1
|
Chen J, Liu S, Feng G, Gao J, Wang N, Ai N, Zhou B. Transcriptome reveals Gafmt-1 and Gadlc-1-5 play positive roles in cotton resistance to Verticillium wilt. PLANT CELL REPORTS 2025; 44:76. [PMID: 40100380 DOI: 10.1007/s00299-025-03462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
KEY MESSAGE Both Gafmt-1 and Gadlc-1-5 from Gossypium arboreum respond to Verticillium dahilae infection in Gossypium hirsutum and may play positive roles in Verticillium wilt resistance via the salicylic acid pathway. Verticillium wilt (VW) caused by Verticillium dahliae is one of the most destructive diseases affecting cotton production and quality worldwide. Numerous resistance genes against the disease from tetraploid cultivated cotton (2n = 4x = AADD = 52) have been cloned and functionally analyzed to attempt to develop resistant varieties. However, VW continues to pose a significant threat to global cotton production due to the lack of cost-effective resistance genes to balance resistance and yield. Resistance genes from diploid cotton species such as Gossypium arboreum (2n = 2x = AA = 26) remain largely untapped, and their functions are unknown. Here, a resistant G. hirsutum-G. arboreum introgression line, DM10781, was employed to mine new resistance genes against V. dahliae from the diploid cotton species. We performed time-course transcriptome analysis on the RNA-seq data at 0, 4, 12, 24, 48, and 96 h post-inoculation. Weighted gene co-expression network analysis showed that nine differentially expressed genes (DEGs) caused by disease resistance have been identified. Among them, seven genes were found on the introgression segments from G. arboreum and suffered from virus-induced gene silencing in DM10781. Out of them, two genes were further overexpressing in Arabidopsis. The results indicated the two genes of Gafmt-1 and Gadlc-1-5 played positive roles in both cotton and Arabidopsis. Our study demonstrates that G. arboreum has the resistance genes to VW and can be used in future disease-resistance breeding, providing insights into the resistance of Gafmt-1 and Gadlc-1-5 against VW in cotton.
Collapse
Affiliation(s)
- Jiale Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Susu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Pain C, Cui X, Li M, Zhang T, Li J, Kriechbaumer V, Wang P. Studying ER-membrane contact sites in plants using the optogenetic approach: Taking the LiMETER as an example. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17191. [PMID: 39658545 DOI: 10.1111/tpj.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
The endoplasmic reticulum (ER) links to multiple organelles through membrane contact sites (MCS), which play critical roles in signal transduction, cell homeostasis and stress response. However, studying the behaviour and functions of MCS in plants is still challenging, partially due to the lack of site-specific markers. Here, we used an optogenetic reporter, LiMETER (Light-inducible Membrane-Tethered cortical ER), to study the structure and dynamics of ER-PM contact sites (EPCS) in plants. Upon blue light activation, LiMETER is recruited to the EPCS rapidly, while this process is reversible when blue light is turned off. Compared with other EPCS reporters, LiMETER specifically and reversibly labels the contact sites, causing little side-effects on the ER structure and plant development. With its help, we re-examined the formation of ER-PM connections induced by cell-intrinsic factors or extracellular stimuli. We found that EPCSs are preferably localised at ER tubules and the edge of ER cisternae, and their number increased significantly under abiotic stress conditions. The abundance of ER and PM interaction is also developmental dependent, suggesting a direct link between ER-PM interaction, ER function and cell homeostasis. Taken together, we showed that LiMETER is an improved marker for functional and microscopical studies of ER-PM interaction, demonstrating the effectiveness of optogenetic tools in future research.
Collapse
Affiliation(s)
- Yifan Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Xuan Cui
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Menghan Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiejie Li
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Wu G, Wang L, He R, Cui X, Chen X, Wang A. Two plant membrane-shaping reticulon-like proteins play contrasting complex roles in turnip mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e70017. [PMID: 39412487 PMCID: PMC11481689 DOI: 10.1111/mpp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Positive-sense RNA viruses remodel cellular cytoplasmic membranes as the membranous sources for the formation of viral replication organelles (VROs) for viral genome replication. In plants, they traffic through plasmodesmata (PD), plasma membrane-lined pores enabling cytoplasmic connections between cells for intercellular movement and systemic infection. In this study, we employed turnip mosaic virus (TuMV), a plant RNA virus to investigate the involvement of RTNLB3 and RTNLB6, two ER (endoplasmic reticulum) membrane-bending, PD-located reticulon-like (RTNL) non-metazoan group B proteins (RTNLBs) in viral infection. We show that RTNLB3 interacts with TuMV 6K2 integral membrane protein and RTNLB6 binds to TuMV coat protein (CP). Knockdown of RTNLB3 promoted viral infection, whereas downregulation of RTNLB6 restricted viral infection, suggesting that these two RTNLs play contrasting roles in TuMV infection. We further demonstrate that RTNLB3 targets the α-helix motif 42LRKSM46 of 6K2 to interrupt 6K2 self-interactions and compromise 6K2-induced VRO formation. Moreover, overexpression of AtRTNLB3 apparently promoted the selective degradation of the ER and ER-associated protein calnexin, but not 6K2. Intriguingly, mutation of the α-helix motif of 6K2 that is required for induction of VROs severely affected 6K2 stability and abolished TuMV infection. Thus, RTNLB3 attenuates TuMV replication, probably through the suppression of 6K2 function. We also show that RTNLB6 promotes viral intercellular movement but does not affect viral replication. Therefore, the proviral role of RTNLB6 is probably by enhancing viral cell-to-cell trafficking. Taken together, our data demonstrate that RTNL family proteins may play diverse complex, even opposite, roles in viral infection in plants.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Liping Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
4
|
Liu J, Chen H, Liu L, Meng X, Liu Q, Ye Q, Wen J, Wang T, Dong J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. THE PLANT CELL 2024; 36:3770-3786. [PMID: 38963880 PMCID: PMC11371137 DOI: 10.1093/plcell/koae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzhao Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Schlößer M, Moseler A, Bodnar Y, Homagk M, Wagner S, Pedroletti L, Gellert M, Ugalde JM, Lillig CH, Meyer AJ. Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1455-1474. [PMID: 38394181 DOI: 10.1111/tpj.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.
Collapse
Affiliation(s)
- Michelle Schlößer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Yana Bodnar
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Maria Homagk
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - José M Ugalde
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Christopher H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
6
|
Xue M, Sofer L, Simon V, Arvy N, Diop M, Lion R, Beucher G, Bordat A, Tilsner J, Gallois J, German‐Retana S. AtHVA22a, a plant-specific homologue of Reep/DP1/Yop1 family proteins is involved in turnip mosaic virus propagation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13466. [PMID: 38767756 PMCID: PMC11104427 DOI: 10.1111/mpp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Luc Sofer
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Vincent Simon
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Mamoudou Diop
- UR 1052, INRAe, GAFL Domaine St MauriceMontfavet CedexFrance
| | - Roxane Lion
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Guillaume Beucher
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Amandine Bordat
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Jens Tilsner
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
| | | | - Sylvie German‐Retana
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| |
Collapse
|
7
|
Wang W, Zheng H. Arabidopsis reticulons inhibit ROOT HAIR DEFECTIVE3 to form a stable tubular endoplasmic reticulum network. PLANT PHYSIOLOGY 2024; 194:1431-1446. [PMID: 37879114 DOI: 10.1093/plphys/kiad574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
The endoplasmic reticulum (ER) is a network of interconnected tubules and sheets stretching throughout the cytoplasm of plant cells. In Arabidopsis (Arabidopsis thaliana), ROOT HAIR DEFECTIVE3 (RHD3) mediates ER tubule fusion, while reticulon proteins induce ER membrane curvature to produce ER tubules. However, it is unclear if and how RHD3-reticulon interplay during the formation of the interconnected tubular ER network. We discovered that RHD3 physically interacts with Arabidopsis reticulon proteins, including reticulon-like protein subfamily B3 (RTNLB3), on ER tubules and at 3-way junctions of the ER. The RTNLB3 protein is widely expressed in Arabidopsis seedlings and localizes to ER tubules. Although the growth of knockout rtnlb3 mutant plants was relatively normal, root hairs of rtnlb3 were shorter than those of wild type. The ER in mature mutant cells was also more sheeted than that in wild type. rhd3 is known to have short roots and root hairs and less branched ER tubules in cells. Interestingly, rtnlb3 genetically antagonizes rhd3 in plant root development and in ER interconnectivity. We show that reticulons including RTNLB3 inhibit the ER fusion activity of RHD3, partly by interfering with RHD3 dimerization. We conclude that reticulon proteins negatively regulate RHD3 to balance its ER fusion activity for the formation of a stable tubular ER network in plant cell growth.
Collapse
Affiliation(s)
- Weina Wang
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
8
|
Denker L, Dixon AM. The cell edit: Looking at and beyond non-structural proteins to understand membrane rearrangement in coronaviruses. Arch Biochem Biophys 2024; 752:109856. [PMID: 38104958 DOI: 10.1016/j.abb.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.
Collapse
Affiliation(s)
- Lea Denker
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK.
| |
Collapse
|
9
|
Sandor A, Samalova M, Brandizzi F, Kriechbaumer V, Moore I, Fricker MD, Sweetlove LJ. Characterization of intracellular membrane structures derived from a massive expansion of endoplasmic reticulum (ER) membrane due to synthetic ER-membrane-resident polyproteins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:45-59. [PMID: 37715992 PMCID: PMC10735356 DOI: 10.1093/jxb/erad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ian Moore
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Mark D Fricker
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
10
|
Sun J, Zheng H. In Vivo Analysis of ER-Associated Protein Degradation and Ubiquitination in Arabidopsis thaliana. Methods Mol Biol 2024; 2772:301-309. [PMID: 38411824 DOI: 10.1007/978-1-0716-3710-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The endoplasmic reticulum (ER) is the cellular site for the biosynthesis of proteins and lipids. The ER is highly dynamic, whose homeostasis is maintained by proper ER shaping, unfolded protein response (UPR), ER-associated degradation (ERAD), and selective autophagy of the ER (ER-phagy). In ERAD and ER-phagy, unfolded/misfolded proteins are degraded in the 26S proteasome and the vacuole, respectively. Both processes are vital for normal plant development and plant responses to environmental stresses. While it is known that ubiquitination of a protein initiates EARD, recent research indicated that ubiquitination of a protein also promotes the turnover of the protein through ER-phagy. In this chapter, we describe in detail two in vivo methods for investigating (1) the degradation efficiency and (2) ubiquitination level of an ER-associated protein in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Hawes C, Wang P, Kriechbaumer V. Make It Shine: Labelling the ER for Light and Fluorescence Microscopy. Methods Mol Biol 2024; 2772:1-14. [PMID: 38411802 DOI: 10.1007/978-1-0716-3710-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The ER is a highly dynamic network of tubules and membrane cisternae. Hence, imaging this organelle in its native and mobile state is of great importance. Here we describe methods of labelling the native plant ER using fluorescent proteins and lipid dyes as well as methods for immunolabelling on plant tissue.
Collapse
Affiliation(s)
- Chris Hawes
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Pengwei Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
12
|
Kriechbaumer V, Botchway SW. Immunoprecipitation and FRET-FLIM to Determine Metabolons on the Plant ER. Methods Mol Biol 2024; 2772:169-177. [PMID: 38411813 DOI: 10.1007/978-1-0716-3710-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metabolons are protein complexes that contain all the enzymes necessary for a metabolic pathway but also scaffolding proteins. Such a structure allows efficient channeling of intermediate metabolites form one active site to the next and is highly advantageous for labile or toxic intermediates. Here we describe two methods currently used to identify metabolons via protein-protein interaction methodology: immunoprecipitations using GFP-Trap®_A beads to find novel interaction partners and potential metabolon components and FRET-FLIM to test for and quantify protein-protein interactions in planta.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
13
|
Atabekova AK, Golyshev SA, Lezzhov AA, Skulachev BI, Moiseenko AV, Yastrebova DM, Andrianova NV, Solovyev ID, Savitsky AP, Morozov SY, Solovyev AG. Fine Structure of Plasmodesmata-Associated Membrane Bodies Formed by Viral Movement Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:4100. [PMID: 38140427 PMCID: PMC10747570 DOI: 10.3390/plants12244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Boris I. Skulachev
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey V. Moiseenko
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Daria M. Yastrebova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nadezda V. Andrianova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
14
|
Spatola Rossi T, Tolmie AF, Nichol T, Pain C, Harrison P, Smith TJ, Fricker M, Kriechbaumer V. Recombinant expression and subcellular targeting of the particulate methane monooxygenase (pMMO) protein components in plants. Sci Rep 2023; 13:15337. [PMID: 37714899 PMCID: PMC10504283 DOI: 10.1038/s41598-023-42224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Methane is a potent greenhouse gas, which has contributed to approximately a fifth of global warming since pre-industrial times. The agricultural sector produces significant methane emissions, especially from livestock, waste management and rice cultivation. Rice fields alone generate around 9% of total anthropogenic emissions. Methane is produced in waterlogged paddy fields by methanogenic archaea, and transported to the atmosphere through the aerenchyma tissue of rice plants. Thus, bioengineering rice with catalysts to detoxify methane en route could contribute to an efficient emission mitigation strategy. Particulate methane monooxygenase (pMMO) is the predominant methane catalyst found in nature, and is an enzyme complex expressed by methanotrophic bacteria. Recombinant expression of pMMO has been challenging, potentially due to its membrane localization, multimeric structure, and polycistronic operon. Here we show the first steps towards the engineering of plants for methane detoxification with the three pMMO subunits expressed in the model systems tobacco and Arabidopsis. Membrane topology and protein-protein interactions were consistent with correct folding and assembly of the pMMO subunits on the plant ER. Moreover, a synthetic self-cleaving polypeptide resulted in simultaneous expression of all three subunits, although low expression levels precluded more detailed structural investigation. The work presents plant cells as a novel heterologous system for pMMO allowing for protein expression and modification.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - A Frances Tolmie
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Tim Nichol
- Molecular Microbiology Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Patrick Harrison
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Thomas J Smith
- Molecular Microbiology Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Centre for Bioimaging, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
15
|
Andov B, Boulaflous-Stevens A, Pain C, Mermet S, Voisin M, Charrondiere C, Vanrobays E, Tutois S, Evans DE, Kriechbaumer V, Tatout C, Graumann K. In Depth Topological Analysis of Arabidopsis Mid-SUN Proteins and Their Interaction with the Membrane-Bound Transcription Factor MaMYB. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091787. [PMID: 37176845 PMCID: PMC10180911 DOI: 10.3390/plants12091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Mid-SUN proteins are a neglected family of conserved type III membrane proteins of ancient origin with representatives in plants, animals, and fungi. Previous higher plant studies have associated them with functions at the nuclear envelope and the endoplasmic reticulum (ER). In this study, high-resolution confocal light microscopy is used to explore the localisation of SUN3 and SUN4 in the perinuclear region, to explore topology, and to study the role of mid-SUNs on endoplasmic reticulum morphology. The role of SUN3 in the ER is reinforced by the identification of a protein interaction between SUN3 and the ER membrane-bound transcription factor maMYB. The results highlight the importance of mid-SUNs as functional components of the ER and outer nuclear membrane.
Collapse
Affiliation(s)
- Bisa Andov
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Charlotte Pain
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Sarah Mermet
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Maxime Voisin
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Camille Charrondiere
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Sylvie Tutois
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - David E Evans
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Christophe Tatout
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Katja Graumann
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
16
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
17
|
Trenz TS, Turchetto-Zolet AC, Margis R, Margis-Pinheiro M, Maraschin FDS. Functional analysis of alternative castor bean DGAT enzymes. Genet Mol Biol 2022; 46:e20220097. [PMID: 36512712 PMCID: PMC9747089 DOI: 10.1590/1678-4685-gmb-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
The diversity of diacylglycerol acyltransferases (DGATs) indicates alternative roles for these enzymes in plant metabolism besides triacylglycerol (TAG) biosynthesis. In this work, we functionally characterized castor bean (Ricinus communis L.) DGATs assessing their subcellular localization, expression in seeds, capacity to restore triacylglycerol (TAG) biosynthesis in mutant yeast and evaluating whether they provide tolerance over free fatty acids (FFA) in sensitive yeast. RcDGAT3 displayed a distinct subcellular localization, located in vesicles outside the endoplasmic reticulum (ER) in most leaf epidermal cells. This enzyme was unable to restore TAG biosynthesis in mutant yeast; however, it was able to outperform other DGATs providing higher tolerance over FFA. RcDAcTA subcellular localization was associated with the ER membranes, resembling RcDGAT1 and RcDGAT2, but it failed to rescue the long-chain TAG biosynthesis in mutant yeast, even with fatty acid supplementation. Besides TAG biosynthesis, our results suggest that RcDGAT3 might have alternative functions and roles in lipid metabolism.
Collapse
Affiliation(s)
- Thomaz Stumpf Trenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Rogério Margis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Biofísica, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Felipe dos Santos Maraschin
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Tilsner J, Kriechbaumer V. Reticulons 3 and 6 interact with viral movement proteins. MOLECULAR PLANT PATHOLOGY 2022; 23:1807-1814. [PMID: 35987858 PMCID: PMC9644274 DOI: 10.1111/mpp.13261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/06/2023]
Abstract
Plant reticulon (RTN) proteins are capable of constricting membranes and are vital for creating and maintaining tubules in the endoplasmic reticulum (ER), making them prime candidates for the formation of the desmotubule in plasmodesmata (PD). RTN3 and RTN6 have previously been detected in an Arabidopsis PD proteome and have been shown to be present in primary PD at cytokinesis. It has been suggested that RTN proteins form protein complexes with proteins in the PD plasma membrane and desmotubule to stabilize the desmotubule constriction and regulate PD aperture. Viral movement proteins (vMPs) enable the transport of viruses through PD and can be ER-integral membrane proteins or interact with the ER. Some vMPs can themselves constrict ER membranes or localize to RTN-containing tubules; RTN proteins and vMPs could be functionally linked or potentially interact. Here we show that different vMPs are capable of interacting with RTN3 and RTN6 in a membrane yeast two-hybrid assay, coimmunoprecipitation, and Förster resonance energy transfer measured by donor excited-state fluorescence lifetime imaging microscopy. Furthermore, coexpression of the vMP CMV-3a and RTN3 results in either the vMP or the RTN changing subcellular localization and reduces the ability of CMV-3a to open PD, further indicating interactions between the two proteins.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research ComplexSchool of Biology, Willie Russell LaboratoriesFifeUK
- Cell & Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
19
|
Xue Y, Jia PF, Li HJ. SUN3/4/5 proteins regulate endoplasmic reticulum tubule formation and luminal spacing in Arabidopsis. J Genet Genomics 2022; 50:370-373. [PMID: 36402306 DOI: 10.1016/j.jgg.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Yong Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Spatola Rossi T, Pain C, Botchway SW, Kriechbaumer V. FRET-FLIM to Determine Protein Interactions and Membrane Topology of Enzyme Complexes. Curr Protoc 2022; 2:e598. [PMID: 36300920 PMCID: PMC11648839 DOI: 10.1002/cpz1.598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Determining protein-protein interactions is vital for gaining knowledge on cellular and metabolic processes including enzyme complexes and metabolons. Förster resonance energy transfer with fluorescence lifetime imaging microscopy (FRET-FLIM) is an advanced imaging methodology that allows for the quantitative detection of protein-protein interactions. In this method, proteins of interest for interaction studies are fused to different fluorophores such as enhanced green fluorescent protein (eGFP; donor molecule) and monomeric red fluorescent protein (mRFP; acceptor molecule). Energy transfer between the two fluorophore groups can only occur efficiently when the proteins of interest are in close physical proximity, around ≤10 nm, and therefore are most likely interacting. FRET-FLIM measures the decrease in excited-state lifetime of the donor fluorophore (eGFP) with and without the presence of the acceptor (mRFP) and can therefore give information on protein-protein interactions and the membrane topology of the tested protein. Here we describe the production of fluorescent protein fusions for FRET-FLIM analysis in tobacco leaf epidermal cells using Agrobacterium-mediated plant transformation and a FRET-FLIM data acquisition and analysis protocol in plant cells. These protocols are applicable and can be adapted for both membrane and soluble proteins in different cellular localizations. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein expression in tobacco leaf cells via transient Agrobacterium-mediated plant transformation Basic Protocol 2: FRET-FLIM data acquisition and analysis.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Charlotte Pain
- Endomembrane Structure and Function Research Group, Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Stanley W. Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton LaboratoryResearch Complex at HarwellDidcotUK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
21
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
22
|
Pain C, Tolmie F, Wojcik S, Wang P, Kriechbaumer V. intER-ACTINg: the structure and dynamics of ER and actin are interlinked. J Microsc 2022. [PMID: 35985796 DOI: 10.1111/jmi.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The actin cytoskeleton is the driver of gross ER remodelling and the movement and positioning of other membrane-bound organelles such as Golgi bodies. Rapid ER membrane remodelling is a feature of most plant cells and is important for normal cellular processes, including targeted secretion, immunity and signalling. Modifications to the actin cytoskeleton, through pharmacological agents such as Latrunculin B and phalloidin, or disruption of normal myosin function also affect ER structure and/or dynamics. Here, we investigate the impact of changes in the actin cytoskeleton on structure and dynamics on the ER as well as in return the impact of modified ER structure on the architecture of the actin cytoskeleton. By expressing actin markers that affect actin dynamics, or expressing of ER-shaping proteins that influence ER architecture, we found that the structure of ER-actin networks is closely inter-related; affecting one component is likely to have a direct effect on the other. Therefore, our results indicate that a complicated regulatory machinery and cross-talk between these two structures must exist in plants to co-ordinate the function of ER-actin network during multiple subcellular processes. In addition, when considering organelle structure and dynamics, the choice of actin marker is essential in preventing off-target organelle structure and dynamics modifications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Charlotte Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Frances Tolmie
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Stefan Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
23
|
Ishikawa K, Konno R, Hirano S, Fujii Y, Fujiwara M, Fukao Y, Kodama Y. The endoplasmic reticulum membrane-bending protein RETICULON facilitates chloroplast relocation movement in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:205-216. [PMID: 35476214 DOI: 10.1111/tpj.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Plant cells alter the intracellular positions of chloroplasts to ensure efficient photosynthesis, a process controlled by the blue light receptor phototropin. Chloroplasts migrate toward weak light (accumulation response) and move away from excess light (avoidance response). Chloroplasts are encircled by the endoplasmic reticulum (ER), which forms a complex network throughout the cytoplasm. To ensure rapid chloroplast relocation, the ER must alter its structure in conjunction with chloroplast relocation movement, but little is known about the underlying mechanism. Here, we searched for interactors of phototropin in the liverwort Marchantia polymorpha and identified a RETICULON (RTN) family protein; RTN proteins play central roles in ER tubule formation and ER network maintenance by stabilizing the curvature of ER membranes in eukaryotic cells. Marchantia polymorpha RTN1 (MpRTN1) is localized to ER tubules and the rims of ER sheets, which is consistent with the localization of RTNs in other plants and heterotrophs. The Mprtn1 mutant showed an increased ER tubule diameter, pointing to a role for MpRTN1 in ER membrane constriction. Furthermore, Mprtn1 showed a delayed chloroplast avoidance response but a normal chloroplast accumulation response. The live cell imaging of ER dynamics revealed that ER restructuring was impaired in Mprtn1 during the chloroplast avoidance response. These results suggest that during the chloroplast avoidance response, MpRTN1 restructures the ER network and facilitates chloroplast movement via an interaction with phototropin. Our findings provide evidence that plant cells respond to fluctuating environmental conditions by controlling the movements of multiple organelles in a synchronized manner.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Ryota Konno
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Satoyuki Hirano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Masayuki Fujiwara
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- YANMAR HOLDINGS Co. Ltd., Osaka, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
24
|
Liu Y, Vasina VV, Kraner ME, Peters WS, Sonnewald U, Knoblauch M. Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element-specific proteins reveal differentiation of the endomembrane system. Proc Natl Acad Sci U S A 2022; 119:e2112755119. [PMID: 34983847 PMCID: PMC8740716 DOI: 10.1073/pnas.2112755119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA 99154
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN 46835
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99154;
| |
Collapse
|
25
|
Kriechbaumer V, Botchway SW. Methods for Detection of Protein Interactions with Plasmodesmata-Localized Reticulons. Methods Mol Biol 2022; 2457:209-218. [PMID: 35349142 DOI: 10.1007/978-1-0716-2132-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant reticulon family proteins (RTN) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Two RTN ER-shaping proteins have been found in the plasmodesmata (PD) proteome which could potentially contribute to the formation of the desmotubule, an ER-derived structure that crosses primary PD and physically connects the ER of two cells. Here we describe two methods used to identify partners of two PD-resident reticulon proteins, RTN3 and RTN6 that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum): immunoprecipitations using GFP-Trap®_A beads to find novel interaction partners and FRET-FLIM to test for and quantify direct protein-protein interactions in planta.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
26
|
Huang FC, Chi SF, Chien PR, Liu YT, Chang HN, Lin CS, Hwang HH. Arabidopsis RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the Agrobacterium tumefaciens Infection Process. PLANT & CELL PHYSIOLOGY 2021; 62:1572-1588. [PMID: 34255832 DOI: 10.1093/pcp/pcab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are five members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation assays and glutathione-S-transferase pull-down assays showed that RAB8A, 8B and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells and in vitro. Furthermore, RAB8A, 8B and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B and rab8D single mutants showed decreased levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B and 8D overexpression transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence and flowers of wild-type plants. In summary, RAB8A, 8B and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yin-Tzu Liu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Nung Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
27
|
In Planta Labeling Using a Clickable ER-Disrupting Probe Suggests a Role for Oleosins in Arabidopsis Seedling ER Integrity. ACS Chem Biol 2021; 16:2151-2157. [PMID: 34505514 DOI: 10.1021/acschembio.1c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several small-molecule perturbagens of the plant endomembrane system are known, but few selectively disrupt endoplasmic reticulum (ER) structure and function. We conducted a microscopy-based screen for small-molecule disruptors of ER structure and discovered eroonazole, a 1,2-4-triazole that induces extensive ER vesiculation in Arabidopsis seedlings. To identify eroonazole targets, we synthesized a clickable photoaffinity derivative and used it for whole-seedling labeling experiments. These reveal that the probe labels multiple oleosins, plant membrane proteins that stabilize ER-derived lipid droplets. Oleosin labeling is absent in an oleosin1234 quadruple mutant and reduced using an inactive analog. Cellular analyses of the ER in the quadruple mutant demonstrate that oleosins are required for normal ER structure during seed germination and suggest that perturbation of oleosin function by eroonazole underlies its effects on seedling ER structure.
Collapse
|
28
|
Zang J, Kriechbaumer V, Wang P. Plant cytoskeletons and the endoplasmic reticulum network organization. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153473. [PMID: 34298331 DOI: 10.1016/j.jplph.2021.153473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
Collapse
Affiliation(s)
- Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
29
|
Rosado A, Bayer EM. Geometry and cellular function of organelle membrane interfaces. PLANT PHYSIOLOGY 2021; 185:650-662. [PMID: 33793898 PMCID: PMC8133572 DOI: 10.1093/plphys/kiaa079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2020] [Indexed: 05/09/2023]
Abstract
A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information. Biological membranes are highly dynamic and deformable and can be shaped into curved, tubular, or flat conformations, resulting in differentiated biophysical properties. At membrane contact sites, membranes from adjacent organelles come together into a unique 3D configuration, forming functionally distinct microdomains, which facilitate spatially regulated functions, such as organelle communication. Here, we describe the diversity of geometries of contact site-forming membranes in different eukaryotic organisms and explore the emerging notion that their shape, 3D architecture, and remodeling jointly define their cellular activity. The review also provides selected examples highlighting changes in membrane contact site architecture acting as rapid and local responses to cellular perturbations, and summarizes our current understanding of how those structural changes confer functional specificity to those cellular territories.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuelle M Bayer
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France
- Author for communication:
| |
Collapse
|
30
|
Sandor A, Fricker MD, Kriechbaumer V, Sweetlove LJ. IntEResting structures: formation and applications of organized smooth endoplasmic reticulum in plant cells. PLANT PHYSIOLOGY 2021; 185:550-561. [PMID: 33822222 PMCID: PMC8892044 DOI: 10.1104/pp.20.00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle with remarkable plasticity, capable of rapidly changing its structure to accommodate different functions based on intra- and extracellular cues. One of the ER structures observed in plants is known as "organized smooth endoplasmic reticulum" (OSER), consisting of symmetrically stacked ER membrane arrays. In plants, these structures were first described in certain specialized tissues, e.g. the sieve elements of the phloem, and more recently in transgenic plants overexpressing ER membrane resident proteins. To date, much of the investigation of OSER focused on yeast and animal cells but research into plant OSER has started to grow. In this update, we give a succinct overview of research into the OSER phenomenon in plant cells with case studies highlighting both native and synthetic occurrences of OSER. We also assess the primary driving forces that trigger the formation of OSER, collating evidence from the literature to compare two competing theories for the origin of OSER: that OSER formation is initiated by oligomerizing protein accumulation in the ER membrane or that OSER is the result of ER membrane proliferation. This has long been a source of controversy in the field and here we suggest a way to integrate arguments from both sides into a single unifying theory. Finally, we discuss the potential biotechnological uses of OSER as a tool for the nascent plant synthetic biology field with possible applications as a synthetic microdomain for metabolic engineering and as an extensive membrane surface for synthetic chemistry or protein accumulation.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
31
|
Brooks RL, Mistry CS, Dixon AM. Curvature sensing amphipathic helix in the C-terminus of RTNLB13 is conserved in all endoplasmic reticulum shaping reticulons in Arabidopsis thaliana. Sci Rep 2021; 11:6326. [PMID: 33737685 PMCID: PMC7973432 DOI: 10.1038/s41598-021-85866-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
The reticulon family of integral membrane proteins are conserved across all eukaryotes and typically localize to the endoplasmic reticulum (ER), where they are involved in generating highly-curved tubules. We recently demonstrated that Reticulon-like protein B13 (RTNLB13) from Arabidopsis thaliana contains a curvature-responsive amphipathic helix (APH) important for the proteins' ability to induce curvature in the ER membrane, but incapable of generating curvature by itself. We suggested it acts as a feedback element, only folding/binding once a sufficient degree of curvature has been achieved, and stabilizes curvature without disrupting the bilayer. However, it remains unclear whether this is unique to RTNLB13 or is conserved across all reticulons-to date, experimental evidence has only been reported for two reticulons. Here we used biophysical methods to characterize a minimal library of putative APH peptides from across the 21 A. thaliana isoforms. We found that reticulons with the closest evolutionary relationship to RTNLB13 contain curvature-sensing APHs in the same location with sequence conservation. Our data reveal that a more distantly-related branch of reticulons developed a ~ 20-residue linker between the transmembrane domain and APH. This may facilitate functional flexibility as previous studies have linked these isoforms not only to ER remodeling but other cellular activities.
Collapse
Affiliation(s)
- Rhiannon L Brooks
- MAS Centre for Doctoral Training, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Chandni S Mistry
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
32
|
Lazareva EA, Lezzhov AA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. Constriction of endoplasmic reticulum tubules by the viral movement protein BMB2 is associated with local BMB2 anchorage at constriction sites. PLANT SIGNALING & BEHAVIOR 2021; 16:1856547. [PMID: 33258725 PMCID: PMC7889187 DOI: 10.1080/15592324.2020.1856547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Plant virus-encoded movement proteins (MPs) interact with endoplasmic reticulum (ER) membranes, the cytoskeleton, and plasmodesmata (PD) to mediate intracellular delivery of the virus genome to PD and its further transport through PD from infected to healthy cells. The Hibiscus green spot virus MP termed BMB2 has been shown to induce constrictions of ER tubules and to occur at highly curved membranes, thus showing properties similar to those of reticulons, a class of cellular proteins inducing membrane curvature and shaping the ER tubules. Consistent with this BMB2 function, mRFP-BMB2 localizes to discrete, constricted regions scattered along the ER tubules. Here, using BMB2-mRFP fusion protein as a BMB2 derivative with partially disabled functionality, we demonstrate that the focal localization of BMB2 to discrete sites along the ER tubules is insufficient to induce local tubule constrictions at these sites, suggesting that the formation of ER tubule constrictions represents a specific BMB2 function and is not simply a mechanistic consequence of its localization to the ER. The presented data suggest that the formation of ER-residing BMB2-containing distinct small aggregates, or protein platforms, can be uncoupled from BMB2-induced ER tubule constrictions, whereas the anchoring of platforms at particular ER sites appears to be linked to the constriction of ER tubules at these sites.
Collapse
Affiliation(s)
- E. A. Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - A. A. Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - V. V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - S. Y. Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - M. Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, Strasbourg, France
| | - A. G. Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, Russia
| |
Collapse
|
33
|
Chen C, Vanneste S, Chen X. Review: Membrane tethers control plasmodesmal function and formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110800. [PMID: 33568299 DOI: 10.1016/j.plantsci.2020.110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication is crucial in coordinating diverse biological processes in multicellular organisms. In plants, communication between adjacent cells occurs via nanotubular passages called plasmodesmata (PD). The PD passage is composed of an appressed endoplasmic reticulum (ER) internally, and plasma membrane (PM) externally, that traverses the cell wall, and associates with the actin-cytoskeleton. The coordination of the ER, PM and cytoskeleton plays a potential role in maintaining the architecture and conductivity of PD. Many data suggest that PD-associated proteins can serve as tethers that connect these structures in a functional PD, to regulate cell-to-cell communication. In this review, we summarize the organization and regulation of PD activity via tethering proteins, and discuss the importance of PD-mediated cell-to-cell communication in plant development and defense against environmental stress.
Collapse
Affiliation(s)
- Chaofan Chen
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plants and Crops, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Xu Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
34
|
Lazareva EA, Lezzhov AA, Chergintsev DA, Golyshev SA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. Reticulon-like properties of a plant virus-encoded movement protein. THE NEW PHYTOLOGIST 2021; 229:1052-1066. [PMID: 32866987 DOI: 10.1111/nph.16905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.
Collapse
Affiliation(s)
- Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Sergei A Golyshev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, Strasbourg, 67000, France
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia
| |
Collapse
|
35
|
Harant D, Lang I. 3D Dissection of Structural Membrane-Wall Contacts in Filamentous Moss Protonemata. Int J Mol Sci 2020; 22:ijms22010158. [PMID: 33375227 PMCID: PMC7796084 DOI: 10.3390/ijms22010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/04/2022] Open
Abstract
In conventional light microscopy, the adjacent cell walls of filamentous moss protonemata are seen from its narrow side thereby obscuring the major area of cell–cell connection. Optical sectioning, segmentation and 3D reconstructions allow the tilting and rotation of intracellular structures thereby greatly improving our understanding of interaction between organelles, membranes and the cell wall. Often, the findings also allow for conclusions on the respective functions. The moss Physcomitrium (Physcomitrella) patens is a model organism for growth, development and morphogenesis. Its filamentous protonemata are ideal objects for microscopy. Here, we investigated the cell wall between two neighboring cells and the connection of membranes towards this wall after plasmolysis in 0.8 M mannitol. An m-green fluorescent protein (GFP)-HDEL cell line was used to visualize the endoplasmatic reticulum (ER), the plasma membrane (PM) was stained with FM4-64. Our studies clearly show the importance of cell–cell contacts in P. patens protonemata. In 86% of the investigated cell pairs, at least one of the protoplasts remained fully attached to the adjacent cell wall. By tilting of z-stacks, volume renderings and 3D reconstructions, we visualized the amount of attached/detached PM and ER components after plasmolysis and membrane piercings through the wall of cell neighbors.
Collapse
|
36
|
Sun J, Zhang M, Qi X, Doyle C, Zheng H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat Commun 2020; 11:5510. [PMID: 33139737 PMCID: PMC7606470 DOI: 10.1038/s41467-020-19343-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Mi Zhang
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xingyun Qi
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Department of Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Caitlin Doyle
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
37
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
38
|
Partial proteolysis improves the identification of the extracellular segments of transmembrane proteins by surface biotinylation. Sci Rep 2020; 10:8880. [PMID: 32483232 PMCID: PMC7264363 DOI: 10.1038/s41598-020-65831-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 01/11/2023] Open
Abstract
Transmembrane proteins (TMP) play a crucial role in several physiological processes. Despite their importance and diversity, only a few TMP structures have been determined by high-resolution protein structure characterization methods so far. Due to the low number of determined TMP structures, the parallel development of various bioinformatics and experimental methods was necessary for their topological characterization. The combination of these methods is a powerful approach in the determination of TMP topology as in the Constrained Consensus TOPology prediction. To support the prediction, we previously developed a high-throughput topology characterization method based on primary amino group-labelling that is still limited in identifying all TMPs and their extracellular segments on the surface of a particular cell type. In order to generate more topology information, a new step, a partial proteolysis of the cell surface has been introduced to our method. This step results in new primary amino groups in the proteins that can be biotinylated with a membrane-impermeable agent while the cells still remain intact. Pre-digestion also promotes the emergence of modified peptides that are more suitable for MS/MS analysis. The modified sites can be utilized as extracellular constraints in topology predictions and may contribute to the refined topology of these proteins.
Collapse
|
39
|
Harant D, Lang I. Stay in Touch-The Cortical ER of Moss Protonemata in Osmotic Stress Situations. PLANTS 2020; 9:plants9040421. [PMID: 32235617 PMCID: PMC7238208 DOI: 10.3390/plants9040421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
Plasmolysis is usually introduced to cell biology students as a tool to illustrate the plasma membrane: hypertonic solutions cause the living protoplast to shrink by osmotic water loss; hence, it detaches from the surrounding cell wall. What happens, however, with the subcellular structures in the cell cortex during this process of turgor loss? Here, we investigated the cortical endoplasmic reticulum (ER) in moss protonema cells of Physcomitrella patens in a cell line carrying a transgenic ER marker (GFP-HDEL). The plasma membrane was labelled simultaneously with the fluorescent dye FM4-64 to achieve structural separation. By placing the protonemata in a hypertonic mannitol solution (0.8 M), we were able to follow the behaviour of the cortical ER and the protoplast during plasmolysis by confocal laser scanning microscopy (CLSM). The protoplast shape and structural changes of the ER were further examined after depolymerisation of actin microfilaments with latrunculin B (1 µM). In its natural state, the cortical ER is a dynamic network of fine tubes and cisternae underneath the plasma membrane. Under acute and long-term plasmolysis (up to 45 min), changes in the protoplast form and the cortical ER, as well as the formation of Hechtian strands and Hechtian reticula, were observed. The processing of the high-resolution z-scans allowed the creation of 3D models and gave detailed insight into the ER of living protonema cells before, during and after plasmolysis.
Collapse
Affiliation(s)
- Dominik Harant
- Core Facility Cell Imaging & Ultrastructure Research, Faculty of Life Sciences, The University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria;
| | - Ingeborg Lang
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, The University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
40
|
Pain C, Kriechbaumer V. Defining the dance: quantification and classification of endoplasmic reticulum dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1757-1762. [PMID: 31811712 PMCID: PMC7094074 DOI: 10.1093/jxb/erz543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The availability of quantification methods for subcellular organelle dynamic analysis has increased rapidly over the last 20 years. The application of these techniques to contiguous subcellular structures that exhibit dynamic remodelling over a range of scales and orientations is challenging, as quantification of 'movement' rarely corresponds to traditional, qualitative classifications of types of organelle movement. The plant endoplasmic reticulum represents a particular challenge for dynamic quantification as it itself is an entirely contiguous organelle that is in a constant state of flux and gross remodelling, controlled by the actinomyosin cytoskeleton.
Collapse
Affiliation(s)
- Charlotte Pain
- Oxford Brookes University, Faculty of Health and Life Sciences, Gipsy Lane, Plant Cell Biology, Oxford, UK
| | - Verena Kriechbaumer
- Oxford Brookes University, Faculty of Health and Life Sciences, Gipsy Lane, Plant Cell Biology, Oxford, UK
- Correspondence:
| |
Collapse
|
41
|
Huang FC, Hwang HH. Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response. Int J Mol Sci 2020; 21:ijms21051722. [PMID: 32138311 PMCID: PMC7084338 DOI: 10.3390/ijms21051722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0416-412
| |
Collapse
|
42
|
Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, Vierstra RD, Otegui MS. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. eLife 2020; 9:51918. [PMID: 32011236 PMCID: PMC7046470 DOI: 10.7554/elife.51918] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.
Collapse
Affiliation(s)
- Xiaoguo Zhang
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Xinxin Ding
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Julio Paez-Valencia
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Patrick Lacey
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Marisa S Otegui
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States.,Department of Genetics, University of Wisconsin, Madison, United States
| |
Collapse
|
43
|
Stefano G, Brandizzi F. Analysis of Endoplasmic Reticulum-Endosome Association Using Live-Cell Imaging in Plant Cells. Methods Mol Biol 2020; 2177:23-33. [PMID: 32632802 DOI: 10.1007/978-1-0716-0767-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The endoplasmic reticulum (ER) is one of the most abundant endomembrane compartments and is in close association with most of the other organelles. In mammalian and yeast cells, the physiological roles and the molecular machineries underlying such association have only recently begun to emerge. In plant cells, recent live-cell confocal imaging and electron microscopy studies have established that endosomes are associated with the ER [1]. Here, we describe confocal imaging methods and software to analyze ER-endosome association in plant cells.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Plant Biology Department Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Plant Biology Department Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
44
|
Brooks RL, Dixon AM. Revealing the mechanism of protein-lipid interactions for a putative membrane curvature sensor in plant endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183160. [PMID: 31874147 DOI: 10.1016/j.bbamem.2019.183160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/05/2023]
Abstract
Membrane curvature sensing via helical protein domains, such as those identified in Amphiphysin and ArfGAP1, have been linked to a diverse range of cellular processes. However, these regions can vary significantly between different protein families and thus remain challenging to identify from sequence alone. Greater insight into the protein-lipid interactions that drive this behavior could lead to production of therapeutics that specifically target highly curved membranes. Here we demonstrate the curvature-dependence of membrane binding for an amphipathic helix (APH) in a plant reticulon, namely RTNLB13 from A. thaliana. We utilize solution-state nuclear magnetic resonance spectroscopy to establish the exact location of the APH and map the residues involved in protein-membrane interactions at atomic resolution. We find that the hydrophobic residues making up the membrane binding site are conserved throughout all A. thaliana reticulons. Our results also provide mechanistic insight that leads us to propose that membrane binding by this APH may act as a feedback element, only forming when ER tubules reach a critical size and adding stabilization to these structures without disrupting the bilayer. A shallow hydrophobic binding interface appears to be a feature shared more broadly across helical curvature sensors and would automatically restrict the penetration depth of these structures into the membrane. We also suggest this APH is highly tuned to the composition of the membrane in which it resides, and that this property may be universal in curvature sensors thus rationalizing the variety of mechanisms reported for these functional elements.
Collapse
Affiliation(s)
- Rhiannon L Brooks
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
45
|
Plasmodesmata Conductivity Regulation: A Mechanistic Model. PLANTS 2019; 8:plants8120595. [PMID: 31842374 PMCID: PMC6963776 DOI: 10.3390/plants8120595] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.
Collapse
|
46
|
Affiliation(s)
- ULLA NEUMANN
- Max Planck Institute for Plant Breeding ResearchCentral Microscopy Cologne Germany
| |
Collapse
|
47
|
Cai Y, Whitehead P, Chappell J, Chapman KD. Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. PLANTA 2019; 250:79-94. [PMID: 30919065 DOI: 10.1007/s00425-019-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells. Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Payton Whitehead
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Joe Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kent D Chapman
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| |
Collapse
|
48
|
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun 2019; 10:984. [PMID: 30816109 PMCID: PMC6395764 DOI: 10.1038/s41467-019-08893-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed of interconnected tubules and sheets (cisternae) that forms the first compartment in the secretory pathway involved in protein translocation, folding, glycosylation, quality control, lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this plethora of biosynthetic, metabolic and physiological processes, there is little quantitative information on ER structure, morphology or dynamics. Here we describe a software package (AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics. We validate the method against manually-traced ground-truth networks, and calibrate the sub-resolution width estimates against ER profiles identified in serial block-face SEM images. We apply the approach to quantify the effects on ER morphology of drug treatments, abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
Collapse
Affiliation(s)
- Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
49
|
Tao K, Waletich JR, Wise H, Arredondo F, Tyler BM. Tethering of Multi-Vesicular Bodies and the Tonoplast to the Plasma Membrane in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:636. [PMID: 31396242 PMCID: PMC6662526 DOI: 10.3389/fpls.2019.00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/26/2019] [Indexed: 05/05/2023]
Abstract
UNLABELLED Tethering of the plasma membrane (PM) and many organelles to the endoplasmic reticulum (ER) for communication and lipid exchange has been widely reported. However, despite growing interest in multi-vesicular bodies (MVBs) as possible sources of exosomes, tethering of MVBs to the PM has not been reported. Here we show that MVBs and the vacuolar membrane (tonoplast) could be tethered to the PM (PM-MVB/TP tethering) by artificial protein fusions or bimolecular fluorescence complementation (BiFC) complexes that contain a peripheral membrane protein that binds the PM and also a protein that binds MVBs or the tonoplast. PM-binding proteins capable of participating in PM-MVB/TP tethering included StRem1.3, BIK1, PBS1, CPK21, and the PtdIns(4)-binding proteins FAPP1 and Osh2. MVB/TP-binding proteins capable of participating in tethering included ARA6, ARA7, RHA1, RABG3f, and the PtdIns(3)P-binding proteins Vam7p and Hrs-2xFYVE. BiFC complexes or protein fusions capable of producing PM-MVB/TP tethering were visualized as large well-defined patches of fluorescence on the PM that could displace PM proteins such as AtFlotillin1 and also could displace cytoplasmic proteins such as soluble GFP. Furthermore, we identified paralogous ubiquitin E3 ligase proteins, SAUL1 (AtPUB44), and AtPUB43 that could produce PM-MVB/TP tethering. SAUL1 and AtPUB43 could produce tethering in uninfected tissue when paired with MVB-binding proteins or when their E3 ligase domain was deleted. When Nicotiana benthamiana leaf tissue was infected with Phytophthora capsici, full length SAUL1 and AtPUB43 localized in membrane patches consistent with PM-MVB/TP tethering. Our findings define new tools for studying PM-MVB/TP tethering and its possible role in plant defense. SIGNIFICANCE STATEMENT Although not previously observed, the tethering of multi-vesicular bodies to the plasma membrane is of interest due to the potential role of this process in producing exosomes in plants. Here we describe tools for observing and manipulating the tethering of multi-vesicular bodies and the tonoplast to the plant plasma membrane, and describe two plant proteins that may naturally regulate this process during infection.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Hua Wise
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
- *Correspondence: Brett M. Tyler
| |
Collapse
|
50
|
Ishikawa K, Tamura K, Ueda H, Ito Y, Nakano A, Hara-Nishimura I, Shimada T. Synaptotagmin-Associated Endoplasmic Reticulum-Plasma Membrane Contact Sites Are Localized to Immobile ER Tubules. PLANT PHYSIOLOGY 2018; 178:641-653. [PMID: 30126867 PMCID: PMC6181054 DOI: 10.1104/pp.18.00498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 05/23/2023]
Abstract
The plant endoplasmic reticulum (ER), which is morphologically divided into tubules and sheets, seems to flow continuously as a whole, but locally, mobile and immobile regions exist. In eukaryotes, the ER physically and functionally interacts with the plasma membrane (PM) at domains called ER-PM contact sites (EPCSs). Extended synaptotagmin family proteins are concentrated in the cortical ER to form one type of EPCS; however, it is unclear whether the localization of extended synaptotagmin corresponds to the EPCS and where in the cortical ER the EPCSs are formed. Here, we analyzed the spatiotemporal localization of SYNAPTOTAGMIN1 (SYT1), a synaptotagmin in Arabidopsis (Arabidopsis thaliana), to investigate the precise distribution of SYT1-associated EPCSs in the cortical ER. Three-dimensional imaging using superresolution confocal live imaging microscopy demonstrated that SYT1 was specifically localized to the ER-PM boundary. Time-lapse imaging revealed that SYT1 was distributed to immobile ER tubules, but not to mobile tubules. Moreover, SYT1 was frequently localized to the edges of ER sheets that were transformed into immobile ER tubules over time. A lower intracellular calcium ion concentration resulted in an increased EPCS area and disrupted the ER network. Finally, SYT1 deficiency caused a reduction of the immobile tubules and enlargement of the ER meshes. Taken together, our findings show that SYT1-associated EPCS are distributed to immobile tubules and play an important role in the formation of the tubular ER network. This provides important insight into the relationship between the function and dynamics/morphology of the cortical ER.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Yoko Ito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, 33140 Villenave d'Ornon, France
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|