1
|
Nguyen VH, Mittelsten Scheid O, Gutzat R. Heat stress response and transposon control in plant shoot stem cells. PLANT PHYSIOLOGY 2025; 197:kiaf110. [PMID: 40155207 PMCID: PMC11997658 DOI: 10.1093/plphys/kiaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.
Collapse
Affiliation(s)
- Vu Hoang Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
2
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
3
|
Trontin JF, Sow MD, Delaunay A, Modesto I, Teyssier C, Reymond I, Canlet F, Boizot N, Le Metté C, Gibert A, Chaparro C, Daviaud C, Tost J, Miguel C, Lelu-Walter MA, Maury S. Epigenetic memory of temperature sensed during somatic embryo maturation in 2-yr-old maritime pine trees. PLANT PHYSIOLOGY 2025; 197:kiae600. [PMID: 39511700 DOI: 10.1093/plphys/kiae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
Embryogenesis is a brief but potentially critical phase in the life cycle of a tree for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine (Pinus pinaster Ait.), we found that temperature during the maturation phase affects embryo development and postembryonic tree growth for up to 3 yr. We examined whether this somatic stress memory could stem from temperature- and/or development-induced changes in DNA methylation. For this, we developed a 200 mb custom sequence capture bisulfite analysis of genes and promoters to identify differentially methylated cytosines (DMCs) between temperature treatments (18, 23, and 28 °C) and developmental stages (immature and cotyledonary embryos, shoot apical meristem of 2-yr-old plants) and investigate if these differences can be mitotically transmitted from embryonic to postembryonic development (epigenetic memory). We revealed a high prevalence of temperature-induced DMCs in genes (8% to 14%) compared to promoters (<1%) in all 3 cytosine contexts. Developmental DMCs showed a comparable pattern but only in the CG context and with a strong trend toward hypomethylation, particularly in the promoters. A high percentage of DMCs induced by developmental transitions were found memorized in genes (up to 45%-50%) and promoters (up to 90%). By contrast, temperature-induced memory was lower and confined to genes after both embryonic (up to 14%) and postembryonic development (up to 8%). Using stringent criteria, we identified 10 genes involved in defense responses and adaptation, embryo development, and chromatin regulation that are candidates for the establishment of a persistent epigenetic memory of temperature sensed during embryo maturation in maritime pine. Here, we provide evidence that DNA methylation marks established during the embryonic phase are transmitted to the postembryonic plant development phase.
Collapse
Affiliation(s)
| | - Mamadou Dia Sow
- P2e, Université d'Orléans, INRAE, EA 1207 USC 1328, Orléans 45067, France
| | - Alain Delaunay
- P2e, Université d'Orléans, INRAE, EA 1207 USC 1328, Orléans 45067, France
| | - Ines Modesto
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | | | - Isabelle Reymond
- BioForBois, FCBA, Pôle Industrie Bois & Construction, Cestas 33610, France
| | - Francis Canlet
- Sylviculture Avancée, FCBA, Pôle Ressources Forestières des Territoires, Cestas 33610, France
| | | | | | - Audrey Gibert
- P2e, Université d'Orléans, INRAE, EA 1207 USC 1328, Orléans 45067, France
| | | | - Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris Saclay, Evry 91000, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris Saclay, Evry 91000, France
| | - Celia Miguel
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | | | - Stéphane Maury
- P2e, Université d'Orléans, INRAE, EA 1207 USC 1328, Orléans 45067, France
| |
Collapse
|
4
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
5
|
He B, Cong Y, Xu L, Liu Y. Expansion of three types of transposon superfamilies within 25 Mya lead to large genome size of a rice insect pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104251. [PMID: 39694421 DOI: 10.1016/j.ibmb.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The brown planthoppers (BPH, Nilaparvata lugens), white backed planthopper (WBPH, Sogatella furcifera) and small brown planthopper (SBPH, Laodelphax striatellus) are widely distributed rice insect pests, causing huge annual yield loss of rice production. Though these three planthoppers belong to the same family, Delphacidae of Hemiptera, their genome sizes (GS) are very different, ranging from 541 to 1088 Mb. To uncover the main factors driving GS changes of three planthoppers, we first estimated the GS of their ancestor Fulgoroidea, to be 794.33 Mb, indicating GS expansion in BPH but contraction in SBPH and WBPH. Next, we identified repetitive sequences and compared the TE landscapes, showed that three types of transposon superfamilies, hAT, Tc1-Mariner and Gypsy, expanded within 25 Mya in BPH. In addition, BPH kept ancient TEs of Fulgoroidea dated back to 175 Mya, while SBPH and WBPH have lost most of these ancient TEs. Here, we present evidence that the gain of recently expanded TEs driving the GS expansion and loss of ancient TEs leading to the GS contraction, providing new insights into the mechanism of GS variation.
Collapse
Affiliation(s)
- Bingbing He
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China; State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Le Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province/Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
6
|
Xu T, Patitaki E, Zioutopoulou A, Kaiserli E. Light and high temperatures control epigenomic and epitranscriptomic events in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102668. [PMID: 39586185 DOI: 10.1016/j.pbi.2024.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Light and temperature are two key environmental factors that control plant growth and adaptation by influencing biomolecular events. This review highlights the latest milestones on the role of light and high temperatures in modulating the epigenetic and epitranscriptomic landscape of Arabidopsis to trigger developmental and adaptive responses to a changing environment. Recent discoveries on how light and high temperature signals are integrated in the nucleus to modulate gene expression are discussed, as well as highlighting research gaps and future perspectives in further understanding how to promote plant resilience in times of climate change.
Collapse
Affiliation(s)
- Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Kracik-Dyer E, Baroux C. 3D STED Imaging of Isolated Arabidopsis thaliana Nuclei. Methods Mol Biol 2025; 2873:263-280. [PMID: 39576607 DOI: 10.1007/978-1-0716-4228-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Microscopy imaging of chromatin offers valuable insights into its spatial organization in the nucleus, a novel epigenetic dimension influencing the genome's functions. Particularly, visualization at the nanoscale in single cells is uniquely complementary to molecular profiling methods averaging chromatin configuration and composition over thousands of cells. How are chromatin and chromosomal domains distributed in relation to gene expression? How variable are these configurations? How do chromatin domains evolve in structure, composition, and distribution during cellular differentiation or cellular responses to environmental stimuli? Super-resolution microscopy techniques, like stimulated emission depletion (STED), are key in answering such questions. However, such imaging techniques are not often used in the field of plant cell biology compared to mammalian counterparts, which has greatly advanced our understanding of the 3D principles in genome organization. In an effort to bridge this gap, we provide a clear guide for isolating, embedding, immunostaining, and STED imaging intact leaf nuclei from Arabidopsis thaliana in 3D.
Collapse
Affiliation(s)
- Elizabeth Kracik-Dyer
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Dupouy G, Singh G, Schmidt-Speicher LM, Hoffmann E, Baudrey S, Ahrens R, Guber AE, Ryckelynck M, Herzog E, Chabouté ME, Berr A. Microfluidics to Follow Spatiotemporal Dynamics at the Nucleo-Cytoplasmic Interface During Plant Root Growth. Methods Mol Biol 2025; 2873:223-245. [PMID: 39576605 DOI: 10.1007/978-1-0716-4228-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Nuclear dynamics refers to global/local changes in the molecular and spatial organization of genomic DNA that can occur during development or in response to environmental stress signals and eventually impact genomic functions. In plants, nuclear dynamics relies notably on the connection of the nucleus with the cytoskeleton during development. It orchestrates genomic functions in response to developmental and environmental cues. This is particularly true in the plant root system, which is constantly exposed to a wide range of internal and external stimuli. Currently, studying nuclear dynamics in a growing root is challenging due to limitations regarding real-time imaging for quantitative analyses under controlled conditions. Microfluidic systems for plant cell studies are valuable analytical tools that provide precise control of culture conditions together with live-imaging capabilities at high temporal and spatial resolutions. Herein, we describe a microfluidic platform to unravel dynamically and noninvasively nuclear organization in the seedling root system exposed to various treatments. As exemplified here, our microfluidic platform can be conveniently used for real-time microscopy imaging and quantitative analysis of fine nuclear morphological changes upon modifying cytoskeleton dynamics. Importantly, our system can be applied to a wide variety of microscopic means including high-resolution microscopy to investigate diverse subcellular compartments or nuclear domains in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Gaurav Singh
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
- Université Aix Marseille, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Leona Marlene Schmidt-Speicher
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Elise Hoffmann
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéphanie Baudrey
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Ralf Ahrens
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Andreas E Guber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France.
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
9
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
10
|
Herrera-Isidron L, Uribe-Lopez B, Barraza A, Cabrera-Ponce JL, Valencia-Lozano E. Analysis of Stress Response Genes in Microtuberization of Potato Solanum tuberosum L.: Contributions to Osmotic and Combined Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2996. [PMID: 39519915 PMCID: PMC11548447 DOI: 10.3390/plants13212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Wild Solanum species have contributed many introgressed genes during domestication into current cultivated potatoes, enhancing their biotic and abiotic stress resistance and facilitating global expansion. Abiotic stress negatively impacts potato physiology and productivity. Understanding the molecular mechanisms regulating tuber development may help solve this global problem. We made a transcriptomic analysis of potato microtuberization under darkness, cytokinins, and osmotic stress conditions. A protein-protein interaction (PPI) network analysis identified 404 genes with high confidence. These genes were involved in important processes like oxidative stress, carbon metabolism, sterol biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, and nucleosome assembly. From this network, we selected nine ancestral genes along with eight additional stress-related genes. We used qPCR to analyze the expression of the selected genes under osmotic, heat-osmotic, cold-osmotic, salt-osmotic, and combined-stress conditions. The principal component analysis (PCA) revealed that 60.61% of the genes analyzed were associated with osmotic, cold-osmotic, and heat-osmotic stress. Seven out of ten introgression/domestication genes showed the highest variance in the analysis. The genes H3.2 and GAPCP1 were involved in osmotic, cold-osmotic, and heat-osmotic stress. Under combined-all stress, TPI and RPL4 were significant, while in salt-osmotic stress conditions, ENO1, HSP70-8, and PER were significant. This indicates the importance of ancestral genes for potato survival during evolution. The targeted manipulation of these genes could improve combined-stress tolerance in potatoes, providing a genetic basis for enhancing crop resilience.
Collapse
Affiliation(s)
- Lisset Herrera-Isidron
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Braulio Uribe-Lopez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico; (L.H.-I.); (B.U.-L.)
| | - Aaron Barraza
- CONAHCYT-Centro de Investigaciones Biológicas del Noreste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico;
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
11
|
Inada N. Regulation of heterochromatin organization in plants. JOURNAL OF PLANT RESEARCH 2024; 137:685-693. [PMID: 38914831 DOI: 10.1007/s10265-024-01550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Osaka, Japan.
| |
Collapse
|
12
|
Marquez-Molins J, Cheng J, Corell-Sierra J, Juarez-Gonzalez VT, Villalba-Bermell P, Annacondia ML, Gomez G, Martinez G. Hop stunt viroid infection induces heterochromatin reorganization. THE NEW PHYTOLOGIST 2024; 243:2351-2367. [PMID: 39030826 DOI: 10.1111/nph.19986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Jinping Cheng
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
13
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
14
|
Muñoz-Díaz E, Fuenzalida-Valdivia I, Darrière T, de Bures A, Blanco-Herrera F, Rompais M, Carapito C, Sáez-Vásquez J. Proteomic profiling of Arabidopsis nuclei reveals distinct protein accumulation kinetics upon heat stress. Sci Rep 2024; 14:18914. [PMID: 39143125 PMCID: PMC11324732 DOI: 10.1038/s41598-024-65558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Heat stress (HS) impacts the nuclear proteome and, subsequently, protein activities in different nuclear compartments. In Arabidopsis thaliana, a short exposure to 37 °C leads to loss of the standard tripartite architecture of the nucleolus, the most prominent nuclear substructure, and, consequently, affects the assembly of ribosomes. Here, we report a quantitative label-free LC‒MS/MS (Liquid Chromatography coupled to tandem Mass Spectrometry) analysis to determine the nuclear proteome of Arabidopsis at 22 °C, HS (37 °C for 4 and 24 h), and a recovery phase. This analysis identified ten distinct groups of proteins based on relative abundance changes in the nucleus before, during and after HS: Early, Late, Transient, Early Persistent, Late Persistent, Recovery, Early-Like, Late-Like, Transient-Like and Continuous Groups (EG, LG, TG, EPG, LPG, RG, ELG, LLG, TLG and CG, respectively). Interestingly, the RNA polymerase I subunit NRPA3 and other main nucleolar proteins, including NUCLEOLIN 1 and FIBRILLARIN 1 and 2, were detected in RG and CG, suggesting that plants require increased nucleolar activity and likely ribosome assembly to restore protein synthesis after HS.
Collapse
Affiliation(s)
- E Muñoz-Díaz
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - I Fuenzalida-Valdivia
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - T Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - A de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - F Blanco-Herrera
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - J Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France.
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
15
|
Plskova Z, Van Breusegem F, Kerchev P. Redox regulation of chromatin remodelling in plants. PLANT, CELL & ENVIRONMENT 2024; 47:2780-2792. [PMID: 38311877 DOI: 10.1111/pce.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.
Collapse
Affiliation(s)
- Zuzana Plskova
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Ghent, Belgium
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
16
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
17
|
Bártová E. Epigenetic and gene therapy in human and veterinary medicine. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae006. [PMID: 38751572 PMCID: PMC11095531 DOI: 10.1093/eep/dvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Gene therapy is a focus of interest in both human and veterinary medicine, especially in recent years due to the potential applications of CRISPR/Cas9 technology. Another relatively new approach is that of epigenetic therapy, which involves an intervention based on epigenetic marks, including DNA methylation, histone post-translational modifications, and post-transcription modifications of distinct RNAs. The epigenome results from enzymatic reactions, which regulate gene expression without altering DNA sequences. In contrast to conventional CRISP/Cas9 techniques, the recently established methodology of epigenetic editing mediated by the CRISPR/dCas9 system is designed to target specific genes without causing DNA breaks. Both natural epigenetic processes and epigenetic editing regulate gene expression and thereby contribute to maintaining the balance between physiological functions and pathophysiological states. From this perspective, knowledge of specific epigenetic marks has immense potential in both human and veterinary medicine. For instance, the use of epigenetic drugs (chemical compounds with therapeutic potential affecting the epigenome) seems to be promising for the treatment of cancer, metabolic, and infectious diseases. Also, there is evidence that an epigenetic diet (nutrition-like factors affecting epigenome) should be considered as part of a healthy lifestyle and could contribute to the prevention of pathophysiological processes. In summary, epigenetic-based approaches in human and veterinary medicine have increasing significance in targeting aberrant gene expression associated with various diseases. In this case, CRISPR/dCas9, epigenetic targeting, and some epigenetic nutrition factors could contribute to reversing an abnormal epigenetic landscape to a healthy physiological state.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 612 00, the Czech Republic
| |
Collapse
|
18
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
19
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
20
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
21
|
Torres JR, Botto JF, Sanchez DH. Canonical transcriptional gene silencing may contribute to long-term heat response and recovery through MOM1. PLANT, CELL & ENVIRONMENT 2024; 47:372-382. [PMID: 37712454 DOI: 10.1111/pce.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Plant canonical transcriptional gene silencing (TGS) is involved in epigenetic mechanisms that mediate genomic imprinting and the suppression of transposable elements (TEs). It has been recognised that long-term heat disrupts epigenetic silencing, with the ensuing activation of TEs. However, the physiological involvement of the TGS machinery under prolonged high temperatures has not yet been established. Here, we performed non-lethal extended periodic heat stress and recovery treatments on Arabidopsis thaliana lines mutated on key TGS factors, analysing transcriptomic changes of coding-protein genes and TEs. Plants bearing MET1, DRM2 and CMT3, and MOM1 mutated alleles showed novel transcriptional properties compatible with functionalities concerning the induction/repression of partially shared or private heat-triggered transcriptome networks. Certain observations supported the idea that some responses are based on thermal de-silencing. TEs transcriptional activation uncovered the interaction with specific epigenetic layers, which may play dedicated suppressing roles under determinate physiological conditions such as heat. Furthermore, physiological experimentation suggested that MOM1 is required to resume growth after stress. Our data thus provide initial evidence that at least one canonical TGS factor may contribute to plant acclimation and recovery from non-lethal long-term heat despite the stress-induced epigenetic disturbance.
Collapse
Affiliation(s)
- José Roberto Torres
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Contreras-Garrido A, Galanti D, Movilli A, Becker C, Bossdorf O, Drost HG, Weigel D. Transposon dynamics in the emerging oilseed crop Thlaspi arvense. PLoS Genet 2024; 20:e1011141. [PMID: 38295109 PMCID: PMC10881000 DOI: 10.1371/journal.pgen.1011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/21/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Genome evolution is partly driven by the mobility of transposable elements (TEs) which often leads to deleterious effects, but their activity can also facilitate genetic novelty and catalyze local adaptation. We explored how the intraspecific diversity of TE polymorphisms might contribute to the broad geographic success and adaptive capacity of the emerging oil crop Thlaspi arvense (field pennycress). We classified the TE inventory based on a high-quality genome assembly, estimated the age of retrotransposon TE families and comprehensively assessed their mobilization potential. A survey of 280 accessions from 12 regions across the Northern hemisphere allowed us to quantify over 90,000 TE insertion polymorphisms (TIPs). Their distribution mirrored the genetic differentiation as measured by single nucleotide polymorphisms (SNPs). The number and types of mobile TE families vary substantially across populations, but there are also shared patterns common to all accessions. Ty3/Athila elements are the main drivers of TE diversity in T. arvense populations, while a single Ty1/Alesia lineage might be particularly important for transcriptome divergence. The number of retrotransposon TIPs is associated with variation at genes related to epigenetic regulation, including an apparent knockout mutation in BROMODOMAIN AND ATPase DOMAIN-CONTAINING PROTEIN 1 (BRAT1), while DNA transposons are associated with variation at the HSP19 heat shock protein gene. We propose that the high rate of mobilization activity can be harnessed for targeted gene expression diversification, which may ultimately present a toolbox for the potential use of transposition in breeding and domestication of T. arvense.
Collapse
Affiliation(s)
| | - Dario Galanti
- Plant Evolutionary Ecology, University of Tübingen, Tübingen, Germany
| | - Andrea Movilli
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Max Planck Institute for Biology Tübingen,Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Rodrigues MGF, Nakanishi ES, Soutello RVG, Diniz FONH. Global methylation in 'Valencia' orange seedlings associated with rootstocks and Huanglongbing. BRAZ J BIOL 2023; 83:e277679. [PMID: 38126644 DOI: 10.1590/1519-6984.277679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Citrus farming is one of the main activities that contributed to the Brazilian trade balance, with citrus seedling being the most important input in the formation of orchards to guarantee high productivity and fruit quality, which fundamentally depends on the chosen genetics. The present study aimed to analyze the existence of epigenetic variability in 'Valencia' orange plants on rootstocks, associated or not with HLB, through the quantification of the global methylation of its genome, in order to support works on genetic improvement and crop production. For this purpose, this work was carried out in greenhouse in a completely randomized experimental design, with 5 treatments and 6 replicates per treatment, each seedling being considered a replicate, namely: T1 = "Valencia" orange grafted onto "Rangpur" lemon, inoculated with HLB; T2 = "Valencia" orange grafted onto "Swingle" citrumelo, inoculated with HLB; T3 = "Valencia" orange grafted onto "Rangpur" lemon, without HLB inoculation ; T4 = "Valencia" orange grafted onto "Swingle" citrumelo, without HLB inoculation ; T5 = "Valencia" orange in free standing. The DNA was extracted from leaves and the ELISA test (Enzyme-Linked Immunosorbent Assay) was carried out, based on the use of receptors sensitive to 5-mC., to measure the relative quantification of global methylation between genomic orange DNAs . Since the control treatment (T5) consists of "Valencia" orange in free standing, it could be inferred that both the normal grafting technique in the seedling formation process and the inoculation of buds infected with HLB are external factors capable of changing the methylation pattern in the evaluated plants, including the DNA demethylation process, causing an adaptive response in association with the expression of genes previously silenced by genome methylation.
Collapse
Affiliation(s)
- M G F Rodrigues
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Departamento de Produção Vegetal, Dracena, SP, Brasil
| | - E S Nakanishi
- Universidade Estadual Paulista - UNESP, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - R V G Soutello
- Universidade Estadual Paulista - UNESP, Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas - FCAT, Dracena, SP, Brasil
| | - F O N H Diniz
- Universidade Estadual Paulista - UNESP, Faculdade de Engenharia de Ilha Solteira - FEIS, Ilha Solteira, SP, Brasil
| |
Collapse
|
24
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
25
|
Kovalchuk I. Role of Epigenetic Factors in Response to Stress and Establishment of Somatic Memory of Stress Exposure in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3667. [PMID: 37960024 PMCID: PMC10648063 DOI: 10.3390/plants12213667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
26
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Chu J, Zhang X, Cho J. Visualization of synthetic retroelement integration reveals determinants of permissivity to retrotransposition. PLANT PHYSIOLOGY 2023; 193:915-918. [PMID: 37403199 DOI: 10.1093/plphys/kiad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Real-time visualization of retrotransposon mobilization in Arabidopsis reveals that the DNA damage response pathways are involved in the retrotranspositional process.
Collapse
Affiliation(s)
- Jie Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xiaorui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
- CAS-JIC Centre for Excellence in Plant and Microbial Science, Shanghai 200032, China
| |
Collapse
|
28
|
Johann To Berens P, Golebiewska K, Peter J, Staerck S, Molinier J. UV-B-induced modulation of constitutive heterochromatin content in Arabidopsis thaliana. Photochem Photobiol Sci 2023; 22:2153-2166. [PMID: 37225911 DOI: 10.1007/s43630-023-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Philippe Johann To Berens
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Kinga Golebiewska
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jackson Peter
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Sébastien Staerck
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
29
|
Wang N, Wang Z, Tzourtzou S, Wang X, Bi X, Leimeister J, Xu L, Sakamoto T, Matsunaga S, Schaller A, Jiang H, Liu C. The plant nuclear lamina disassembles to regulate genome folding in stress conditions. NATURE PLANTS 2023:10.1038/s41477-023-01457-2. [PMID: 37400513 PMCID: PMC10356608 DOI: 10.1038/s41477-023-01457-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
The nuclear lamina is a complex network of nuclear lamins and lamin-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In Arabidopsis thaliana, nuclear matrix constituent proteins (NMCPs) are essential components of the nuclear lamina and are required to maintain the structural integrity of the nucleus and specific perinuclear chromatin anchoring. At the nuclear periphery, suppressed chromatin overlapping with repetitive sequences and inactive protein-coding genes are enriched. At a chromosomal level, plant chromatin organization in interphase nuclei is flexible and responds to various developmental cues and environmental stimuli. On the basis of these observations in Arabidopsis, and given the role of NMCP genes (CRWN1 and CRWN4) in organizing chromatin positioning at the nuclear periphery, one can expect considerable changes in chromatin-nuclear lamina interactions when the global chromatin organization patterns are being altered in plants. Here we report the highly flexible nature of the plant nuclear lamina, which disassembles substantially under various stress conditions. Focusing on heat stress, we reveal that chromatin domains, initially tethered to the nuclear envelope, remain largely associated with CRWN1 and become scattered in the inner nuclear space. By investigating the three-dimensional chromatin contact network, we further reveal that CRWN1 proteins play a structural role in shaping the changes in genome folding under heat stress. Also, CRWN1 acts as a negative transcriptional coregulator to modulate the shift of the plant transcriptome profile in response to heat stress.
Collapse
Affiliation(s)
- Nan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Zhidan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sofia Tzourtzou
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Wang
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Xiuli Bi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Julia Leimeister
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Linhao Xu
- Applied Chromosome Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hua Jiang
- Applied Chromosome Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
30
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
31
|
Arvas YE, Marakli S, Kaya Y, Kalendar R. The power of retrotransposons in high-throughput genotyping and sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1174339. [PMID: 37180380 PMCID: PMC10167742 DOI: 10.3389/fpls.2023.1174339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The use of molecular markers has become an essential part of molecular genetics through their application in numerous fields, which includes identification of genes associated with targeted traits, operation of backcrossing programs, modern plant breeding, genetic characterization, and marker-assisted selection. Transposable elements are a core component of all eukaryotic genomes, making them suitable as molecular markers. Most of the large plant genomes consist primarily of transposable elements; variations in their abundance contribute to most of the variation in genome size. Retrotransposons are widely present throughout plant genomes, and replicative transposition enables them to insert into the genome without removing the original elements. Various applications of molecular markers have been developed that exploit the fact that these genetic elements are present everywhere and their ability to stably integrate into dispersed chromosomal localities that are polymorphic within a species. The ongoing development of molecular marker technologies is directly related to the deployment of high-throughput genotype sequencing platforms, and this research is of considerable significance. In this review, the practical application to molecular markers, which is a use of technology of interspersed repeats in the plant genome were examined using genomic sources from the past to the present. Prospects and possibilities are also presented.
Collapse
Affiliation(s)
- Yunus Emre Arvas
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Sevgi Marakli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Türkiye
| | - Yılmaz Kaya
- Agricultural Biotechnology Department, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Yang F, Sun Y, Du X, Chu Z, Zhong X, Chen X. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. THE NEW PHYTOLOGIST 2023; 238:252-269. [PMID: 36631970 DOI: 10.1111/nph.18729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.
Collapse
Affiliation(s)
- Fangfang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yingnan Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaoxuan Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xuehua Zhong
- Department of Biology, Washington University, St Louis, MO, 63130, USA
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
33
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
34
|
Colzi I, Gonnelli C, Vergata C, Golia G, Coppi A, Castellani MB, Giovino A, Buti M, Sabato T, Capuana M, Aprile A, De Bellis L, Cicatelli A, Guarino F, Castiglione S, Ioannou AG, Fotopoulos V, Martinelli F. Transgenerational effects of chromium stress at the phenotypic and molecular level in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130092. [PMID: 36303345 DOI: 10.1016/j.jhazmat.2022.130092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this study, we describe the results obtained in a study of the transgenerational phenotypic effects of chromium (Cr) stress on the model plant species Arabidopsis thaliana. The F1 generation derived from parents grown under chronic and medium chronic stress showed significantly higher levels of the maximal effective concentration (EC50) compared with F1 plants generated from unstressed parents. Moreover, F1 plants from Cr-stressed parents showed a higher germination rate when grown in the presence of Cr. F1 plants derived from parents cultivated under chronic Cr stress displayed reduced hydrogen peroxide levels under Cr stress compared to controls. At lower Cr stress levels, F1 plants were observed to activate promptly more genes involved in Cr stress responses than F0 plants, implying a memory effect linked to transgenerational priming. At higher Cr levels, and at later stages, F1 plants modulated significantly fewer genes than F0 plants, implying a memory effect leading to Cr stress adaptation. Several bHLH transcription factors were induced by Cr stress in F1 but not in F0 plants, including bHLH100, ORG2 and ORG3. F1 plants optimized gene expression towards pathways linked to iron starvation response. A model of the transcriptional regulation of transgenerational memory to Cr stress is presented here, and could be applied for other heavy metal stresses.
Collapse
Affiliation(s)
- Ilaria Colzi
- Department of Biology, University of Florence, Italy.
| | | | | | | | - Andrea Coppi
- Department of Biology, University of Florence, Italy.
| | | | - Antonio Giovino
- CREA Consiglio per la ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Difesa e Certificazione, Bagheria, Italy.
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy.
| | | | - Maurizio Capuana
- Institute of Biosciences and Bioresources, National Research Council, Italy.
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology, University of Salerno, Italy.
| | | | | | - Andreas G Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | | |
Collapse
|
35
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
36
|
Carotti E, Carducci F, Canapa A, Barucca M, Biscotti MA. Transposable Element Tissue-Specific Response to Temperature Stress in the Stenothermal Fish Puntius tetrazona. Animals (Basel) 2022; 13:ani13010001. [PMID: 36611611 PMCID: PMC9817673 DOI: 10.3390/ani13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Ray-finned fish represent a very interesting group of vertebrates comprising a variety of organisms living in different aquatic environments worldwide. In the case of stenothermal fish, thermal fluctuations are poorly tolerated, thus ambient temperature represents a critical factor. In this paper, we considered the tiger barb Puntius tetrazona, a freshwater fish belonging to the family Cyprinidae, living at 21-28 °C. We analyzed the available RNA-Seq data obtained from specimens exposed at 27 °C and 13 °C to investigate the transcriptional activity of transposable elements (TEs) and genes encoding for proteins involved in their silencing in the brain, gill, and liver. TEs are one of the tools generating genetic variability that underlies biological evolution, useful for organisms to adapt to environmental changes. Our findings highlighted a different response of TEs in the three analyzed tissues. While in the brain and gill, no variation in TE transcriptional activity was observed, a remarkable increase at 13 °C was recorded in the liver. Moreover, the transcriptional analysis of genes encoding proteins involved in TE silencing such as heterochromatin formation, the NuRD complex, and the RISC complex (e.g., AGO and GW182 proteins) highlighted their activity in the hepatic tissue. Overall, our findings suggested that this tissue is a target organ for this kind of stress, since TE activation might regulate the expression of stress-induced genes, leading to a better response of the organism to temperature changes. Therefore, this view corroborates once again the idea of a potential role of TEs in organism rapid adaptation, hence representing a promising molecular tool for species resilience.
Collapse
|
37
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
38
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Ramakrishnan M, Zhang Z, Mullasseri S, Kalendar R, Ahmad Z, Sharma A, Liu G, Zhou M, Wei Q. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1075279. [PMID: 36570899 PMCID: PMC9772030 DOI: 10.3389/fpls.2022.1075279] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 05/28/2023]
Abstract
Understanding plant stress memory under extreme temperatures such as cold and heat could contribute to plant development. Plants employ different types of stress memories, such as somatic, intergenerational and transgenerational, regulated by epigenetic changes such as DNA and histone modifications and microRNAs (miRNA), playing a key role in gene regulation from early development to maturity. In most cases, cold and heat stresses result in short-term epigenetic modifications that can return to baseline modification levels after stress cessation. Nevertheless, some of the modifications may be stable and passed on as stress memory, potentially allowing them to be inherited across generations, whereas some of the modifications are reactivated during sexual reproduction or embryogenesis. Several stress-related genes are involved in stress memory inheritance by turning on and off transcription profiles and epigenetic changes. Vernalization is the best example of somatic stress memory. Changes in the chromatin structure of the Flowering Locus C (FLC) gene, a MADS-box transcription factor (TF), maintain cold stress memory during mitosis. FLC expression suppresses flowering at high levels during winter; and during vernalization, B3 TFs, cold memory cis-acting element and polycomb repressive complex 1 and 2 (PRC1 and 2) silence FLC activation. In contrast, the repression of SQUAMOSA promoter-binding protein-like (SPL) TF and the activation of Heat Shock TF (HSFA2) are required for heat stress memory. However, it is still unclear how stress memory is inherited by offspring, and the integrated view of the regulatory mechanisms of stress memory and mitotic and meiotic heritable changes in plants is still scarce. Thus, in this review, we focus on the epigenetic regulation of stress memory and discuss the application of new technologies in developing epigenetic modifications to improve stress memory.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
41
|
Wang Y, Liu Y, Qu S, Liang W, Sun L, Ci D, Ren Z, Fan LM, Qian W. Nitrogen starvation induces genome-wide activation of transposable elements in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2374-2384. [PMID: 36178606 DOI: 10.1111/jipb.13376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) availability is a major limiting factor for plant growth and agricultural productivity. Although the gene regulation network in response to N starvation has been extensively studied, it remains unknown whether N starvation has an impact on the activity of transposable elements (TEs). Here, we report that TEs can be transcriptionally activated in Arabidopsis under N starvation conditions. Through genetic screening of idm1-14 suppressors, we cloned GLU1, which encodes a glutamate synthase that catalyzes the synthesis of glutamate in the primary N assimilation pathway. We found that glutamate synthase 1 (GLU1) and its functional homologs GLU2 and glutamate transport 1 (GLT1) are redundantly required for TE silencing, suggesting that N metabolism can regulate TE activity. Transcriptome and methylome analyses revealed that N starvation results in genome-wide TE activation without inducing obvious alteration of DNA methylation. Genetic analysis indicated that N starvation-induced TE activation is also independent of other well-established epigenetic mechanisms, including histone methylation and heterochromatin decondensation. Our results provide new insights into the regulation of TE activity under stressful environments in planta.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shaofeng Qu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Ci
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| |
Collapse
|
42
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
43
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
44
|
Johann to Berens P, Schivre G, Theune M, Peter J, Sall SO, Mutterer J, Barneche F, Bourbousse C, Molinier J. Advanced Image Analysis Methods for Automated Segmentation of Subnuclear Chromatin Domains. EPIGENOMES 2022; 6:epigenomes6040034. [PMID: 36278680 PMCID: PMC9624336 DOI: 10.3390/epigenomes6040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (iCRAQ) and one based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.
Collapse
Affiliation(s)
| | - Geoffrey Schivre
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Inserm, Université PSL, 75230 Paris, France
- Université Paris-Saclay, 91190 Orsay, France
| | - Marius Theune
- FB 10 / Molekulare Pflanzenphysiologie, Bioenergetik in Photoautotrophen, Universität Kassel, 34127 Kassel, Germany
| | - Jackson Peter
- Institut de Biologie Moléculaire des Plantes du CNRS, 67000 Strasbourg, France
| | | | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes du CNRS, 67000 Strasbourg, France
| | - Fredy Barneche
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Inserm, Université PSL, 75230 Paris, France
| | - Clara Bourbousse
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Inserm, Université PSL, 75230 Paris, France
- Correspondence: (C.B.); (J.M.)
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS, 67000 Strasbourg, France
- Correspondence: (C.B.); (J.M.)
| |
Collapse
|
45
|
Peng H, Mirouze M, Bucher E. Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102263. [PMID: 35872391 DOI: 10.1016/j.pbi.2022.102263] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years, most plant genomic studies were focused on nuclear chromosomes. Extrachromosomal circular DNA (eccDNA) has largely been neglected for decades since its discovery in 1965. While initial research showed that eccDNAs can originate from highly repetitive sequences, recent findings show that many regions of the genome can contribute to the eccDNA pool. Currently, the biological functions of eccDNAs, if any, are a mystery but recent studies have indicated that they can be regulated by different genomic loci and contribute to stress response and adaptation. In this review, we outline current relevant technological developments facilitating eccDNA identification and the latest discoveries about eccDNAs in plants. Finally, we explore the probable functions and future research directions that could be undertaken with respect to different eccDNA sources.
Collapse
Affiliation(s)
- Haoran Peng
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland; Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), EMR269 MANGO, Université de Perpignan, 66860 Perpignan, France; Laboratory of Plant Genome and Development, Université de Perpignan, 66860, Perpignan, France.
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland.
| |
Collapse
|
46
|
Bvindi C, Lee S, Tang L, Mickelbart MV, Li Y, Mengiste T. Improved pathogen and stress tolerance in tomato mutants of SET domain histone 3 lysine methyltransferases. THE NEW PHYTOLOGIST 2022; 235:1957-1976. [PMID: 35633111 DOI: 10.1111/nph.18277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood. We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses. SDG33 and SDG34 gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli. The double but not the single mutants show resistance to the fungal pathogen Botrytis cinerea. Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought. Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations in SDG33 and SDG34 are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade-offs, through modification of histone epigenetic marks.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Liang Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael V Mickelbart
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
48
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
49
|
Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics 2022; 2022:1092894. [PMID: 35747076 PMCID: PMC9213152 DOI: 10.1155/2022/1092894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Plants being sessile are always exposed to various environmental stresses, and to overcome these stresses, modifications at the epigenetic level can prove vital for their long-term survival. Epigenomics refers to the large-scale study of epigenetic marks on the genome, which include covalent modifications of histone tails (acetylation, methylation, phosphorylation, ubiquitination, and the small RNA machinery). Studies based on epigenetics have evolved over the years especially in understanding the mechanisms at transcriptional and posttranscriptional levels in plants against various environmental stimuli. Epigenomic changes in plants through induced methylation of specific genes that lead to changes in their expression can help to overcome various stress conditions. Recent studies suggested that epigenomics has a significant potential for crop improvement in plants. By the induction and modulation of various cellular processes like DNA methylation, histone modification, and biogenesis of noncoding RNAs, the plant genome can be activated which can help in achieving a quicker response against various plant stresses. Epigenetic modifications in plants allow them to adjust under varied environmental stresses by modulating their phenotypic plasticity and at the same time ensure the quality and yield of crops. The plasticity of the epigenome helps to adapt the plants during pre- and postdevelopmental processes. The variation in DNA methylation in different organisms exhibits variable phenotypic responses. The epigenetic changes also occur sequentially in the genome. Various studies indicated that environmentally stimulated epimutations produce variable responses especially in differentially methylated regions (DMR) that play a major role in the management of stress conditions in plants. Besides, it has been observed that environmental stresses cause specific changes in the epigenome that are closely associated with phenotypic modifications. However, the relationship between epigenetic modifications and phenotypic plasticity is still debatable. In this review, we will be discussing the role of various factors that allow epigenetic changes to modulate phenotypic plasticity against various abiotic stress in plants.
Collapse
|
50
|
Rosenkranz RRE, Ullrich S, Löchli K, Simm S, Fragkostefanakis S. Relevance and Regulation of Alternative Splicing in Plant Heat Stress Response: Current Understanding and Future Directions. FRONTIERS IN PLANT SCIENCE 2022; 13:911277. [PMID: 35812973 PMCID: PMC9260394 DOI: 10.3389/fpls.2022.911277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a major mechanism for gene expression in eukaryotes, increasing proteome diversity but also regulating transcriptome abundance. High temperatures have a strong impact on the splicing profile of many genes and therefore AS is considered as an integral part of heat stress response. While many studies have established a detailed description of the diversity of the RNAome under heat stress in different plant species and stress regimes, little is known on the underlying mechanisms that control this temperature-sensitive process. AS is mainly regulated by the activity of splicing regulators. Changes in the abundance of these proteins through transcription and AS, post-translational modifications and interactions with exonic and intronic cis-elements and core elements of the spliceosomes modulate the outcome of pre-mRNA splicing. As a major part of pre-mRNAs are spliced co-transcriptionally, the chromatin environment along with the RNA polymerase II elongation play a major role in the regulation of pre-mRNA splicing under heat stress conditions. Despite its importance, our understanding on the regulation of heat stress sensitive AS in plants is scarce. In this review, we summarize the current status of knowledge on the regulation of AS in plants under heat stress conditions. We discuss possible implications of different pathways based on results from non-plant systems to provide a perspective for researchers who aim to elucidate the molecular basis of AS under high temperatures.
Collapse
Affiliation(s)
| | - Sarah Ullrich
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|