1
|
Liang JH, Wu ZQ, Zhang YX, Yang YB, Wang SY, Gai MY, Wang YW, Zhang XX, Xue J, Duan BH, Yang HL. Single-cell RNA sequencing of shoot apex reveals the mechanism of cyclin regulating cell division via auxin signaling pathway in Populus alba. FRONTIERS IN PLANT SCIENCE 2025; 16:1555388. [PMID: 40104035 PMCID: PMC11913855 DOI: 10.3389/fpls.2025.1555388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
The shoot apex of Populus alba primarily comprises the shoot apical meristem, axillary meristem, leaf primordium, and young leaves, all of which exhibit high division potential. The single-cell RNA sequencing of the apical buds of P. alba can provide deeper insights into the processes of cell proliferation and differentiation, including the key genes and signaling pathways that regulate these processes. Scanning electron microscopy was used to examine the structure of the shoot apex, followed by single-cell sequencing analysis. A total of 29,011 cells were obtained from two biological replicates. Dimensionality reduction and clustering identified 17 distinct cell clusters. Pseudotime analysis revealed that shoot apex meristem cells and mesophyll cells emerged first, followed by the differentiation and maturation of vascular and intercalary meristem cells over time. Trichome differentiation occurred last, whereas epidermal cell differentiation persisted throughout development. At the single-cell level, auxin signaling pathway genes potentially involved in leaf tissue development were identified, along with an analysis of the expression specificity of CYC and CDK genes across mesophyll, epidermis, vascular, and shoot apex meristem tissues. These findings facilitate the elucidation of the molecular regulatory mechanisms by which CYC and CDK genes influence leaf development in P. alba.
Collapse
Affiliation(s)
- Jing-Hui Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao-Qun Wu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue-Xuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ye-Bo Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Yi Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meng-Yu Gai
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Wen Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiu-Xing Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bo-Hao Duan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
De Lepeleire J, Mishra RC, Verstraete J, Pedroza Garcia JA, Stove C, De Veylder L, Van Der Straeten D. Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2025; 115:31. [PMID: 39946030 PMCID: PMC11825618 DOI: 10.1007/s11103-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
Folates are vital one carbon donors and acceptors for a whole range of key biochemical reactions, including the biosynthesis of DNA building blocks. Plants use one carbon metabolism as a jack of all trades in their growth and development. Depletion of folates impedes root growth in Arabidopsis thaliana, but the mechanistic basis behind this function is still obscure. A global transcriptomic study hinted that folate depletion may cause misregulation of cell cycle progression. However, investigations on a direct connection thereof are scarce. We confirmed the effect of methotrexate (MTX), a folate biosynthesis inhibitor, on the expression of cell cycle genes. Subsequently, we determined the effect of MTX on root morphology and cell cycle progression through phase-specific cell cycle reporter analyses. Our study reveals that folate depletion affects the expression of cell cycle regulatory genes in roots, thereby suppressing cell cycle progression. We confirmed, through DNA labelling by EdU, that MTX treatment leads to arrest in the S phase of meristematic cells, likely due to the lack of DNA precursors. Further, we noted an accumulation of the A-type CYCA3;1 cyclin at the root tip, suggesting a possible link with the observed loss of apical dominance. Overall, our study shows that the restricted cell division and cell cycle progression is one of the reasons behind the loss of primary root growth upon folate depletion.
Collapse
Affiliation(s)
- Jolien De Lepeleire
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Ratnesh Chandra Mishra
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jose Antonio Pedroza Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| |
Collapse
|
3
|
Zamora-Zaragoza J, Klap K, Sánchez-Pérez J, Vielle-Calzada JP, Willemsen V, Scheres B. Developmental cues are encoded by the combinatorial phosphorylation of Arabidopsis RETINOBLASTOMA-RELATED protein RBR1. EMBO J 2024; 43:6656-6678. [PMID: 39468281 PMCID: PMC11649800 DOI: 10.1038/s44318-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
RETINOBLASTOMA-RELATED (RBR) proteins orchestrate cell division, differentiation, and survival in response to environmental and developmental cues through protein-protein interactions that are governed by multisite phosphorylation. Here we explore, using a large collection of transgenic RBR phosphovariants to complement protein function in Arabidopsis thaliana, whether differences in the number and position of RBR phosphorylation events cause a diversification of the protein's function. While the number of point mutations influence phenotypic strength, phosphosites contribute differentially to distinct phenotypes. RBR pocket domain mutations associate primarily with cell proliferation, while mutations in the C-region are linked to stem cell maintenance. Both phospho-mimetic and a phospho-defective variants promote cell death, suggesting that distinct mechanisms can lead to similar cell fates. We observed combinatorial effects between phosphorylated T406 and phosphosites in different protein domains, suggesting that specific, additive, and combinatorial phosphorylation events fine-tune RBR function. Suppression of dominant phospho-defective RBR phenotypes with a mutation that inhibits RBR interacting with LXCXE motifs, and an exhaustive protein-protein interaction assay, not only revealed the importance of DREAM complex members in phosphorylation-regulated RBR function but also pointed to phosphorylation-independent RBR roles in environmental responses. Thus, combinatorial phosphorylation defined and separated developmental, but not environmental, functions of RBR.
Collapse
Affiliation(s)
- Jorge Zamora-Zaragoza
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jaheli Sánchez-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands.
| |
Collapse
|
4
|
Zhang P, Wang Y, Wang Z, Di S, Zhang X, Ma D, Bao Z, Ma F. Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6423-6440. [PMID: 39127875 DOI: 10.1093/jxb/erae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shengqiang Di
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xinyi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
5
|
Yalamanchili K, Vermeer JEM, Scheres B, Willemsen V. Shaping root architecture: towards understanding the mechanisms involved in lateral root development. Biol Direct 2024; 19:87. [PMID: 39358783 PMCID: PMC11447941 DOI: 10.1186/s13062-024-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Collapse
Affiliation(s)
- Kavya Yalamanchili
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Jiang Z, Wang X, Zhou Z, Peng L, Lin X, Luo X, Song Y, Ning H, Gan C, He X, Zhu C, Ouyang L, Zhou D, Cai Y, Xu J, He H, Liu Y. Functional characterization of D-type cyclins involved in cell division in rice. BMC PLANT BIOLOGY 2024; 24:157. [PMID: 38424498 PMCID: PMC10905880 DOI: 10.1186/s12870-024-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.
Collapse
Affiliation(s)
- Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xin Wang
- Jiangxi Province Forest Resources Protection Center, Nanchang, 330008, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaowei Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huaying Ning
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yantong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Braat J, Havaux M. The SIAMESE family of cell-cycle inhibitors in the response of plants to environmental stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1362460. [PMID: 38434440 PMCID: PMC10904545 DOI: 10.3389/fpls.2024.1362460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Environmental abiotic constraints are known to reduce plant growth. This effect is largely due to the inhibition of cell division in the leaf and root meristems caused by perturbations of the cell cycle machinery. Progression of the cell cycle is regulated by CDK kinases whose phosphorylation activities are dependent on cyclin proteins. Recent results have emphasized the role of inhibitors of the cyclin-CDK complexes in the impairment of the cell cycle and the resulting growth inhibition under environmental constraints. Those cyclin-CDK inhibitors (CKIs) include the KRP and SIAMESE families of proteins. This review presents the current knowledge on how CKIs respond to environmental changes and on the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in the tolerance of plants to abiotic stresses. The SMRs could play a central role in adjusting the balance between growth and stress defenses in plants exposed to environmental stresses.
Collapse
Affiliation(s)
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|
8
|
Ye S, Wang S, Chan R, Cao L, Wang H. Identification of short protein-destabilizing sequences in Arabidopsis cyclin-dependent kinase inhibitors, ICKs. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:772-788. [PMID: 37862584 DOI: 10.1093/jxb/erad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Plants have a family of cyclin-dependent kinase (CDK) inhibitors called interactors/inhibitors of CDK (ICKs) or Kip-related proteins (KRPs). ICK proteins have important functions in cell proliferation, endoreduplication, plant growth, and reproductive development, and their functions depend on the protein levels. However, understanding of how ICK protein levels are regulated is very limited. We fused Arabidopsis ICK sequences to green fluorescent protein (GFP) and determined their effects on the fusion proteins in plants, yeast, and Escherichia coli. The N-terminal regions of ICKs drastically reduced GFP fusion protein levels in Arabidopsis plants. A number of short sequences of 10-20 residues were found to decrease GFP fusion protein levels when fused at the N-terminus or C-terminus. Three of the four short sequences from ICK3 showed a similar function in yeast. Intriguingly, three short sequences from ICK1 and ICK3 caused the degradation of the fusion proteins in E. coli. In addition, computational analyses showed that ICK proteins were mostly disordered and unstructured except for the conserved C-terminal region, suggesting that ICKs are intrinsically disordered proteins. This study has identified a number of short protein-destabilizing sequences, and evidence suggests that some of them may cause protein degradation through structural disorder and instability.
Collapse
Affiliation(s)
- Shengjian Ye
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ron Chan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
9
|
Tabusam J, Liu M, Luo L, Zulfiqar S, Shen S, Ma W, Zhao J. Physiological Control and Genetic Basis of Leaf Curvature and Heading in Brassica rapa L. J Adv Res 2023; 53:49-59. [PMID: 36581197 PMCID: PMC10658314 DOI: 10.1016/j.jare.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.
Collapse
Affiliation(s)
- Javaria Tabusam
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Sumer Zulfiqar
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| |
Collapse
|
10
|
Xue B, Zhang C, Wang Y, Liu L, Wang W, Schiefelbein J, Yu F, An L. HECT-type ubiquitin ligase KAKTUS mediates the proteasome-dependent degradation of cyclin-dependent kinase inhibitor KRP2 during trichome morphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:871-886. [PMID: 37565606 DOI: 10.1111/tpj.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
SUMMARYTrichome development is a fascinating model to elaborate the plant cell differentiation and growth processes. A wealth of information has pointed to the contributions of the components associated with cell cycle control and ubiquitin/26S proteasome system (UPS) to trichome morphogenesis, but how these two pathways are connected remains obscure. Here, we report that HECT‐type ubiquitin ligase KAKTUS (KAK) targets the cyclin‐dependent kinase (CDK) inhibitor KRP2 (for kip‐related protein 2) for proteasome‐dependent degradation during trichome branching in Arabidopsis. We show that over‐expression of KRP2 promotes trichome branching and endoreduplication which is similar to kak loss of function mutants. KAK directly interacts with KRP2 and mediates KRP2 degradation. Mutation of KAK results in the accumulation of steady‐state KRP2. Consistently, in kak pKRP2:KRP2‐GFP plants, the trichome branching is further induced compared with the single mutant. Taken together, our studies bridge the cell cycle control and UPS pathways during trichome development and underscore the importance of post‐translational control in epidermal differentiation.
Collapse
Affiliation(s)
- Baoyong Xue
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Romero-Sánchez DI, Vázquez-Santana S, Alonso-Alvarez RA, Vázquez-Ramos JM, Lara-Núñez A. Tissue and subcellular localization of CycD2 and KRPs are dissimilarly distributed by glucose and sucrose during early maize germination. Acta Histochem 2023; 125:152092. [PMID: 37717384 DOI: 10.1016/j.acthis.2023.152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
In maize, immunoprecipitation assays have shown that CycD2;2 interacts with KRPs. However, evidence on CycD2;2 or KRPs localization and their possible interaction in specific tissues is lacking and its physiological consequence is still unknown. This work explores the spatiotemporal presence of CyclinD2s and KRPs, cell cycle regulators, during maize seed germination (18 and 36 h) after soaking on glucose or sucrose (120 mM). CyclinD2s are positive actors driving proliferation; KRPs are inhibitors of the main kinase controlling proliferation (a negative signal that slows down the cell cycle). Cell cycle proteins were analyzed by immunolocalization on longitudinal sections of maize embryo axis in seven different tissues or zones (with different proliferation or differentiation potential) and in the nucleus of their cells. Results showed a prevalence of these cell cycle proteins on embryo axes from dry seeds, particularly, their accumulation in nuclei of radicle cells. The absence of sugar caused the accumulation of these regulators in different proliferating zones. CyclinD2 abundance was reduced during germination in the presence of sucrose along the embryo axis, while there was an increase at 36 h on glucose. KRP proteins showed a slight increase at 18 h and a decrease at 36 h on both sugars. There was no correlation between cell cycle regulators/DNA co-localization on both sugars. Results suggest glucose induced a specific accumulation of each cell cycle regulator depending on the proliferation zone as well as nuclear localization which may reflect the differential morphogenetic program regarding the proliferation potential in each zone, while sucrose has a mild influence on both cell cycle proteins accumulation during germination. Whenever CycD2s were present in the nucleus, KRPs were absent after treatment with either sugar and at the two imbibition times analyzed, along the different embryo axe zones.
Collapse
Affiliation(s)
- Diana I Romero-Sánchez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sonia Vázquez-Santana
- Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rafael A Alonso-Alvarez
- Dirección General de Orientación y Atención Educativa, Universidad, Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Pasternak T, Kircher S, Palme K, Pérez-Pérez JM. Regulation of early seedling establishment and root development in Arabidopsis thaliana by light and carbohydrates. PLANTA 2023; 258:76. [PMID: 37670114 PMCID: PMC10480265 DOI: 10.1007/s00425-023-04226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
MAIN CONCLUSION Root development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots. Our study shows that carbohydrate starvation during skotomorphogenesis is accompanied by compaction of nuclei in the root apical meristem, which prevents cell cycle progression and leads to irreversible root differentiation in the absence of external carbohydrates, as evidenced by the lack of DNA replication and increased numbers of nuclei with specific chromatin characteristics. In these conditions, induction of photomorphogenesis was unable to restore seedling growth, as overall root growth was compromised. The addition of carbohydrates, either locally or systemically by transferring seedlings to sugar-containing medium, led to the induction of adventitious root formation with rapid recovery of seedling growth. Conversely, transferring in vitro carbohydrate-grown seedlings from light to dark transiently promoted cell elongation and significantly reduced root meristem size, but did not primarily affect cell cycle kinetics. We show that, in the presence of sucrose, dark incubation does not affect zonation in the root apical meristem but leads to shortening of the proliferative and transition zones. Sugar starvation led to a rapid increase in lysine demethylation of histone H3 at position K9, which preceded a rapid decline in cell cycle activity and activation of cell differentiation. In conclusion, carbohydrates are required for cell cycle activity, epigenetics reprogramming and for postmitotic cell elongation and auxin-regulated response in the root apical meristem.
Collapse
Affiliation(s)
- Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Kircher
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Palme
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- ScreenSYSGmbH, Engesserstr. 4a, Freiburg, 79108 Germany
| | | |
Collapse
|
13
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Zahl B, Niño de Rivera A, Muchero W, Fuxin L, Strauss SH. GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa. HORTICULTURE RESEARCH 2023; 10:uhad125. [PMID: 37560019 PMCID: PMC10407606 DOI: 10.1093/hr/uhad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
Adventitious rooting (AR) is critical to the propagation, breeding, and genetic engineering of trees. The capacity for plants to undergo this process is highly heritable and of a polygenic nature; however, the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of AR, we performed a genome-wide association study (GWAS) using 1148 genotypes of Populus trichocarpa. GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale; to help overcome this limitation, we developed a computer vision system to measure an array of traits related to adventitious root development in poplar, including temporal measures of lateral and basal root length and area. GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power. These analyses yielded a total of 277 unique associations, suggesting that genes that control rooting include regulators of hormone signaling, cell division and structure, reactive oxygen species signaling, and other processes with known roles in root development. Numerous genes with uncharacterized functions and/or cryptic roles were also identified. These candidates provide targets for functional analysis, including physiological and epistatic analyses, to better characterize the complex polygenic regulation of AR.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Yuan Jiang
- Statistics Department, Oregon State University, 103 SW Memorial Place, Corvallis, OR, 97331, United States
| | - Bahiya Zahl
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, United States
- Bredesen Center for Interdisciplinary Research, University of Tennessee, 821 Volunteer Blvd., Knoxville, TN, 37996, United States
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace, Corvallis, OR, 97331, United States
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, United States
| |
Collapse
|
14
|
Guo B, Chen L, Dong L, Yang C, Zhang J, Geng X, Zhou L, Song L. Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development. FRONTIERS IN PLANT SCIENCE 2023; 14:1096467. [PMID: 36778678 PMCID: PMC9911667 DOI: 10.3389/fpls.2023.1096467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Kip-related proteins (KRPs), as inhibitory proteins of cyclin-dependent kinases, are involved in the growth and development of plants by regulating the activity of the CYC-CDK complex to control cell cycle progression. The KRP gene family has been identified in several plants, and several KRP proteins from Arabidopsis thaliana have been functionally characterized. However, there is little research on KRP genes in soybean, which is an economically important crop. In this study, we identified nine GmKRP genes in the Glycine max genome using HMM modeling and BLASTP searches. Protein subcellular localization and conserved motif analysis showed soybean KRP proteins located in the nucleus, and the C-terminal protein sequence was highly conserved. By investigating the expression patterns in various tissues, we found that all GmKRPs exhibited transcript abundance, while several showed tissue-specific expression patterns. By analyzing the promoter region, we found that light, low temperature, an anaerobic environment, and hormones-related cis-elements were abundant. In addition, we performed a co-expression analysis of the GmKRP gene family, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) set enrichment analysis. The co-expressing genes were mainly involved in RNA synthesis and modification and energy metabolism. Furthermore, the GmKRP2a gene, a member of the soybean KRP family, was cloned for further functional analysis. GmKRP2a is located in the nucleus and participates in root development by regulating cell cycle progression. RNA-seq results indicated that GmKRP2a is involved in cell cycle regulation through ribosome regulation, cell expansion, hormone response, stress response, and plant pathogen response pathways. To our knowledge, this is the first study to identify and characterize the KRP gene family in soybean.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Basic Experimental Teaching Center of Life Science, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoyan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Study on the interaction preference between CYCD subclass and CDK family members at the poplar genome level. Sci Rep 2022; 12:16805. [PMID: 36207355 PMCID: PMC9547009 DOI: 10.1038/s41598-022-20800-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/19/2022] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) control the progression of the cell cycle. D-type cyclin (CYCD) is generally believed to form a complex with CDK and control the G1/S transition. In plants, CYCD and CDK gene families can be divided into 6 (D1-D7) and 7 (CDKA-CDKG) subclasses, respectively. Different subclasses in the CYCD and CDK families have different numbers, structures and functions. In some heterologous woody plants, the functions of these subclass family members remain unclear. In this study, 43 CYCD and 27 CDK gene family members were identified in the allodiploid Populus tomentosa Carr. Phylogenetic analysis suggested that these CYCDs and CDKs were divided into 6 and 7 subclasses, respectively, which were the same as other species. The analysis of protein properties, gene structure, motifs, domains, cis-acting elements and tissue-specific expression of all members of these CYCDs and CDKs showed that the differences between members of different subclasses varied widely, but members of the same subclass especially in the CDK gene family were very similar. These findings also demonstrated a strong correlation between CYCD and CDK gene family members in response to hormones and specific expression. The collinear analysis of P. tomentosa, Populus trichocarpa and Arabidopsis thaliana showed that the expansion patterns of CYCD and CDK gene families were predominantly whole genome duplications (WGD). The protein interaction prediction results of different subclasses of CYCD and CDKs showed that the interaction between different subclasses of CYCD and CDKs was significantly different. Our previous study found that transgenic PtoCYCD2;1 and PtoCYCD3;3 poplars exhibited opposite phenotypes. Y2H and BIFC results showed that the interaction between PtoCYCD2;1 and PtoCYCD3;3 was significantly different with CDKs. This finding might suggest that the functional differences of different CYCD subclasses in plant growth and development were closely related to the different interactions between CYCD and CDK. Our results provide a good idea and direction for the functional study of CYCD and CDK proteins in woody plants.
Collapse
|
16
|
Ding AM, Xu CT, Xie Q, Zhang MJ, Yan N, Dai CB, Lv J, Cui MM, Wang WF, Sun YH. ERF4 interacts with and antagonizes TCP15 in regulating endoreduplication and cell growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1673-1689. [PMID: 35775119 DOI: 10.1111/jipb.13323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor. ERF4 was specifically expressed in mature tissues in which the cells were undergoing expansion, but was rarely expressed in young organs. Plants overexpressing ERF4 exhibited much larger cells and organs, while plants that lacked functional ERF4 displayed smaller organs than the wild-type. ERF4 was further shown to regulate cell size by controlling the endopolyploidy level in the nuclei. Moreover, ERF4 physically associates with the class I TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) protein TCP15, a transcription factor that inhibits endoreduplication by activating the expression of a key cell-cycle gene, CYCLIN A2;3 (CYCA2;3). A molecular and genetic analysis revealed that ERF4 promotes endoreduplication by directly suppressing the expression of CYCA2;3. Together, this study demonstrates that ERF4 and TCP15 function as a module to antagonistically regulate each other's activity in regulating downstream genes, thereby controlling the switch from the mitotic cell cycle to endoreduplication during leaf development. These findings expand our understanding of how the control of the cell cycle is fine-tuned by an ERF4-TCP15 transcriptional complex.
Collapse
Affiliation(s)
- An-Ming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Chuan-Tao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Qiang Xie
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Ming-Jin Zhang
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Ning Yan
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Chang-Bo Dai
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Jing Lv
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Meng-Meng Cui
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Wei-Feng Wang
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Yu-He Sun
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| |
Collapse
|
17
|
Zhao Z, Zheng T, Dai L, Liu Y, Li S, Qu G. Ectopic Expression of Poplar PsnCYCD1;1 Reduces Cell Size and Regulates Flower Organ Development in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:868731. [PMID: 35463407 PMCID: PMC9021869 DOI: 10.3389/fpls.2022.868731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The D-type cyclin (CYCD) gene, as the rate-limiting enzyme in the G1 phase of cell cycle, plays a vital role in the process of plant growth and development. Early studies on plant cyclin mostly focused on herbs, such as Arabidopsis thaliana. The sustainable growth ability of woody plants is a unique characteristic in the study of plant cyclin. Here, the promoter of PsnCYCD1;1 was cloned from poplar by PCR and genetically transformed into tobacco. A strong GUS activity was observed in the areas with vigorous cell division, such as stem tips, lateral buds, and young leaves. The PsnCYCD1;1-GFP fusion expression vector was transformed into tobacco, and the green fluorescence signal was observed in the nucleus. Compared with the control plant, the transgenic tobacco showed significant changes in the flower organs, such as enlargement of sepals, petals, and fruits. Furthermore, the stems of transgenic plants were slightly curved at each stem node, the leaves were curled on the adaxial side, and the fruits were seriously aborted after artificial pollination. Microscopic observation showed that the epidermal cells of petals, leaves, and seed coats of transgenic plants became smaller. The transcriptional levels of endogenous genes, such as NtCYCDs, NtSTM, NtKNAT1, and NtASs, were upregulated by PsnCYCD1;1. Therefore, PsnCYCD1;1 gene played an important role in the regulation of flower organ and stem development, providing new understanding for the functional characterization of CYCD gene and new resources for improving the ornamental value of horticultural plants.
Collapse
Affiliation(s)
- Zhongnan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lijuan Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Lube V, Noyan MA, Przybysz A, Salama K, Blilou I. MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. PLANT METHODS 2022; 18:38. [PMID: 35346267 PMCID: PMC8958799 DOI: 10.1186/s13007-022-00864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. RESULTS We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. CONCLUSION MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
Collapse
Affiliation(s)
- Vinicius Lube
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alexander Przybysz
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Khaled Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
19
|
Ohyama A, Tominaga R, Toriba T, Tanaka W. D-type cyclin OsCYCD3;1 is involved in the maintenance of meristem activity to regulate branch formation in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153634. [PMID: 35144141 DOI: 10.1016/j.jplph.2022.153634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
D-type cyclins (CYCDs) are involved in a wide range of biological processes, as one of the major regulators of cell cycle activity. In Arabidopsis (Arabidopsis thaliana), three members of CYCD3 subgroup genes play important roles in plant development such as leaf development and branch formation. In rice (Oryza sativa), there is only one gene (OsCYCD3;1) belonging to the CYCD3 subgroup; its function is unknown. In this study, in order to elucidate the function of OsCYCD3;1, we generated knockout mutants of the gene and conducted developmental analysis. The knockout mutants showed a significantly reduced number of branches compared with a wild type, suggesting that OsCYCD3;1 promotes branch formation. Histological analysis showed that the activities of the axillary meristem and the shoot apical meristem (SAM) were compromised in these mutant plants. Our results suggest that OsCYCD3;1 promotes branch formation, probably by regulating cell division to maintain the activities of the axillary meristem and the SAM.
Collapse
Affiliation(s)
- Ami Ohyama
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Rumi Tominaga
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan.
| | - Wakana Tanaka
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
20
|
Han SK, Herrmann A, Yang J, Iwasaki R, Sakamoto T, Desvoyes B, Kimura S, Gutierrez C, Kim ED, Torii KU. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. Dev Cell 2022; 57:569-582.e6. [PMID: 35148836 PMCID: PMC8926846 DOI: 10.1016/j.devcel.2022.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation. However, the role of cell-cycle machineries in this transition remains unknown. We discover that the symmetric division is slower than the asymmetric division in Arabidopsis. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a MUTE-induced molecular brake that decelerates the cell cycle. SMR4 physically and functionally associates with CYCD3;1 and extends the G1 phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for stomatal-lineage identity. During stomatal differentiation, asymmetric divisions are faster than terminal divisions Upon commitment to differentiation, MUTE induces the cell-cycle inhibitor SMR4 SMR4 decelerates the asymmetric cell division cycle via selective binding to cyclin D Regulating duration of the G1 phase is critical for epidermal cell fate specification
Collapse
Affiliation(s)
- Soon-Ki Han
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute for Advanced Research (IAR), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiyuan Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tomoaki Sakamoto
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Seisuke Kimura
- Department of Industrial Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kyoto-shi, Kyoto 603-8555, Japan
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Torres-Martínez HH, Napsucialy-Mendivil S, Dubrovsky JG. Cellular and molecular bases of lateral root initiation and morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102115. [PMID: 34742019 DOI: 10.1016/j.pbi.2021.102115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Lateral root development is essential for the establishment of the plant root system. Lateral root initiation is a multistep process that impacts early primordium morphogenesis and is linked to the formation of a morphogenetic field of pericycle founder cells. Gradual recruitment of founder cells builds this morphogenetic field in an auxin-dependent manner. The complex process of lateral root primordium morphogenesis includes several subprocesses, which are presented in this review. The underlying cellular and molecular mechanisms of these subprocesses are examined.
Collapse
Affiliation(s)
- Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico.
| |
Collapse
|
22
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
23
|
Bertolotti G, Scintu D, Dello Ioio R. A small cog in a large wheel: crucial role of miRNAs in root apical meristem patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6755-6767. [PMID: 34350947 DOI: 10.1093/jxb/erab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.
Collapse
Affiliation(s)
- Gaia Bertolotti
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Daria Scintu
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Raffaele Dello Ioio
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| |
Collapse
|
24
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
25
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
26
|
Vangheluwe N, Beeckman T. Lateral Root Initiation and the Analysis of Gene Function Using Genome Editing with CRISPR in Arabidopsis. Genes (Basel) 2021; 12:genes12060884. [PMID: 34201141 PMCID: PMC8227676 DOI: 10.3390/genes12060884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Lateral root initiation is a post-embryonic process that requires the specification of a subset of pericycle cells adjacent to the xylem pole in the primary root into lateral root founder cells. The first visible event of lateral root initiation in Arabidopsis is the simultaneous migration of nuclei in neighbouring founder cells. Coinciding cell cycle activation is essential for founder cells in the pericycle to undergo formative divisions, resulting in the development of a lateral root primordium (LRP). The plant signalling molecule, auxin, is a major regulator of lateral root development; the understanding of the molecular mechanisms controlling lateral root initiation has progressed tremendously by the use of the Arabidopsis model and a continual improvement of molecular methodologies. Here, we provide an overview of the visible events, cell cycle regulators, and auxin signalling cascades related to the initiation of a new LRP. Furthermore, we highlight the potential of genome editing technology to analyse gene function in lateral root initiation, which provides an excellent model to answer fundamental developmental questions such as coordinated cell division, growth axis establishment as well as the specification of cell fate and cell polarity.
Collapse
Affiliation(s)
- Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence:
| |
Collapse
|
27
|
Zheng T, Dai L, Liu Y, Li S, Zheng M, Zhao Z, Qu GZ. Overexpression Populus d-Type Cyclin Gene PsnCYCD1;1 Influences Cell Division and Produces Curved Leaf in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115837. [PMID: 34072501 PMCID: PMC8197873 DOI: 10.3390/ijms22115837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
d-type cyclins (CYCDs) are a special class of cyclins and play extremely important roles in plant growth and development. In the plant kingdom, most of the existing studies on CYCDs have been done on herbaceous plants, with few on perennial woody plants. Here, we identified a Populus d-type cyclin gene, PsnCYCD1;1, which is mainly transcribed in leaf buds and stems. The promoter of PsnCYCD1;1 activated GUS gene expression and transgenic Arabidopsis lines were strongly GUS stained in whole seedlings and mature anthers. Moreover, subcellular localization analysis showed the fluorescence signal of PsnCYCD1;1-GFP fusion protein is present in the nucleus. Furthermore, overexpression of the PsnCYCD1;1 gene in Arabidopsis can promote cell division and lead to small cell generation and cytokinin response, resulting in curved leaves and twisted inflorescence stems. Moreover, the transcriptional levels of endogenous genes, such as ASs, KNATs, EXP10, and PHB, were upregulated by PsnCYCD1;1. Together, our results indicated that PsnCYCD1;1 participates in cell division by cytokinin response, providing new information on controlling plant architecture in woody plants.
Collapse
Affiliation(s)
- Tangchun Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lijuan Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Mi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Zhongnan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
| | - Guan-Zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (T.Z.); (L.D.); (Y.L.); (S.L.); (M.Z.); (Z.Z.)
- Correspondence: ; Tel.: +86-451-8219-2693
| |
Collapse
|
28
|
Majumdar P, Karidas P, Nath U. The TARANI/ UBIQUITIN PROTEASE 14 protein is required for lateral root development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1860386. [PMID: 33380274 PMCID: PMC7889178 DOI: 10.1080/15592324.2020.1860386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In our article published in Plant Physiology, we had reported tarani (tni) mutant in Arabidopsis, in which poly-ubiquitin hydrolysis is adversely affected, shows pleiotropic phenotypic defects including fewer lateral roots due to the stabilization of several AUX/IAAs and reduced auxin response. TNI encodes UBIQUITIN-SPECIFIC PROTEASE14 that maintains normal auxin response through ubiquitin recycling. Fewer lateral roots observed in tni could be due to defects in their primordia initiation or subsequent elongation post-initiation. Here we have tested this by marking the lateral root primordia with pCycB1;1::CycB1;1(DB):GUS reporter and counting the number of lateral root at various stages development of as a marker of lateral root primordium. The results suggest that TNI/UBP14 is required for LRP development, and a reduction in TNI activity causes a delay in LRP initiation and consequently shorter lateral roots in the tni seedlings. ABBREVIATIONS: LRP, lateral root primordium; XPP, xylem pole pericycle; LRFC, lateral root founder cells.
Collapse
Affiliation(s)
- Parinita Majumdar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Premananda Karidas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
29
|
Meng J, Peng M, Yang J, Zhao Y, Hu J, Zhu Y, He H. Genome-Wide Analysis of the Cyclin Gene Family and Their Expression Profile in Medicago truncatula. Int J Mol Sci 2020; 21:E9430. [PMID: 33322339 PMCID: PMC7763586 DOI: 10.3390/ijms21249430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Cyclins, together with highly conserved cyclin-dependent kinases (CDKs), play an important role in the process of cell cycle in plants, but less is known about the functions of cyclins in legume plants, especially Medicago truncatula. Our genome-wide analysis identified 58, 103, and 51 cyclin members in the M. truncatula, Glycine max, and Phaseolus vulgaris genomes. Phylogenetic analysis suggested that these cyclins could be classified into 10 types, and the CycB-like types (CycBL1-BL8) were the specific subgroups in M. truncatula, which was one reason for the expansion of the B-type in M. truncatula. All putative cyclin genes were mapped onto their own chromosomes of each genome, and 9 segmental duplication gene pairs involving 20 genes were identified in M. truncatula cyclins. Determined by quantitative real-time PCR, the expression profiling suggested that 57 cyclins in M. truncatula were differentially expressed in 9 different tissues, while a few genes were expressed in some specific tissues. Using the publicly available RNAseq data, the expression of Mtcyclins in the wild-type strain A17 and three nodule mutants during rhizobial infection showed that 23 cyclins were highly upregulated in the nodulation (Nod) factor-hypersensitive mutant sickle (skl) mutant after 12 h of rhizobium inoculation. Among these cyclins, six cyclin genes were also specifically expressed in roots and nodules, which might play specific roles in the various phases of Nod factor-mediated cell cycle activation and nodule development. Our results provide information about the cyclin gene family in legume plants, serving as a guide for further functional research on plant cyclins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengbin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (J.M.); (M.P.); (J.Y.); (Y.Z.); (J.H.); (Y.Z.)
| |
Collapse
|
30
|
Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V, Negri R, Dello Ioio R, Sabatini S, Ten Tusscher K. A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana. Dev Cell 2020; 53:431-443.e23. [PMID: 32386600 DOI: 10.1016/j.devcel.2020.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.
Collapse
Affiliation(s)
- Elena Salvi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Jacob Pieter Rutten
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa - via L. Ghini, 13, 56126 Pisa, Italy
| | - Laura Polverari
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy.
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
31
|
Cyclin-Dependent Kinase Inhibitor Gene TaICK1 acts as a Potential Contributor to Wheat Male Sterility induced by a Chemical Hybridizing Agent. Int J Mol Sci 2020; 21:ijms21072468. [PMID: 32252420 PMCID: PMC7177297 DOI: 10.3390/ijms21072468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Heterosis has been widely accepted as an effective strategy to increase yields in plant breeding. Notably, the chemical hybridization agent SQ-1 induces male sterility in wheat, representing a critical potential tool in hybrid seed production. However, the mechanisms underlying the male sterility induced by SQ-1 still remain poorly understood. In this study, a cyclin-dependent kinase inhibitor gene, TaICK1, which encodes a 229 amino acid protein, was identified as a potential contributor to male sterility in common wheat. The expression of TaICK1 was upregulated during the development of anthers in Xinong1376 wheat treated with SQ-1. Meanwhile, the seed setting rate was found to be significantly decreased in TaICK1 transgenic rice. Furthermore, we identified two cyclin proteins, TaCYCD2;1 and TaCYCD6;1, as interactors through yeast two-hybrid screening using TaICK1 as the bait, which were validated using bimolecular fluorescence complementation. Subcellular localization revealed that the proteins encoded by TaICK1, TaCYCD2;1, and TaCYCD6;1 were localized in the cell nucleus. The expression levels of TaCYCD2;1 and TaCYCD6;1 were lower in Xinong1376 treated with SQ-1. A further analysis demonstrated that the expression levels of OsCYCD2;1 and OsCYCD6;1 were lower in transgenic TaICK1 rice lines as well. Taken together, these results suggest that the upregulation of TaICK1, induced by SQ-1, may subsequently suppress the expression of TaCYCD2;1 and TaCYCD6;1 in anthers, resulting in male sterility. This study provides new insights into the understanding of SQ-1-induced wheat male sterility, as well as the developmental mechanisms of anthers.
Collapse
|
32
|
Torii K, Kubota A, Araki T, Endo M. Time-Series Single-Cell RNA-Seq Data Reveal Auxin Fluctuation during Endocycle. PLANT & CELL PHYSIOLOGY 2020; 61:243-254. [PMID: 31841158 DOI: 10.1093/pcp/pcz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Appropriate cell cycle regulation is crucial for achieving coordinated development and cell differentiation in multicellular organisms. In Arabidopsis, endoreduplication is often observed in terminally differentiated cells and several reports have shown its molecular mechanisms. Auxin is a key factor for the mode transition from mitotic cell cycle to endocycle; however, it remains unclear if and how auxin maintains the endocycle mode. In this study, we reanalyzed root single-cell transcriptome data and reconstructed cell cycle trajectories of the mitotic cell cycle and endocycle. With progression of the endocycle, genes involved in auxin synthesis, influx and efflux were induced at the specific cell phase, suggesting that auxin concentration fluctuated dynamically. Such induction of auxin-related genes was not observed in the mitotic cell cycle, suggesting that the auxin fluctuation plays some roles in maintaining the endocycle stage. In addition, the expression level of CYCB1;1, which is required for cell division in the M phase, coincided with the expected amount of auxin and cell division. Our analysis also provided a set of genes expressed in specific phases of the cell cycle. Taking these findings together, reconstruction of single-cell transcriptome data enables us to identify properties of the cell cycle more accurately.
Collapse
Affiliation(s)
- Kotaro Torii
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
33
|
Wu Q, Du M, Wu J, Wang N, Wang B, Li F, Tian X, Li Z. Mepiquat chloride promotes cotton lateral root formation by modulating plant hormone homeostasis. BMC PLANT BIOLOGY 2019; 19:573. [PMID: 31864311 PMCID: PMC6925410 DOI: 10.1186/s12870-019-2176-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mepiquat chloride (MC), a plant growth regulator, enhances root growth by promoting lateral root formation in cotton. However, the underlying molecular mechanisms of this phenomenon is still unknown. METHODS In this study, we used 10 cotton (Gossypium hirsutum Linn.) cultivars to perform a seed treatment with MC to investigate lateral root formation, and selected a MC sensitive cotton cultivar for dynamic monitor of root growth and transcriptome analysis during lateral root development upon MC seed treatment. RESULTS The results showed that MC treated seeds promotes the lateral root formation in a dosage-depended manner and the effective promotion region is within 5 cm from the base of primary root. MC treated seeds induce endogenous auxin level by altering gene expression of both gibberellin (GA) biosynthesis and signaling and abscisic acid (ABA) signaling. Meanwhile, MC treated seeds differentially express genes involved in indole acetic acid (IAA) synthesis and transport. Furthermore, MC-induced IAA regulates the expression of genes related to cell cycle and division for lateral root development. CONCLUSIONS Our data suggest that MC orchestrates GA and ABA metabolism and signaling, which further regulates auxin biosynthesis, transport, and signaling to promote the cell division responsible for lateral root formation.
Collapse
Affiliation(s)
- Qian Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Mingwei Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jie Wu
- Plant Phenomics Research Center, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ning Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xiaoli Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
34
|
Mironova V, Xu J. A single-cell view of tissue regeneration in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:149-154. [PMID: 31655397 DOI: 10.1016/j.pbi.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
With the development of advanced molecular-genetic and computational technologies it becomes possible to tackle individual cells within a regenerating tissue, to define morphogenetic and cellular changes in space and time by live imaging, to acquire transcriptome status with single-cell RNA sequencing (ScRNA-seq), and to delineate the candidate mechanisms by iterative computational and experimental approaches. Here, we review recent findings and current knowledge on tissue regeneration in plants, focusing on four evolutionarily conserved scenarios that a cell may embark on to facilitate the regeneration of a plant tissue structure lost by injury, namely cell death, division, dedifferentiation, and transdifferentiation. Understanding of these scenarios at single-cell resolution, singularly and in combination, could provide an unprecedented view of tissue regeneration in plants.
Collapse
Affiliation(s)
- Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia.
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
35
|
Chen J, Li H, Yang K, Wang Y, Yang L, Hu L, Liu R, Shi Z. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic Biol Med 2019; 143:534-544. [PMID: 31520769 DOI: 10.1016/j.freeradbiomed.2019.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Melatonin, a phytochemical, can regulate lateral root (LR) formation, but the downstream signaling of melatonin remains elusive. Here we investigated the roles of hydrogen peroxide (H2O2) and superoxide radical (O2•‾) in melatonin-promoted LR formation in tomato (Solanum lycopersicum) roots by using physiological, histochemical, bioinformatic, and biochemical approaches. The increase in endogenous melatonin level stimulated reactive oxygen species (ROS)-dependent development of lateral root primordia (LRP) and LR. Melatonin promoted LRP/LR formation and modulated the expression of cell cycle genes (SlCDKA1, SlCYCD3;1, and SlKRP2) by stimulating polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (Rboh)-dependent O2•‾ production, respectively. Screening of SlPAOs and SlRbohs gene family combined with gene expression analysis suggested that melatonin-promoted LR formation was correlated to the upregulation of SlPAO1, SlRboh3, and SlRboh4 in LR-emerging zone. Transient expression analysis confirmed that SlPAO1 was able to produce H2O2 while SlRboh3 and SlRboh4 were capable of producing O2•‾. Melatonin-ROS signaling cassette was also found in the regulation of LR formation in rice root and lateral hyphal branching in fungi. These results suggested that SlPAO1-H2O2 and SlRboh3/4-O2•‾ acted as downstream of melatonin to regulate the expression of cell cycle genes, resulting in LRP initiation and LR development. Such findings uncover one of the regulatory pathways for melatonin-regulated LR formation, which extends our knowledge for melatonin-regulated plant intrinsic physiology.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Hui Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kang Yang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yongzhu Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiqi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
36
|
Xu P, Cai W. Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008465. [PMID: 31626627 PMCID: PMC6821136 DOI: 10.1371/journal.pgen.1008465] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Plant root system architecture in response to nitrate availability represents a notable example to study developmental plasticity, but the underlying mechanism remains largely unknown. Xyloglucan endotransglucosylases (XTHs) play a critical role in cell wall biosynthesis. Here we assessed the gene expression of XTH1-11 belonging to group I of XTHs in lateral root (LR) primordia and found that XTH9 was highly expressed. Correspondingly, an xth9 mutant displayed less LR, while overexpressing XTH9 presented more LR, suggesting the potential function of XTH9 in controlling LR development. XTH9 gene mutation obviously alters the properties of the cell wall. Furthermore, nitrogen signals stimulated the expression of XTH9 to promote LRs. Genetic analysis revealed that the function of XTH9 was dependent on auxin-mediated ARF7/19 and downstream AFB3 in response to nitrogen signals. In addition, we identified another transcription factor, OBP4, that was also induced by nitrogen treatment, but the induction was much slower than that of XTH9. In contrast to XTH9, overexpressing OBP4 caused fewer LRs while OBP4 knockdown with OBP4-RNAi or an artificial miRNA silenced amiOBP4 line produced more LR. We further found OBP4 bound to the promoter of XTH9 to suppress XTH9 expression. In agreement with this, both OBP4-RNAi and crossed OBP4-RNAi & 35S::XTH9 lines led to more LR, but OBP4-RNAi & xth9 produced less LR, similar to xth9. Based on these findings we propose a novel mechanism by which OBP4 antagonistically controls XTH9 expression and the OBP4-XTH9 module elaborately sustains LR development in response to nitrate treatment. Nitrate is not only a nutrient, but also a signal that controls downstream signaling genes at the whole-plant level. In plants, changes in root system architecture in response to nitrate availability represent a notable example of developmental plasticity in response to environmental stimuli. However, the molecular mechanisms underlying nitrate-associated modulation are largely unknown. Here, we identified a nitrogen-responsive signaling module that comprises both xyloglucan endotransglucosylase 9 (XTH9) and the Dof transcription factor OBP4 and controls lateral root (LR) development. We used root gravitropic bending assays to observe the gene expression of group 1 xyloglucan endotransglucosylases (XTHs) involved in LR primordia. The results showed that XTH9 expression patterns were changed and that xth9 knockout mutants displayed altered LR growth. XTH9 was expressed in the LRs and in response to nitrate treatment, and the xth9 mutants were defective in nitrate-promoted LR growth. Moreover, XTH9 overexpression increased LR length and increased tolerance to low-nitrate stress. We found that OBP4 could negatively regulate XTH9 and inhibited root growth. OBP4 and XTH9 worked downstream of ARF7/9. We conclude that OBP4 and XTH9 constitute a regulatory module which contributes to LR growth in response to different environmental nitrate concentration signals.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Fan HM, Sun CH, Wen LZ, Liu BW, Ren H, Sun X, Ma FF, Zheng CS. CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum. PLANT & CELL PHYSIOLOGY 2019; 60:1581-1594. [PMID: 31058993 DOI: 10.1093/pcp/pcz061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.
Collapse
Affiliation(s)
- Hong-Mei Fan
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Li-Zhu Wen
- Department of Plants, College of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Bo-Wen Liu
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hong Ren
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xia Sun
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fang-Fang Ma
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cheng-Shu Zheng
- Department of Ornamental Horticulture, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
38
|
Marhava P, Hoermayer L, Yoshida S, Marhavý P, Benková E, Friml J. Re-activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing. Cell 2019; 177:957-969.e13. [PMID: 31051107 PMCID: PMC6506278 DOI: 10.1016/j.cell.2019.04.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/18/2018] [Accepted: 04/07/2019] [Indexed: 11/23/2022]
Abstract
Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.
Collapse
Affiliation(s)
- Petra Marhava
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Lukas Hoermayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saiko Yoshida
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Peter Marhavý
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
39
|
Strigolactones Promote Leaf Elongation in Tall Fescue through Upregulation of Cell Cycle Genes and Downregulation of Auxin Transport Genes in Tall Fescue under Different Temperature Regimes. Int J Mol Sci 2019; 20:ijms20081836. [PMID: 31013928 PMCID: PMC6515303 DOI: 10.3390/ijms20081836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate the effects of SLs on leaf elongation in tall fescue (Festuca arundinacea, cv. ‘Kentucky-31’) under different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor) (individually and combined) under normal temperature (22/18 °C) and high-temperature conditions (35/30 °C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes, and downregulated expression of auxin transport-related genes in elongating leaves. The results suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin transport in tall fescue.
Collapse
|
40
|
Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang DA, Qi Y. The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. PLANT, CELL & ENVIRONMENT 2019; 42:1125-1138. [PMID: 30399648 DOI: 10.1111/pce.13478] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock-down lines, osaux3-1 and osaux3-2, in wild-type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3-1 and osaux3-2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up-regulated in the root apex under aluminium (Al) stress, and osaux3-2 is insensitive to Al treatments. Furthermore, 1-naphthylacetic acid accented the sensitivity of WT/DJ and osaux3-2 to respond to Al stress. Auxin concentrations, Al contents, and Al-induced reactive oxygen species-mediated damage in osaux3-2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al-induced inhibition of root growth. This study uncovers a novel pathway alleviating Al-induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al-tolerant rice species.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - JiYue Qiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenLiang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - ChenDong Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - LinZhou Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ChuanYou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - De An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - YanHua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
41
|
Hu Q, Zhang S, Huang B. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:34-39. [PMID: 29650155 DOI: 10.1016/j.plantsci.2018.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 05/23/2023]
Abstract
Strigolactones (SL) have recently been found to play roles in regulating root development. However, it remains unclear how SL may mediate root elongation of perennial grass species under different temperatures that differentially affect root growth. The objectives of this study were to examine effects of SL on root elongation of tall fescue and to examine the interactive effects of SL and auxin in regulating root growth under both non-stress and heat stress conditions. Tall fescue (cv. 'Kentuck-31') plants were treated with GR24 (a synthetic strigolactones), NAA (α-naphthylacetic acid), or NPA (auxin transport inhibitor N-1-naphthylphalamic acid) or their combination under non-stress control and heat stress (35/30 °C) in growth chamber. Crown root elongation was evaluated by measuring root length. Cell number and length in root tips were measured under confocal microscope. Expression levels of genes related to cell growth, SL signaling and auxin transport were determined. SL promoted crown root elongation in tall fescue under normal temperature and heat stress, and alleviated heat-inhibition of root growth. GR24-enhanced root elongation was accompanied with the increase in cell numbers, up-regulation of cell cycle-related genes, and down-regulation auxin transport-related genes in crown root tips of tall fescue. The positive effects of SL for promoting crown root elongation in tall fescue under both non-stress and heat stress could be mainly due to its regulation of cell division and involve the interference of auxin transport.
Collapse
Affiliation(s)
- Qiannan Hu
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA; College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
42
|
Weimer AK, Matos JL, Sharma N, Patell F, Murray JAH, Dewitte W, Bergmann DC. Lineage- and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells. Development 2018; 145:dev.160671. [PMID: 29467245 DOI: 10.1242/dev.160671] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| | - Farah Patell
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - James A H Murray
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walter Dewitte
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK.,Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Cao L, Wang S, Venglat P, Zhao L, Cheng Y, Ye S, Qin Y, Datla R, Zhou Y, Wang H. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genet 2018. [PMID: 29513662 PMCID: PMC5858843 DOI: 10.1371/journal.pgen.1007230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM). The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK)/Kip-related proteins) are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule. In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces multiple megaspores through meiosis. One of the megaspores in a fixed position survives to become the functional megaspore (FM) while the other megaspores undergo degeneration. The FM further develops into an embryo sac. We have been working on the functions and regulation of a family of plant cyclin-dependent kinase inhibitors called ICKs or KRPs. We observed that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, multiple MMCs, FMs and embryo sacs were formed, and the embryo sacs could be fertilized to produce two embryos with separate endosperm compartments. Further, in mutant ovules the number and position of surviving megaspores from one MMC were variable and ICK4-YFP (yellow fluorescence protein) fusion protein was strongly expressed in the degenerative megaspores but absent in the FM. Those findings together with other results in our study indicate that multiple ICK/KRPs function redundantly in controlling the formation of one MMC per ovule and also in the degeneration of non-functional megaspores, which are critical for the subsequent development of one embryo sac per ovule and one embryo per seed.
Collapse
Affiliation(s)
- Ling Cao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sheng Wang
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Lihua Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Cheng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shengjian Ye
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (HW); (YZ)
| | - Hong Wang
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail: (HW); (YZ)
| |
Collapse
|
44
|
Atkins KC, Cross FR. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. THE PLANT CELL 2018; 30:429-446. [PMID: 29367304 PMCID: PMC5868683 DOI: 10.1105/tpc.17.00759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
The cyclin-dependent kinase CDK1 is essential for mitosis in fungi and animals. Plant genomes contain the CDK1 ortholog CDKA and a plant kingdom-specific relative, CDKB. The green alga Chlamydomonas reinhardtii has a long G1 growth period followed by rapid cycles of DNA replication and cell division. We show that null alleles of CDKA extend the growth period prior to the first division cycle and modestly extend the subsequent division cycles, but do not prevent cell division, indicating at most a minor role for the CDK1 ortholog in mitosis in Chlamydomonas. A null allele of cyclin A has a similar though less extreme phenotype. In contrast, both CDKB and cyclin B are essential for mitosis. CDK kinase activity measurements imply that the predominant in vivo complexes are probably cyclin A-CDKA and cyclin B-CDKB. We propose a negative feedback loop: CDKA activates cyclin B-CDKB. Cyclin B-CDKB in turn promotes mitotic entry and inactivates cyclin A-CDKA. Cyclin A-CDKA and cyclin B-CDKB may redundantly promote DNA replication. We show that the anaphase-promoting complex is required for inactivation of both CDKA and CDKB and is essential for anaphase. These results are consistent with findings in Arabidopsis thaliana and may delineate the core of plant kingdom cell cycle control that, compared with the well-studied yeast and animal systems, exhibits deep conservation in some respects and striking divergence in others.
Collapse
|
45
|
Velappan Y, Signorelli S, Considine MJ. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? ANNALS OF BOTANY 2017; 120:495-509. [PMID: 28981580 PMCID: PMC5737280 DOI: 10.1093/aob/mcx082] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. SCOPE Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? CONCLUSION Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes.
Collapse
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- The School of Molecular Sciences, and The UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
- For correspondence. Email
| |
Collapse
|
46
|
Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, Sablowski R. DELLA genes restrict inflorescence meristem function independently of plant height. NATURE PLANTS 2017; 3:749-754. [PMID: 28827519 PMCID: PMC5669458 DOI: 10.1038/s41477-017-0003-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/13/2017] [Indexed: 05/18/2023]
Abstract
DELLA proteins associate with transcription factors to control plant growth in response to gibberellin 1 . Semi-dwarf DELLA mutants with improved harvest index and decreased lodging greatly improved global food security during the 'green revolution' in the 1960-1970s 2 . However, DELLA mutants are pleiotropic and the developmental basis for their effects on plant architecture remains poorly understood. Here, we show that DELLA proteins have genetically separable roles in controlling stem growth and the size of the inflorescence meristem, where flowers initiate. Quantitative three-dimensional image analysis, combined with a genome-wide screen for DELLA-bound loci in the inflorescence tip, revealed that DELLAs limit meristem size in Arabidopsis by directly upregulating the cell-cycle inhibitor KRP2 in the underlying rib meristem, without affecting the canonical WUSCHEL-CLAVATA meristem size regulators 3 . Mutation of KRP2 in a DELLA semi-dwarf background restored meristem size, but not stem growth, and accelerated flower production. In barley, secondary mutations in the DELLA gain-of-function mutant Sln1d 4 also uncoupled meristem and inflorescence size from plant height. Our work reveals an unexpected and conserved role for DELLA genes in controlling shoot meristem function and suggests how dissection of pleiotropic DELLA functions could unlock further yield gains in semi-dwarf mutants.
Collapse
Affiliation(s)
- Antonio Serrano-Mislata
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Stefano Bencivenga
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Max Bush
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Katharina Schiessl
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Scott Boden
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
47
|
Liu C, Wu Q, Liu W, Gu Z, Wang W, Xu P, Ma H, Ge X. Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:459-474. [PMID: 28263025 DOI: 10.1111/jipb.12530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Root organogenesis involves cell division, differentiation and expansion. The molecular mechanisms regulating root development are not fully understood. In this study, we identified poly(adenosine diphosphate (ADP)-ribose) polymerases (PARPs) as new players in root development. PARP catalyzes poly(ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide (NAD+ ) as the donor. We found that inhibition of PARP activities by 3-aminobenzomide (3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-M transition were up-regulated upon treatment by 3-AB. The proportion of 2C cells increased while cells with higher DNA ploidy declined in the roots of treated plants, resulting in an enlarged root meristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zone, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important role in root development by negatively regulating root cell division.
Collapse
Affiliation(s)
- Caifeng Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiwei Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zongyin Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenjing Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich, NR47TJ, UK
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Identification and functional analysis of the ICK gene family in maize. Sci Rep 2017; 7:43818. [PMID: 28262730 PMCID: PMC5338338 DOI: 10.1038/srep43818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022] Open
Abstract
Inhibitors of cyclin-dependent kinases (ICKs) are key regulators of cyclin-dependent kinase activities and cell division. Herein, we identified eight ICKs in maize, which we named Zeama;ICKs (ZmICKs). Primary sequencing and phylogenetic analyses were used to divide the ZmICK family into two classes: group B and group C. Subcellular localization analysis of ZmICK:enhanced green fluorescent protein (eGFP) fusion constructs in tobacco leaf cells indicated that ZmICKs are principally nuclear. Co-localization analysis of the ZmICKs and maize A-type cyclin-dependent kinase (ZmCDKA) was also performed using enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) fusion constructs. The ZmICKs and ZmCDKA co-localized in the nucleus. Semi-quantitative RT-PCR analysis of the ZmICKs showed that they were expressed at different levels in all tissues examined and shared similar expression patterns with cell cycle-related genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that ZmICK1, ZmICK2, ZmICK3, and ZmICK4 interact with ZmCDKA1 and ZmCDKA3. Interestingly, ZmICK7 interacts with D-type cyclins. Transformed and expressed ZmCDKA1 and ZmICKs together in fission yeast revealed that ZmICK1, ZmICK3, and ZmICK4 can affect ZmCDKA1 function. Moreover, the C-group of ZmICKs could interact with ZmCDKA1 directly and affect ZmCDKA1 function, suggesting that C-group ZmICKs are important for cell division regulation.
Collapse
|
49
|
Muñoz A, Mangano S, González-García MP, Contreras R, Sauer M, De Rybel B, Weijers D, Sánchez-Serrano JJ, Sanmartín M, Rojo E. RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis. THE PLANT CELL 2017; 29:575-588. [PMID: 28223441 PMCID: PMC5385956 DOI: 10.1105/tpc.16.00791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 05/09/2023]
Abstract
The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.
Collapse
Affiliation(s)
- Alfonso Muñoz
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Silvina Mangano
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | | | - Ramón Contreras
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Michael Sauer
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Bert De Rybel
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | - Maite Sanmartín
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
50
|
Vieira P, de Almeida Engler J. Plant Cyclin-Dependent Kinase Inhibitors of the KRP Family: Potent Inhibitors of Root-Knot Nematode Feeding Sites in Plant Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1514. [PMID: 28943880 PMCID: PMC5596062 DOI: 10.3389/fpls.2017.01514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 05/14/2023]
Abstract
Root-knot nematodes (RKN), Meloidogyne spp., are distributed worldwide and impose severe economic damage to many agronomically important crops. The plant cell cycle machinery is considered one of the pivotal components for the formation of nematode feeding sites (NFSs) or galls. These feeding sites contain five to nine hypertrophied giant cells (GC) resulting from developmental reprogramming of host root cells by this pathogen. GC undergo synchronous waves of mitotic activity uncoupled from cytokinesis giving rise to large multinucleate cells. As development of the NFS progresses, multiple rounds of DNA synthesis occur in the nuclei of GC, coupled with nuclear and cellular expansion. These cells are highly metabolically active and provide the nematode with nutrients necessary for its development and completion of its life cycle. In Arabidopsis seven cyclin dependent kinase inhibitors (CKIs) belonging to the interactors/inhibitors of the cyclin dependent kinases (ICK) family, also referred as Kip-Related Proteins (KRPs) have been identified. Interactions of KRPs with CDK/Cyclin complexes decrease CDK activity, affecting both cell cycle progression and DNA content in a concentration-dependent manner. We performed the functional analysis of all Arabidopsis KRP gene members during RKN interaction in Arabidopsis to obtain more insight into their role during gall development. We demonstrated that three members of this family (KRP2, KRP5, and KRP6) were highly expressed in galls and were important for cell cycle regulation during NFS development as shown by their different modes of action. We also pointed out that cell cycle inhibition through overexpression of all members of the KRP family can affect NFS development and consequently compromise the nematode's life cycle. In this review we summarized our recent understanding of the KRP family of genes, and their role in controlling cell cycle progression at the RKN feeding site.
Collapse
Affiliation(s)
- Paulo Vieira
- Laboratório de Nematologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’AzurNice, France
- *Correspondence: Janice de Almeida Engler,
| |
Collapse
|