1
|
Guérin A, Levasseur C, Herger A, Renggli D, Sotiropoulos AG, Kadler G, Hou X, Schaufelberger M, Meyer C, Wicker T, Bigler L, Ringli C. Histidine limitation alters plant development and influences the TOR network. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1085-1098. [PMID: 39688839 PMCID: PMC11850971 DOI: 10.1093/jxb/erae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Plant growth depends on growth regulators, nutrient availability, and amino acid levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including leucine-rich repeat (LRR)-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root hair-specific LRX1 without the extensin domain, which anchors the protein to the cell wall (LRX1ΔE14), has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1ΔE14) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Caroline Levasseur
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Dominik Renggli
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | | | - Gabor Kadler
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Xiaoyu Hou
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAe, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
2
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
3
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
4
|
Calderan-Rodrigues MJ, Caldana C. Impact of the TOR pathway on plant growth via cell wall remodeling. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154202. [PMID: 38422631 DOI: 10.1016/j.jplph.2024.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba, SP, Brazil.
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Zheng X, Chen H, Deng Z, Wu Y, Zhong L, Wu C, Yu X, Chen Q, Yan S. The tRNA thiolation-mediated translational control is essential for plant immunity. eLife 2024; 13:e93517. [PMID: 38284752 PMCID: PMC10863982 DOI: 10.7554/elife.93517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.
Collapse
Affiliation(s)
- Xueao Zheng
- Hubei Hongshan LaboratoryWuhanChina
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Hanchen Chen
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yujing Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Linlin Zhong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhanChina
| | - Chong Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Xiaodan Yu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| |
Collapse
|
6
|
Xiong F, Tian J, Wei Z, Deng K, Li Y, Zhang Y. Suppression of the target of rapamycin kinase accelerates tomato fruit ripening through reprogramming the transcription profile and promoting ethylene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2603-2619. [PMID: 36786543 DOI: 10.1093/jxb/erad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/11/2023] [Indexed: 06/06/2023]
Abstract
Tomato fruit ripening is a unique process of nutritional and energy metabolism. Target of rapamycin (TOR), a conserved serine/threonine protein kinase in eukaryotes, controls cell growth and metabolism by integrating nutrient, energy, and hormone signals. However, it remains unclear whether TOR participates in the modulation of tomato fruit ripening. Here, we showed that the manipulation of SlTOR by chemical or genetic methods greatly alters the process of tomato fruit maturation. Expression pattern analysis revealed that the transcripts of SlTOR declined as fruit ripening progressed. Moreover, suppression of SlTOR by TOR inhibitor AZD8055 or knock down of its transcripts by inducible RNA interference, accelerated fruit ripening, and led to overall effects on fruit maturity, including changes in colour and metabolism, fruit softening, and expression of ripening-related genes. Genome-wide transcription analysis indicated that silencing SlTOR reprogrammed the transcript profile associated with ripening, including cell wall and phytohormone pathways, elevated the expression of ethylene biosynthetic genes, and further promoted ethylene production. In contrast, the ethylene action inhibitor 1-MCP efficiently blocked fruit maturation, even following SlTOR inhibition. These results suggest that accelerated fruit ripening caused by SlTOR inhibition depends on ethylene, and that SlTOR may function as a regulator in ethylene metabolism.
Collapse
Affiliation(s)
- Fangjie Xiong
- Biotechnology Research Center, Southwest University, Chongqing 400716, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jianwei Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenzhen Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yan Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanjie Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C 4 Species Setaria viridis, a Suitable Model for Biomass Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:637508. [PMID: 33927734 PMCID: PMC8078139 DOI: 10.3389/fpls.2021.637508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Collapse
Affiliation(s)
| | | | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | - Valéria Mafra
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
9
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
10
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
11
|
Retzer K, Weckwerth W. The TOR-Auxin Connection Upstream of Root Hair Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:150. [PMID: 33451169 PMCID: PMC7828656 DOI: 10.3390/plants10010150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
12
|
A Tour of TOR Complex Signaling in Plants. Trends Biochem Sci 2020; 46:417-428. [PMID: 33309324 DOI: 10.1016/j.tibs.2020.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023]
Abstract
To identify the appropriate times for growth and development, organisms must sense and process information about the availability of nutrients, energy status, and environmental cues. For sessile eukaryotes such as plants, integrating such information can be critical in life or death decisions. For nearly 30 years, the conserved phosphatidylinositol 3-kinase-related protein kinases (PIKKs) target of rapamycin (TOR) has been established as a central hub for integrating external and internal metabolic cues. Despite the functional conservation across eukaryotes, the TOR complex has evolved specific functional and mechanistic features in plants. Here, we present recent findings on the plant TOR complex that highlight the conserved and unique nature of this critical growth regulator and its role in multiple aspects of plant life.
Collapse
|
13
|
Ingargiola C, Turqueto Duarte G, Robaglia C, Leprince AS, Meyer C. The Plant Target of Rapamycin: A Conduc TOR of Nutrition and Metabolism in Photosynthetic Organisms. Genes (Basel) 2020; 11:genes11111285. [PMID: 33138108 PMCID: PMC7694126 DOI: 10.3390/genes11111285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms possess many mechanisms to sense nutrients and favorable conditions, which allow them to grow and develop. Photosynthetic organisms are very diverse, from green unicellular algae to multicellular flowering plants, but most of them are sessile and thus unable to escape from the biotic and abiotic stresses they experience. The Target of Rapamycin (TOR) signaling pathway is conserved in all eukaryotes and acts as a central regulatory hub between growth and extrinsic factors, such as nutrients or stress. However, relatively little is known about the regulations and roles of this pathway in plants and algae. Although some features of the TOR pathway seem to have been highly conserved throughout evolution, others clearly differ in plants, perhaps reflecting adaptations to different lifestyles and the rewiring of this primordial signaling module to adapt to specific requirements. Indeed, TOR is involved in plant responses to a vast array of signals including nutrients, hormones, light, stresses or pathogens. In this review, we will summarize recent studies that address the regulations of TOR by nutrients in photosynthetic organisms, and the roles of TOR in controlling important metabolic pathways, highlighting similarities and differences with the other eukaryotes.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
| | - Gustavo Turqueto Duarte
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, Faculté des Sciences de Luminy, UMR 7265, CEA, CNRS, BIAM, Aix Marseille Université, 13009 Marseille, France;
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Faculté des Sciences et d’Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Correspondence:
| |
Collapse
|
14
|
Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S. Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun 2020; 11:5441. [PMID: 33116138 PMCID: PMC7595236 DOI: 10.1038/s41467-020-19320-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023] Open
Abstract
With global warming and climate change, breeding crop plants tolerant to high-temperature stress is of immense significance. tRNA 2-thiolation is a highly conserved form of tRNA modification among living organisms. Here, we report the identification of SLG1 (Slender Guy 1), which encodes the cytosolic tRNA 2-thiolation protein 2 (RCTU2) in rice. SLG1 plays a key role in the response of rice plants to high-temperature stress at both seedling and reproductive stages. Dysfunction of SLG1 results in plants with thermosensitive phenotype, while overexpression of SLG1 enhances the tolerance of plants to high temperature. SLG1 is differentiated between the two Asian cultivated rice subspecies, indica and japonica, and the variations at both promoter and coding regions lead to an increased level of thiolated tRNA and enhanced thermotolerance of indica rice varieties. Our results demonstrate that the allelic differentiation of SLG1 confers indica rice to high-temperature tolerance, and tRNA thiolation pathway might be a potential target in the next generation rice breeding for the warming globe. Understanding the mechanism of high-temperature tolerance will help to breed crops adaptive to warming climate. Here, the authors show SLG1, a cytosolic tRNA 2-thiolation protein 2 encoding gene, is differentiated between the two Asian cultivated rice subspecies and confers high temperature tolerance of indica rice.
Collapse
Affiliation(s)
- Yufang Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Li Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Plant Elongator-Protein Complex of Diverse Activities Regulates Growth, Development, and Immune Responses. Int J Mol Sci 2020; 21:ijms21186912. [PMID: 32971769 PMCID: PMC7555253 DOI: 10.3390/ijms21186912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Contrary to the conserved Elongator composition in yeast, animals, and plants, molecular functions and catalytic activities of the complex remain controversial. Elongator was identified as a component of elongating RNA polymerase II holoenzyme in yeast, animals, and plants. Furthermore, it was suggested that Elonagtor facilitates elongation of transcription via histone acetyl transferase activity. Accordingly, phenotypes of Arabidopsis elo mutants, which show development, growth, or immune response defects, correlate with transcriptional downregulation and the decreased histone acetylation in the coding regions of crucial genes. Plant Elongator was also implicated in other processes: transcription and processing of miRNA, regulation of DNA replication by histone acetylation, and acetylation of alpha-tubulin. Moreover, tRNA modification, discovered first in yeast and confirmed in plants, was claimed as the main activity of Elongator, leading to specificity in translation that might also result indirectly in a deficiency in transcription. Heterologous overexpression of individual Arabidopsis Elongator subunits and their respective phenotypes suggest that single Elongator subunits might also have another function next to being a part of the complex. In this review, we shall present the experimental evidence of all molecular mechanisms and catalytic activities performed by Elongator in nucleus and cytoplasm of plant cells, which might explain how Elongator regulates growth, development, and immune responses.
Collapse
|
16
|
Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Curr Biol 2020; 29:R851-R858. [PMID: 31505187 DOI: 10.1016/j.cub.2019.07.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Plant cells are surrounded by a cell wall that provides shape and physically limits cell expansion. To sense the environment and status of cell wall structures, plants have evolved cell wall integrity-sensing mechanisms that involve a number of receptors at the plasma membrane. These receptors can bind cell wall components and/or hormones to coordinate processes in the cell wall and the cytoplasm. This review focuses on the role of leucine-rich repeat extensins (LRXs) during cell wall development. LRXs are chimeric proteins that insolubilize in the cell wall and form protein-protein interaction platforms. LRXs bind RALF peptide hormones that modify cell wall expansion and also directly interact with the transmembrane receptor FERONIA, which is involved in cell growth regulation. LRX proteins, therefore, also represent a link between the cell wall and plasma membrane, perceiving extracellular signals and indirectly relaying this information to the cytoplasm.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
17
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Zhuo F, Xiong F, Deng K, Li Z, Ren M. Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis. Int J Mol Sci 2020; 21:E2680. [PMID: 32290539 PMCID: PMC7215648 DOI: 10.3390/ijms21082680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels.
Collapse
Affiliation(s)
- Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
19
|
Yaguchi M, Ikeya S, Kozaki A. The activation mechanism of plant S6 kinase (S6K), a substrate of TOR kinase, is different from that of mammalian S6K. FEBS Lett 2019; 594:776-787. [PMID: 31705659 DOI: 10.1002/1873-3468.13661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/06/2022]
Abstract
The S6 kinases (S6Ks) are known to be activated by the target of rapamycin through phosphorylation of their hydrophobic motif (HM). However, our previous research showed that the HM site of plant S6Ks is not phosphorylated and is not essential for their activity in yeast cells lacking Ypk3, an ortholog of mammalian S6K. Here, we demonstrate that the HM site of mammalian S6Ks is phosphorylated and is indispensable for their activity in yeast ypk3∆ cells. Furthermore, pseudo-phosphorylation at the HM site of plant S6Ks results in regaining of activity that is lost due to mutation in the conserved phosphorylation sites, namely the T-loop and Turn motif. These results indicate the activation mechanism of plant S6Ks is different from that of mammals.
Collapse
Affiliation(s)
| | - Shun Ikeya
- Department of Biology, Shizuoka University, Japan
| | - Akiko Kozaki
- Department of Biology, Shizuoka University, Japan
| |
Collapse
|
20
|
Nakai Y, Horiguchi G, Iwabuchi K, Harada A, Nakai M, Hara-Nishimura I, Yano T. tRNA Wobble Modification Affects Leaf Cell Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:2026-2039. [PMID: 31076779 DOI: 10.1093/pcp/pcz064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/04/2019] [Indexed: 05/14/2023]
Abstract
The tRNA modification at the wobble position of Lys, Glu and Gln (wobbleU* modification) is responsible for the fine-tuning of protein translation efficiency and translation rate. This modification influences organism function in accordance with growth and environmental changes. However, the effects of wobbleU* modification at the cellular, tissue, or individual level have not yet been elucidated. In this study, we show that sulfur modification of wobbleU* of the tRNAs affects leaf development in Arabidopsis thaliana. The sulfur modification was impaired in the two wobbleU*-modification mutants: the URM1-like protein-defective mutant and the Elongator complex-defective mutants. Analyses of the mutant phenotypes revealed that the deficiency in the wobbleU* modification increased the airspaces in the leaves and the leaf size without affecting the number and the area of palisade mesophyll cells. On the other hand, both mutants exhibited increased number of leaf epidermal pavement cells but with reduced cell size. The deficiency in the wobbleU* modification also delayed the initiation of the endoreduplication processes of mesophyll cells. The phenotype of ASYMMETRIC LEAVES2-defective mutant was enhanced in the Elongator-defective mutants, while it was unchanged in the URM1-like protein-defective mutant. Collectively, the findings of this study suggest that the tRNA wobbleU* modification plays an important role in leaf morphogenesis by balancing the development between epidermal and mesophyll tissues.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Kosei Iwabuchi
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Akiko Harada
- Department of Biology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Japan
| | - Masato Nakai
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Japan
| | | | - Takato Yano
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Japan
| |
Collapse
|
21
|
Ryabova LA, Robaglia C, Meyer C. Target of Rapamycin kinase: central regulatory hub for plant growth and metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2211-2216. [PMID: 30984977 PMCID: PMC6463030 DOI: 10.1093/jxb/erz108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Aix Marseille Université, CEA, CNRS, BIAM, Faculté des Sciences de Luminy, Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
22
|
Montané MH, Menand B. TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2297-2312. [PMID: 30773593 DOI: 10.1093/jxb/erz053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Target of rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase-related kinase that regulates growth and metabolism in response to environment in plants and algae. The study of the plant and algal TOR pathway has largely depended on TOR inhibitors first developed for non-photosynthetic eukaryotes. In animals and yeast, fundamental work on the TOR pathway has benefited from the allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) that circumvent the limitations of rapamycin. The asTORis, developed for medical application, inhibit TOR complex 1 (TORC1) more efficiently than rapamycin and also inhibit rapamycin-resistant TORCs. This review presents knowledge on TOR inhibitors from the mammalian field and underlines important considerations for plant and algal biologists. It discusses the use of rapamycin and asTORis in plants and algae and concludes with guidelines for physiological studies and genetic screens with TOR inhibitors.
Collapse
Affiliation(s)
- Marie-Hélène Montané
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| | - Benoît Menand
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de génétique et biophysique des plantes, Marseille, F-13009, France
| |
Collapse
|
23
|
Quilichini TD, Gao P, Pandey PK, Xiang D, Ren M, Datla R. A role for TOR signaling at every stage of plant life. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2285-2296. [PMID: 30911763 DOI: 10.1093/jxb/erz125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/13/2019] [Indexed: 05/19/2023]
Abstract
From scientific advances in medical research to the plethora of anti-aging products available, our obsession with slowing the aging process and increasing life span is indisputable. A large research effort has been levied towards this perpetual search for the fountain of youth, yet the molecular mechanisms governing an organism's life span and the causes of aging are only beginning to emerge in animals and remain largely unanswered in plants. As one central pathway in eukaryotes controlling cell growth, development, and metabolism, the target of rapamycin (TOR) plays an evolutionarily conserved role in aging and the determination of life span. The modulation of TOR pathway components in a wide range of species, including the model plant Arabidopsis thaliana, has effects on life span. However, the mechanisms enabling some of the longest living species to endure, including trees that can live for millennia, have not been defined. Here, we introduce key TOR research from plant systems and discuss its implications in the plant life cycle and the broader field of life span research. TOR pathway functions in plant life cycle progression and life span determination are discussed, noting key differences from yeast and animal systems and the importance of 'omics' research for the continued progression of TOR signaling research.
Collapse
Affiliation(s)
| | - Peng Gao
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Daoquan Xiang
- National Research Council of Canada, Saskatoon, SK, Canada
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Raju Datla
- National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Schaufelberger M, Galbier F, Herger A, de Brito Francisco R, Roffler S, Clement G, Diet A, Hörtensteiner S, Wicker T, Ringli C. Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2313-2323. [PMID: 30753668 PMCID: PMC6463047 DOI: 10.1093/jxb/ery463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.
Collapse
Affiliation(s)
- Myriam Schaufelberger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Florian Galbier
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Molecular Plant Biology, Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Aline Herger
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Rita de Brito Francisco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Stefan Roffler
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Gilles Clement
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris Diderot, INRA, Université Paris Sud, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, Gif-sur-Yvette, France
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Correspondence:
| |
Collapse
|
25
|
Bakshi A, Moin M, Madhav MS, Kirti PB. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:190-205. [PMID: 30411830 DOI: 10.1111/plb.12935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.
Collapse
Affiliation(s)
- A Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
26
|
Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, Montané MH, Menand B. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. Development 2019; 146:dev.171298. [PMID: 30705074 DOI: 10.1242/dev.171298] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/20/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic phosphatidylinositol-3-kinase-related kinase that plays a major role in regulating growth and metabolism in response to environment in plants. We performed a genetic screen for Arabidopsis ethylmethane sulfonate mutants resistant to the ATP-competitive TOR inhibitor AZD-8055 to identify new components of the plant TOR pathway. We found that loss-of-function mutants of the DYRK (dual specificity tyrosine phosphorylation regulated kinase)/YAK1 kinase are resistant to AZD-8055 and, reciprocally, that YAK1 overexpressors are hypersensitive to AZD-8055. Significantly, these phenotypes were conditional on TOR inhibition, positioning YAK1 activity downstream of TOR. We further show that the ATP-competitive DYRK1A inhibitor pINDY phenocopies YAK1 loss of function. Microscopy analysis revealed that YAK1 functions to repress meristem size and induce differentiation. We show that YAK1 represses cyclin expression in the different zones of the root meristem and that YAK1 is essential for TOR-dependent transcriptional regulation of the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors in both meristematic and differentiating root cells. Thus, YAK1 is a major regulator of meristem activity and cell differentiation downstream of TOR.
Collapse
Affiliation(s)
- Adam Barrada
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Meriem Djendli
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, Laboratoire de Biologie du Développement des Plantes, Saint Paul-Lez-Durance, France F-13108
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Marie-Hélène Montané
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Benoît Menand
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| |
Collapse
|
27
|
Chen DD, Shi L, Yue SN, Zhang TJ, Wang SL, Liu YN, Ren A, Zhu J, Yu HS, Zhao MW. The Slt2-MAPK pathway is involved in the mechanism by which target of rapamycin regulates cell wall components in Ganoderma lucidum. Fungal Genet Biol 2019; 123:70-77. [DOI: 10.1016/j.fgb.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
28
|
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals, despite their distinct developmental programs and survival strategies. Indeed, TOR integrates nutrient, energy, hormone, growth factor and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. Here, we compare the molecular composition, upstream regulators and downstream signaling relays of TOR complexes in plants and animals. We also explore and discuss the pivotal functions of TOR signaling in basic cellular processes, such as translation, cell division and stem/progenitor cell regulation during plant development.
Collapse
Affiliation(s)
- Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
29
|
Wang X, Wang K, Yin G, Liu X, Liu M, Cao N, Duan Y, Gao H, Wang W, Ge W, Wang J, Li R, Guo Y. Pollen-Expressed Leucine-Rich Repeat Extensins Are Essential for Pollen Germination and Growth. PLANT PHYSIOLOGY 2018; 176:1993-2006. [PMID: 29269573 PMCID: PMC5841703 DOI: 10.1104/pp.17.01241] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
During pollen tube growth, the walls of the tube provide the mechanical strength resisting turgor pressure to protect two sperm cells. Cell wall proteins may play an important role in this process. Pollen tube cell wall proteins known as leucine-rich repeat extensins (LRXs) harbor a leucine-rich repeat domain and an extensin domain. In this study, the functions of four pollen-expressed LRXs, LRX8, LRX9, LRX10, and LRX11 (LRX8-11), were characterized in Arabidopsis (Arabidopsis thaliana). LRX8-11 displayed a consistent expression pattern in mature pollen grains and pollen tubes. In a phenotypic analysis of four single mutants, six double mutants, four triple mutants, and a quadruple mutant, the triple and quadruple mutant plants displayed markedly reduced seed set and decreased male transmission efficiency accompanied by compromised pollen germination and pollen tube growth. GFP-fused LRX8, LRX10, and LRX11 were found to be localized to pollen tube cell walls. An immunohistochemical analysis of pollen tube cell wall polysaccharides showed an increase in the amount of rhamnogalacturonan I in the subapical walls of pollen tubes of the lrx9 lrx10 lrx11 and lrx8 lrx9 lrx11 mutants and a decrease in the content of fucosylated xyloglucans in lrx8 lrx9 lrx11 compared with wild-type plants. Moreover, the callose content in the apical walls of pollen tubes increased in the lrx8 lrx9 lrx11 mutant. In conclusion, we propose that LRX8-11 function synergistically to maintain pollen tube cell wall integrity; thus, they play critical roles in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Kaiyue Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Guimin Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Mei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Nana Cao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Yazhou Duan
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Weina Ge
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
30
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
31
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
32
|
Bruckner FP, Xavier ADS, Cascardo RDS, Otoni WC, Zerbini FM, Alfenas‐Zerbini P. Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus. MOLECULAR PLANT PATHOLOGY 2017; 18:672-683. [PMID: 27159273 PMCID: PMC6638207 DOI: 10.1111/mpp.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/20/2023]
Abstract
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus-induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post-inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non-infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.
Collapse
Affiliation(s)
- Fernanda Prieto Bruckner
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - André Da Silva Xavier
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Renan De Souza Cascardo
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| |
Collapse
|
33
|
Deng K, Dong P, Wang W, Feng L, Xiong F, Wang K, Zhang S, Feng S, Wang B, Zhang J, Ren M. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. FRONTIERS IN PLANT SCIENCE 2017; 8:784. [PMID: 28553309 PMCID: PMC5427086 DOI: 10.3389/fpls.2017.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 05/14/2023]
Abstract
In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.
Collapse
Affiliation(s)
- Kexuan Deng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Wanjing Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Kai Wang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shumin Zhang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shun Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Bangjun Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest UniversityChongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing UniversityChongqing, China
| |
Collapse
|
34
|
Kumari A, Ray K, Sadhna S, Pandey AK, Sreelakshmi Y, Sharma R. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS One 2017; 12:e0176978. [PMID: 28481937 PMCID: PMC5421760 DOI: 10.1371/journal.pone.0176978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/20/2017] [Indexed: 11/21/2022] Open
Abstract
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones.
Collapse
Affiliation(s)
- Alka Kumari
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Kamalika Ray
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Sadhna Sadhna
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Arun Kumar Pandey
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
35
|
Xiong F, Zhang R, Meng Z, Deng K, Que Y, Zhuo F, Feng L, Guo S, Datla R, Ren M. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:233-249. [PMID: 27479935 DOI: 10.1111/nph.14118] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/20/2016] [Indexed: 05/19/2023]
Abstract
The components of the target of rapamycin (TOR) signaling pathway have been well characterized in heterotrophic organisms from yeast to humans. However, because of rapamycin insensitivity, embryonic lethality in tor null mutants and a lack of reliable ways of detecting TOR protein kinase in higher plants, the key players upstream and downstream of TOR remain largely unknown in plants. Using engineered rapamycin-sensitive Binding Protein 12-2 (BP12-2) plants, the present study showed that combined treatment with rapamycin and active-site TOR inhibitors (asTORis) results in synergistic inhibition of TOR activity and plant growth in Arabidopsis. Based on this system, we revealed that TOR signaling plays a crucial role in modulating the transition from heterotrophic to photoautotrophic growth in Arabidopsis. Ribosomal protein S6 kinase 2 (S6K2) was identified as a direct downstream target of TOR, and the growth of TOR-suppressed plants could be rescued by up-regulating S6K2. Systems, genetic, and biochemical analyses revealed that Brassinosteriod Insensitive 2 (BIN2) acts as a novel downstream effector of S6K2, and the phosphorylation of BIN2 depends on TOR-S6K2 signaling in Arabidopsis. By combining pharmacological with genetic and biochemical approaches, we determined that the TOR-S6K2-BIN2 signaling pathway plays important roles in regulating the photoautotrophic growth of Arabidopsis.
Collapse
Affiliation(s)
- Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yumei Que
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Sundui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, S7N0W9, Canada
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
36
|
Shigi N, Asai SI, Watanabe K. Identification of a rhodanese-like protein involved in thiouridine biosynthesis in Thermus thermophilus tRNA. FEBS Lett 2016; 590:4628-4637. [PMID: 27878988 DOI: 10.1002/1873-3468.12499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022]
Abstract
Incorporation of a sulfur atom into 2-thioribothymidine (s2 T or 5-methyl-2-thiouridine) at position 54 in thermophile tRNA is accomplished by an elaborate system composed of many proteins which confers thermostability to the translation system. We identified ttuD (tRNA-two-thiouridine D) as a gene for the synthesis of s2 T54 in Thermus thermophilus. The rhodanese-like protein TtuD enhances the activity of cysteine desulfurases and receives the persulfide generated by cysteine desulfurases in vitro. TtuD also enhances the formation of thiocarboxylated TtuB, the sulfur donor for the tRNA sulfurtransferase TtuA. Since cysteine desulfurases are the first enzymes in the synthesis of s2 T and other sulfur-containing compounds, TtuD has a role to direct sulfur flow to s2 T synthesis.
Collapse
Affiliation(s)
- Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shin-Ichi Asai
- Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Kimitsuna Watanabe
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
37
|
Sablowski R. Coordination of plant cell growth and division: collective control or mutual agreement? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:54-60. [PMID: 27723536 DOI: 10.1016/j.pbi.2016.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 05/28/2023]
Abstract
Plant tissue growth requires the interdependent cellular processes of cytoplasmic growth, cell wall extension and cell division, but the feedbacks that link these processes are poorly understood. Recent papers have revealed developmentally regulated coupling between plant cell growth and progression through both mitotic cycles and endocycles. Modeling has given insight into the effects of cell geometry and tissue mechanics on the orientation of cell divisions. Developmental inputs by auxin have been highlighted in the control of cell turgor, vacuole function and the microtubule dynamics that underlies oriented growth and division. Overall, recent work emphasizes growth and proliferation as processes that are negotiated within and between cells, rather than imposed on cells across tissues.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
38
|
Nanjareddy K, Blanco L, Arthikala MK, Alvarado-Affantranger X, Quinto C, Sánchez F, Lara M. A Legume TOR Protein Kinase Regulates Rhizobium Symbiosis and Is Essential for Infection and Nodule Development. PLANT PHYSIOLOGY 2016; 172:2002-2020. [PMID: 27698253 PMCID: PMC5100775 DOI: 10.1104/pp.16.00844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/28/2016] [Indexed: 05/14/2023]
Abstract
The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TOR-regulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Lourdes Blanco
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Xóchitl Alvarado-Affantranger
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Carmen Quinto
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Federico Sánchez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Miguel Lara
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.);
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.);
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| |
Collapse
|
39
|
Iñigo S, Durand AN, Ritter A, Le Gall S, Termathe M, Klassen R, Tohge T, De Coninck B, Van Leene J, De Clercq R, Cammue BPA, Fernie AR, Gevaert K, De Jaeger G, Leidel SA, Schaffrath R, Van Lijsebettens M, Pauwels L, Goossens A. Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. PLANT PHYSIOLOGY 2016; 172:858-873. [PMID: 27503603 PMCID: PMC5047072 DOI: 10.1104/pp.16.00261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/03/2016] [Indexed: 05/12/2023]
Abstract
Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.
Collapse
Affiliation(s)
- Sabrina Iñigo
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Andrés Ritter
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Sabine Le Gall
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Martin Termathe
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Roland Klassen
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Takayuki Tohge
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Barbara De Coninck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Bruno P A Cammue
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Alisdair R Fernie
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Kris Gevaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Sebastian A Leidel
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Raffael Schaffrath
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., B.D.C., J.V.L., R.D.C., B.P.A.C., G.D.J., M.V.L., L.P., A.G.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (S.I., A.N.D., A.R., S.L.G., J.V.L., R.D.C., G.D.J., M.V.L., L.P., A.G.);Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany (M.T., S.A.L.);Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, D-34132 Kassel, Germany (R.K., R.S.);Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (T.T., A.R.F.);Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (B.D.C., B.P.A.C.);Cells-in-Motion Cluster of Excellence (M.T., S.A.L.) and Faculty of Medicine (S.A.L.), University of Muenster, 48149 Muenster, Germany;Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium (K.G.); andDepartment of Biochemistry, Ghent University, B-9000 Ghent, Belgium (K.G.)
| |
Collapse
|
40
|
Protein Dynamics in the Plant Extracellular Space. Proteomes 2016; 4:proteomes4030022. [PMID: 28248232 PMCID: PMC5217353 DOI: 10.3390/proteomes4030022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in "cell wall organization and biogenesis", "response to stimulus" and "protein metabolism". It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.
Collapse
|
41
|
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. TOR Signaling and Nutrient Sensing. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:261-85. [PMID: 26905651 DOI: 10.1146/annurev-arplant-043014-114648] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.
Collapse
Affiliation(s)
- Thomas Dobrenel
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Camila Caldana
- Molecular Physiology of Plant Biomass Production Group, Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, São Paulo, Brazil
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, Marseille 13009, France
| | - Michel Vincentz
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875 Campinas, São Paulo, Brazil
| | - Bruce Veit
- Forage Improvement, AgResearch, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
| |
Collapse
|
42
|
Jin H, Dong D, Yang Q, Zhu D. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing. PLoS One 2016; 11:e0150504. [PMID: 26930632 PMCID: PMC4773115 DOI: 10.1371/journal.pone.0150504] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted.
Collapse
Affiliation(s)
- Hangxia Jin
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Dekun Dong
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Qinghua Yang
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
| | - Danhua Zhu
- Zhejiang Academy of Agricultural Science, Institute of Crops and Nuclear Technology Utilization, Hangzhou Zhejiang 310021, People’s Republic of China
- * E-mail:
| |
Collapse
|
43
|
Kuhn BM, Errafi S, Bucher R, Dobrev P, Geisler M, Bigler L, Zažímalová E, Ringli C. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development. J Biol Chem 2016; 291:5385-95. [PMID: 26742840 DOI: 10.1074/jbc.m115.701565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.
Collapse
Affiliation(s)
- Benjamin M Kuhn
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Sanae Errafi
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Rahel Bucher
- the Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Petre Dobrev
- the Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic, and
| | - Markus Geisler
- the Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Laurent Bigler
- the Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Eva Zažímalová
- the Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic, and
| | - Christoph Ringli
- From the Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland,
| |
Collapse
|
44
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|
45
|
Deng K, Yu L, Zheng X, Zhang K, Wang W, Dong P, Zhang J, Ren M. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:291. [PMID: 27014314 PMCID: PMC4786968 DOI: 10.3389/fpls.2016.00291] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/23/2016] [Indexed: 05/08/2023]
Abstract
Target of rapamycin (TOR), a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity viaFK506 binding protein 12 kDa (FKBP12) in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR). GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can significantly inhibit TOR and auxin signaling in DR5/BP12 plants. These studies demonstrate that TOR is essential for auxin signaling transduction in Arabidopsis.
Collapse
Affiliation(s)
- Kexuan Deng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Xianzhe Zheng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Kang Zhang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Wanjing Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing UniversityChongqing, China
- *Correspondence: Maozhi Ren
| |
Collapse
|
46
|
Xiong F, Dong P, Liu M, Xie G, Wang K, Zhuo F, Feng L, Yang L, Li Z, Ren M. Tomato FK506 Binding Protein 12KD (FKBP12) Mediates the Interaction between Rapamycin and Target of Rapamycin (TOR). FRONTIERS IN PLANT SCIENCE 2016; 7:1746. [PMID: 27917191 PMCID: PMC5114585 DOI: 10.3389/fpls.2016.01746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 05/18/2023]
Abstract
Target of Rapamycin (TOR) signaling is an important regulator in multiple organisms including yeast, plants, and animals. However, the TOR signaling in plants is much less understood as compared to that in yeast and animals. TOR kinase can be efficiently suppressed by rapamycin in the presence of functional FK506 Binding Protein 12 KD (FKBP12) in yeast and animals. In most examined higher plants rapamycin fails to inhibit TOR kinase due to the non-functional FKBP12. Here we find that tomato plants showed obvious growth inhibition when treated with rapamycin and the inhibitory phenotype is similar to suppression of TOR causing by active-site TOR inhibitors (asTORis) such as KU63794, AZD8055, and Torin1. The chemical genetic assays using TOR inhibitors and heterologous expressing SlFKBP12 in Arabidopsis indicated that the TOR signaling is functional in tomato. The protein gel shifting and TOR inhibitors combination assays showed that SlFKBP12 can mediate the interaction between rapamycin and TOR. Furthermore, comparative expression profile analysis between treatments with rapamycin and KU63794 identified highly overlapped Differentially Expressed Genes (DEGs) which are involved in many anabolic and catabolic processes, such as photosynthesis, cell wall restructuring, and senescence in tomato. These observations suggest that SlFFBP12 is functional in tomato. The results provided basic information of TOR signaling in tomato, and also some new insights into how TOR controls plant growth and development through reprogramming the transcription profiles.
Collapse
Affiliation(s)
- Fangjie Xiong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Mei Liu
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Gengxin Xie
- Center of Space Exploration, Ministry of EducationChongqing, China
| | - Kai Wang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Lu Yang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing UniversityChongqing, China
- *Correspondence: Zhengguo Li
| | - Maozhi Ren
- School of Life Sciences, Chongqing UniversityChongqing, China
- Center of Space Exploration, Ministry of EducationChongqing, China
- Maozhi Ren
| |
Collapse
|
47
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
48
|
Ouibrahim L, Rubio AG, Moretti A, Montané MH, Menand B, Meyer C, Robaglia C, Caranta C. Potyviruses differ in their requirement for TOR signalling. J Gen Virol 2015; 96:2898-2903. [DOI: 10.1099/vir.0.000186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Laurence Ouibrahim
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
| | - Ana Giner Rubio
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| | - André Moretti
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| | - Marie-Hélène Montané
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
| | - Benoît Menand
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
- CEA, IBEB, Marseille F-13009, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech, Versailles cedex 78026, France
| | - Christophe Robaglia
- CEA, IBEB, Marseille F-13009, France
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementales, Marseille F-13009, France
| | - Carole Caranta
- Genetics and Breeding of Fruits and Vegetables, INRA Avignon, UR1052, CS 60094, Montfavet 84143, France
| |
Collapse
|
49
|
Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int J Mol Sci 2015; 16:19671-97. [PMID: 26295391 PMCID: PMC4581319 DOI: 10.3390/ijms160819671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/11/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022] Open
Abstract
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.
Collapse
|
50
|
Abstract
To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non-cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed.
Collapse
Affiliation(s)
- Hjördis Czesnick
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|