1
|
Drieberg H. WOX out, those teeth are sharp! JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:195-197. [PMID: 39786161 PMCID: PMC11714750 DOI: 10.1093/jxb/erae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
This article comments on:
Xu L, Fang N, Lu T, Tameshige T, Nakata MT, Jiang Y, Tan L, He H, Zhang X, Huang Y, Li C, Yang Z, Tang W, Nagawa S. 2025. WOX1 controls leaf serration development via temporally restricting BRASSINAZOLE RESISTANT 1 and CUP SHAPED COTYLEDON 3 expression in Arabidopsis. Journal of Experimental Botany 76, 478–492. https://doi.org/10.1093/jxb/erae443
Collapse
Affiliation(s)
- Hannah Drieberg
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072Australia
| |
Collapse
|
2
|
Wang Y, Zheng Y, Shi Y, Jiang D, Kuang Q, Ke X, Li M, Wang Y, Yue X, Lu Q, Hou X. YELLOW, SERRATED LEAF is essential for cotyledon vein patterning in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2504-2516. [PMID: 39226151 PMCID: PMC11637768 DOI: 10.1093/plphys/kiae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Venation develops complex patterns within the leaves of angiosperms, and the mechanism of leaf vein patterning remains poorly understood. Here, we report a spontaneous mutant that exhibits yellow serrated leaves and defective cotyledon vein patterning. We mapped and cloned the relevant gene YELLOW, SERRATED LEAF (YSL), a previously unreported gene in plants. YSL interacts with VH1-interacting kinase (VIK), a protein that functions in cotyledon venation development. VIK is a vascular-specific adaptor protein kinase that interacts with another vascular developmental protein, VASCULAR HIGHWAY1 (VH1)/BRASSINOSTEROID INSENSITIVE 1-LIKE 2 (BRL2), which is a receptor-like kinase of the BRASSINOSTEROID INSENSITIVE 1 (BRI1) family. Mutation of YSL affects the auxin response and the expression of auxin-related genes in Arabidopsis (Arabidopsis thaliana). Our results reveal that YSL affects cotyledon vein patterning by interacting with VIK in Arabidopsis.
Collapse
Affiliation(s)
- Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Deyuan Jiang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Kuang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Lu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Bi M, Wang Z, Cheng K, Meng S, Qi M. SlTCP29 and SlTCP24 participate in the morphological development of tomato compound leaves by integrating multiple pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14641. [PMID: 39659148 DOI: 10.1111/ppl.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Leaves are the primary vegetative organs of plants, and their morphology is an important trait affecting plant architecture, light energy utilization, environmental adaptation, and fruit quality and yield. Leaf development is highly flexible; however, understanding the regulatory mechanisms of factors coordinating leaf morphogenesis and differentiation remains limited. In this study, we obtained a double mutant for SlTCP29 and SlTCP24 genes from the CRISPR/Cas9 mutant population, both belonging to the CINCINNATA-like TCP (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) transcription factor subfamily. Simultaneous mutations of SlTCP29 and SlTCP24 genes increase the complexity of tomato leaves, characterized by deeper leaf margin notches and increased number of leaflets. In conjunction with RNA-seq analysis, determination of plant hormone content, and molecular interaction assays, we identified the KNOXII gene SlTKNII5, SlMIR164a, and 1-aminocyclopropane-1-carboxylic acid synthase gene SlACS1A as direct downstream targets of SlTCP29 and SlTCP24, among which SlTKNII5 can physically interact with other KNOXII members to form heterodimers. Our study provides insight into the mechanisms by which SlTCP29 and SlTCP24 are involved in the morphological development of tomato compound leaves by integrating multiple pathways, including transcription factor, microRNA, and phytohormone.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
4
|
He J, Van Eck J, Lippman ZB. Blooming balloons: Searching for mechanisms of the inflated calyx. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102595. [PMID: 38943829 DOI: 10.1016/j.pbi.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus Physalis put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, Physalis has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
5
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
6
|
Du D, Li Z, Yuan J, He F, Li X, Wang N, Li R, Ke W, Zhang D, Chen Z, Jiang Z, Liu Y, Chai L, Liu J, Hu Z, Guo W, Peng H, Yao Y, Sun Q, Ni Z, Xin M. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat. SCIENCE ADVANCES 2024; 10:eadp5541. [PMID: 39196932 PMCID: PMC11352840 DOI: 10.1126/sciadv.adp5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Leaves play a crucial role in photosynthesis and respiration, ultimately affecting the final grain yield of crops, including wheat (Triticum aestivum L.); however, the molecular mechanisms underlying wheat leaf development remain largely unknown. Here, we isolated a narrow-leaf gene, TaWAK2-A, through a map-based cloning strategy. TaWAK2-A encodes a wall-associated kinase (WAK), for which a single Ala-to-Val amino acid substitution reduces the protein stability, leading to a narrow-leaf phenotype in wheat. Further investigation suggests that TaWAK2 directly interacts with and phosphorylates TaNAL1, a trypsin-like serine/cysteine protease. The phosphorylated TaNAL1 is then involved in the degradation of the zinc finger transcription factor TaDST, which acts as a repressor of leaf expansion by activating the expression of the cytokinin oxidase gene TaCKX9 and triggering in vivo cytokinin degradation. Therefore, our findings elucidate a signaling cascade involving TaWAK2-TaNAL1-TaDST that sheds light on the regulation of wheat leaf development.
Collapse
Affiliation(s)
| | | | | | - Fei He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiongtao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Naijiao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Renhan Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wensheng Ke
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dongxue Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Jiang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yunjie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Ran Z, Li Z, Xiao X, Tang M. Camellia neriifolia and Camellia ilicifolia (Theaceae) as separate species: evidence from morphology, anatomy, palynology, molecular systematics. BOTANICAL STUDIES 2024; 65:23. [PMID: 39042341 PMCID: PMC11266325 DOI: 10.1186/s40529-024-00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The systematic status of sect. Tuberculata and its taxonomy have recently attracted considerable attention. However, the different bases for defining the characteristics of sect. Tuberculata has led to many disagreements among the plants in this group. Camellia neriifolia and Camellia ilicifolia have been the subject of taxonomic controversy and have been treated as different species or varieties of the same species. Therefore, it is important to use multiple methods, i.e., integrative taxonomy, to determine the taxonomic status of C. neriifolia and C. ilicifolia. This is the first study to systematically explore the taxonomic position of these two plants on the basis of Morphology, Anatomy, Palynology and Molecular Systematics. RESULTS Extensive specimen reviews and field surveys showed that many differences exist in C. neriifolia and C. ilicifolia, such as the number of trunk (heavily debarked vs. slightly peeling), leaf type (smooth thin leathery, shiny vs. smooth leathery, obscure or slightly shiny), leaf margin (entire vs. serrate), flower type (subsessile vs. sessile), number of styles (3-4 vs. 3), and sepal (ovate vs. round). Moreover, C. neriifolia has a more distinctive faint yellow flower color, and trunk molting was more severe in C. neriifolia than that in C. ilicifolia. In addition, micromorphological analysis of the leaf epidermis showed that the two species differed in the anticlinal wall, stomatal apparatus, and stomatal cluster, and pollen morphology analyses based on pollen size, germination furrow, and polar and equatorial axes showed that they are both distinct from each other. The results of the phylogenetic tree constructed based on the whole chloroplast genome, protein-coding genes, and ITS2 showed that both C. ilicifolia and C. neriifolia were clustered in different branches and gained high support. CONCLUSIONS The results combine morphology, anatomy, palynology, and molecular systematics to treat both C. neriifolia and C. ilicifolia as separate species in the sect. Tuberculata, and the species names continue to be used as they were previously. In conclusion, clarifying the taxonomic status of C. neriifolia and C. ilicifolia deepens our understanding of the systematic classification of sect. Tuberculata.
Collapse
Affiliation(s)
- Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Ming Tang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
- Lushan National Observation and Research Station of Chinese Forest Ecosystem, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
9
|
Zhang P, Xie Y, Xie W, Li L, Zhang H, Duan X, Zhang R, Guo L. Roles of the APETALA3-3 ortholog in the petal identity specification and morphological differentiation in Delphinium anthriscifolium flowers. HORTICULTURE RESEARCH 2024; 11:uhae097. [PMID: 38855416 PMCID: PMC11161261 DOI: 10.1093/hr/uhae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
The genus Delphinium (Ranunculaceae) with its unique and highly complex floral structure is an ideal system to address some key questions in terms of morphological and evolutionary studies in flowers. In D. anthriscifolium, for example, the original eight petal primordia differentiate into three types at maturity (i.e., two dorsal spurred, two lateral flat, and four ventral reduced petals). The mechanisms underlying their identity determination and morphological differentiation remain unclear. Here, through a comprehensive approach combining digital gene expression (DGE) profiles, in situ hybridization, and virus-induced gene silencing (VIGS), we explore the role of the APETALLATA3-3 (AP3-3) ortholog in D. anthriscifolium. Our findings reveal that the DeanAP3-3 not only functions as a traditionally known petal identity gene but also plays a critical role in petal morphological differentiation. The DeanAP3-3 gene is expressed in all the petal primordia before their morphological differentiation at earlier stages, but shows a gradient expression level difference along the dorsventral floral axis, with higher expression level in the dorsal spurred petals, intermediate level in the lateral flat petals and lower level in the ventral reduced petals. VIGS experiments revealed that flowers with strong phenotypic changes showed a complete transformation of all the three types of petals into non-spurred sepals. However, in the flowers with moderate phenotypic changes, the transformation of spurred petals into flat petals is associated with moderate silencing of the DeanAP3-3 gene, suggesting a significant impact of expression level on petal morphological differentiation. This research also shed some insights into the role of changes in gene expression levels on morphological differentiation in plants.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Li Li
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
10
|
Edet OU, Ubi BE, Ishii T. Genomic analysis of a spontaneous unifoliate mutant reveals gene candidates associated with compound leaf development in Vigna unguiculata [L] Walp. Sci Rep 2024; 14:10654. [PMID: 38724579 PMCID: PMC11082238 DOI: 10.1038/s41598-024-61062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
- Department of Crop Science, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria.
| | - Benjamin Ewa Ubi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
11
|
He L, Liu Y, Mao Y, Wu X, Zheng X, Zhao W, Mo X, Wang R, Wu Q, Wang D, Li Y, Yang Y, Bai Q, Zhang X, Zhou S, Zhao B, Liu C, Liu Y, Tadege M, Chen J. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. THE PLANT CELL 2024; 36:1755-1776. [PMID: 38318972 PMCID: PMC11062474 DOI: 10.1093/plcell/koae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinq Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Youhan Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuanfan Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
12
|
Luo X, Guo L, Tagliere E, Yang Z, Liu Z. Leaf dissection and margin serration are independently regulated by two regulators converging on the CUC2-auxin module in strawberry. Curr Biol 2024; 34:769-780.e5. [PMID: 38272030 DOI: 10.1016/j.cub.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
The remarkable diversity of leaf forms allows plants to adapt to their living environment. In general, leaf diversity is shaped by leaf complexity (compound or simple) and leaf margin pattern (entire, serrated, or lobed). Prior studies in multiple species have uncovered a conserved module of CUC2-auxin that regulates both leaf complexity and margin serration. How this module is regulated in different species to contribute to the species-specific leaf form is unclear. Furthermore, the mechanistic connection between leaf complexity and leaf serration regulation is not well studied. Strawberry has trifoliate compound leaves with serrations at the margin. In the wild strawberry Fragaria vesca, a mutant named salad was isolated that showed deeper leaf serrations but normal leaf complexity. SALAD encodes a single-Myb domain protein and is expressed at the leaf margin. Genetic analysis showed that cuc2a is epistatic to salad, indicating that SALAD normally limits leaf serration depth by repressing CUC2a expression. When both Arabidopsis homologs of SALAD were knocked out, deeper serrations were observed in Arabidopsis rosette leaves, supporting a conserved function of SALAD in leaf serration regulation. We incorporated the analysis of a third strawberry mutant simple leaf 1 (sl1) with reduced leaf complexity but normal leaf serration. We showed that SL1 and SALAD independently regulate CUC2a at different stages of leaf development to, respectively, regulate leaf complexity and leaf serration. Our results provide a clear and simple mechanism of how leaf complexity and leaf serration are coordinately as well as independently regulated to achieve diverse leaf forms.
Collapse
Affiliation(s)
- Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Ethan Tagliere
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhenbiao Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
14
|
Liao C, Shen H, Gao Z, Wang Y, Zhu Z, Xie Q, Wu T, Chen G, Hu Z. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111921. [PMID: 37949361 DOI: 10.1016/j.plantsci.2023.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway. SlCRF6-overexpressing (SlCRF6-OE) plants displayed pleiotropic phenotypic changes, including reduced internode length and leaf size, which caused dwarfism in tomato plants. This dwarfism could be alleviated by application of exogenous GA3. Remarkably, quantitative real-time PCR (qRTPCR), a dual luciferase reporter assay and a yeast one-hybrid (Y1H) assay revealed that SlCRF6 promoted the expression of SlDELLA (a GA signal transduction inhibitor) in vivo. Furthermore, transgenic plants displayed variegated leaves and diminished chlorophyll content, resulting in decreased photosynthetic efficiency and less starch than in wild-type (WT) plants. The results of transient expression assays and Y1H assays indicated that SlCRF6 suppressed the expression of SlPHAN (leaf morphology-related gene). Collectively, these findings suggest that SlCRF6 plays a crucial role in regulating tomato plant morphology, leaf development, and the accumulation of photosynthetic products.
Collapse
Affiliation(s)
- Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
15
|
Liu Y, Yang Y, Wang R, Liu M, Ji X, He Y, Zhao B, Li W, Mo X, Zhang X, Gu Z, Pan B, Liu Y, Tadege M, Chen J, He L. Control of compound leaf patterning by MULTI-PINNATE LEAF1 (MPL1) in chickpea. Nat Commun 2023; 14:8088. [PMID: 38062032 PMCID: PMC10703836 DOI: 10.1038/s41467-023-43975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Plant lateral organs are often elaborated through repetitive formation of developmental units, which progress robustly in predetermined patterns along their axes. Leaflets in compound leaves provide an example of such units that are generated sequentially along the longitudinal axis, in species-specific patterns. In this context, we explored the molecular mechanisms underlying an acropetal mode of leaflet initiation in chickpea pinnate compound leaf patterning. By analyzing naturally occurring mutants multi-pinnate leaf1 (mpl1) that develop higher-ordered pinnate leaves with more than forty leaflets, we show that MPL1 encoding a C2H2-zinc finger protein sculpts a morphogenetic gradient along the proximodistal axis of the early leaf primordium, thereby conferring the acropetal leaflet formation. This is achieved by defining the spatiotemporal expression pattern of CaLEAFY, a key regulator of leaflet initiation, and also perhaps by modulating the auxin signaling pathway. Our work provides novel molecular insights into the sequential progression of leaflet formation.
Collapse
Affiliation(s)
- Ye Liu
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yuanfan Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaomin Ji
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wenju Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Pan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
| | - Jianghua Chen
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
- College of Life Science, Southwest Forestry University, Kunming, China.
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Jiang Y, Zhang A, He W, Li Q, Zhao B, Zhao H, Ke X, Guo Y, Sun P, Yang T, Wang Z, Jiang B, Shen J, Li Z. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. PLANT PHYSIOLOGY 2023; 193:2592-2604. [PMID: 37584314 DOI: 10.1093/plphys/kiad445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.
Collapse
Affiliation(s)
- Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Anran Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
17
|
Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun 2023; 14:7106. [PMID: 37925502 PMCID: PMC10625627 DOI: 10.1038/s41467-023-42914-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.
Collapse
Affiliation(s)
- Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yinglong Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Tabusam J, Liu M, Luo L, Zulfiqar S, Shen S, Ma W, Zhao J. Physiological Control and Genetic Basis of Leaf Curvature and Heading in Brassica rapa L. J Adv Res 2023; 53:49-59. [PMID: 36581197 PMCID: PMC10658314 DOI: 10.1016/j.jare.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.
Collapse
Affiliation(s)
- Javaria Tabusam
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Sumer Zulfiqar
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| |
Collapse
|
19
|
Hu G, Zhang D, Luo D, Sun W, Zhou R, Hong Z, Munir S, Ye Z, Yang C, Zhang J, Wang T. SlTCP24 and SlTCP29 synergistically regulate compound leaf development through interacting with SlAS2 and activating transcription of SlCKX2 in tomato. THE NEW PHYTOLOGIST 2023; 240:1275-1291. [PMID: 37615215 DOI: 10.1111/nph.19221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
The complexity of compound leaves results primarily from the leaflet initiation and arrangement during leaf development. However, the molecular mechanism underlying compound leaf development remains a central research question. SlTCP24 and SlTCP29, two plant-specific transcription factors with the conserved TCP motif, are shown here to synergistically regulate compound leaf development in tomato. When both of them were knocked out simultaneously, the number of leaflets significantly increased, and the shape of the leaves became more complex. SlTCP24 and SlTCP29 could form both homodimers and heterodimers, and such dimerization was impeded by the leaf polarity regulator SlAS2, which interacted with SlTCP24 and SlTCP29. SlTCP24 and SlTCP29 could bind to the TCP-binding cis-element of the SlCKX2 promoter and activate its transcription. Transgenic plants with SlTCP24 and SlTCP29 double-gene knockout had a lowered transcript level of SlCKX2 and an elevated level of cytokinin. This work led to the identification of two key regulators of tomato compound leaf development and their targeted genes involved in cytokinin metabolic pathway. A model of regulation of compound leaf development was proposed based on observations of this study.
Collapse
Affiliation(s)
- Guoyu Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Danqiu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Dan Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Wenhui Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Rijin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Shoaib Munir
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Changxian Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan, 430070, China
| |
Collapse
|
20
|
Vieira P, Kantor MR, Jansen A, Handoo ZA, Eisenback JD. Cellular insights of beech leaf disease reveal abnormal ectopic cell division of symptomatic interveinal leaf areas. PLoS One 2023; 18:e0292588. [PMID: 37797062 PMCID: PMC10553357 DOI: 10.1371/journal.pone.0292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The beech leaf disease nematode, Litylenchus crenatae subsp. mccannii, is recognized as a newly emergent nematode species that causes beech leaf disease (BLD) in beech trees (Fagus spp.) in North America. Changes of leaf morphology before emergence from the bud induced by BLD can provoke dramatic effects on the leaf architecture and consequently to tree performance and development. The initial symptoms of BLD appear as dark green, interveinal banding patterns of the leaf. Despite the fast progression of this disease, the cellular mechanisms leading to the formation of such aberrant leaf phenotype remains totally unknown. To understand the cellular basis of BLD, we employed several types of microscopy to provide an exhaustive characterization of nematode-infected buds and leaves. Histological sections revealed a dramatic cell change composition of these nematode-infected tissues. Diseased bud scale cells were typically hypertrophied and showed a high variability of size. Moreover, while altered cell division had no influence on leaf organogenesis, induction of cell proliferation on young leaf primordia led to a dramatic change in cell layer architecture. Hyperplasia and hypertrophy of the different leaf cell layers, coupled with an abnormal proliferation of chloroplasts especially in the mesophyll cell layers, resulted in the typical interveinal leaf banding. These discrepancies in leaf cell structure were depicted by an abnormal rate of cellular division of the leaf interveinal areas infected by the nematode, promoting significant increase of cell size and leaf thickness. The formation of symptomatic BLD leaves is therefore orchestrated by distinct cellular processes, to enhance the value of these feeding sites and to improve their nutrition status for the nematode. Our findings thus uncover relevant cellular events and provide a structural framework to understand this important disease.
Collapse
Affiliation(s)
- Paulo Vieira
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Mihail R. Kantor
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew Jansen
- Electron and Confocal Microscopy Unit, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Zafar A. Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jonathan D. Eisenback
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
21
|
Li P, Wu Y, Han X, Li H, Wang L, Chen B, Yu S, Wang Z. BrrA02.LMI1 Encodes a Homeobox Protein That Affects Leaf Margin Development in Brassica rapa. Int J Mol Sci 2023; 24:14205. [PMID: 37762508 PMCID: PMC10532282 DOI: 10.3390/ijms241814205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf margin morphology is an important quality trait affecting the commodity and environmental adaptability of crops. Brassica rapa is an ideal research material for exploring the molecular mechanisms underlying leaf lobe development. Here, we identified BrrA02.LMI1 to be a promising gene underlying the QTL qBrrLLA02 controlling leaf lobe formation in B. rapa, which was detected in our previous study. Sequence comparison analysis showed that the promoter divergences were the most obvious variations of BrrA02.LMI1 between parental lines. The higher expression level and promoter activity of BrrA02.LMI1 in the lobe-leafed parent indicated that promoter variations of BrrA02.LMI1 were responsible for elevating expression and ultimately causing different allele effects. Histochemical GUS staining indicated that BrrA02.LMI1 is mainly expressed at the leaf margin, with the highest expression at the tip of each lobe. Subcellular localization results showed that BrrA02.LMI1 was in the nucleus. The ectopic expression of BrrA02.LMI1 in A. thaliana resulted in a deep leaf lobe in the wild-type plants, and lobed leaf formation was disturbed in BrrA02.LMI11-downregulated plants. Our findings revealed that BrrA02.LMI1 plays a vital role in regulating the formation of lobed leaves, providing a theoretical basis for the selection and breeding of leaf-shape-diverse varieties of B. rapa.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yudi Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiangyang Han
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Hui Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Limin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Bin Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| |
Collapse
|
22
|
Li P, Su T, Li H, Wu Y, Wang L, Zhang F, Wang Z, Yu S. Promoter variations in a homeobox gene, BrLMI1, contribute to leaf lobe formation in Brassica rapa ssp. chinensis Makino. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:188. [PMID: 37578545 DOI: 10.1007/s00122-023-04437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Key message BrLMI1 is a positive regulatory factor of leaf lobe formation in non-heading Chinese cabbage, and cis-regulatory variations lead to the phenotype of lobed or entire leaf margins.Abstract Leaves are the main consumed organ in leafy non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis Makino), and the shape of the leaves is an important economic trait. However, the molecular regulatory mechanism underlying the lobed-leaf trait in non-heading Chinese cabbage remains unclear. Here, we identified a stable incompletely dominant major locus, qLLA10, for lobed leaf formation in non-heading Chinese cabbage. Based on map-based cloning strategies, BrLMI1, a LATE MERISTEM IDENTITY1 (LMI1)-like gene, was predicted as the candidate gene for qLLA10. Genotyping analysis showed that promoter variations of BrLMI1 in the two parents are responsible for elevating the expression in the lobed-leaf parent and ultimately causing the difference in leaf shape between the two parents, and the promoter activity of BrLMI1 was significantly affected by the promoter variations. BrLMI1 was exclusively localized in the nucleus and expressed mainly at the tip of each lobe. Leaf lobe development was perturbed in BrLMI1-silenced plants produced by virus-induced gene silencing assays, and ectopic overexpression of BrLMI1 in Arabidopsis led to deeply lobed leaves never seen in the wild type, which indicates that BrLMI1 is required for leaf lobe formation in non-heading Chinese cabbage. These findings suggested that BrLMI1 is a positive regulatory factor of leaf lobe formation in non-heading Chinese cabbage and that cis-regulatory variations lead to the phenotype of lobed or entire leaf margins, thus providing a theoretical basis for unraveling the molecular mechanism underlying the lobed leaf phenotype in Brassica crops.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Hui Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yudi Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Limin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
23
|
Li D, Lu X, Qian D, Wang P, Tang D, Zhong Y, Shang Y, Guo H, Wang Z, Zhu G, Zhang C. Dissected Leaf 1 encodes an MYB transcription factor that controls leaf morphology in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:183. [PMID: 37555965 DOI: 10.1007/s00122-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
KEY MESSAGE The transcription factor StDL1 regulates dissected leaf formation in potato and the genotype frequency of recessive Stdl1/Stdl1, which results in non-dissected leaves, has increased in cultivated potatoes. Leaf morphology is a key trait of plants, influencing plant architecture, photosynthetic efficiency and yield. Potato (Solanum tuberosum L.), the third most important food crop worldwide, has a diverse leaf morphology. However, despite the recent identification of several genes regulating leaf formation in other plants, few genes involved in potato leaf development have been reported. In this study, we identified an R2R3 MYB transcription factor, Dissected Leaf 1 (StDL1), regulating dissected leaf formation in potato. A naturally occurring allele of this gene, Stdl1, confers non-dissected leaves in young seedlings. Knockout of StDL1 in a diploid potato changes the leaf morphology from dissected to non-dissected. Experiments in N. benthamiana and yeast show that StDL1 is a transcriptional activator. Notably, by calculating the genotype frequency of the Stdl1/Stdl1 in 373-potato accessions, we found that it increases significantly in cultivated potatoes. This work reveals the genetic basis of dissected leaf formation in potato and provides insights into plant leaf morphology.
Collapse
Affiliation(s)
- Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiaoyue Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Duoduo Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518120, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dié Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yang Zhong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650000, China
| | - Han Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650000, China.
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
24
|
Bhatia N, Wilson-Sánchez D, Strauss S, Vuolo F, Pieper B, Hu Z, Rambaud-Lavigne L, Tsiantis M. Interspersed expression of CUP-SHAPED COTYLEDON2 and REDUCED COMPLEXITY shapes Cardamine hirsuta complex leaf form. Curr Biol 2023:S0960-9822(23)00822-9. [PMID: 37453425 DOI: 10.1016/j.cub.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Ziliang Hu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Léa Rambaud-Lavigne
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
25
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
26
|
Wu Z, Jiang Z, Li Z, Jiao P, Zhai J, Liu S, Han X, Zhang S, Sun J, Gai Z, Qiu C, Xu J, Liu H, Qin R, Lu R. Multi-omics analysis reveals spatiotemporal regulation and function of heteromorphic leaves in Populus. PLANT PHYSIOLOGY 2023; 192:188-204. [PMID: 36746772 PMCID: PMC10152652 DOI: 10.1093/plphys/kiad063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Despite the high economic and ecological importance of forests, our knowledge of the adaptive evolution of leaf traits remains very limited. Euphrates poplar (Populus euphratica), which has high tolerance to arid environment, has evolved four heteromorphic leaf forms, including narrow (linear and lanceolate) and broad (ovate and broad-ovate) leaves on different crowns. Here, we revealed the significant functional divergence of four P. euphratica heteromorphic leaves at physiological and cytological levels. Through global analysis of transcriptome and DNA methylation across tree and leaf developmental stages, we revealed that gene expression and DNA epigenetics differentially regulated key processes involving development and functional adaptation of heteromorphic leaves, such as hormone signaling pathways, cell division, and photosynthesis. Combined analysis of gene expression, methylation, ATAC-seq, and Hi-C-seq revealed longer interaction of 3D genome, hypomethylation, and open chromatin state upregulates IAA-related genes (such as PIN-FORMED1 and ANGUSTIFOLIA3) and promotes the occurrence of broad leaves while narrow leaves were associated with highly concentrated heterochromatin, hypermethylation, and upregulated abscisic acid pathway genes (such as Pyrabactin Resistance1-like10). Therefore, development of P. euphratica heteromorphic leaves along with functional divergence was regulated by differentially expressed genes, DNA methylation, chromatin accessibility, and 3D genome remodeling to adapt to the arid desert. This study advances our understanding of differential regulation on development and functional divergence of heteromorphic leaves in P. euphratica at the multi-omics level and provides a valuable resource for investigating the adaptive evolution of heteromorphic leaves in Populus.
Collapse
Affiliation(s)
- Zhihua Wu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Zhenbo Jiang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhijun Li
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Juntuan Zhai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shuo Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiaoli Han
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shanhe Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jianhao Sun
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhongshuai Gai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Chen Qiu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jindong Xu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Hong Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics, Wuhan 430074, China
| |
Collapse
|
27
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
28
|
Nakayama H, Ichihashi Y, Kimura S. Diversity of tomato leaf form provides novel insights into breeding. BREEDING SCIENCE 2023; 73:76-85. [PMID: 37168814 PMCID: PMC10165341 DOI: 10.1270/jsbbs.22061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 05/13/2023]
Abstract
Tomato (Solanum lycopersicum L.) is cultivated widely globally. The crop exhibits tremendous morphological variations because of its long breeding history. Apart from the commercial tomato varieties, wild species and heirlooms are grown in certain regions of the world. Since the fruit constitutes the edible part, much of the agronomical research is focused on it. However, recent studies have indicated that leaf morphology influences fruit quality. As leaves are specialized photosynthetic organs and the vascular systems transport the photosynthetic products to sink organs, the architectural characteristics of the leaves have a strong influence on the final fruit quality. Therefore, comprehensive research focusing on both the fruit and leaf morphology is required for further tomato breeding. This review summarizes an overview of knowledge of the basic tomato leaf development, morphological diversification, and molecular mechanisms behind them and emphasizes its importance in breeding. Finally, we discuss how these findings and knowledge can be applied to future tomato breeding.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A.
- Corresponding author (e-mail: )
| | | | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
29
|
Zhao Y, Wei L, Wen S, Li H. Overexpression of the Liriodendron tulipifera BOP2 Gene ( LtuBOP2) Affects Leaf Margin Development in Transgenic Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24043262. [PMID: 36834696 PMCID: PMC9961763 DOI: 10.3390/ijms24043262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
BLADE-ON-PETIOLE 2 (BOP2) plays a pivotal role in leaf morphogenesis. Liriodendron tulipifera is a suitable model for exploring the molecular mechanisms underlying leaf serration formation, which are largely unknown. Here, we isolated the full-length LtuBOP2 gene and its promoter from L. tulipifera and characterized its function in leaf morphogenesis through multidimensional approaches. The spatiotemporal expression pattern of LtuBOP2 indicated the high expression of LtuBOP2 in stems and leaf buds. We constructed LtuBOP2 promoter, fused the promoter sequences to the β-glucuronidase (GUS) gene, and then transformed them into Arabidopsis thaliana. Histochemical GUS staining results indicated that GUS activity was higher in petioles and the main vein. LtuBOP2 overexpression in A. thaliana caused moderate serration in the leaf tip, owing to the increased number of abnormal lamina epidermal cells and defective vascular tissue, thus indicating a novel role of BOP2. The ectopic expression of LtuBOP2 in A. thaliana promoted the expression of the lateral organ boundary gene ASYMMETRIC LEAVES2 (AS2) and inhibited JAGGED (JAG) and CUP-SHAPED COTYLEDON2 (CUC2) expression to establish leaf proximal-distal polarity. Moreover, LtuBOP2 participated in leaf serration formation by promoting the antagonistic relationship between KNOX I and hormones during leaf margin development. Our findings revealed the role of LtuBOP2 in the proximal-distal polarity formation and development of leaf margin morphology, providing new insights into the regulatory mechanisms of the leaf formation development of L. tulipifera.
Collapse
Affiliation(s)
- Yanqing Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lingmin Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-8542-8731
| |
Collapse
|
30
|
Chen JJ, Wang W, Qin WQ, Men SZ, Li HL, Mitsuda N, Ohme-Takagi M, Wu AM. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:463-478. [PMID: 36342216 PMCID: PMC9806662 DOI: 10.1093/plphys/kiac513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.
Collapse
Affiliation(s)
- Jia-Jun Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Wen-Qi Qin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Zhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui-Ling Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
31
|
Zeng J, Yang M, Deng J, Zheng D, Lai Z, Wang-Pruski G, XuHan X, Guo R. The function of BoTCP25 in the regulation of leaf development of Chinese kale. FRONTIERS IN PLANT SCIENCE 2023; 14:1127197. [PMID: 37143872 PMCID: PMC10151756 DOI: 10.3389/fpls.2023.1127197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 05/06/2023]
Abstract
XG Chinese kale (Brassica oleracea cv. 'XiangGu') is a variety of Chinese kale and has metamorphic leaves attached to the true leaves. Metamorphic leaves are secondary leaves emerging from the veins of true leaves. However, it remains unknown how the formation of metamorphic leaves is regulated and whether it differs from normal leaves. BoTCP25 is differentially expressed in different parts of XG leaves and respond to auxin signals. To clarify the function of BoTCP25 in XG Chinese kale leaves, we overexpressed BoTCP25 in XG and Arabidopsis, and interestingly, its overexpression caused Chinese kale leaves to curl and changed the location of metamorphic leaves, whereas heterologous expression of BoTCP25 in Arabidopsis did not show metamorphic leaves, but only an increase in leaf number and leaf area. Further analysis of the expression of related genes in Chinese kale and Arabidopsis overexpressing BoTCP25 revealed that BoTCP25 could directly bind the promoter of BoNGA3, a transcription factor related to leaf development, and induce a significant expression of BoNGA3 in transgenic Chinese kale plants, whereas this induction of NGA3 did not occur in transgenic Arabidopsis. This suggests that the regulation of Chinese kale metamorphic leaves by BoTCP25 is dependent on a regulatory pathway or elements specific to XG and that this regulatory element may be repressed or absent from Arabidopsis. In addition, the expression of miR319's precursor, a negative regulator of BoTCP25, also differed in transgenic Chinese kale and Arabidopsis. miR319's transcrips were significantly up-regulated in transgenic Chinese kale mature leaves, while in transgenic Arabidopsis, the expression of miR319 in mature leaves was kept low. In conclusion, the differential expression of BoNGA3 and miR319 in the two species may be related to the exertion of BoTCP25 function, thus partially contributing to the differences in leaf phenotypes between overexpressed BoTCP25 in Arabidopsis and Chinese kale.
Collapse
Affiliation(s)
- Jiajing Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengyu Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongyang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gefu Wang-Pruski
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Xu XuHan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Faculté des sciences et de la technologie, Institut de la Recherche Interdiciplinaire de Toulouse (IRIT-ARI), Toulouse, France
| | - Rongfang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Rongfang Guo,
| |
Collapse
|
32
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
33
|
Zhao W, Mao Q, Liu G, Li Y, Xia J, Zhang YJ. Patterns of compound-leaf form and deciduous-leaf habit across forests in China: Their association and key climatic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158108. [PMID: 35987224 DOI: 10.1016/j.scitotenv.2022.158108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf form (compound vs. simple) and habit (evergreen vs. deciduous) are key functional traits of trees to adapt to various climates and are vital in determining plant response to climate change. However, their association and climatic determinants remain uncertain, especially in East Asian forests in the largest monsoon region on earth. To fill these knowledge gaps, we compiled a dataset comprising 42 intact forests and over 2200 angiosperm tree species across China (spanning 30 latitudes and 47 longitudes). The geographical and climatic patterns of leaf form and habit were analyzed. The association between compound leaf and deciduousness was tested for tropical, subtropical and temperate climatic zones. We found that both the percentage of compound leaf (CT%) and deciduous tree species (DT%) increased with latitude and decreased with mean annual precipitation (MAP). For all forests, DT% was negatively related to mean annual temperature (MAT), whereas CT% was not. Nevertheless, both DT% and CT% increased with increasing MAT in the tropics, possibly owing to the high vapor pressure deficits (VPD) and canopy water deficits associated with high temperatures. A positive linear relationship between CT% and DT% was found across all forests and within different climatic zones except for temperate, and the intercept of the regression line was significantly higher in the tropics than in the subtropics. Overall, as supported by principal component analysis, deciduousness was negatively associated with both temperature and precipitation, while CT negatively with precipitation only across zones and positively with temperature in the tropics. Different relationships in different climatic zones suggest potentially different selective forces. Our findings provide novel insights into the linkage between leaf form and habit, as well as how climate shapes the landscape of broadleaf forests, which has important implications regarding the response of forest composition to climate change.
Collapse
Affiliation(s)
- Wanli Zhao
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256603, China
| | - Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guolan Liu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256603, China
| | - Yuanqiu Li
- Jintan Management Station, Guangdong Shimentai National Nature Reserve, Qingyuan 513000, China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, Shandong 256603, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, the University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
34
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
35
|
Saini K, Dwivedi A, Ranjan A. High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors. PLANT PHYSIOLOGY 2022; 190:2380-2397. [PMID: 35880840 PMCID: PMC9706436 DOI: 10.1093/plphys/kiac345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/30/2022] [Indexed: 05/19/2023]
Abstract
High ambient temperature suppresses Arabidopsis (Arabidopsis thaliana) rosette leaf area and elongates the stem and petiole. While the mechanism underlying the temperature-induced elongation response has been extensively studied, the genetic basis of temperature regulation of leaf size is largely unknown. Here, we show that warm temperature inhibits cell proliferation in Arabidopsis leaves, resulting in fewer cells compared to the control condition. Cellular phenotyping and genetic and biochemical analyses established the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and TEOSINTE BRANCHED1/CYCLOIDEA/PCF4 (TCP4) transcription factors in the suppression of Arabidopsis leaf area under high temperature by a reduction in cell number. We show that temperature-mediated suppression of cell proliferation requires PIF4, which interacts with TCP4 and regulates the expression of the cell cycle inhibitor KIP-RELATED PROTEIN1 (KRP1) to control leaf size under high temperature. Warm temperature induces binding of both PIF4 and TCP4 to the KRP1 promoter. PIF4 binding to KRP1 under high temperature is TCP4 dependent as TCP4 regulates PIF4 transcript levels under high temperature. We propose a model where a warm temperature-mediated accumulation of PIF4 in leaf cells promotes its binding to the KRP1 promoter in a TCP4-dependent way to regulate cell production and leaf size. Our finding of high temperature-mediated transcriptional upregulation of KRP1 integrates a developmental signal with an environmental signal that converges on a basal cell regulatory process.
Collapse
Affiliation(s)
| | - Aditi Dwivedi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
36
|
Wang B, Li W, Xu K, Lei Y, Zhao D, Li X, Zhang J, Zhang Z. A splice site mutation in the FvePHP gene is associated with leaf development and flowering time in woodland strawberry. HORTICULTURE RESEARCH 2022; 10:uhac249. [PMID: 36643753 PMCID: PMC9832950 DOI: 10.1093/hr/uhac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Leaves and flowers are crucial for the growth and development of higher plants. In this study we identified a mutant with narrow leaflets and early flowering (nlef) in an ethyl methanesulfonate-mutagenized population of woodland strawberry (Fragaria vesca) and aimed to identify the candidate gene. Genetic analysis revealed that a single recessive gene, nlef, controlled the mutant phenotype. We found that FvH4_1g25470, which encodes a putative DNA polymerase α with a polymerase and histidinol phosphatase domain (PHP), might be the candidate gene, using bulked segregant analysis with whole-genome sequencing, molecular markers, and cloning analyses. A splice donor site mutation (C to T) at the 5' end of the second intron led to an erroneous splice event that reduced the expression level of the full-length transcript of FvePHP in mutant plants. FvePHP was localized in the nucleus and was highly expressed in leaves. Silencing of FvePHP using the virus-induced gene silencing method resulted in partial developmental defects in strawberry leaves. Overexpression of the FvePHP gene can largely restore the mutant phenotype. The expression levels of FveSEP1, FveSEP3, FveAP1, FveFUL, and FveFT were higher in the mutants than those in 'Yellow Wonder' plants, probably contributing to the early flowering phenotype in mutant plants. Our results indicate that mutation in FvePHP is associated with multiple developmental pathways. These results aid in understanding the role of DNA polymerase in strawberry development.
Collapse
Affiliation(s)
- Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Weijia Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Kexin Xu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Yingying Lei
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, People’s Republic of China
| | - Junxiang Zhang
- Correspondence: Zhihong Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143. Junxiang Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143
| | - Zhihong Zhang
- Correspondence: Zhihong Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143. Junxiang Zhang, E-mail: ; Tel: +86 024 88487143; Fax: +86 024 88487143
| |
Collapse
|
37
|
Wei L, Wen S, Ma J, Tu Z, Zhu S, Zhai X, Li H. Overexpression of LtuHB6 from Liriodendron tulipifera causes lobed-leaf formation in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1875-1887. [PMID: 36484027 PMCID: PMC9723050 DOI: 10.1007/s12298-022-01254-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Liriodendron tulipifera L. is an ornamental tree species with extraordinarily lobed leaves. However, the mechanisms underlying lobed leaf formation in plants remain unclear. The transcription factor, ARABIDOPSIS THALIANA HOMEBOX 6 (HB6), plays a role in regulating leaf margin development. HB6 is involved in cell division and differentiation of developmental organs and negatively regulates abscisic acid (ABA) signal transmission under external abiotic stress; it is unclear whether HB6 performs a pivotal role in leaf morphogenesis in L. tulipifera. In this study, full-length LtuHB6 from L. tulipifera was heterologously expressed in tobacco and Arabidopsis thaliana; its expression pattern was analyzed to determine its potential role in leaf development. In addition, LtuHB6 is localized in the nucleus and cell membrane of tobacco leaves. The expression of LtuHB6 was highest in mature leaves compared to the other stages of leaf development (bud growth, young leaves, and leaf senescence). Transgenic A. thaliana plants overexpressing LtuHB6 exhibited an abnormal phenotype with lobed leaves. Moreover, LtuHB6 overexpression significantly affected the expression of seven genes related to leaf serration in the initial stage of leaf primordia and altered the expression levels of hormonal genes. Our findings indicate that LtuHB6 is an essential regulatory factor in L. tulipifera lobed-leaf formation and is involved in regulating and responding to hormones. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01254-9.
Collapse
Affiliation(s)
- Lingmin Wei
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Shaoying Wen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Jikai Ma
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Shenghua Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Xinyu Zhai
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
38
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
39
|
Wang M, Lavelle D, Yu C, Zhang W, Chen J, Wang X, Michelmore RW, Kuang H. The upregulated LsKN1 gene transforms pinnately to palmately lobed leaves through auxin, gibberellin, and leaf dorsiventrality pathways in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1756-1769. [PMID: 35634731 PMCID: PMC9398307 DOI: 10.1111/pbi.13861] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Leaf shape represents a vital agronomic trait for leafy vegetables such as lettuce. Some lettuce cultivars produce lobed leaves, varying from pinnately to palmately lobed, but the genetic mechanisms remain unclear. In this study, we cloned one major quantitative trait locus (QTL) controlling palmately lobed leaves. The candidate gene, LsKN1, encodes a homeobox transcription factor, and has been shown previously to be critical for the development of leafy heads in lettuce. The LsKN1 allele that is upregulated by the insertion of a transposon promotes the development of palmately lobed leaves. We demonstrated that LsKN1 upregulated LsCUC2 and LsCUC3 through different mechanisms, and their upregulation was critical for the development of palmately lobed leaves. LsKN1 binds the promoter of LsPID to promote auxin biosynthesis, which positively contributes to the development of palmately lobed leaves. In contrast, LsKN1 suppresses GA biosynthesis to promote palmately lobed leaves. LsKN1 also binds to the promoter of LsAS1, a dorsiventrality gene, to downregulate its expression. Overexpression of the LsAS1 gene compromised the effects of the LsKN1 gene changing palmately to pinnately lobed leaves. Our study illustrated that the upregulated LsKN1 gene led to palmately lobed leaves in lettuce by integrating several downstream pathways, including auxin, gibberellin, and leaf dorsiventrality pathways.
Collapse
Affiliation(s)
- Menglu Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dean Lavelle
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Richard W Michelmore
- Genome Center and Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
40
|
Zhou X, Wang D, Mao Y, Zhou Y, Zhao L, Zhang C, Liu Y, Chen J. The Organ Size and Morphological Change During the Domestication Process of Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:913238. [PMID: 35755657 PMCID: PMC9221068 DOI: 10.3389/fpls.2022.913238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most important legume crops that can provide the rich source of protein and oil for human beings and livestock. In the twenty-one century, the total production of soybean is seriously behind the needs of a growing world population. Cultivated soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) with the significant morphology and organ size changes in China around 5,000 years ago, including twisted stems to erect stems, small seeds to large seeds. Then it was spread worldwide to become one of the most popular and important crops. The release of the reference soybean genome and omics data provides powerful tools for researchers and breeders to dissect the functional genes and apply the germplasm in their work. Here, we summarized the function genes related to yield traits and organ size in soybean, including stem growth habit, leaf size and shape, seed size and weight. In addition, we also summarized the selection of organ traits during soybean domestication. In the end, we also discussed the application of new technology including the gene editing on the basic research and breeding of soybean, and the challenges and research hotspots in the future.
Collapse
Affiliation(s)
- Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
41
|
Wang T, Chen LL, Shu HJ, You F, Liang XL, Li J, Ren J, Wanga VO, Mutie FM, Cai XZ, Liu KM, Hu GW. Fortunella venosa (Champ. ex Benth.) C. C. Huang and F. hindsii (Champ. ex Benth.) Swingle as Independent Species: Evidence From Morphology and Molecular Systematics and Taxonomic Revision of Fortunella (Rutaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:867659. [PMID: 35646034 PMCID: PMC9133918 DOI: 10.3389/fpls.2022.867659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Recently, the systematic status of Fortunella Swingle and its taxonomy has attracted much attention. Flora of China incorporates Fortunella into Citrus Linn. and treats all species of the traditional Fortunella as one species, namely Citrus japonica (Thunb.) Swingle. Furthermore, F. venosa (Champ. ex Benth.) C. C. Huang and F. hindsii (Champ. ex Benth.) Swingle are currently considered as synonyms of C. japonica. In this paper, morphological, palynological, and phylogenetic analyses were used to systematically explore the taxonomic status of traditional Fortunella. The key morphological features that differed among the Fortunella species were the leaf and the petiole hence could be key in its taxonomic classification of the species. Additionally, pollen morphological analysis based on the pollen size, germination grooves, polar, and equatorial axes also supported the separation of the species. The results of the phylogenetic analysis showed that each of the three species clustered separately, hence strongly supporting the conclusion of independent species. In addition, the phylogenetic analysis showed that the two genera clustered closely together hence our results support the incorporation of Fortunella into Citrus. Based on the above, this article has revised the classification of the traditional Fortunella and determined that this genus has three species, namely; F. venosa, F. hindsii, and F. japonica. F. venosa and F. hindsii are placed in the Citrus as separate species, and their species names still use the previous specific epithet. The revised scientific names of the new combinations of F. venosa and F. hindsii are as follows: Citrus venosa (Champ. ex Benth.) K. M. Liu, X. Z. Cai, and G. W. Hu, comb. nov. and Citrus hindsii (Champ. ex Benth.) K. M. Liu, G. W. Hu, and X. Z. Cai, comb. nov. F. venosa is the original species of Fortunella, F. venosa and F. hindsii are both listed as the second-class key protected wild plants in China. Therefore, the establishment of the taxonomic status of F. venosa and F. hindsii not only deepens our understanding, importance, and the complexity of the systematic classification of Fortunella, but is also significant for global biodiversity conservation, genetic resources for breeding purposes, and population genetics.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ling-Ling Chen
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Juan Shu
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang You
- Department of Ecological Environment of Hunan Province, Changsha, China
| | - Xiao-Li Liang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Li
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Ren
- College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Vincent Okelo Wanga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| | - Fredrick Munyao Mutie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Zhen Cai
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ke-Ming Liu
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- UCAS, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. THE NEW PHYTOLOGIST 2022; 234:867-883. [PMID: 35152411 DOI: 10.1111/nph.18029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size. Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process. The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length. Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.
Collapse
Affiliation(s)
- Vikram Jathar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kumud Saini
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Chauhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
43
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
44
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
45
|
Su D, Xiang W, Liang Q, Wen L, Shi Y, Song B, Liu Y, Xian Z, Li Z. Tomato SlBES1.8 Influences Leaf Morphogenesis by Mediating Gibberellin Metabolism and Signaling. PLANT & CELL PHYSIOLOGY 2022; 63:535-549. [PMID: 35137197 DOI: 10.1093/pcp/pcac019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf morphogenetic activity determines its shape diversity. However, our knowledge of the regulatory mechanism in maintaining leaf morphogenetic capacity is still limited. In tomato, gibberellin (GA) negatively regulates leaf complexity by shortening the morphogenetic window. We here report a tomato BRI1-EMS-suppressor 1 transcription factor, SlBES1.8, that promoted the simplification of leaf pattern in a similar manner as GA functions. OE-SlBES1.8 plants exhibited reduced sensibility to exogenous GA3 treatment whereas showed increased sensibility to the application of GA biosynthesis inhibitor, paclobutrazol. In line with the phenotypic observation, the endogenous bioactive GA contents were increased in OE-SlBES1.8 lines, which certainly promoted the degradation of the GA signaling negative regulator, SlDELLA. Moreover, transcriptomic analysis uncovered a set of overlapping genomic targets of SlBES1.8 and GA, and most of them were regulated in the same way. Expression studies showed the repression of SlBES1.8 to the transcriptions of two GA-deactivated genes, SlGA2ox2 and SlGA2ox6, and one GA receptor, SlGID1b-1. Further experiments confirmed the direct regulation of SlBES1.8 to their promoters. On the other hand, SlDELLA physically interacted with SlBES1.8 and further inhibited its transcriptional regulation activity by abolishing SlBES1.8-DNA binding. Conclusively, by mediating GA deactivation and signaling, SlBES1.8 greatly influenced tomato leaf morphogenesis.
Collapse
Affiliation(s)
- Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Wei Xiang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Qin Liang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ling Wen
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Bangqian Song
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhiqiang Xian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
46
|
Mo X, He L, Liu Y, Wang D, Zhao B, Chen J. The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:749989. [PMID: 35095943 PMCID: PMC8792858 DOI: 10.3389/fpls.2021.749989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
Collapse
Affiliation(s)
- Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
47
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
48
|
Surapaneni VA, Aust T, Speck T, Thielen M. Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1326-1338. [PMID: 34934607 PMCID: PMC8649201 DOI: 10.3762/bjnano.12.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The plant cuticle is a multifunctional barrier that separates the organs of the plant from the surrounding environment. Cuticular ridges are microscale wrinkle-like cuticular protrusions that occur on many flower and leaf surfaces. These microscopic ridges can help against pest insects by reducing the frictional forces experienced when they walk on the leaves and might also provide mechanical stability to the growing plant organs. Here, we have studied the development of cuticular ridges on adaxial leaf surfaces of the tropical Araceae Schismatoglottis calyptrata. We used polymer replicas of adaxial leaf surfaces at various ontogenetic stages to study the morphological changes occurring on the leaf surfaces. We characterized the replica surfaces by using confocal laser scanning microscopy and commercial surface analysis software. The development of cuticular ridges is polar and the ridge progression occurs basipetally with a specific inclination to the midrib on Schismatoglottis calyptrata leaves. Using Colorado potato beetles as model species, we performed traction experiments on freshly unrolled and adult leaves and found low walking frictional forces of insects on both of these surfaces. The changes in the micro- and macroscale morphology of the leaves should improve our understanding of the way that plants defend themselves against insect herbivores.
Collapse
Affiliation(s)
- Venkata A Surapaneni
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Tobias Aust
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@ FIT- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Marc Thielen
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| |
Collapse
|
49
|
Liu L, Yu L, Wu D, Ye J, Feng H, Liu Q, Yang W. PocketMaize: An Android-Smartphone Application for Maize Plant Phenotyping. FRONTIERS IN PLANT SCIENCE 2021; 12:770217. [PMID: 34899792 PMCID: PMC8656718 DOI: 10.3389/fpls.2021.770217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 05/31/2023]
Abstract
A low-cost portable wild phenotyping system is useful for breeders to obtain detailed phenotypic characterization to identify promising wild species. However, compared with the larger, faster, and more advanced in-laboratory phenotyping systems developed in recent years, the progress for smaller phenotyping systems, which provide fast deployment and potential for wide usage in rural and wild areas, is quite limited. In this study, we developed a portable whole-plant on-device phenotyping smartphone application running on Android that can measure up to 45 traits, including 15 plant traits, 25 leaf traits and 5 stem traits, based on images. To avoid the influence of outdoor environments, we trained a DeepLabV3+ model for segmentation. In addition, an angle calibration algorithm was also designed to reduce the error introduced by the different imaging angles. The average execution time for the analysis of a 20-million-pixel image is within 2,500 ms. The application is a portable on-device fast phenotyping platform providing methods for real-time trait measurement, which will facilitate maize phenotyping in field and benefit crop breeding in future.
Collapse
Affiliation(s)
- Lingbo Liu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lejun Yu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Dan Wu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Ye
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian Liu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
50
|
Wang X, Zhang J, Xie Y, Liu X, Wen L, Wang H, Zhang J, Li J, Han L, Yu X, Mysore KS, Wen J, Zhou C. LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene SMOOTH LEAF MARGIN1. PLANT PHYSIOLOGY 2021; 187:218-235. [PMID: 34618141 PMCID: PMC8418409 DOI: 10.1093/plphys/kiab268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/05/2021] [Indexed: 05/26/2023]
Abstract
Plant leaves have evolved into diverse shapes and LATE MERISTEM IDENTITY1 (LMI1) and its putative paralogous genes encode homeodomain leucine zipper transcription factors that are proposed evolutionary hotspots for the regulation of leaf development in plants. However, the LMI1-mediated regulatory mechanism underlying leaf shape formation is largely unknown. MtLMI1a and MtLMI1b are putative orthologs of LMI1 in the model legume barrelclover (Medicago truncatula). Here, we investigated the role of MtLMI1a and MtLMI1b in leaf margin morphogenesis by characterizing loss-of-function mutants. MtLMI1a and MtLMI1b are expressed along leaf margin in a near-complementary pattern, and they redundantly promote development of leaf margin serrations, as revealed by the relatively smooth leaf margin in their double mutants. Moreover, MtLMI1s directly activate expression of SMOOTH LEAF MARGIN1 (SLM1), which encodes an auxin efflux carrier, thereby regulating auxin distribution along the leaf margin. Further analysis indicates that MtLMI1s genetically interact with NO APICAL MERISTEM (MtNAM) and the ARGONAUTE7 (MtAGO7)-mediated trans-acting short interfering RNA3 (TAS3 ta-siRNA) pathway to develop the final leaf margin shape. The participation of MtLMI1s in auxin-dependent leaf margin formation is interesting in the context of functional conservation. Furthermore, the diverse expression patterns of LMI1s and their putative paralogs within key domains are important drivers for functional specialization, despite their functional equivalency among species.
Collapse
Affiliation(s)
- Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yangyang Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lizhu Wen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|