1
|
Ni H, Hou X, Tian S, Liu C, Zhang G, Peng Y, Chen L, Wang J, Chen Q, Xin D. Insights into the Early Steps of the Symbiotic Interaction between Soybean ( Glycine max) and Sinorhizobium fredii Symbiosis Using Transcriptome, Small RNA, and Degradome Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17084-17098. [PMID: 39013023 PMCID: PMC11299180 DOI: 10.1021/acs.jafc.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.
Collapse
Affiliation(s)
| | | | - Siyi Tian
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chunyan Liu
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Guoqing Zhang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Lin Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
2
|
Zhou H, Jiang M, Li J, Xu Y, Li C, Lu S. Genome-Wide Identification and Functional Analysis of Salvia miltiorrhiza MicroRNAs Reveal the Negative Regulatory Role of Smi-miR159a in Phenolic Acid Biosynthesis. Int J Mol Sci 2024; 25:5148. [PMID: 38791194 PMCID: PMC11121111 DOI: 10.3390/ijms25105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Maochang Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Regmi R, Newman TE, Khentry Y, Kamphuis LG, Derbyshire MC. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets. BMC Genomics 2023; 24:582. [PMID: 37784009 PMCID: PMC10544508 DOI: 10.1186/s12864-023-09686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Several phytopathogens produce small non-coding RNAs of approximately 18-30 nucleotides (nt) which post-transcriptionally regulate gene expression. Commonly called small RNAs (sRNAs), these small molecules were also reported to be present in the necrotrophic pathogen Sclerotinia sclerotiorum. S. sclerotiorum causes diseases in more than 400 plant species, including the important oilseed crop Brassica napus. sRNAs can further be classified as microRNAs (miRNAs) and short interfering RNAs (siRNAs). Certain miRNAs can activate loci that produce further sRNAs; these secondary sRNA-producing loci are called 'phased siRNA' (PHAS) loci and have only been described in plants. To date, very few studies have characterized sRNAs and their endogenous targets in S. sclerotiorum. RESULTS We used Illumina sequencing to characterize sRNAs from fungal mycelial mats of S. sclerotiorum spread over B. napus leaves. In total, eight sRNA libraries were prepared from in vitro, 12 h post-inoculation (HPI), and 24 HPI mycelial mat samples. Cluster analysis identified 354 abundant sRNA clusters with reads of more than 100 Reads Per Million (RPM). Differential expression analysis revealed upregulation of 34 and 57 loci at 12 and 24 HPI, respectively, in comparison to in vitro samples. Among these, 25 loci were commonly upregulated. Altogether, 343 endogenous targets were identified from the major RNAs of 25 loci. Almost 88% of these targets were annotated as repeat element genes, while the remaining targets were non-repeat element genes. Fungal degradome reads confirmed cleavage of two transposable elements by one upregulated sRNA. Altogether, 24 milRNA loci were predicted with both mature and milRNA* (star) sequences; these are both criteria associated previously with experimentally verified miRNAs. Degradome sequencing data confirmed the cleavage of 14 targets. These targets were related to repeat element genes, phosphate acetyltransferases, RNA-binding factor, and exchange factor. A PHAS gene prediction tool identified 26 possible phased interfering loci with 147 phasiRNAs from the S. sclerotiorum genome, suggesting this pathogen might produce sRNAs that function similarly to miRNAs in higher eukaryotes. CONCLUSIONS Our results provide new insights into sRNA populations and add a new resource for the study of sRNAs in S. sclerotiorum.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
- Present address: Microbiome for One Systems Health, CSIRO, Urrbrae, South Australia, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
4
|
Li X, Huang X, Wen M, Yin W, Chen Y, Liu Y, Liu X. Cytological observation and RNA-seq analysis reveal novel miRNAs high expression associated with the pollen fertility of neo-tetraploid rice. BMC PLANT BIOLOGY 2023; 23:434. [PMID: 37723448 PMCID: PMC10506311 DOI: 10.1186/s12870-023-04453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
- College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| | - Xu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Minsi Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Wei Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanmou Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Niu H, Pang Y, Xie L, Yu Q, Shen Y, Li J, Xu X. Clustering pattern and evolution characteristic of microRNAs in grass carp (Ctenopharyngodon idella). BMC Genomics 2023; 24:73. [PMID: 36782132 PMCID: PMC9926789 DOI: 10.1186/s12864-023-09159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND A considerable fraction of microRNAs (miRNAs) are highly conserved, and certain miRNAs correspond to genomic clusters. The clustering of miRNAs can be advantageous, possibly by allowing coordinated expression. However, little is known about the evolutionary forces responsible for the loss and acquisition of miRNA and miRNA clusters. RESULTS The results demonstrated that several novel miRNAs arose throughout grass carp evolution. Duplication and de novo production were critical strategies for miRNA cluster formation. Duplicates accounted for a smaller fraction of the expansion in the grass carp miRNA than de novo creation. Clustered miRNAs are more conserved and change slower, whereas unique miRNAs usually have high evolution rates and low expression levels. The expression level of miRNA expression in clusters is strongly correlated. CONCLUSIONS This study examines the genomic distribution, evolutionary background, and expression regulation of grass carp miRNAs. Our findings provide novel insights into the genesis and development of miRNA clusters in teleost.
Collapse
Affiliation(s)
- Huiqin Niu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
Wang W, Liu Z, An X, Jin Y, Hou J, Liu T. Integrated High-Throughput Sequencing, Microarray Hybridization and Degradome Analysis Uncovers MicroRNA-Mediated Resistance Responses of Maize to Pathogen Curvularia lunata. Int J Mol Sci 2022; 23:14038. [PMID: 36430517 PMCID: PMC9697682 DOI: 10.3390/ijms232214038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Curvularia lunata (Wakker) Boed, the causal agent of leaf spot in maize, is prone to mutation, making it difficult to control. RNAi technology has proven to be an important tool of genetic engineering and functional genomics aimed for crop improvement. MicroRNAs (miRNAs), which act as post-transcriptional regulators, often cause translational repression and gene silencing. In this article, four small RNA (sRNA) libraries were generated from two maize genotypes inoculated by C. lunata; among these, ltR1 and ltR2 were from the susceptible variety Huangzao 4 (HZ), ltR3 and ltR4, from the resistant variety Luyuan (LY), and 2286, 2145, 1556 and 2504 reads were annotated as miRNA in these four sRNA libraries, respectively. Through the combined analysis of high-throughput sequencing, microarray hybridization and degradome, 48 miRNAs were identified as being related to maize resistance to C. lunata. Among these, PC-732 and PC-169, two new maize miRNAs discovered, were predicted to cleave mRNAs of metacaspase 1 (AMC1) and thioredoxin family protein (Trx), respectively, possibly playing crucial roles in the resistance of maize to C. lunata. To further confirm the role of PC-732 in the interaction of maize and C. lunata, the miRNA was silenced through STTM (short tandem target mimic) technology, and we found that knocking down PC-732 decreased the susceptibility of maize to C. lunata. Precisely speaking, the target gene of PC-732 might inhibit the expression of disease resistance-related genes during the interaction between maize and C. lunata. Overall, the findings of this study indicated the existence of miRNAs involved in the resistance of maize to C. lunata and will contribute to rapidly clarify the resistant mechanism of maize to C. lunata.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Xinyuan An
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yazhong Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Zangishei Z, Annacondia ML, Gundlach H, Didriksen A, Bruckmüller J, Salari H, Krause K, Martinez G. Parasitic plant small RNA analyses unveil parasite-specific signatures of microRNA retention, loss, and gain. PLANT PHYSIOLOGY 2022; 190:1242-1259. [PMID: 35861439 PMCID: PMC9516757 DOI: 10.1093/plphys/kiac331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/12/2022] [Indexed: 05/29/2023]
Abstract
Parasitism is a successful life strategy that has evolved independently in several families of vascular plants. The genera Cuscuta and Orobanche represent examples of the two profoundly different groups of parasites: one parasitizing host shoots and the other infecting host roots. In this study, we sequenced and described the overall repertoire of small RNAs from Cuscuta campestris and Orobanche aegyptiaca. We showed that C. campestris contains a number of novel microRNAs (miRNAs) in addition to a conspicuous retention of miRNAs that are typically lacking in other Solanales, while several typically conserved miRNAs seem to have become obsolete in the parasite. One new miRNA appears to be derived from a horizontal gene transfer event. The exploratory analysis of the miRNA population (exploratory due to the absence of a full genomic sequence for reference) from the root parasitic O. aegyptiaca also revealed a loss of a number of miRNAs compared to photosynthetic species from the same order. In summary, our study shows partly similar evolutionary signatures in the RNA silencing machinery in both parasites. Our data bear proof for the dynamism of this regulatory mechanism in parasitic plants.
Collapse
Affiliation(s)
| | | | - Heidrun Gundlach
- Helmholtz Zentrum München (HMGU), Plant Genome and Systems Biology (PGSB), Neuherberg 85764, Germany
| | - Alena Didriksen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | | | - Hooman Salari
- Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah 67155, Iran
| | | | | |
Collapse
|
8
|
Jian C, Hao P, Hao C, Liu S, Mao H, Song Q, Zhou Y, Yin S, Hou J, Zhang W, Zhao H, Zhang X, Li T. The miR319/TaGAMYB3 module regulates plant architecture and improves grain yield in common wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2022; 235:1515-1530. [PMID: 35538666 DOI: 10.1111/nph.18216] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Plant architecture is a key determinant of crop productivity and adaptation. The highly conserved microRNA319 (miR319) family functions in various biological processes, but little is known about how miR319 regulates plant architecture in wheat (Triticum aestivum). Here, we determined that the miR319/TaGAMYB3 module controls plant architecture and grain yield in common wheat. Repressing tae-miR319 using short tandem target mimics resulted in favorable plant architecture traits, including increased plant height, reduced tiller number, enlarged spikes and flag leaves, and thicker culms, as well as enhanced grain yield in field plot tests. Overexpressing tae-miR319 had the opposite effects on plant architecture and grain yield. Although both TaPCF8 and TaGAMYB3 were identified as miR319 target genes, genetic complementation assays demonstrated that only miR319-resistant TaGAMYB3 (rTaGAMYB3) abolished tae-miR319-mediated growth inhibition of flag leaves and spikes. TaGAMYB3 functions as a transcriptional activator of downstream genes, including TaPSKR1, TaXTH23, TaMADS5 and TaMADS51, by binding to their promoters. Furthermore, TaGAMYB3 physically interacts with TaBA1, an important regulator of spike development, to additively activate the transcription of downstream genes such as TaMADS5. Our findings provide insight into how the miR319/TaGAMYB3 module regulates plant architecture and improves grain yield in common wheat.
Collapse
Affiliation(s)
- Chao Jian
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pingan Hao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hude Mao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qilu Song
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongbin Zhou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuining Yin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
9
|
Wu X, Ma Y, Wu J, Wang P, Zhang Z, Xie R, Liu J, Fan B, Wei W, Nie LZ, Liu X. Identification of microRNAs and their target genes related to the accumulation of anthocyanin in purple potato tubers ( Solanum tuberosum). PLANT DIRECT 2022; 6:e418. [PMID: 35865074 PMCID: PMC9289217 DOI: 10.1002/pld3.418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are types of endogenous non-coding small RNAs found in eukaryotes that are 18-25 nucleotides long. miRNAs are considered to be key regulatory factors of the expression of target mRNA. The roles of miRNAs involved in the regulation of anthocyanin accumulation in pigmented potatoes have not been systematically reported. In this study, the differentially expressed miRNAs and their target genes involved in the accumulation of anthocyanin during different developmental stages in purple potato (Solanum tuberosum L.) were identified using small RNA (sRNA) and degradome sequencing. A total of 275 differentially expressed miRNAs were identified in the sRNA libraries. A total of 69,387,200 raw reads were obtained from three degradome libraries. The anthocyanin responsive miRNA-mRNA modules were analyzed, and 37 miRNAs and 23 target genes were obtained. Different miRNAs regulate the key enzymes of anthocyanin synthesis in purple potato. The structural genes included phenylalanine ammonia lyase, chalcone isomerase, flavanone 3-hydroxylase, and anthocyanidin 3-O-glucosyltransferase. The regulatory genes included WD40, MYB, and SPL9. stu-miR172e-5p_L-1R-1, stu-miR828a, stu-miR29b-4-5p, stu-miR8019-5p_L-4R-3, stu-miR396b-5p, stu-miR5303f_L-7R + 2, stu-miR7997a_L-3, stu-miR7997b_L-3, stu-miR7997c_L + 3R-5_2ss2TA3AG, stu-miR156f-5p_L + 1, stu-miR156a, stu-miR156a_R-1, stu-miR156e, stu-miR858, stu-miR5021, stu-miR828 and their target genes were validated by qRT-PCR. They play important roles in the coloration and accumulation of purple potatoes. These results provide new insights into the biosynthesis of anthocyanins in pigmented potatoes.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Yanhong Ma
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Juan Wu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Peijie Wang
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Zhicheng Zhang
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
- Wulanchabu Academy of Agricultural and Forest SciencesWulanchabuChina
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry SciencesHohhotChina
| | - Jie Liu
- HuaSong Seed Industry (Beijing) co. LTDBeijingChina
| | - Bobo Fan
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Wei Wei
- HuaSong Seed Industry (Beijing) co. LTDBeijingChina
| | - Li Zhen Nie
- Inner Mongolia Academy of Agricultural & Animal Husbandry SciencesHohhotChina
| | - Xuting Liu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
10
|
Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. Int J Mol Sci 2022; 23:ijms23137296. [PMID: 35806310 PMCID: PMC9266715 DOI: 10.3390/ijms23137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and development at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop. However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study, we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret during inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during ray floret growth, and 607 differentially expressed target genes of these differentially expressed miRNAs were identified using psRNATarget. We performed a comprehensive analysis of the expression profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156, ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs were determined using 5′-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and anthocyanin accumulation in gerbera.
Collapse
|
11
|
Qing Y, Zheng Y, Mlotshwa S, Smith HN, Wang X, Zhai X, van der Knaap E, Wang Y, Fei Z. Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1536-1550. [PMID: 35514123 DOI: 10.1111/tpj.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.
Collapse
Affiliation(s)
- You Qing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather N Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Xuyang Zhai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Kuang L, Yu J, Shen Q, Fu L, Wu L. Identification of microRNAs Responding to Aluminium, Cadmium and Salt Stresses in Barley Roots. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122754. [PMID: 34961225 PMCID: PMC8704135 DOI: 10.3390/plants10122754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Plants are frequently exposed to various abiotic stresses, including aluminum, cadmium and salinity stress. Barley (Hordeum vulgare) displays wide genetic diversity in its tolerance to various abiotic stresses. In this study, small RNA and degradome libraries from the roots of a barley cultivar, Golden Promise, treated with aluminum, cadmium and salt or controls were constructed to understand the molecular mechanisms of microRNAs in regulating tolerance to these stresses. A total of 525 microRNAs including 198 known and 327 novel members were identified through high-throughput sequencing. Among these, 31 microRNAs in 17 families were responsive to these stresses, and Gene Ontology (GO) analysis revealed that their targeting genes were mostly highlighted as transcription factors. Furthermore, five (miR166a, miR166a-3p, miR167b-5p, miR172b-3p and miR390), four (MIR159a, miR160a, miR172b-5p and miR393) and three (miR156a, miR156d and miR171a-3p) microRNAs were specifically responsive to aluminum, cadmium and salt stress, respectively. Six miRNAs, i.e., miR156b, miR166a-5p, miR169a, miR171a-5p, miR394 and miR396e, were involved in the responses to the three stresses, with different expression patterns. A model of microRNAs responding to aluminum, cadmium and salt stresses was proposed, which may be helpful in comprehensively understanding the mechanisms of microRNAs in regulating stress tolerance in barley.
Collapse
Affiliation(s)
- Liuhui Kuang
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing 312000, China;
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Q.S.); (L.F.)
| | - Jiahua Yu
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Q.S.); (L.F.)
| | - Qiufang Shen
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Q.S.); (L.F.)
| | - Liangbo Fu
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Q.S.); (L.F.)
| | - Liyuan Wu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing 312000, China;
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Q.S.); (L.F.)
| |
Collapse
|
13
|
Li Q, Shah N, Zhou X, Wang H, Yu W, Luo J, Liu Y, Li G, Liu C, Zhang C, Chen P. Identification of Micro Ribonucleic Acids and Their Targets in Response to Plasmodiophora brassicae Infection in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:734419. [PMID: 34777417 PMCID: PMC8585624 DOI: 10.3389/fpls.2021.734419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Clubroot disease, which is caused by the soil-borne pathogen Plasmodiophora brassicae War (P. brassicae), is one of the oldest and most destructive diseases of Brassica and cruciferous crops in the world. Plant microRNAs [micro ribonucleic acids (miRNAs)] play important regulatory roles in several developmental processes. Although the role of plant miRNAs in plant-microbe interaction has been extensively studied, there are only few reports on the specific functions of miRNAs in response to P. brassicae. This study investigated the roles of miRNAs and their targets during P. brassicae infection in a pair of Brassica napus near-isogenic lines (NILs), namely clubroot-resistant line 409R and clubroot-susceptible line 409S. Small RNA sequencing (sRNA-seq) and degradome-seq were performed on root samples of 409R and 409S with or without P. brassicae inoculation. sRNA-seq identified a total of 48 conserved and 72 novel miRNAs, among which 18 had a significant differential expression in the root of 409R, while only one miRNA was differentially expressed in the root of 409S after P. brassicae inoculation. The degradome-seq analysis identified 938 miRNA target transcripts, which are transcription factors, enzymes, and proteins involved in multiple biological processes and most significantly enriched in the plant hormone signal transduction pathway. Between 409R and 409S, we found eight different degradation pathways in response to P. brassicae infection, such as those related to fatty acids. By combining published transcriptome data, we identified a total of six antagonistic miRNA-target pairs in 409R that are responsive to P. brassicae infection and involved in pathways associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis. Our results reveal that P. brassicae infection leads to great changes in miRNA pool and target transcripts. More interestingly, these changes are different between 409R and 409S. Clarification of the crosstalk between miRNAs and their targets may shed new light on the possible mechanisms underlying the pathogen resistance against P. brassicae.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiying Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajie Luo
- Agricultural Technology Extension Station of Linxiang, Lincang, China
| | - Yajun Liu
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Genze Li
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Regmi R, Newman TE, Kamphuis LG, Derbyshire MC. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen. BMC PLANT BIOLOGY 2021; 21:366. [PMID: 34380425 PMCID: PMC8356391 DOI: 10.1186/s12870-021-03148-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/27/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. RESULTS We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5'-RACE and RT-qPCR. CONCLUSIONS The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia.
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
15
|
Cui W, Wang S, Han K, Zheng E, Ji M, Chen B, Wang X, Chen J, Yan F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1183-1197. [PMID: 34153146 DOI: 10.1111/tpj.15377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.
Collapse
Affiliation(s)
- Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ersong Zheng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuming Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
16
|
Xu C, Tao Y, Fu X, Guo L, Xing H, Li C, Yang Z, Su H, Wang X, Hu J, Fan D, Chiang VL, Luo K. The microRNA476a-RFL module regulates adventitious root formation through a mitochondria-dependent pathway in Populus. THE NEW PHYTOLOGIST 2021; 230:2011-2028. [PMID: 33533479 DOI: 10.1111/nph.17252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
For woody plants, clonal propagation efficiency is largely determined by adventitious root (AR) formation at the bases of stem cuttings. However, our understanding of the molecular mechanisms contributing to AR morphogenesis in trees remains limited, despite the importance of vegetative propagation, currently the most common practice for tree breeding and commercialization. Here, we identified Populus-specific miR476a as a regulator of wound-induced adventitious rooting that acts by orchestrating mitochondrial homeostasis. MiR476a exhibited inducible expression during AR formation and directly targeted several Restorer of Fertility like (RFL) genes encoding mitochondrion-localized pentatricopeptide repeat proteins. Genetic modification of miR476a-RFL expression revealed that miR476a/RFL-mediated dynamic regulation of mitochondrial homeostasis influences AR formation in poplar. Mitochondrial perturbation via exogenous application of a chemical inhibitor indicated that miR476a/RFL-directed AR formation depends on mitochondrial regulation that acts via auxin signaling. Our results thus establish a microRNA-directed mitochondrion-auxin signaling cascade required for AR development, providing insights into the role of mitochondrial regulation in the developmental plasticity of plants.
Collapse
Affiliation(s)
- Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanxun Tao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Haitao Xing
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ziwei Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Huili Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
17
|
Zhang C, Fu F, Lin C, Ding X, Zhang J, Yan H, Wang P, Zhang W, Peng B, Zhao L. MicroRNAs Involved in Regulatory Cytoplasmic Male Sterility by Analysis RNA-seq and Small RNA-seq in Soybean. Front Genet 2021; 12:654146. [PMID: 34054917 PMCID: PMC8153375 DOI: 10.3389/fgene.2021.654146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is an important plant characteristic for exploiting heterosis to enhance crop traits during breeding. However, the CMS regulatory network remains unclear in plants, even though researchers have attempted to isolate genes associated with CMS. In this study, we performed high-throughput sequencing and degradome analyses to identify microRNAs (miRNAs) and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, the differentially expressed genes during reproductive development were identified using RNA-seq data. A total of 280 miRNAs matched soybean miRNA sequences in miRBase, including mature miRNAs and pre-miRNAs. Of the 280 miRNAs, 30, 23, and 21 belonged to the miR166, miR156, and miR171 families, respectively. Moreover, 410 novel low-abundant miRNAs were identified in the JLCMS9A and JLCMS9B flower buds. Furthermore, 303 and 462 target genes unique to JLCMS9A and JLCMS9B, respectively, as well as 782 common targets were predicted based on the degradome analysis. Target genes differentially expressed between the CMS line and the maintainer line were revealed by an RNA-seq analysis. Moreover, all target genes were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs might contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes. These findings lay the foundation for future studies on the molecular mechanisms underlying soybean CMS.
Collapse
Affiliation(s)
- Chunbao Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fuyou Fu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Chunjing Lin
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Ding
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingyong Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hao Yan
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengnian Wang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Zhang
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Peng
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Limei Zhao
- Soybean Research Institute, The National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
18
|
Zhang H, Guo Z, Zhuang Y, Suo Y, Du J, Gao Z, Pan J, Li L, Wang T, Xiao L, Qin G, Jiao Y, Cai H, Li L. MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. THE PLANT CELL 2021; 33:581-602. [PMID: 33955485 PMCID: PMC8136896 DOI: 10.1093/plcell/koaa049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
Plants possess unique primary cell walls made of complex polysaccharides that play critical roles in determining intrinsic cell and organ size. How genes responsible for synthesizing and modifying the polysaccharides in the cell wall are regulated by microRNAs (miRNAs) to control plant size remains largely unexplored. Here we identified 23 putative cell wall-related miRNAs, termed as CW-miRNAs, in Arabidopsis thaliana and characterized miR775 as an example. We showed that miR775 post-transcriptionally silences GALT9, which encodes an endomembrane-located galactosyltransferase belonging to the glycosyltransferase 31 family. Over-expression of miR775 and deletion of GALT9 led to significantly enlarged leaf-related organs, primarily due to increased cell size. Monosaccharide quantification, confocal Raman imaging, and immunolabeling combined with atomic force microscopy revealed that the MIR775A-GALT9 circuit modulates pectin levels and the elastic modulus of the cell wall. We also showed that MIR775A is directly repressed by the transcription factor ELONGATED HYPOCOTYL5 (HY5). Genetic analysis confirmed that HY5 is a negative regulator of leaf size that acts through the HY5-MIR775A-GALT9 repression cascade to control pectin levels. These findings demonstrate that miR775-regulated cell wall remodeling is an integral determinant of intrinsic leaf size in A. thaliana. Studying other CW-miRNAs would provide more insights into cell wall biology.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Liang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101 Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
19
|
In silico identification of conserved miRNAs in the genome of fibre biogenesis crop Corchorus capsularis. Heliyon 2021; 7:e06705. [PMID: 33869875 PMCID: PMC8045047 DOI: 10.1016/j.heliyon.2021.e06705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Corchorus capsularis, commonly known as jute occupies the leading position in the production of natural fibre alongside lower environmental threat. Small noncoding ~21 to 24 nucleotides long microRNAs play significant roles in regulating the gene expression as well as different functions in cellular growth and development. Here, the study adopted a comprehensive in silico approach to identify and characterize the conserved miRNAs in the genome of C. capsularis including functional annotation of specific gene targets. Expressed Sequence Tags (ESTs) based homology search of 3350 known miRNAs of dicotyledons were allowed against 763 non-redundant ESTs of jute genome, resulted in the prediction of 5 potential miRNA candidates belonging five different miRNA families (miR1536, miR9567-3p, miR4391, miR11300, and miR8689). The putative miRNAs were composed of 18 nucleotides having a range of -0.49 to -1.56 MFEI values and 55%–61% of (A + U) content in their pre-miRNAs. A total of 1052 gene targets of putative miRNAs were identified and their functions were extensively analyzed. Most of the gene targets were involved in plant growth, cell cycle regulation, organelle synthesis, developmental process and environmental responses. Five gene targets, namely, NAC Domain Containing Protein, WRKY DNA binding protein, 3-dehydroquinate synthase, S-adenosyl-L-Met–dependent methyl transferase and Vascular-related NAC-Domain were found to be involved in the lignin biosynthesis, phenylpropanoid pathways and secondary wall formation. The present study might accelerate the more miRNA discovery, strengthening the complete understanding of miRNAs association in the cellular basis of lignin biosynthesis towards the production of high standard jute products.
Collapse
|
20
|
Zhao Y, Kuang Z, Wang Y, Li L, Yang X. MicroRNA annotation in plants: current status and challenges. Brief Bioinform 2021; 22:6180404. [PMID: 33754625 DOI: 10.1093/bib/bbab075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Last two decades, the studies on microRNAs (miRNAs) and the numbers of annotated miRNAs in plants and animals have surged. Herein, we reviewed the current progress and challenges of miRNA annotation in plants. Via the comparison of plant and animal miRNAs, we pinpointed out the difficulties on plant miRNA annotation and proposed potential solutions. In terms of recalling the history of methods and criteria in plant miRNA annotation, we detailed how the major progresses made and evolved. By collecting and categorizing bioinformatics tools for plant miRNA annotation, we surveyed their advantages and disadvantages, especially for ones with the principle of mimicking the miRNA biogenesis pathway by parsing deeply sequenced small RNA (sRNA) libraries. In addition, we summarized all available databases hosting plant miRNAs, and posted the potential optimization solutions such as how to increase the signal-to-noise ratio (SNR) in these databases. Finally, we discussed the challenges and perspectives of plant miRNA annotations, and indicated the possibilities offered by an all-in-one tool and platform according to the integration of artificial intelligence.
Collapse
Affiliation(s)
- Yongxin Zhao
- Beijing Academy of Agriculture and Forestry Sciences, China
| | - Zheng Kuang
- Peking University and Beijing Academy of Agriculture and Forestry Sciences, China
| | | | - Lei Li
- School of Advanced Agricultural Sciences and School of Life Sciences at the Peking University, China
| | - Xiaozeng Yang
- Beijing Academy of Agriculture and Forestry Sciences, China
| |
Collapse
|
21
|
Tian P, Zhang X, Xia R, Liu Y, Wang M, Li B, Liu T, Shi J, Wing RA, Meyers BC, Chen M. Evolution and diversification of reproductive phased small interfering RNAs in Oryza species. THE NEW PHYTOLOGIST 2021; 229:2970-2983. [PMID: 33111313 DOI: 10.1111/nph.17035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 05/20/2023]
Abstract
In grasses, two types of phased, small interfering RNAs (phasiRNAs) are expressed largely in young, developing anthers. They are 21 or 24 nucleotides (nt) in length and are triggered by miR2118 or miR2275, respectively. However, most of their functions and activities are not fully understood. We performed comparative genomic analysis of their source loci (PHAS) in five Oryza genomes and combined this with analysis of high-throughput sRNA and degradome datasets. In total, we identified 8216 21-PHAS and 626 24-PHAS loci. Local tandem and segmental duplications mainly contributed to the expansion and supercluster distribution of the 21-PHAS loci. Despite their relatively conserved genomic positions, PHAS sequences diverged rapidly, except for the miR2118/2275 target sites, which were under strong selection for conservation. We found that 21-nt phasiRNAs with a 5'-terminal uridine (U) demonstrated cis-cleavage at PHAS precursors, and these cis-acting sites were also variable among close species. miR2118 could trigger phasiRNA production from its own antisense transcript and the derived phasiRNAs might reversibly regulate miR2118 precursors. We hypothesised that successful initiation of phasiRNA biogenesis is conservatively maintained, while phasiRNA products diverged quickly and are not individually conserved. In particular, phasiRNA production is under the control of multiple reciprocal regulation mechanisms.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xuemei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bo Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tieyan Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rod A Wing
- Arizona Genomics Institute, BIO5 Institute and School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Blake C Meyers
- Division of Plant Sciences, 52 Agriculture Laboratory, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
22
|
Yang X, Fishilevich E, German MA, Gandra P, McEwan RE, Billion A, Knorr E, Vilcinskas A, Narva KE. Elucidation of the microRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:800-814. [PMID: 33607298 PMCID: PMC9170749 DOI: 10.1016/j.gpb.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/21/2018] [Accepted: 03/28/2019] [Indexed: 11/25/2022]
Abstract
Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.
Collapse
Affiliation(s)
- Xiaozeng Yang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| | - Elane Fishilevich
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States; University of Nebraska-Lincoln, Department of Entomology, Nebraska, 68583, United States
| | - Marcelo A German
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Premchand Gandra
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - Robert E McEwan
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Eileen Knorr
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Giessen, 35394, Germany
| | - Kenneth E Narva
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indiana, 46268, United States.
| |
Collapse
|
23
|
Shi R, Jiao W, Yun L, Zhang Z, Zhang X, Wang Q, Li Y, Mi F. Utilization of Transcriptome, Small RNA, and Degradome Sequencing to Provide Insights Into Drought Stress and Rewatering Treatment in Medicago ruthenica. FRONTIERS IN PLANT SCIENCE 2021; 12:675903. [PMID: 34413864 PMCID: PMC8369265 DOI: 10.3389/fpls.2021.675903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 05/08/2023]
Abstract
Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica (M. ruthenica) is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, microRNAs (miRNAs), and key miRNA-target pairs in M. ruthenica under drought and rewatering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed in three test conditions (CK: control, DS: plants under drought stress, and RW: plants rewatering after drought stress). The degradome sequencing (AllenScore < 4) analysis revealed that 104 miRNAs (11 novel and 93 conserved miRNAs) were identified with 263 target transcripts, forming 296 miRNA-target pairs in three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21, 18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory of Grassland Resources, Ministry of Education P.R of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Baotou Medical College, Baotou, China
| | - Wei Jiao
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lan Yun
- Key Laboratory of Grassland Resources, Ministry of Education P.R of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiqiang Zhang
- Key Laboratory of Grassland Resources, Ministry of Education P.R of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Hohhot, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ying Li
- Key Laboratory of Grassland Resources, Ministry of Education P.R of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fugui Mi
- Key Laboratory of Grassland Resources, Ministry of Education P.R of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Fugui Mi,
| |
Collapse
|
24
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet ( Beta vulgaris). Int J Mol Sci 2020; 22:ijms22010289. [PMID: 33396637 PMCID: PMC7795855 DOI: 10.3390/ijms22010289] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.
Collapse
|
26
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
27
|
Wang Q, Yang Y, Lu G, Sun X, Feng Y, Yan S, Zhang H, Jiang Q, Zhang H, Hu Z, Chen R. Genome-wide identification of microRNAs and phased siRNAs in soybean roots under long-term salt stress. Genes Genomics 2020; 42:1239-1249. [PMID: 32939614 DOI: 10.1007/s13258-020-00990-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Salinity stress, as the key limiting factor for agricultural productivity, can activate a series of molecular responses and alter gene expression in plants. Endogenous regulatory small RNAs, such as microRNAs (miRNAs) and phased siRNAs (phasiRNAs), play crucial roles during stress adaptation and prevent the injury from environmental circumstances. OBJECTIVE To identify long-term salt stress responsive miRNAs and phasiRNAs as well as their associated genes and pathways in soybean roots. METHODS Small RNA and degradome sequencing strategies were applied to genome widely investigate miRNAs and phasiRNAs in soybean roots under control and long-term salt stress conditions. RESULTS In this study, stringent bioinformatic analysis led to the identification of 253 conserved and 38 novel miRNA candidates. Results of expression profiling, target and endogenous target mimics predictions provided valuable clues to their functional roles. Furthermore, 156 genes were identified to be capable of generating 21 nt and 24 nt phasiRNAs, in which 37 candidates were confirmed by degradome data for miRNA-directed cleavage. Approximately 90% of these phasiRNA loci were protein coding genes. And GO enrichment analysis pointed to "signal transduction" and "ADP binding" entries and reflected the functional roles of identified phasiRNA genes. CONCLUSION Taken together, our findings extended the knowledge of salt responsive miRNAs and phasiRNAs in soybean roots, and provided valuable information for a better understanding of the regulatory events caused by small RNAs underlying plant adaptations to long-term salt stress.
Collapse
Affiliation(s)
- Qian Wang
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yingxia Yang
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Guoqing Lu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youren Feng
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
28
|
Yu N, Yang JC, Yin GT, Li RS, Zou WT. Genome-wide characterization of the SPL gene family involved in the age development of Jatropha curcas. BMC Genomics 2020; 21:368. [PMID: 32434522 PMCID: PMC7238634 DOI: 10.1186/s12864-020-06776-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND SPL (SQUAMOSA-promoter binding protein-like) proteins form a large family of plant-specific transcription factors that play essential roles in various aspects of plant growth and development. They are potentially important candidates for genetic improvement of agronomic traits. However, there were limited information about the SPL genes in Jatropha curcas, an important biofuel plant. RESULTS In Jatropha, 15 JcSPL genes were identified. Phylogenetic analysis revealed that most of the JcSPLs were closely related to SPLs from woody plant rather than herbaceous plant and distantly related to monocotyledon SPLs. Gene structure, conserved motif and repetitive sequence analysis indicated diverse and specific functions of some JcSPL genes. By combination of target prediction and degradome sequencing analysis, 10 of the 15 JcSPLs were shown to be targets of JcmiR156. Quantitative PCR analysis showed diversified spatial-temporal expression patterns of JcSPLs. It is interesting that the expression levels of JcSPL3 were the highest in all tissues examined in 7- or 10-year-old plants and exhibited increasing trend with plant age, suggesting its important role in the regulation of age development in Jatropha. Overexpression of JcSPL3 in Arabidopsis resulted in earlier flowering time, shorter silique length and reduced biomass of roots. CONCLUSIONS Through comprehensive and systematic analysis of phylogenetic relationships, conserved motifs, gene structures, chromosomal locations, repetitive sequence and expression patterns, 15 JcSPL genes were identified in Jatropha and characterized in great detail. These results provide deep insight into the evolutionary origin and biological significance of plant SPLs and lay the foundation for further functional characterization of JcSPLs with the purpose of genetic improvement in Jatropha.
Collapse
Affiliation(s)
- Niu Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China.
| | - Jin-Chang Yang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Guang-Tian Yin
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Rong-Sheng Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| | - Wen-Tao Zou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou, 510520, China
| |
Collapse
|
29
|
Zhou Y, Liu W, Li X, Sun D, Xu K, Feng C, Kue Foka IC, Ketehouli T, Gao H, Wang N, Dong Y, Wang F, Li H. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC PLANT BIOLOGY 2020; 20:190. [PMID: 32370790 PMCID: PMC7201782 DOI: 10.1186/s12870-020-02370-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/29/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought conditions adversely affect soybean growth, resulting in severe yield losses worldwide. Increasing experimental evidence indicates miRNAs are important post-transcriptional regulators of gene expression. However, the drought-responsive molecular mechanism underlying miRNA-mRNA interactions remains largely uncharacterized in soybean. Meanwhile, the miRNA-regulated drought response pathways based on multi-omics approaches remain elusive. RESULTS We combined sRNA, transcriptome and degradome sequencing to elucidate the complex regulatory mechanism mediating soybean drought resistance. One-thousand transcripts from 384 target genes of 365 miRNAs, which were enriched in the peroxisome, were validated by degradome-seq. An integrated analysis showed 42 miRNA-target pairs exhibited inversely related expression profiles. Among these pairs, a strong induction of gma-miR398c as a major gene negatively regulates multiple peroxisome-related genes (GmCSD1a/b, GmCSD2a/b/c and GmCCS). Meanwhile, we detected that alternative splicing of GmCSD1a/b might affect soybean drought tolerance by bypassing gma-miR398c regulation. Overexpressing gma-miR398c in Arabidopsis thaliana L. resulted in decreased percentage germination, increased leaf water loss, and reduced survival under water deficiency, which displayed sensitivity to drought during seed germination and seedling growth. Furthermore, overexpressing gma-miR398c in soybean decreased GmCSD1a/b, GmCSD2a/b/c and GmCCS expression, which weakened the ability to scavenge O2.-, resulting in increased relative electrolyte leakage and stomatal opening compared with knockout miR398c and wild-type soybean under drought conditions. CONCLUSION The study indicates that gma-miR398c negatively regulates soybean drought tolerance, and provides novel insights useful for breeding programs to improve drought resistance by CRISPR technology.
Collapse
Affiliation(s)
- Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Weican Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Daqian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Keheng Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Chen Feng
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Idrice Carther Kue Foka
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
30
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Shao J, Wang L, Liu Y, Qi Q, Wang B, Lu S, Liu C. Identification of milRNAs and their target genes in Ganoderma lucidum by high-throughput sequencing and degradome analysis. Fungal Genet Biol 2020; 136:103313. [DOI: 10.1016/j.fgb.2019.103313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
32
|
Chen Y, Zhang M, Jin X, Tao H, Wang Y, Peng B, Fu C, Yu L. Transcriptional reprogramming strategies and miRNA-mediated regulation networks of Taxus media induced into callus cells from tissues. BMC Genomics 2020; 21:168. [PMID: 32070278 PMCID: PMC7029464 DOI: 10.1186/s12864-020-6576-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Taxus cells are a potential sustainable and environment-friendly source of taxol, but they have low survival ratios and slow grow rates. Despite these limitations, Taxus callus cells induced through 6 months of culture contain more taxol than their parent tissues. In this work, we utilized 6-month-old Taxus media calli to investigate their regulatory mechanisms of taxol biosynthesis by applying multiomics technologies. Our results provide insights into the adaptation strategies of T. media by transcriptional reprogramming when induced into calli from parent tissues. Results Seven out of 12 known taxol, most of flavonoid and phenylpropanoid biosynthesis genes were significantly upregulated in callus cells relative to that in the parent tissue, thus indicating that secondary metabolism is significantly strengthened. The expression of genes involved in pathways metabolizing biological materials, such as amino acids and sugars, also dramatically increased because all nutrients are supplied from the medium. The expression level of 94.1% genes involved in photosynthesis significantly decreased. These results reveal that callus cells undergo transcriptional reprogramming and transition into heterotrophs. Interestingly, common defense and immune activities, such as “plant–pathogen interaction” and salicylic acid- and jasmonic acid-signaling transduction, were repressed in calli. Thus, it’s an intelligent adaption strategy to use secondary metabolites as a cost-effective defense system. MiRNA- and degradome-sequencing results showed the involvement of a precise regulatory network in the miRNA-mediated transcriptional reprogramming of calli. MiRNAs act as direct regulators to enhance the metabolism of biological substances and repress defense activities. Given that only 17 genes of secondary metabolite biosynthesis were effectively regulated, miRNAs are likely to play intermediate roles in the biosynthesis of secondary metabolites by regulating transcriptional factors (TFs), such as ERF, WRKY, and SPL. Conclusion Our results suggest that increasing the biosynthesis of taxol and other secondary metabolites is an active regulatory measure of calli to adapt to heterotrophic culture, and this alteration mainly involved direct and indirect miRNA-induced transcriptional reprogramming. These results expand our understanding of the relationships among the metabolism of biological substances, the biosynthesis of secondary metabolites, and defense systems. They also provide a series of candidate miRNAs and transcription factors for taxol biosynthesis.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Xiaofei Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Haoran Tao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Yamin Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Bo Peng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China. .,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China. .,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, People's Republic of China.,Hubei Engineering Research Center for Edible and Medicinal Resources, Wuhan, 430074, People's Republic of China
| |
Collapse
|
33
|
Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, Wu A, Wei C. Identification of Regulatory Networks of MicroRNAs and Their Targets in Response to Colletotrichum gloeosporioides in Tea Plant ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1096. [PMID: 31572415 PMCID: PMC6751461 DOI: 10.3389/fpls.2019.01096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Anthracnose disease is caused by Colletotrichum gloeosporioides, and is common in leaves of the tea plant (Camellia sinensis). MicroRNAs (miRNAs) have been known as key modulators of gene expression in response to environmental stresses, disease resistance, defense responses, and plant immunity. However, the role of miRNAs in responses to C. gloeosporioides remains unexplored in tea plant. Therefore, in the present study, six miRNA sequencing data sets and two degradome data sets were generated from C. gloeosporioides-inoculated and control tea leaves. A total of 485 conserved and 761 novel miRNAs were identified. Of those, 239 known and 369 novel miRNAs exhibited significantly differential expression under C. gloeosporioides stress. One thousand one hundred thirty-four and 596 mRNAs were identified as targets of 389 conserved and 299 novel miRNAs by degradome analysis, respectively. Based on degradome analysis, most of the predicted targets are negatively correlated with their corresponding conserved and novel miRNAs. The expression levels of 12 miRNAs and their targets were validated by quantitative real-time PCR. A negative correlation between expression profiles of five miRNAs (PC-5p-80764_22, csn-miR160c, csn-miR828a, csn-miR164a, and csn-miR169e) and their targets (WRKY, ARF, MYB75, NAC, and NFY transcription factor) was observed. The predicted targets of five interesting miRNAs were further validated through 5'RLM-RACE. Furthermore, Gene Ontology and metabolism pathway analysis revealed that most of the target genes were involved in the regulation of auxin pathway, ROS scavenging pathway, salicylic acid mediated pathway, receptor kinases, and transcription factors for plant growth and development as well as stress responses in tea plant against C. gloeosporioides stress. This study enriches the resources of stress-responsive miRNAs and their targets in C. sinensis and thus provides novel insights into the miRNA-mediated regulatory mechanisms, which could contribute to the enhanced susceptibility of C. gloeosporioides in tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Genetics, University of Georgia, Athens, United States
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ailin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X, Cao X. Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. MOLECULAR PLANT 2019; 12:1103-1113. [PMID: 31059825 DOI: 10.1016/j.molp.2019.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 05/18/2023]
Abstract
In plants, microRNA (miRNA) functions in the post-transcriptional repression of target mRNAs have been well explored. However, the mechanisms regulating the accumulation of miRNAs remain poorly understood. Here, we report that distinct mechanisms regulate accumulation of a monocot-specific miRNA, rice (Oryza sativa) miR528. At the transcriptional level, miR528 accumulated to higher levels in older plants than in young seedlings and exhibited aging-modulated gradual accumulation and diurnal rhythms in leaves; at the post-transcriptional level, aging also modulated miR528 levels by enhancing pri-miR528 alternative splicing. We found that miR528 promotes rice flowering under long-day conditions by targeting RED AND FAR-RED INSENSITIVE 2 (OsRFI2). Moreover, natural variations in the MIR528 promoter region caused differences in miR528 expression among rice varieties, which are correlated with their different binding affinities with the transcription factor OsSPL9 that activates the expression of miR528. Taken together, our findings reveal rice plants have evolved sophisticated modes fine-tuning miR528 levels and provide insight into the mechanisms that regulate MIRNA expression in plants.
Collapse
Affiliation(s)
- Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingchuan Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Mei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS One 2019; 14:e0219176. [PMID: 31276526 PMCID: PMC6611575 DOI: 10.1371/journal.pone.0219176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Drought has become one of the most serious abiotic stresses influencing crop production worldwide. Understanding the molecular regulatory networks underlying drought adaption and tolerance in crops is of great importance for future breeding. microRNAs (miRNAs), as important components of post-transcriptional regulation, play crucial roles in drought response and adaptation in plants. Here, we report a miRNome analysis of two maize inbred lines with contrasting levels of drought tolerance under soil drought in the field. Differential expression analysis showed 11 and 34 miRNAs were uniquely responded to drought in H082183 (drought tolerant) and Lv28 (drought sensitive), respectively, in leaves. In roots, 19 and 23 miRNAs uniquely responded to drought in H082183 and Lv28, respectively. Expression analysis of these drought-responsive miRNA-mRNA modules revealed miR164-MYB, miR164-NAC, miR159-MYB, miR156-SPL and miR160-ARF showed a negative regulatory relationship. Further analysis showed that the miR164-MYB and miR164-NAC modules in the tolerant line modulated the stress response in an ABA (abscisic acid)-dependent manner, while the miR156-SPL and miR160-ARF modules in the sensitive line participated in the inhibition of metabolism in drought-exposed leaves. Together, our results provide new insight into not only drought-tolerance-related miRNA regulation networks in maize but also key miRNAs for further characterization and improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
DeBoer K, Melser S, Sperschneider J, Kamphuis LG, Garg G, Gao LL, Frick K, Singh KB. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics 2019; 20:135. [PMID: 30764773 PMCID: PMC6376761 DOI: 10.1186/s12864-019-5521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whilst information regarding small RNAs within agricultural crops is increasing, the miRNA composition of the nutritionally valuable pulse narrow-leafed lupin (Lupinus angustifolius) remains unknown. RESULTS By conducting a genome- and transcriptome-wide survey we identified 7 Dicer-like and 16 Argonaute narrow-leafed lupin genes, which were highly homologous to their legume counterparts. We identified 43 conserved miRNAs belonging to 16 families, and 13 novel narrow-leafed lupin-specific miRNAs using high-throughput sequencing of small RNAs from foliar and root and five seed development stages. We observed up-regulation of members of the miRNA families miR167, miR399, miR156, miR319 and miR164 in narrow-leafed lupin seeds, and confirmed expression of miR156, miR166, miR164, miR1507 and miR396 using quantitative RT-PCR during five narrow-leafed lupin seed development stages. We identified potential targets for the conserved and novel miRNAs and were able to validate targets of miR399 and miR159 using 5' RLM-RACE. The conserved miRNAs are predicted to predominately target transcription factors and 93% of the conserved miRNAs originate from intergenic regions. In contrast, only 43% of the novel miRNAs originate from intergenic regions and their predicted targets were more functionally diverse. CONCLUSION This study provides important insights into the miRNA gene regulatory networks during narrow-leafed lupin seed development.
Collapse
Affiliation(s)
- Kathleen DeBoer
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
| | - Su Melser
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Present address: INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Jana Sperschneider
- Centre for Genomics, Metabolomics and Bioinformatics (CGMB), The Australian National University, Canberra, ACT 2601 Australia
| | - Lars G. Kamphuis
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Karen Frick
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- The School of Plant Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| |
Collapse
|
37
|
Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y, Yamaguchi K, Maekawa K, Shigenobu S, Miura T. Caste-specific microRNA expression in termites: insights into soldier differentiation. INSECT MOLECULAR BIOLOGY 2019; 28:86-98. [PMID: 30126008 DOI: 10.1111/imb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir-1, mir-125, mir-133, mir-2765, mir-87a and three termite-specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real-time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.
Collapse
Affiliation(s)
- M Matsunami
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - M Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - K Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Y Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - K Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - S Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
38
|
Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 2019; 219:1-11. [DOI: 10.1016/j.micres.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
|
39
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
40
|
Zhao S, Wang X, Yan X, Guo L, Mi X, Xu Q, Zhu J, Wu A, Liu L, Wei C. Revealing of MicroRNA Involved Regulatory Gene Networks on Terpenoid Biosynthesis in Camellia sinensis in Different Growing Time Points. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12604-12616. [PMID: 30400742 DOI: 10.1021/acs.jafc.8b05345] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tea, made from leaves of Camellia sinensis, has long been consumed worldwide for its unique taste and aroma. Terpenoids play important roles not only in tea beverage aroma formation, but also in the productivity and quality of tea plantation due to their significant contribution to light harvesting pigments and phytohormones. To date, however, the regulation of terpenoid synthase genes remains unclear. Herein, the analyses of metabolomics, sRNAs, degradome, and transcriptomics were performed and integrated for identifying key regulatory miRNA-target circuits on terpenoid biosynthesis in leaf tissues over five different months in which the amount of terpenoids in tea leaves varies greatly. Four classes of miRNA-TF pairs that might play a central role in the regulation of terpenoid biosynthesis were also uncovered. Ultimately, a hypothetical model was proposed that mature miRNAs maintained by light regulator at both the transcriptional and posttranscriptional levels negatively regulate the targets to control terpenoid biosynthesis.
Collapse
Affiliation(s)
- Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
- Department of Genetics , University of Georgia , Athens , Georgia 30602 , United States
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Lingxiao Guo
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Ailin Wu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , West 130 Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| |
Collapse
|
41
|
Characterization and expression profiling of microRNAs in response to plant feeding in two host-plant strains of the lepidopteran pest Spodoptera frugiperda. BMC Genomics 2018; 19:804. [PMID: 30400811 PMCID: PMC6219076 DOI: 10.1186/s12864-018-5119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background A change in the environment may impair development or survival of living organisms leading them to adapt to the change. The resulting adaptation trait may reverse, or become fixed in the population leading to evolution of species. Deciphering the molecular basis of adaptive traits can thus give evolutionary clues. In phytophagous insects, a change in host-plant range can lead to emergence of new species. Among them, Spodoptera frugiperda is a major agricultural lepidopteran pest consisting of two host-plant strains having diverged 3 MA, based on mitochondrial markers. In this paper, we address the role of microRNAs, important gene expression regulators, in response to host-plant change and in adaptive evolution. Results Using small RNA sequencing, we characterized miRNA repertoires of the corn (C) and rice (R) strains of S. frugiperda, expressed during larval development on two different host-plants, corn and rice, in the frame of reciprocal transplant experiments. We provide evidence for 76 and 68 known miRNAs in C and R strains and 139 and 171 novel miRNAs. Based on read counts analysis, 34 of the microRNAs were differentially expressed in the C strain larvae fed on rice as compared to the C strain larvae fed on corn. Twenty one were differentially expressed on rice compared to corn in R strain. Nine were differentially expressed in the R strain compared to C strain when reared on corn. A similar ratio of microRNAs was differentially expressed between strains on rice. We could validate experimentally by QPCR, variation in expression of the most differentially expressed candidates. We used bioinformatics methods to determine the target mRNAs of known microRNAs. Comparison with the mRNA expression profile during similar reciprocal transplant experiment revealed potential mRNA targets of these host-plant regulated miRNAs. Conclusions In the current study, we performed the first systematic analysis of miRNAs in Lepidopteran pests feeding on host-plants. We identified a set of the differentially expressed miRNAs that respond to the plant diet, or differ constitutively between the two host plant strains. Among the latter, the ones that are also deregulated in response to host-plant are molecular candidates underlying a complex adaptive trait. Electronic supplementary material The online version of this article (10.1186/s12864-018-5119-6) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Ji Y, Chen P, Chen J, Pennerman KK, Liang X, Yan H, Zhou S, Feng G, Wang C, Yin G, Zhang X, Hu Y, Huang L. Combinations of Small RNA, RNA, and Degradome Sequencing Uncovers the Expression Pattern of microRNA⁻mRNA Pairs Adapting to Drought Stress in Leaf and Root of Dactylis glomerata L. Int J Mol Sci 2018; 19:E3114. [PMID: 30314311 PMCID: PMC6213654 DOI: 10.3390/ijms19103114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Drought stress is a global problem, and the lack of water is a key factor that leads to agricultural shortages. MicroRNAs play a crucial role in the plant drought stress response; however, the microRNAs and their targets involved in drought response have not been well elucidated. In the present study, we used Illumina platform (https://www.illumina.com/) and combined data from miRNA, RNA, and degradome sequencing to explore the drought- and organ-specific miRNAs in orchardgrass (Dactylis glomerata L.) leaf and root. We aimed to find potential miRNA⁻mRNA regulation patterns responding to drought conditions. In total, 519 (486 conserved and 33 novel) miRNAs were identified, of which, 41 miRNAs had significant differential expression among the comparisons (p < 0.05). We also identified 55,366 unigenes by RNA-Seq, where 12,535 unigenes were differently expressed. Finally, our degradome analysis revealed that 5950 transcripts were targeted by 487 miRNAs. A correlation analysis identified that miRNA ata-miR164c-3p and its target heat shock protein family A (HSP70) member 5 gene comp59407_c0 (BIPE3) may be essential in organ-specific plant drought stress response and/or adaptation in orchardgrass. Additionally, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses found that "antigen processing and presentation" was the most enriched downregulated pathway in adaptation to drought conditions. Taken together, we explored the genes and miRNAs that may be involved in drought adaptation of orchardgrass and identified how they may be regulated. These results serve as a valuable genetic resource for future studies focusing on how plants adapted to drought conditions.
Collapse
Affiliation(s)
- Yang Ji
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Peilin Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kayla K Pennerman
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xiaoyu Liang
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sifan Zhou
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guangyan Feng
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chengran Wang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xinquan Zhang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuanbin Hu
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
43
|
Lin SS, Bowman JL. MicroRNAs in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 220:409-416. [PMID: 29959894 DOI: 10.1111/nph.15294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 409 I. Introduction 409 II. RNA silencing machinery in Marchantia polymorpha 410 III. miRNA prediction by integrating omics approach 410 IV. miRNAs and their targets in Marchantia polymorpha 410 V. Mpo-miR390-mediated MpTAS3 tasiRNA biogenesis and potential tasiARF target MpARF2 414 VI. Artificial miRNA and CRISPR-CAS9 edited MIR gene in Marchantia polymorpha 414 VII. Conclusions 415 Acknowledgements 415 References 415 SUMMARY: The liverwort Marchantia polymorpha occupies an important phylogenetic position for comparative studies of land plant gene regulation. Multiple gene regulatory pathways mediated by small RNAs, including microRNAs (miRNAs), trans-acting short-interfering RNAs, and heterochromatic siRNAs often associated with RNA-dependent DNA methylation, have been characterized in flowering plants. Genes for essential components for all of these small RNA-mediated gene silencing pathways are found in M. polymorpha as well as the moss Phsycomitrella patens, indicating that these pathways existed in the ancestral land plant. However, only seven miRNAs are conserved across land plants, with both ancestral and novel targets identified in M. polymorpha. There is little or no evidence that any of these conserved miRNAs are present in algae. As with other plants investigated, most miRNAs in M. polypmorpha exhibit lineage-specific evolution. Application of artificial miRNA and CRISPR-Cas9 technologies in genetic studies of M. polymorpha provide avenues to further investigate miRNA biology.
Collapse
Affiliation(s)
- Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
44
|
Wu L, Yu J, Shen Q, Huang L, Wu D, Zhang G. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genomics 2018; 19:560. [PMID: 30064381 PMCID: PMC6069884 DOI: 10.1186/s12864-018-4953-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Background Barley is relatively sensitive to Aluminum (Al) toxicity among cereal crops, but shows a wide genotypic difference in Al tolerance. The well-known Al-tolerant mechanism in barley is related to Al exclusion mediated by a citrate transporter HvAACT1 (Al-activated citrate transporter 1). A 1-kb insertion in the promoter region of HvAACT1 gene results in a dramatic increase of its expression level, which only occurs in some Al-tolerant cultivars. However, Al-tolerant Tibetan wild barley accession XZ29 did not have the 1-kb insertion. Results We confirmed that the expression of HvAACT1 and secretion of citrate and other organic acids did not explain the difference in Al-tolerant wild barley XZ29 and Al-sensitive cultivated barley Golden Promise. To identify microRNAs (miRNAs) and their target genes responsive to Al stress in barley roots, eight small RNA libraries with two biological replicates from these two genotypes exposed to control and Al-treated conditions were constructed and submitted to deep sequencing. A total of 342 miRNAs were identified in Golden Promise and XZ29, with 296 miRNAs being commonly shared in the two genotypes. Target genes of these miRNAs were obtained through bioinformatics prediction or degradome identification. Comparative analysis detected 50 miRNAs responsive to Al stress, and some of them were found to be exclusively expressed in XZ29 and associated with Al tolerance. Conclusions miRNAs exclusively expressing in the wild barley were identified and found to be associated with Al stress tolerance. The current results provide a model of describing the roles of some special miRNAs associated with Al tolerance in the Tibetan wild barley. Electronic supplementary material The online version of this article (10.1186/s12864-018-4953-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiahua Yu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
45
|
Lin WY, Lin YY, Chiang SF, Syu C, Hsieh LC, Chiou TJ. Evolution of microRNA827 targeting in the plant kingdom. THE NEW PHYTOLOGIST 2018; 217:1712-1725. [PMID: 29214636 DOI: 10.1111/nph.14938] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 05/08/2023]
Abstract
Unlike most ancient microRNAs, which conservatively target homologous genes across species, microRNA827 (miR827) targets two different types of SPX (SYG1/PHO81/XPR1)-domain-containing genes, NITROGEN LIMITATION ADAPTATION (NLA) and PHOSPHATE TRANSPORTER 5 (PHT5), in Arabidopsis thaliana and Oryza sativa to regulate phosphate (Pi) transport and storage, respectively. However, how miR827 shifted its target preference and its evolutionary history are unknown. Based on target prediction analysis, we found that in most angiosperms, miR827 conservatively targets PHT5 homologs, but in Brassicaceae and Cleomaceae it preferentially targets NLA homologs, and we provide evidence for the transition of target preference during Brassicales evolution. Intriguingly, we found a lineage-specific loss of the miR827-regulatory module in legumes. Analysis of miR827-mediated cleavage efficiency and the expression of PHT5 in A. thaliana indicated that accumulation of mutations in the target site and the exclusion of the target site by alternative transcriptional initiation eliminated PHT5 targeting by miR827. Here, we identified a transition of miR827 target preference during plant evolution and revealed the uniqueness of miR827-mediated regulation among conserved plant miRNAs. Despite the change in its target preference, upregulation of miR827 by Pi starvation and its role in regulating cellular Pi homeostasis were retained.
Collapse
Affiliation(s)
- Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Su-Fen Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Cueihuan Syu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Li-Ching Hsieh
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
46
|
Ma X, Zhang X, Zhao K, Li F, Li K, Ning L, He J, Xin Z, Yin D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Seed Expansion in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:349. [PMID: 29662498 PMCID: PMC5890158 DOI: 10.3389/fpls.2018.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Seed expansion in peanut is a complex biological process involving many gene regulatory pathways. MicroRNAs (miRNAs) play important regulatory roles in plant growth and development, but little is known about their functions during seed expansion, or how they contribute to seed expansion in different peanut lines. We examined seed miRNA expression patterns at 15 and 35 days after flowering (DAF) in two peanut eighth-generation recombinant inbred lines (RIL8); 8106, a medium-pod variety, and 8107, a super-pod variety. Using high-throughput sequencing, we identified 1,082 miRNAs in developing peanut seeds including 434 novel miRNAs. We identified 316 differentially expressed miRNAs by comparing expression levels between the two peanut lines. Interestingly, 24 miRNAs showed contrasting patterns of expression in the two RILs, and 149 miRNAs were expressed predominantly in only one RIL at 35 DAF. Also, potential target genes for some conserved and novel miRNAs were identified by degradome sequencing; target genes were predicted to be involved in auxin mediated signaling pathways and cell division. We validated the expression patterns of some representative miRNAs and 12 target genes by qPCR, and found negative correlations between the expression level of miRNAs and their targets. miR156e, miR159b, miR160a, miR164a, miR166b, miR168a, miR171n, miR172c-5p, and miR319d and their corresponding target genes may play key roles in seed expansion in peanut. The results of our study also provide novel insights into the dynamic changes in miRNAs that occur during peanut seed development, and increase our understanding of miRNA function in seed expansion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zeyu Xin
- *Correspondence: Dongmei Yin, Zeyu Xin,
| | | |
Collapse
|
47
|
Voshall A, Kim EJ, Ma X, Yamasaki T, Moriyama EN, Cerutti H. miRNAs in the alga Chlamydomonas reinhardtii are not phylogenetically conserved and play a limited role in responses to nutrient deprivation. Sci Rep 2017; 7:5462. [PMID: 28710366 PMCID: PMC5511227 DOI: 10.1038/s41598-017-05561-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
The unicellular alga Chlamydomonas reinhardtii contains many types of small RNAs (sRNAs) but the biological role(s) of bona fide microRNAs (miRNAs) remains unclear. To address their possible function(s) in responses to nutrient availability, we examined miRNA expression in cells cultured under different trophic conditions (mixotrophic in the presence of acetate or photoautotrophic in the presence or absence of nitrogen). We also reanalyzed miRNA expression data in Chlamydomonas subject to sulfur or phosphate deprivation. Several miRNAs were differentially expressed under the various trophic conditions. However, in transcriptome analyses, the majority of their predicted targets did not show expected changes in transcript abundance, suggesting that they are not subject to miRNA-mediated RNA degradation. Mutant strains, defective in sRNAs or in ARGONAUTE3 (a key component of sRNA-mediated gene silencing), did not display major phenotypic defects when grown under multiple nutritional regimes. Additionally, Chlamydomonas miRNAs were not conserved, even in algae of the closely related Volvocaceae family, and many showed features resembling those of recently evolved, species-specific miRNAs in the genus Arabidopsis. Our results suggest that, in C. reinhardtii, miRNAs might be subject to relatively fast evolution and have only a minor, largely modulatory role in gene regulation under diverse trophic states.
Collapse
Affiliation(s)
- Adam Voshall
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eun-Jeong Kim
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xinrong Ma
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Tomohito Yamasaki
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi Prefecture, Japan
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Heriberto Cerutti
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
48
|
Goswami K, Tripathi A, Sanan-Mishra N. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice. J Integr Bioinform 2017; 14:/j/jib.2017.14.issue-1/jib-2017-0002/jib-2017-0002.xml. [PMID: 28637931 PMCID: PMC6042804 DOI: 10.1515/jib-2017-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant's response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.
Collapse
Affiliation(s)
- Kavita Goswami
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anita Tripathi
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
49
|
Xia R, Xu J, Meyers BC. The Emergence, Evolution, and Diversification of the miR390- TAS3- ARF Pathway in Land Plants. THE PLANT CELL 2017; 29:1232-1247. [PMID: 28442597 PMCID: PMC5502456 DOI: 10.1105/tpc.17.00185] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
In plants, miR390 directs the production of tasiRNAs from TRANS-ACTING SIRNA3 (TAS3) transcripts to regulate AUXIN RESPONSIVE FACTOR (ARF) genes, critical for auxin signaling; these tasiRNAs are known as tasiARFs. To understand the evolution of this miR390-TAS3-ARF pathway, we characterized homologs of these three genes from thousands of plant species, from bryophytes to angiosperms. We found the lower-stem region of MIR390 genes, critical for accurate DICER-LIKE1 processing, is conserved in sequence in seed plants. We propose a model for the transition of functional tasiRNA sequences in TAS3 genes occurred at the emergence of vascular plants, in which the two miR390 target sites of TAS3 genes showed distinct pairing patterns. Based on the cleavability of miR390 target sites and the distance between target site and tasiARF, we inferred a potential bidirectional processing mechanism exists for some TAS3 genes. We also demonstrated a tight mutual selection between tasiARF and its target genes and that ARGONAUTE7, the partner of miR390, was specified later than other factors in the pathway. All these data illuminate the evolutionary path of the miR390-TAS3-ARF pathway in land plants and demonstrate the significant variation that occurs in this functionally important and archetypal regulatory circuit.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jing Xu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- University of Missouri-Columbia, Division of Plant Sciences, Columbia, Missouri 65211
| |
Collapse
|
50
|
Zhang J, Xue B, Gai M, Song S, Jia N, Sun H. Small RNA and Transcriptome Sequencing Reveal a Potential miRNA-Mediated Interaction Network That Functions during Somatic Embryogenesis in Lilium pumilum DC. Fisch. FRONTIERS IN PLANT SCIENCE 2017; 8:566. [PMID: 28473835 PMCID: PMC5397531 DOI: 10.3389/fpls.2017.00566] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/29/2017] [Indexed: 05/23/2023]
Abstract
Plant somatic embryos are widely used in the fields of germplasm conservation, breeding for genetic engineering and artificial seed production. MicroRNAs (miRNAs) play pivotal roles in somatic embryogenesis (SE) regulation. However, their regulatory roles during various stages of SE remain unclear. In this study, six types of embryogenic samples of Lilium pumilum DC. Fisch., including organogenic callus, embryogenic callus induced for 4 weeks, embryogenic callus induced for 6 weeks, globular embryos, torpedo embryos and cotyledon embryos, were prepared for small RNA sequencing. The results revealed a total of 2,378,760 small RNA reads, among which the most common size was 24 nt. Four hundred and fifty-two known miRNAs, belonging to more than 86 families, 57 novel miRNAs and 40 miRNA*s were identified. The 86 known miRNA families were sorted according to an alignment with their homologs across 24 land plants into the following four categories: 23 highly conserved, 4 moderately conserved, 15 less conserved and 44 species-specific miRNAs. Differentially expressed known miRNAs were identified during various stages of SE. Subsequently, the expression levels of 12 differentially expressed miRNAs and 4 targets were validated using qRT-PCR. In addition, six samples were mixed in equal amounts for transcript sequencing, and the sequencing data were used as transcripts for miRNA target prediction. A total of 66,422 unigenes with an average length of 800 bp were assembled from 56,258,974 raw reads. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that 38,004 and 15,497 unigenes were successfully assigned to GO terms and KEGG pathways, respectively. Among the unigenes, 2,182 transcripts were predicted to be targets for 396 known miRNAs. The potential targets of the identified miRNAs were mostly classified into the following GO terms: cell, binding and metabolic process. Enriched KEGG analysis demonstrated that carbohydrate metabolism was the predominant pathway in Lilium SE. Thus, we performed systemic characterization, homology comparisons and profiling of miRNA expression, and we constructed an miRNA-target network during Lilium SE for the first time. Our findings establish a foundation for the further exploration of critical genes and elucidation of SE in Lilium.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| |
Collapse
|