- Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, AustinTX, USA
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- For correspondence: E-mail
| |
Collapse
|
17
|
Serna L. The Role of Grass MUTE Orthologs in GMC Progression and GC Morphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:678417. [PMID: 34249046 PMCID: PMC8264291 DOI: 10.3389/fpls.2021.678417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Stomata arose about 400 million years ago when plants left their aquatic environment. The last step of stomatal development is shared by all plant groups, and it implies a symmetrical cell division from the guard mother cell (GMC) to produce two guard cells (GCs) flanking a pore. In Arabidopsis, the basic helix-loop-helix transcription factor MUTE controls this step, upregulating cell-cycle regulators of the GMC division, and immediately afterward, repressors of theses regulators like FAMA and FOUR LIPS. Recently, three grass MUTE orthologs (BdMUTE from Brachypodium distachyon, OsMUTE from rice, and ZmMUTE from maize) have been identified and characterized. Mutations in these genes disrupt GMC fate, with bdmute also blocking GC morphogenesis. However, because these genes also regulate subsidiary cell recruitment, which takes place before GMC division, their functions regulating GMC division and GC morphogenesis could be an indirect consequence of that inducing the recruitment of subsidiary cells. Comprehensive data evaluation indicates that BdMUTE, and probably grass MUTE orthologs, directly controls GMC fate. Although grass MUTE proteins, whose genes are expressed in the GMC, move between cells, they regulate GMC fate from the cells where they are transcribed. Grass MUTE genes also regulate GC morphogenesis. Specifically, OsMUTE controls GC shape by inducing OsFAMA expression. In addition, while SCs are not required for GMC fate progression, they are for GC maturation.
Collapse
|
18
|
Changes in Ethylene, ABA and Sugars Regulate Freezing Tolerance under Low-Temperature Waterlogging in Lolium perenne. Int J Mol Sci 2021; 22:ijms22136700. [PMID: 34206693 PMCID: PMC8268127 DOI: 10.3390/ijms22136700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022] Open
Abstract
Plant overwintering may be affected in the future by climate change. Low-temperature waterlogging, associated with a predicted increase in rainfall during autumn and winter, can affect freezing tolerance, which is the main component of winter hardiness. The aim of this study was to elucidate the mechanism of change in freezing tolerance caused by low-temperature waterlogging in Lolium perenne, a cool-season grass that is well adapted to a cold climate. The work included: (i) a freezing tolerance test (plant regrowth after freezing); (ii) analysis of plant phytohormones production (abscisic acid [ABA] content and ethylene emission); (iii) measurement of leaf water content and stomatal conductance; (iv) carbohydrate analysis; and (v) analysis of Aco1, ABF2, and FT1 transcript accumulation. Freezing tolerance may be improved as a result of cold waterlogging. The mechanism of this change is reliant on multifaceted actions of phytohormones and carbohydrates, whereas ethylene may counteract ABA signaling. The regulation of senescence processes triggered by concerted action of phytohormones and glucose signaling may be an essential component of this mechanism.
Collapse
|
19
|
The diversity of stomatal development regulation in Callitriche is related to the intrageneric diversity in lifestyles. Proc Natl Acad Sci U S A 2021; 118:2026351118. [PMID: 33782136 PMCID: PMC8040647 DOI: 10.1073/pnas.2026351118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant stomata are produced through divisions and differentiation of stem cells, termed meristemoids. During stomatal development, we see diverse patterns of meristemoid behavior among land plant lineages. However, both the ecological significance and the diversification processes of this diversity remain mostly unknown. Here we report that the ecologically diverse genus Callitriche shows unprecedented intrageneric diversity in meristemoid behavior. While meristemoids in terrestrial species of Callitriche undergo a series of asymmetric divisions before differentiation, those in amphibious species skip the divisions and directly differentiate into stomata. The simple shift in the expression times of two key transcription factors underlies these different patterns. This study provides important insights into the evolution and ecological significance of stomatal patterning. Stomata, the gas exchange structures of plants, are formed by the division and differentiation of stem cells, or meristemoids. Although diverse patterns of meristemoid behavior have been observed among different lineages of land plants, the ecological significance and diversification processes of these different patterns are not well understood. Here we describe an intrageneric diversity in the patterns of meristemoid division within the ecologically diverse genus Callitriche (Plantaginaceae). Meristemoids underwent a series of divisions before differentiating into stomata in the terrestrial species of Callitriche, but these divisions did not occur in amphibious species, which can grow in both air and water, in which meristemoids differentiated directly into stomata. These findings imply the adaptive significance of diversity in meristemoid division. Molecular genetic analyses showed that the different expression times of the stomatal key transcription factors SPEECHLESS and MUTE, which maintain and terminate the meristemoid division, respectively, underlie the different division patterns of meristemoids. Unlike terrestrial species, amphibious species prematurely expressed MUTE immediately after expressing SPEECHLESS, which corresponded to their early termination of stomatal division. By linking morphological, ecological, and genetic elements of stomatal development, this study provides significant insight that should aid ecological evolutionary developmental biology investigations of stomata.
Collapse
|
20
|
Schneider M, Gonzalez N, Pauwels L, Inzé D, Baekelandt A. The PEAPOD Pathway and Its Potential To Improve Crop Yield. TRENDS IN PLANT SCIENCE 2021; 26:220-236. [PMID: 33309102 DOI: 10.1016/j.tplants.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/18/2023]
Abstract
A key strategy to increase plant productivity is to improve intrinsic organ growth. Some of the regulatory networks underlying organ growth and development, as well as the interconnections between these networks, are highly conserved. An example of such a growth-regulatory module with a highly conserved role in final organ size and shape determination in eudicot species is the PEAPOD (PPD)/KINASE-INDUCIBLE DOMAIN INTERACTING (KIX)/STERILE APETALA (SAP) module. We review the proteins constituting the PPD pathway and their roles in different plant developmental processes, and explore options for future research. We also speculate on strategies to exploit knowledge about the PPD pathway for targeted yield improvement to engineer crop traits of agronomic interest, such as leaf, fruit, and seed size.
Collapse
Affiliation(s)
- Michele Schneider
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Biologie du Fruit et Pathologie (BFP), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
21
|
Haworth M, Marino G, Loreto F, Centritto M. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia 2021; 197:867-883. [PMID: 33515295 PMCID: PMC8591009 DOI: 10.1007/s00442-021-04857-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photosynthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stomatal initiation. These differences in the sensitivity of the stomatal density—[CO2] relationship between species influence the efficacy of the ‘stomatal method’ that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the ‘overall picture’ as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.
Collapse
Affiliation(s)
- Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Giovanni Marino
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (CNR-DiSBA), National Research Council of Italy, Rome, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- ENI-CNR Water Research Center "Hypatia of Alexandria", Research Center Metapontum Agrobios, Metaponto, Italy
| |
Collapse
|
22
|
Jauneau A, Cerutti A, Auriac MC, Noël LD. Anatomy of leaf apical hydathodes in four monocotyledon plants of economic and academic relevance. PLoS One 2020; 15:e0232566. [PMID: 32941421 PMCID: PMC7498026 DOI: 10.1371/journal.pone.0232566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
Hydathode is a plant organ responsible for guttation in vascular plants, i.e. the release of droplets at leaf margin or surface. Because this organ connects the plant vasculature to the external environment, it is also a known entry site for several vascular pathogens. In this study, we present a detailed microscopic examination of leaf apical hydathodes in monocots for three crops (maize, rice and sugarcane) and the model plant Brachypodium distachyon. Our study highlights both similarities and specificities of those epithemal hydathodes. These observations will serve as a foundation for future studies on the physiology and the immunity of hydathodes in monocots.
Collapse
Affiliation(s)
- Alain Jauneau
- Fédération de Recherche 3450, Université de Toulouse, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Aude Cerutti
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Marie-Christine Auriac
- Fédération de Recherche 3450, Université de Toulouse, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Laurent D. Noël
- LIPM, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| |
Collapse
|
23
|
McKown KH, Bergmann DC. Stomatal development in the grasses: lessons from models and crops (and crop models). THE NEW PHYTOLOGIST 2020; 227:1636-1648. [PMID: 31985072 DOI: 10.1111/nph.16450] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 05/24/2023]
Abstract
When plants emerged from their aquatic origins to colonise land, they needed to avoid desiccation while still enabling gas and water exchange with the environment. The solution was the development of a waxy cuticle interrupted by epidermal pores, known as stomata. Despite the importance of stomata in plant physiology and their contribution to global water and carbon cycles, our knowledge of the genetic basis of stomatal development is limited mostly to the model dicot, Arabidopsis thaliana. This limitation is particularly troublesome when evaluating grasses, whose members represent our most agriculturally significant crops. Grass stomatal development follows a trajectory strikingly different from Arabidopsis and their uniquely shaped four-celled stomatal complexes are especially responsive to environmental inputs. Thus, understanding the development and regulation of these efficient complexes is of particular interest for the purposes of crop engineering. This review focuses on genetic regulation of grass stomatal development and prospects for the future, highlighting discoveries enabled by parallel comparative investigations in cereal crops and related genetic model species such as Brachypodium distachyon.
Collapse
Affiliation(s)
- Katelyn H McKown
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Chatterjee J, Thakur V, Nepomuceno R, Coe RA, Dionora J, Elmido-Mabilangan A, Llave AD, Reyes AMD, Monroy AN, Canicosa I, Bandyopadhyay A, Jena KK, Brar DS, Quick WP. Natural Diversity in Stomatal Features of Cultivated and Wild Oryza Species. RICE (NEW YORK, N.Y.) 2020; 13:58. [PMID: 32816163 PMCID: PMC7441136 DOI: 10.1186/s12284-020-00417-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 08/06/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Stomata in rice control a number of physiological processes by regulating gas and water exchange between the atmosphere and plant tissues. The impact of the structural diversity of these micropores on its conductance level is an important area to explore before introducing stomatal traits into any breeding program in order to increase photosynthesis and crop yield. Therefore, an intensive measurement of structural components of stomatal complex (SC) of twenty three Oryza species spanning the primary, secondary and tertiary gene pools of rice has been conducted. RESULTS Extensive diversity was found in stomatal number and size in different Oryza species and Oryza complexes. Interestingly, the dynamics of stomatal traits in Oryza family varies differently within different Oryza genetic complexes. Example, the Sativa complex exhibits the greatest diversity in stomatal number, while the Officinalis complex is more diverse for its stomatal size. Combining the structural information with the Oryza phylogeny revealed that speciation has tended towards increasing stomatal density rather than stomatal size in rice family. Thus, the most recent species (i.e. the domesticated rice) eventually has developed smaller yet numerous stomata. Along with this, speciation has also resulted in a steady increase in stomatal conductance (anatomical, gmax) in different Oryza species. These two results unambiguously prove that increasing stomatal number (which results in stomatal size reduction) has increased the stomatal conductance in rice. Correlations of structural traits with the anatomical conductance, leaf carbon isotope discrimination (∆13C) and major leaf morphological and anatomical traits provide strong supports to untangle the ever mysterious dependencies of these traits in rice. The result displayed an expected negative correlation in the number and size of stomata; and positive correlations among the stomatal length, width and area with guard cell length, width on both abaxial and adaxial leaf surfaces. In addition, gmax is found to be positively correlated with stomatal number and guard cell length. The ∆13C values of rice species showed a positive correlation with stomatal number, which suggest an increased water loss with increased stomatal number. Interestingly, in contrast, the ∆13C consistently shows a negative relationship with stomatal and guard cell size, which suggests that the water loss is less when the stomata are larger. Therefore, we hypothesize that increasing stomatal size, instead of numbers, is a better approach for breeding programs in order to minimize the water loss through stomata in rice. CONCLUSION Current paper generates useful data on stomatal profile of wild rice that is hitherto unknown for the rice science community. It has been proved here that the speciation has resulted in an increased stomatal number accompanied by size reduction during Oryza's evolutionary course; this has resulted in an increased gmax but reduced water use efficiency. Although may not be the sole driver of water use efficiency in rice, our data suggests that stomata are a potential target for modifying the currently low water use efficiency in domesticated rice. It is proposed that Oryza barthii can be used in traditional breeding programs in enhancing the stomatal size of elite rice cultivars.
Collapse
Affiliation(s)
- Jolly Chatterjee
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Department of Systems & Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Robert Nepomuceno
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- National Institute of Molecular Biology and Biotechnology - University of the Philippines Los Banos, Los Banos, Laguna, Philippines
| | - Robert A Coe
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- CSIRO Agriculture Flagship, High Resolution Plant Phenomics, GPO Box 1500, Canberra, ACT, 2601, Australia
| | - Jacqueline Dionora
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abigail Elmido-Mabilangan
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abraham Darius Llave
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anna Mae Delos Reyes
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Apollo Neil Monroy
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Irma Canicosa
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Plant Breeding Division, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Darshan S Brar
- Plant Breeding Division, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Present Address: School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - William Paul Quick
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines.
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
25
|
AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. Int J Mol Sci 2020; 21:ijms21165727. [PMID: 32785037 PMCID: PMC7460842 DOI: 10.3390/ijms21165727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.
Collapse
|
26
|
Wang Y, Chen ZH. Does Molecular and Structural Evolution Shape the Speedy Grass Stomata? FRONTIERS IN PLANT SCIENCE 2020; 11:333. [PMID: 32373136 PMCID: PMC7186404 DOI: 10.3389/fpls.2020.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
It has been increasingly important for breeding programs to be aimed at crops that are capable of coping with a changing climate, especially with regards to higher frequency and intensity of drought events. Grass stomatal complex has been proposed as an important factor that may enable grasses to adapt to water stress and variable climate conditions. There are many studies focusing on the stomatal morphology and development in the eudicot model plant Arabidopsis and monocot model plant Brachypodium. However, the comprehensive understanding of the distinction of stomatal structure and development between monocots and eudicots, especially between grasses and eudicots, are still less known at evolutionary and comparative genetic levels. Therefore, we employed the newly released version of the One Thousand Plant Transcriptome (OneKP) database and existing databases of green plant genome assemblies to explore the evolution of gene families that contributed to the formation of the unique structure and development of grass stomata. This review emphasizes the differential stomatal morphology, developmental mechanisms, and guard cell signaling in monocots and eudicots. We provide a summary of useful molecular evidences for the high water use efficiency of grass stomata that may offer new horizons for future success in breeding climate resilient crops.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
27
|
Harrison EL, Arce Cubas L, Gray JE, Hepworth C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:768-779. [PMID: 31583771 PMCID: PMC7065165 DOI: 10.1111/tpj.14560] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 05/18/2023]
Abstract
The intricate and interconnecting reactions of C3 photosynthesis are often limited by one of two fundamental processes: the conversion of solar energy into chemical energy, or the diffusion of CO2 from the atmosphere through the stomata, and ultimately into the chloroplast. In this review, we explore how the contributions of stomatal morphology and distribution can affect photosynthesis, through changes in gaseous exchange. The factors driving this relationship are considered, and recent results from studies investigating the effects of stomatal shape, size, density and patterning on photosynthesis are discussed. We suggest that the interplay between stomatal gaseous exchange and photosynthesis is complex, and that a disconnect often exists between the rates of CO2 diffusion and photosynthetic carbon fixation. The mechanisms that allow for substantial reductions in maximum stomatal conductance without affecting photosynthesis are highly dependent on environmental factors, such as light intensity, and could be exploited to improve crop performance.
Collapse
Affiliation(s)
- Emily L. Harrison
- Department of Molecular Biology and BiotechnologyUniversity of Sheffield, Western BankSheffieldUK
| | - Lucia Arce Cubas
- Department of Molecular Biology and BiotechnologyUniversity of Sheffield, Western BankSheffieldUK
| | - Julie E. Gray
- Department of Molecular Biology and BiotechnologyUniversity of Sheffield, Western BankSheffieldUK
| | - Christopher Hepworth
- Department of Molecular Biology and BiotechnologyUniversity of Sheffield, Western BankSheffieldUK
| |
Collapse
|
28
|
Sara HC, René GH, Rosa UC, Angela KG, Clelia DLP. Agave angustifolia albino plantlets lose stomatal physiology function by changing the development of the stomatal complex due to a molecular disruption. Mol Genet Genomics 2020; 295:787-805. [PMID: 31925511 DOI: 10.1007/s00438-019-01643-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
Stomatal development is regulated by signaling pathways that function in multiple cellular programs, including cell fate and cell division. However, recent studies suggest that molecular signals are affected by CO2 concentration, light intensity, and water pressure deficit, thereby modifying distribution patterns and stomatic density and likely other foliar features as well. Here, we show that in addition to lacking chloroplasts, the albino somaclonal variants of Agave angustifolia Haw present an irregular epidermal development and morphological abnormalities of the stomatal complex, affecting the link between the stomatal conductance, transpiration and photosynthesis, as well as the development of the stoma in the upper part of the leaves. In addition, we show that changes in the transcriptional levels of SPEECHLESS (SPCH), TOO MANY MOUTHS (TMM), MITOGEN-ACTIVATED PROTEIN KINASE 4 and 6 (MAPK4 and MAPK6) and FOUR LIPS (FLP), all from the meristematic tissue and leaf, differentially modulate the stomatal function between the green, variegated and albino in vitro plantlets of A. angustifolia. Likewise, we highlight the conservation of microRNAs miR166 and miR824 as part of the regulation of AGAMOUS-LIKE16 (AGL16), recently associated with the control of cell divisions that regulate the development of the stomatal complex. We propose that molecular alterations happening in albino cells formed from the meristematic base can lead to different anomalies during the transition and specification of the stomatal cell state in leaf development of albino plantlets. We conclude that the molecular alterations in the meristematic cells in albino plants might be the main variable associated with stoma distribution in this phenotype.
Collapse
Affiliation(s)
- Hernández-Castellano Sara
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Garruña-Hernández René
- CONACYT-Instituto Tecnológico de Conkal, Avenida Tecnológico s/n Conkal, 97345, Mérida, Yucatán, Mexico
| | - Us-Camas Rosa
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Kú-Gonzalez Angela
- Centro de Investigación Científica de Yucatán A.C., Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 N° 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - De-la-Peña Clelia
- Centro de Investigación Científica de Yucatán A.C., Unidad de Biotecnología, Calle 43 N°130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
29
|
Rudall PJ, Rice CL. Epidermal patterning and stomatal development in Gnetales. ANNALS OF BOTANY 2019; 124:149-164. [PMID: 31045221 PMCID: PMC6676381 DOI: 10.1093/aob/mcz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS The gymnosperm order Gnetales, which has contentious phylogenetic affinities, includes three extant genera (Ephedra, Gnetum, Welwitschia) that are morphologically highly divergent and have contrasting ecological preferences: Gnetum occupies mesic tropical habitats, whereas Ephedra and Welwitschia occur in arid environments. Leaves are highly reduced in Ephedra, petiolate with a broad lamina in Gnetum and persistent and strap-like in Welwitschia. We investigate stomatal development and prepatterning stages in Gnetales, to evaluate the substantial differences among the three genera and compare them with other seed plants. METHODS Photosynthetic organs of representative species were examined using light microscopy, scanning electron microscopy and transmission electron microscopy. KEY RESULTS Stomata of all three genera possess lateral subsidiary cells (LSCs). LSCs of Ephedra are perigene cells derived from cell files adjacent to the stomatal meristemoids. In contrast, LSCs of Gnetum and Welwitschia are mesogene cells derived from the stomatal meristemoids; each meristemoid undergoes two mitoses to form a 'developmental triad', of which the central cell is the guard mother cell and the lateral pair are LSCs. Epidermal prepatterning in Gnetum undergoes a 'quartet' phase, in contrast with the linear development of Welwitschia. Quartet prepatterning in Gnetum resembles that of some angiosperms but they differ in later development. CONCLUSIONS Several factors underpin the profound and heritable differences observed among the three genera of Gnetales. Stomatal development in Ephedra differs significantly from that of Gnetum and Welwitschia, more closely resembling that of other extant gymnosperms. Differences in epidermal prepatterning broadly reflect differences in growth habit between the three genera.
Collapse
Affiliation(s)
| | - Callie L Rice
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
30
|
Wang H, Guo S, Qiao X, Guo J, Li Z, Zhou Y, Bai S, Gao Z, Wang D, Wang P, Galbraith DW, Song CP. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genet 2019; 15:e1008377. [PMID: 31465456 PMCID: PMC6738654 DOI: 10.1371/journal.pgen.1008377] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/11/2019] [Accepted: 08/19/2019] [Indexed: 12/02/2022] Open
Abstract
Intercellular communication in adjacent cell layers determines cell fate and polarity, thus orchestrating tissue specification and differentiation. Here we use the maize stomatal apparatus as a model to investigate cell fate determination. Mutations in ZmBZU2 (bizui2, bzu2) confer a complete absence of subsidiary cells (SCs) and normal guard cells (GCs), leading to failure of formation of mature stomatal complexes. Nuclear polarization and actin accumulation at the interface between subsidiary mother cells (SMCs) and guard mother cells (GMCs), an essential pre-requisite for asymmetric cell division, did not occur in Zmbzu2 mutants. ZmBZU2 encodes a basic helix-loop-helix (bHLH) transcription factor, which is an ortholog of AtMUTE in Arabidopsis (BZU2/ZmMUTE). We found that a number of genes implicated in stomatal development are transcriptionally regulated by BZU2/ZmMUTE. In particular, BZU2/ZmMUTE directly binds to the promoters of PAN1 and PAN2, two early regulators of protodermal cell fate and SMC polarization, consistent with the low levels of transcription of these genes observed in bzu2-1 mutants. BZU2/ZmMUTE has the cell-to-cell mobility characteristic similar to that of BdMUTE in Brachypodium distachyon. Unexpectedly, BZU2/ZmMUTE is expressed in GMC from the asymmetric division stage to the GMC division stage, and especially in the SMC establishment stage. Taken together, these data imply that BZU2/ZmMUTE is required for early events in SMC polarization and differentiation as well as for the last symmetrical division of GMCs to produce the two GCs, and is a master determinant of the cell fate of its neighbors through cell-to-cell communication.
Collapse
Affiliation(s)
- Hongliang Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin Qiao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianfei Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zuliang Li
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yusen Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhiyong Gao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David W. Galbraith
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- School of Plant Sciences, the University of Arizona, Tucson, Arizona, United States of America
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Endo H, Torii KU. Stomatal Development and Perspectives toward Agricultural Improvement. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034660. [PMID: 30988007 DOI: 10.1101/cshperspect.a034660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stomata are small pores on the surface of land plants that facilitate gas exchange-acquiring CO2 from surrounding atmosphere and releasing water vapor. In adverse conditions, such as drought, stomata close to minimize water loss. The activities of stomata are vital for plant growth and survival. In the last two decades, key players for stomatal development have been discovered thanks to the model plant Arabidopsis thaliana Our knowledge about the formation of stomata and their response to environmental changes are accumulating. In this review, we summarize the genetic and molecular mechanisms of stomatal development, with specific emphasis on recent findings and potential applications toward enhancing the sustainability of agriculture.
Collapse
Affiliation(s)
- Hitoshi Endo
- Institute of transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiko U Torii
- Institute of transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.,Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
32
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:153-186. [PMID: 30525926 DOI: 10.1146/annurev-arplant-042817-040413] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Collapse
Affiliation(s)
- Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
33
|
Zubairova US, Verman PY, Oshchepkova PA, Elsukova AS, Doroshkov AV. LSM-W 2: laser scanning microscopy worker for wheat leaf surface morphology. BMC SYSTEMS BIOLOGY 2019; 13:22. [PMID: 30836965 PMCID: PMC6399813 DOI: 10.1186/s12918-019-0689-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Microscopic images are widely used in plant biology as an essential source of information on morphometric characteristics of the cells and the topological characteristics of cellular tissue pattern due to modern computer vision algorithms. High-resolution 3D confocal images allow extracting quantitative characteristics describing the cell structure of leaf epidermis. For some issues in the study of cereal leaves development, it is required to apply the staining techniques with fluorescent dyes and to scan rather large fragments consisting of several frames. We aimed to develop a tool for processing multi-frame multi-channel 3D images obtained from confocal laser scanning microscopy and taking into account the peculiarities of the cereal leaves staining. Results We elaborated an ImageJ-plugin LSM-W2 that allows extracting data on Leaf Surface Morphology from Laser Scanning Microscopy images. The plugin is a crucial link in a workflow for obtaining data on structural properties of leaf epidermis and morphological properties of epidermal cells. It allows converting large lsm-files (laser scanning microscopy) into segmented 2D/3D images or tables with data on cells and/or nuclei sizes. In the article, we also represent some case studies showing the plugin application for solving biological tasks. Namely the plugin is applied in the following cases: defining parameters of jigsaw-puzzle pattern for maize leaf epidermal cells, analysis of the pavement cells morphological parameters for the mature wheat leaf grown under control and water deficit conditions, initiation of cell longitudinal rows, and detection of guard mother cells emergence at the initial stages of the stomatal morphogenesis in the growth zone of a wheat leaf. Conclusion The proposed plugin is efficient for high-throughput analysis of cellular architecture for cereal leaf epidermis. The workflow implies using inexpensive and rapid sample preparation and does not require the applying of transgenesis and reporter genetic structures expanding the range of species and varieties to study. Obtained characteristics of the cell structure and patterns further could act as a basis for the development and verification for spatial models of plant tissues formation mechanisms accounting for structural features of cereal leaves. Availability The implementation of this workflow is available as an ImageJ plugin distributed as a part of the Fiji project (FijiisjustImageJ: https://fiji.sc/). The plugin is freely available at https://imagej.net/LSM_Worker, https://github.com/JmanJ/LSM_Worker
and http://pixie.bionet.nsc.ru/LSM_WORKER/. Electronic supplementary material The online version of this article (10.1186/s12918-019-0689-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulyana S Zubairova
- Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia.
| | - Pavel Yu Verman
- Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia.,A.P. Ershov Institute of Informatics Systems SB RAS, Prospekt Lavrentyeva 6, Novosibirsk, 630090, Russia
| | | | - Alina S Elsukova
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexey V Doroshkov
- Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
34
|
Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S, Koukalová Š, Zouhar J, Inzé D, Brzobohatý B. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:805-824. [PMID: 30748050 DOI: 10.1111/tpj.14285] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.
Collapse
Affiliation(s)
- Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Liesbeth Vercruyssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jana Hradilová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Patricie Skaláková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Šárka Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Jan Zouhar
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
35
|
Rudall PJ, Bateman RM. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales. Biol Rev Camb Philos Soc 2019; 94:1179-1194. [DOI: 10.1111/brv.12497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022]
|
36
|
Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves. THE NEW PHYTOLOGIST 2019; 221:706-724. [PMID: 30106472 DOI: 10.1111/nph.15371] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 706 I. Introduction 707 II. Leaf zones in monocot and eudicot leaves 707 III. Monocot and eudicot leaf initiation: differences in degree and timing, but not kind 710 IV. Reticulate and parallel venation: extending the model? 711 V. Flat laminar growth: patterning and coordination of adaxial-abaxial and mediolateral axes 713 VI. Stipules and ligules: ontogeny of primordial elaborations 715 VII. Leaf architecture 716 VIII. Stomatal development: shared and diverged mechanisms for making epidermal pores 717 IX. Conclusion 719 Acknowledgements 720 References 720 SUMMARY: Comparisons of concepts in monocot and eudicot leaf development are presented, with attention to the morphologies and mechanisms separating these angiosperm lineages. Monocot and eudicot leaves are distinguished by the differential elaborations of upper and lower leaf zones, the formation of sheathing/nonsheathing leaf bases and vasculature patterning. We propose that monocot and eudicot leaves undergo expansion of mediolateral domains at different times in ontogeny, directly impacting features such as venation and leaf bases. Furthermore, lineage-specific mechanisms in compound leaf development are discussed. Although models for the homologies of enigmatic tissues, such as ligules and stipules, are proposed, tests of these hypotheses are rare. Likewise, comparisons of stomatal development are limited to Arabidopsis and a few grasses. Future studies may investigate correlations in the ontogenies of parallel venation and linear stomatal files in monocots, and the reticulate patterning of veins and dispersed stoma in eudicots. Although many fundamental mechanisms of leaf development are shared in eudicots and monocots, variations in the timing, degree and duration of these ontogenetic events may contribute to key differences in morphology. We anticipate that the incorporation of an ever-expanding number of sequenced genomes will enrich our understanding of the developmental mechanisms generating eudicot and monocot leaves.
Collapse
Affiliation(s)
- Phillip A Conklin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shujie Li
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
37
|
Zubairova US, Doroshkov AV. Wheat leaf epidermal pattern as a model for studying the influence of stress conditions on morphogenesis. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.32-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The leaf epidermis of a monocotyledonous plant is a widely used model system for studying the differentiation of plant cells, as it contains readily observable specialized cells. The approach proposed in this paper uses a growing cereal leaf to study stress-induced dynamic changes in morphogenesis. In the process of formation, the linear leaf of wheat remains in the stationary growth phase for long. This fact permits us to observe a series of successive morphogenetic events recorded in the cellular structure of the mature leaf. In studying the cellular architecture of the wheat leaf epidermis, we obtained and processed confocal 3D images of wheat leaves stained with fluorescent dyes. This procedure allows an accurate morphometric description and determination of quantitative characteristics of the leaf epidermal pattern. Low temperatures are among the factors limiting the growing of crop plants in the temperate zone. In the present work, we show significant aberrations of stomatal morphogenesis in the epidermis of boot leaves of wheat varieties Saratovskaya 29 and Yanetskis Probat in response to cold stress. We found that nonfunctional stomata predominated in the zone of maximum manifestation of stress, whereas in the zones formed before and after the stress impact, the developmental anomalies come to the disturbance in the morphogenesis of subsidiary cells. In Saratovskaya 29, a significant amount of ectopic trichomes formed in rows predetermined to stoma formation. The proposed approach can provide standardized qualitative and quantitative data on stress-induced morphogenesis aberrations in wheat leaf epidermis. Subsequently, these data can be used for verification of computer models of leaf morphogenesis. Further study of the mechanisms of the effect of cold stress on morphogenesis will add to the search for additional opportunities to increase wheat yields in areas of risky agriculture.
Collapse
Affiliation(s)
| | - A. V. Doroshkov
- Institute of Cytology and Genetics SB RAS; Novosibirsk State University
| |
Collapse
|
38
|
Rui Y, Chen Y, Kandemir B, Yi H, Wang JZ, Puri VM, Anderson CT. Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics. FRONTIERS IN PLANT SCIENCE 2018; 9:1202. [PMID: 30177940 PMCID: PMC6110162 DOI: 10.3389/fpls.2018.01202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Guard cells are pairs of epidermal cells that control gas diffusion by regulating the opening and closure of stomatal pores. Guard cells, like other types of plant cells, are surrounded by a three-dimensional, extracellular network of polysaccharide-based wall polymers. In contrast to the walls of diffusely growing cells, guard cell walls have been hypothesized to be uniquely strong and elastic to meet the functional requirements of withstanding high turgor and allowing for reversible stomatal movements. Although the walls of guard cells were long underexplored as compared to extensive studies of stomatal development and guard cell signaling, recent research has provided new genetic, cytological, and physiological data demonstrating that guard cell walls function centrally in stomatal development and dynamics. In this review, we highlight and discuss the latest evidence for how wall polysaccharides are synthesized, deposited, reorganized, modified, and degraded in guard cells, and how these processes influence stomatal form and function. We also raise open questions and provide a perspective on experimental approaches that could be used in the future to shed light on the composition and architecture of guard cell walls.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - James Z. Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Virendra M. Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
39
|
Xu M, Chen F, Qi S, Zhang L, Wu S. Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora. HORTICULTURE RESEARCH 2018; 5:42. [PMID: 30083357 PMCID: PMC6068134 DOI: 10.1038/s41438-018-0048-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 05/27/2023]
Abstract
The stomatal complex is critical for gas and water exchange between plants and the atmosphere. Originating over 400 million years ago, the structure of the stomata has evolved to facilitate the adaptation of plants to various environments. Although the molecular mechanism of stomatal development in Arabidopsis has been widely studied, the evolution of stomatal structure and its molecular regulators in different species remains to be answered. In this study, we examined stomatal development and the orthologues of Arabidopsis stomatal genes in a basal angiosperm plant, Nymphaea colorata, and a member of the eudicot CAM family, Kalanchoe laxiflora, which represent the adaptation to aquatic and drought environments, respectively. Our results showed that despite the conservation of core stomatal regulators, a number of critical genes were lost in the N. colorata genome, including EPF2, MPK6, and AP2C3 and the polarity regulators BASL and POLAR. Interestingly, this is coincident with the loss of asymmetric divisions during the stomatal development of N. colorata. In addition, we found that the guard cell in K. laxiflora is surrounded by three or four small subsidiary cells in adaxial leaf surfaces. This type of stomatal complex is formed via repeated asymmetric cell divisions and cell state transitions. This may result from the doubled or quadrupled key genes controlling stomatal development in K. laxiflora. Our results show that loss or duplication of key regulatory genes is associated with environmental adaptation of the stomatal complex.
Collapse
Affiliation(s)
- Meizhi Xu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shilian Qi
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangsheng Zhang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
40
|
Pressel S, Renzaglia KS, Dicky Clymo RS, Duckett JG. Hornwort stomata do not respond actively to exogenous and environmental cues. ANNALS OF BOTANY 2018; 122:45-57. [PMID: 29897395 PMCID: PMC6025193 DOI: 10.1093/aob/mcy045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/14/2018] [Indexed: 05/22/2023]
Abstract
Backgrounds and Aims Because stomata in bryophytes occur on sporangia, they are subject to different developmental and evolutionary constraints from those on leaves of tracheophytes. No conclusive experimental evidence exists on the responses of hornwort stomata to exogenous stimulation. Methods Responses of hornwort stomata to abscisic acid (ABA), desiccation, darkness and plasmolysis were compared with those in tracheophyte leaves. Potassium ion concentrations in the guard cells and adjacent cells were analysed by X-ray microanalysis, and the ontogeny of the sporophytic intercellular spaces was compared with those of tracheophytes by cryo-scanning electron microscopy. Key Results The apertures in hornwort stomata open early in development and thereafter remain open. In hornworts, the experimental treatments, based on measurements of >9000 stomata, produced only a slight reduction in aperture dimensions after desiccation and plasmolysis, and no changes following ABA treatments and darkness. In tracheophytes, all these treatments resulted in complete stomatal closure. Potassium concentrations are similar in hornwort guard cells and epidermal cells under all treatments at all times. The small changes in hornwort stomatal dimensions in response to desiccation and plasmolysis are probably mechanical and/or stress responses of all the epidermal and spongy chlorophyllose cells, affecting the guard cells. In contrast to their nascent gas-filled counterparts across tracheophytes, sporophytic intercellular spaces in hornworts are initially liquid filled. Conclusions Our experiments demonstrate a lack of physiological regulation of opening and closing of stomata in hornworts compared with tracheophytes, and support accumulating developmental and structural evidence that stomata in hornworts are primarily involved in sporophyte desiccation and spore discharge rather than the regulation of photosynthesis-related gaseous exchange. Our results run counter to the notion of the early acquisition of active control of stomatal movements in bryophytes as proposed from previous experiments on mosses.
Collapse
Affiliation(s)
- Silvia Pressel
- Life Sciences Department, Natural History Museum, London, UK
| | - Karen S Renzaglia
- Plant Biology Department, Southern Illinois University, Carbondale, USA
| | - Richard S Dicky Clymo
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
41
|
Han SK, Qi X, Sugihara K, Dang JH, Endo TA, Miller KL, Kim ED, Miura T, Torii KU. MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata. Dev Cell 2018; 45:303-315.e5. [PMID: 29738710 DOI: 10.1016/j.devcel.2018.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Xingyun Qi
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jonathan H Dang
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kristen L Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
42
|
The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS One 2018. [PMID: 29513733 PMCID: PMC5841781 DOI: 10.1371/journal.pone.0193458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Mediator complex is at the core of transcriptional regulation and plays a central role in plant immunity. The MEDIATOR25 (MED25) subunit of Arabidopsis thaliana regulates jasmonate-dependent resistance to Botrytis cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor of jasmonate signaling, MYC2. Another Mediator subunit, MED8, acts independently or together with MED25 in plant immunity. However, unlike MED25, the underlying action mechanisms of MED8 in regulating B. cinerea resistance are still unknown. Here, we demonstrated that MED8 regulated plant immunity to B. cinerea through interacting with another bHLH transcription factor, FAMA, which was previously shown to control the final proliferation/differentiation switch during stomatal development. Our research demonstrates that FAMA is also an essential component of B. cinerea resistance. The fama loss-of-function mutants (fama-1 and fama-2) increased susceptibility to B. cinerea infection and reduced defense-gene expression. On the contrary, transgenic lines constitutively overexpressing FAMA showed opposite B. cinerea responses compared with the fama loss-of-function mutants. FAMA-overexpressed plants displayed enhanced resistance to B. cinerea infection and increased expression levels of defensin genes following B. cinerea treatment. Genetic analysis of MED8 and FAMA suggested that FAMA-regulated pathogen resistance was dependent on MED8. In addition, MED8 and FAMA were both associated with the G-box region in the promoter of ORA59. Our findings indicate that the MED8 subunit of the A. thaliana Mediator regulates plant immunity to B. cinerea through interacting with the transcription factor FAMA, which was discovered to be a key component in B. cinerea resistance.
Collapse
|
43
|
Hepworth C, Caine RS, Harrison EL, Sloan J, Gray JE. Stomatal development: focusing on the grasses. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:1-7. [PMID: 28826033 DOI: 10.1016/j.pbi.2017.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 05/02/2023]
Abstract
The development and patterning of stomata in the plant epidermis has emerged as an ideal system for studying fundamental plant developmental processes. Over the past twenty years most studies of stomata have used the model dicotyledonous plant Arabidopsis thaliana. However, cultivated monocotyledonous grass (or Gramineae) varieties provide the majority of human nutrition, and future research into grass stomata could be of critical importance for improving food security. Recent studies using Brachypodium distachyon, Hordeum vulgare (barley) and Oryza sativa (rice) have led to the identification of the core transcriptional regulators essential for stomatal initiation and progression in grasses, and begun to unravel the role of secretory signaling peptides in controlling stomatal developmental. This review revisits how stomatal developmental unfolds in grasses, and identifies key ontogenetic steps for which knowledge of the underpinning molecular mechanisms remains outstanding.
Collapse
Affiliation(s)
| | - Robert S Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Emily L Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Jennifer Sloan
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK; Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Morales-Navarro S, Pérez-Díaz R, Ortega A, de Marcos A, Mena M, Fenoll C, González-Villanueva E, Ruiz-Lara S. Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:940. [PMID: 30022991 PMCID: PMC6039981 DOI: 10.3389/fpls.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Stomata are microscopic valves formed by two guard cells flanking a pore, which are located on the epidermis of most aerial plant organs and are used for water and gas exchange between the plant and the atmosphere. The number, size and distribution of stomata are set during development in response to changing environmental conditions, allowing plants to minimize the impact of a stressful environment. In Arabidopsis, STOMATAL DENSITY AND DISTRIBUTION 1 (AtSDD1) negatively regulates stomatal density and optimizes transpiration and water use efficiency (WUE). Despite this, little is known about the function of AtSDD1 orthologs in crop species and their wild stress-tolerant relatives. In this study, SDD1-like from the stress-tolerant wild tomato Solanum chilense (SchSDD1-like) was identified through its close sequence relationship with SDD1-like from Solanum lycopersicum and AtSDD1. Both Solanum SDD1-like transcripts accumulated in high levels in young leaves, suggesting that they play a role in early leaf development. Arabidopsis sdd1-3 plants transformed with SchSDD1-like under a constitutive promoter showed a significant reduction in stomatal leaf density compared with untransformed sdd1-3 plants. Additionally, a leaf dehydration shock test demonstrated that the reduction in stomatal abundance of transgenic plants was sufficient to slow down dehydration. Overexpression of SchSDD1-like in cultivated tomato plants decreased the stomatal index and density of the cotyledons and leaves, and resulted in higher dehydration avoidance. Taken together, these results indicate that SchSDD1-like functions in a similar manner to AtSDD1 and suggest that Arabidopsis and tomatoes share this component of the stomatal development pathway that impinges on water status.
Collapse
Affiliation(s)
| | | | - Alfonso Ortega
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Alberto de Marcos
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales Y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- *Correspondence: Simón Ruiz-Lara,
| |
Collapse
|
45
|
Hughes J, Hepworth C, Dutton C, Dunn JA, Hunt L, Stephens J, Waugh R, Cameron DD, Gray JE. Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. PLANT PHYSIOLOGY 2017; 174:776-787. [PMID: 28461401 PMCID: PMC5462017 DOI: 10.1104/pp.16.01844] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
The epidermal patterning factor (EPF) family of secreted signaling peptides regulate the frequency of stomatal development in model dicot and basal land plant species. Here, we identify and manipulate the expression of a barley (Hordeum vulgare) ortholog and demonstrate that when overexpressed HvEPF1 limits entry to, and progression through, the stomatal development pathway. Despite substantial reductions in leaf gas exchange, barley plants with significantly reduced stomatal density show no reductions in grain yield. In addition, HvEPF1OE barley lines exhibit significantly enhanced water use efficiency, drought tolerance, and soil water conservation properties. Our results demonstrate the potential of manipulating stomatal frequency for the protection and optimization of cereal crop yields under future drier environments.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Christopher Hepworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Chris Dutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Jessica A Dunn
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Lee Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Jennifer Stephens
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Robbie Waugh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Duncan D Cameron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.)
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (J.H., C.D., J.A.D., L.H., J.E.G.);
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (C.H., D.D.C.); and
- The James Hutton Institute, Invergowrie, Dundee AB15 8QH, Scotland (J.S., R.W.)
| |
Collapse
|
46
|
Chater CCC, Caine RS, Fleming AJ, Gray JE. Origins and Evolution of Stomatal Development. PLANT PHYSIOLOGY 2017; 174:624-638. [PMID: 28356502 PMCID: PMC5462063 DOI: 10.1104/pp.17.00183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/28/2017] [Indexed: 05/05/2023]
Abstract
The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants.
Collapse
Affiliation(s)
- Caspar C C Chater
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico (C.C.C.C.);
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (R.S.C., J.E.G.); and
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (A.J.F.)
| | - Robert S Caine
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico (C.C.C.C.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (R.S.C., J.E.G.); and
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (A.J.F.)
| | - Andrew J Fleming
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico (C.C.C.C.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (R.S.C., J.E.G.); and
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (A.J.F.)
| | - Julie E Gray
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico (C.C.C.C.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom (R.S.C., J.E.G.); and
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom (A.J.F.)
| |
Collapse
|
47
|
Papanatsiou M, Amtmann A, Blatt MR. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2309-2315. [PMID: 28369641 PMCID: PMC5447881 DOI: 10.1093/jxb/erx072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions.
Collapse
Affiliation(s)
- Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
48
|
Qu X, Peterson KM, Torii KU. Stomatal development in time: the past and the future. Curr Opin Genet Dev 2017; 45:1-9. [PMID: 28219014 DOI: 10.1016/j.gde.2017.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
Abstract
Stomata have significantly diversified in nature since their first appearance around 400 million years ago. The diversification suggests the active reprogramming of molecular machineries of stomatal development during evolution. This review focuses on recent progress that sheds light on how this rewiring occurred in different organisms. Three specific aspects are discussed in this review: (i) the evolution of the transcriptional complex that governs stomatal state transitions; (ii) the evolution of receptor-ligand pairs that mediate extrinsic signaling; and (iii) the loss of stomatal development genes in an astomatous angiosperm.
Collapse
Affiliation(s)
- Xian Qu
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Kylee M Peterson
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800, USA; Institute of Transformative Biomolecules, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
49
|
Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR. Molecular Evolution of Grass Stomata. TRENDS IN PLANT SCIENCE 2017; 22:124-139. [PMID: 27776931 DOI: 10.1016/j.tplants.2016.09.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 05/18/2023]
Abstract
Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peter J Franks
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
50
|
Caine RS, Chater CC, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE, Fleming AJ. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development 2016; 143:3306-14. [PMID: 27407102 PMCID: PMC5047656 DOI: 10.1242/dev.135038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/26/2016] [Indexed: 11/20/2022]
Abstract
The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system.
Collapse
Affiliation(s)
- Robert S Caine
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Caspar C Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Yasuko Kamisugi
- Centre for Plant Science, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew C Cuming
- Centre for Plant Science, University of Leeds, Leeds LS2 9JT, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|