1
|
Shen Y, Wang J, Si X, Liang X, Zheng Z, Li Y, Qi Y, Li F, Zhang Y, Guo T, Li P. Revealing the molecular mechanism of biosynthesis and transcriptional regulation of PAs, caffeine and linalool globally under simulative stress in coffee plants. Int J Biol Macromol 2025; 310:143103. [PMID: 40250650 DOI: 10.1016/j.ijbiomac.2025.143103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Coffee has become one of the most popular beverages worldwide due to the variety of bioactive compounds, which also play crucial roles against biotic and abiotic stresses. However, little is known about how these defensive compounds are produced in coffee. Here, we found that the whole biosynthetic pathways and the production of caffeine and proanthocyanidins (PAs) were promoted under Methyl Jasmonate (MeJA) treatment. Co-expression data showed that some transcription factors were shared by caffeine and PA regulation, and further several candidate caffeine regulators were identified. The biosynthesis of monoterpene linalool was also triggered by MeJA, and the functions of coffee linalool synthase were characterized. Evolution and expression analyses revealed that the expression variation of linalool synthase is likely the major reason for the low linalool content in coffee leaves, despite of the linalool synthase expansion in coffee genome. Additionally, the JA signaling key regulator MYC2 could directly bind to and activate the promoter of linalool synthase to regulate linalool biosynthesis.
Collapse
Affiliation(s)
- Yihua Shen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jinsong Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ziqing Zheng
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujia Qi
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Fangdong Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yanrui Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China.
| | - Penghui Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Jiang W, Yan Y, Yue S, Wei J, Li W, Liang Y, Xu M, Xia Y, Yi D, Wang Y, Zhao Y, Wang Y, Li J, Nan L, Pang Y. The P-type ATPase gene AHA5 is involved in proanthocyanidins accumulation in Medicago truncatula. Int J Biol Macromol 2025; 294:139508. [PMID: 39761881 DOI: 10.1016/j.ijbiomac.2025.139508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. The proton membrane H+-ATPase (AHA) is required for PA transportation in vacuoles, but it remains unclear which AHA gene(s) encode tonoplast proton pump in M. truncatula. Here, we identified three Tnt1 mutant lines of MtAHA5, resulting in PAs deficit in seeds. MtAHA5 was preferentially expressed in developing seeds, exhibiting its highest transcript levels at early stages. Although MtAHA3, MtAHA4, and MtAHA9 shared similar transcript patterns with MtAHA5 and other structural genes involved in PA biosynthesis, their mutant lines did not exhibit any PA-deficit phenotypes. Subcellular localization analysis demonstrated that MtAHA5 is targeted to the tonoplast in tobacco leaves; conversely, MtAHA3 and MtAHA9 are localized to the cytoplasm, suggesting that MtAHA5 acts as a tonoplast proton pump but not MtAHA3 or MtAHA9. Further genetic analyses revealed that MtAHA5 could complement the PA-deficit phenotype in mtaha5 mutants and ataha10 mutants. Transient transcription assays indicated that MtAHA5 is activated by the MBW complex to regulate the PA accumulation. Collectively, our findings suggest that MtAHA5 serves as a tonoplast proton pump to generate the driving force for MATE1-mediated transport of PA precursors into vacuoles.
Collapse
Affiliation(s)
- Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yinuo Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyao Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Jiebing Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenxiang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Mengrong Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010018, China
| | - Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yongxin Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010018, China.
| | - Yuxiang Wang
- Key Laboratory of Grassland Resources and Ecology of Western Arid Region, College of Grassland Science, Xinjiang Agricultural University, Urumqi, 833400, China
| | - Jun Li
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Lili Nan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Hu Y, Wang X, Wu H, Yao Y. The nuclear and cytoplasmic colocalization of MdGST12 regulated by MdWRKY26 and MdHY5 promotes anthocyanin accumulation by forming homodimers and interact with MdUFGT and MdDFR under light conditions in Malus. Int J Biol Macromol 2025; 289:138666. [PMID: 39689790 DOI: 10.1016/j.ijbiomac.2024.138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The glutathione S-transferase (GST) gene family participates in the sequestration of anthocyanins into vacuoles. In this study, MdGST12 was identified as a candidate gene during light-induced anthocyanin accumulation. The methylation levels of the MdGST12 promoter exhibited marked differences among apple fruit treated with different light intensities. Interestingly, it was revealed that MdGST12 was localized in both the cytoplasm and nucleus. Moreover, MdHY5 and MdWRKY26 bind to the G-box and W-box cis-elements within the MdGST12 promoter, respectively. Instantaneous and stable transformation in plantlets, fruit, and calli, confirmed the role of MdGST12 and MdWRKY26 in promoting anthocyanin accumulation in apples. Moreover, the silencing of MdGST12 or MdWRKY26 by RNA interference significantly damaged the anthocyanin accumulation. Surprisingly, we found that MdGST12 could act as a transactivator and that the interaction between MdGST12 and MdDFR further enhances transcriptional activation of the MdDFR promoter. Moreover, MdGST12 also interacts with MdUFGT. Further study revealed that MdGST12 could interact with itself forming homodimers in the nucleus. Taken together, our study first revealed that MdGST12 regulated by MdWRKY26 and MdHY5 interacts with MdDFR and enters the nucleus, enhancing the transcriptional level of MdDFR and promoting anthocyanin accumulation in Malus under light conditions. It first revealed the complexity of GST's function in addition to the function of transferases and transporters in plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Haofan Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
4
|
Latif S, Sameeullah M, Abbasi HQ, Masood Z, Demiral Sert T, Aslam N, Pekdemir T, Imren M, Çiftçi V, Saba K, Malik MS, Ijaz F, Batool N, Mirza B, Waheed MT. Broccoli ( Brassica oleracea var. italica) leaves exhibit significant antidiabetic potential in alloxan-induced diabetic rats: the putative role of ABC vacuolar transporter for accumulation of Quercetin and Kaempferol. Front Pharmacol 2024; 15:1421131. [PMID: 39737071 PMCID: PMC11683327 DOI: 10.3389/fphar.2024.1421131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Background The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045). Plants can be a cost-effective source of flavonoids like quercetin and kaempferol with anti-diabetic properties. Methodology We aimed to assess the antidiabetic potential of leaves of Brassica oleracea cvs. Green Sprout and Marathon. Further, flavonoid contents were measured in broccoli leaves grown under light and dark conditions. The methanolic extracts of Green Sprout (GSL-M) and Marathon (ML-M) were first evaluated in vitro for their α-amylase and α-glucosidase inhibitory potential and then for antidiabetic activity in vivo in alloxan-induced diabetic rat models. Results Treatment with plant extracts promoted the reduced glutathione (GSH) content and CAT, POD, and SOD activities in the pancreas, liver, kidney, heart, and brain of diabetic rats, whereas lowered lipid peroxidation, H2O2, and nitrite concentrations. The histopathological studies revealed the protective effect of plant extracts at high dose (300 mg/kg), which could be due to broccoli's rich content of chlorogenic acid, quercetin, and kaempferol. Strikingly, etiolated leaves of broccoli manifested higher levels of quercetin and kaempferol than green ones. The putative role of an ABC transporter in the accumulation of quercetin and kaempferol in etiolated leaves was observed as evaluated by qRT-PCR and in silico analyses. Conclusion In conclusion, the present study shows a strong link between the antidiabetic potential of broccoli due to the presence of chlorogenic acid, quercetin, and kaempferol and the role of an ABC transporter in their accumulation within the vacuole.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | | | - Zainab Masood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Turgay Pekdemir
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Department of Chemical Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mustafa Imren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | - Fatima Ijaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Zuo Y, Zhao M, Gou Y, Huang L, Xu Z, Lian J. Transportation engineering for enhanced production of plant natural products in microbial cell factories. Synth Syst Biotechnol 2024; 9:742-751. [PMID: 38974023 PMCID: PMC11224930 DOI: 10.1016/j.synbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Plant natural products (PNPs) exhibit a wide range of biological activities and have essential applications in various fields such as medicine, agriculture, and flavors. Given their natural limitations, the production of high-value PNPs using microbial cell factories has become an effective alternative in recent years. However, host metabolic burden caused by its massive accumulation has become one of the main challenges for efficient PNP production. Therefore, it is necessary to strengthen the transmembrane transport process of PNPs. This review introduces the discovery and mining of PNP transporters to directly mediate PNP transmembrane transportation both intracellularly and extracellularly. In addition to transporter engineering, this review also summarizes several auxiliary strategies (such as small molecules, environmental changes, and vesicles assisted transport) for strengthening PNP transportation. Finally, this review is concluded with the applications and future perspectives of transportation engineering in the construction and optimization of PNP microbial cell factories.
Collapse
Affiliation(s)
- Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Minghui Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
6
|
Li Y, Li Q, Liu D, Wu Z, Sun L, Chen W, Xiao Y. Identification of putative genes for caffeoylated flavonoid glycoside biosynthesis in Pseudognaphalium affine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109233. [PMID: 39467493 DOI: 10.1016/j.plaphy.2024.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Pseudognaphalium affine (D. Don) Anderberg, commonly found in East Asia, has extensive applications as both a traditional medicine and a vegetable in China. The caffeoylated flavonoid glycosides produced by P. affine exhibit remarkable anti-complement activities. Although these compounds have potential therapeutic value, the biosynthetic pathway responsible for their production remains largely unknown. To elucidate the key catalytic steps involved in caffeoylated flavonoid glycoside biosynthesis, we conducted a comprehensive analysis of the full-length transcriptome of P. affine. Further phylogenetic tree analysis predicted potential UDP glycosyltransferase (UGT) and BAHD acyltransferase (BAHD-AT) related with caffeoylated flavonoid glycoside biosynthesis. Subsequently, enzyme assay led to the discovery of PaUGT23 as a key enzyme responsible for the glycosylation of hydroxy groups in flavonoids, resulting in the formation of luteolin-4'-O-glucoside, luteolin-7-O-glucoside, quercetin-4'-O-glucoside, quercetin-7-O-glucoside, and apigenin-7-O-glucoside, while PaBAHD21 was found to catalyze the caffeoylation of flavonoid glycosides, resulting in the formation of luteolin 4'-O-β-D-(6″-E-caffeoyl)-glucopyranoside, quercetin 4'-O-β-D-(6″-E-caffeoyl)-glucopyranoside, apigenin 4'-O-β-D-(6″-E-caffeoyl)-glucopyranoside and apigenin 7-O-β-D-(6″-E-caffeoyl)-glucopyranoside. Moreover, their catalytic activities were verified in vivo by transient transfection experiment. This study presents the first comprehensive analysis of the full-length transcriptome in P. affine, providing significant insights into the biosynthesis and accumulation mechanisms of bioactive caffeoylated flavonoid glycosides.
Collapse
Affiliation(s)
- Yongkang Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dongtian Liu
- Shanghai Foreign Language School Affiliated to Shanghai International Studies University (SISU), Shanghai, China
| | - Zongtai Wu
- Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Lianna Sun
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhang M, Zhao Y, Nan T, Jiao H, Yue S, Huang L, Yuan Y. Genome-wide analysis of Citrus medica ABC transporters reveals the regulation of fruit development by CmABCB19 and CmABCC10. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109027. [PMID: 39154422 DOI: 10.1016/j.plaphy.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
ATP-binding cassette (ABC) transporters are vital for plant growth and development as they facilitate the transport of essential molecules. Despite the family's significance, limited information exists about its functional distinctions in Citrus medica. Our study identified 119 genes encoding ABC transporter proteins in the C. medica genome. Through an evolutionary tree and qPCR analysis, two ABC genes, CmABCB19 and CmABCC10, were implicated in C. medica fruit development, showing upregulation in normal fruits compared to malformed fruits. CmABCB19 was found to localize to the plasma membrane of Nicotiana tabacum, exhibiting indole-3-acetic acid (IAA) efflux activity in the yeast mutant strain yap1. CmABCC10, a tonoplast-localized transporter, exhibited efflux of diosmin, nobiletin, and naringin, with rutin influx in strain ycf1. Transgenic expression of CmABCB19 and CmABCC10 in Arabidopsis thaliana induced alterations in auxin and flavonoid content, impacting silique and seed size. This effect was attributed to the modulation of structural genes in the auxin biosynthesis (YUC5/9, CYP79B2, CYP83B1, SUR1) and flavonoid biosynthesis (4CL2/3, CHS, CHI, FLS1/3) pathways. In summary, the functional characterization of CmABCB19 and CmABCC10 illuminates auxin and flavonoid transport, offering insights into their interplay with biosynthetic pathways and providing a foundation for understanding the transporter's role in fruit development.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Honghong Jiao
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Shiyan Yue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| |
Collapse
|
8
|
Gu Z, Zhou X, Li S, Pang Y, Xu Y, Zhang X, Zhang J, Jiang H, Lu Z, Wang H, Han L, Bai S, Zhou C. The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2303-2315. [PMID: 38990552 DOI: 10.1111/tpj.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Proanthocyanidins (PAs), a group of flavonoids, are found in leaves, flowers, fruits, and seed coats of many plant species. PAs are primarily composed of epicatechin units in the seed coats of the model legume species, Medicago truncatula. It can be synthesized from two separate pathways, the leucoanthocyanidin reductase (MtLAR) pathway and the anthocyanidin synthase (MtANS) pathway, which produce epicatechin through anthocyanidin reductase (MtANR). These pathways are mainly controlled by the MYB-bHLH-WD40 (MBW) ternary complex. Here, we characterize a class IV homeodomain-leucine zipper (HD-ZIP IV) transcription factor, GLABRA2 (MtGL2), which contributes to PA biosynthesis in the seed coat of M. truncatula. Null mutation of MtGL2 results in dark brown seed coat, which is accompanied by reduced PAs accumulation and increased anthocyanins content. The MtGL2 gene is predominantly expressed in the seed coat during the early stages of seed development. Genetic and molecular analyses indicate that MtGL2 positively regulates PA biosynthesis by directly activating the expression of MtANR. Additionally, our results show that MtGL2 is strongly induced by the MBW activator complexes that are involved in PA biosynthesis. Taken together, our results suggest that MtGL2 acts as a novel positive regulator in PA biosynthesis, expanding the regulatory network and providing insights for genetic engineering of PA production.
Collapse
Affiliation(s)
- Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Xin Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Shuangshuang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Hongjiao Jiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
- Shandong Peanut Research Institute, Qingdao, 266199, P.R. China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P.R. China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
9
|
Manan S, Li P, Alfarraj S, Ansari MJ, Bilal M, Ullah MW, Zhao J. FUS3: Orchestrating soybean plant development and boosting stress tolerance through metabolic pathway regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108803. [PMID: 38885564 DOI: 10.1016/j.plaphy.2024.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Soybean research has gained immense attention due to its extensive use in food, feedstock, and various industrial applications, such as the production of lubricants and engine oils. In oil crops, the process of seed development and storage substances accumulation is intricate and regulated by multiple transcription factors (TFs). In this study, FUSCA3 (GmFUS3) was characterized for its roles in plant development, lipid metabolism, and stress regulation. Expressing GmFUS3 in atfus3 plants restored normal characteristics observed in wild-type plants, including cotyledon morphology, seed shape, leaf structure, and flower development. Additionally, its expression led to a significant increase of 25% triacylglycerols (TAG) and 33% in protein levels. Transcriptomic analysis further supported the involvement of GmFUS3 in various phases of plant development, lipid biosynthesis, lipid trafficking, and flavonoid biosynthesis. To assess the impact of stress on GmFUS3 expression, soybean plants were subjected to different stress conditions, and the its expression was assessed. Transcriptomic data revealed significant alterations in the expression levels of approximately 80 genes linked to reactive oxygen species (ROS) signaling and 40 genes associated with both abiotic and biotic stresses. Additionally, GmFUS3 was found to regulate abscisic acid synthesis and interact with nucleoside diphosphate kinase 1, which is responsible for plant cellular processes, development, and stress response. Overall, this research sheds light on the multifaceted functions of GmFUS3 and its potential applications in enhancing crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Sehrish Manan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Misbah Bilal
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Muhammad Wajid Ullah
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Ma L, Yuan J, Qin H, Zhang M, Zhang F, Yu F, Tian Z, Wang G. GmMATE100 Is Involved in the Import of Soyasaponins A and B into Vacuoles in Soybean Plants ( Glycine max L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9994-10004. [PMID: 38648468 DOI: 10.1021/acs.jafc.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Triterpenoid saponins, synthesized via the mevalonic acid (MVA) pathway in the cytoplasm, provide protection against pathogens and pests in plants and health benefits for humans. However, the mechanisms by which triterpenoid saponins are transported between cellular compartments remain uncharacterized. Here, we characterize a tonoplast localized multidrug and toxic compound extrusion transporter, GmMATE100 (encoded by Glyma.18G143700), from soybean (Glycine max L.). GmMATE100 is co-expressed with soyasaponin biosynthetic genes, and its expression was induced by MeJA treatment, which also led to soyasaponin accumulation in soybean roots. GmMATE100 efficiently transports multiple type-B soyasaponins as well as type-A soyasaponins with low affinity from the cytosol to the vacuole in a yeast system. The GmMATE100 loss-of-function mutant showed a significant decrease in type-A and type-B soyasaponin contents in soybean roots. This study not only characterized the first soybean triterpenoid saponin transporter but also provided new knowledge for the rational engineering of soyasaponin content and composition in soybean plants to modulate their levels within crop environments.
Collapse
Affiliation(s)
- Liya Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Jia Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hao Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mengxia Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Fengxia Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
12
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
13
|
Wu W, Zhuang Y, Chen D, Ruan Y, Li F, Jackson K, Liu CW, East A, Wen J, Tatsis E, Poole PS, Xu P, Murray JD. Methylated chalcones are required for rhizobial nod gene induction in the Medicago truncatula rhizosphere. THE NEW PHYTOLOGIST 2024. [PMID: 38571285 DOI: 10.1111/nph.19701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuxin Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Yiting Ruan
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fuyu Li
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kirsty Jackson
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cheng-Wu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Alison East
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Evangelos Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ping Xu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
14
|
Mu Z, Liang Z, Yang J, Wei S, Zhao Y, Zhou H. Identification and analysis of MATE protein family in Gleditsia sinensis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23249. [PMID: 38621016 DOI: 10.1071/fp23249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in Gleditsia sinensis has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members' regulatory roles in growth and development in G. sinensis , the GsMATEs expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all MATE genes varies in roots, stems and leaves. Notably, the expression levels of GsMATE26 , GsMATE32 and GsMATE43 differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in G. sinensis .
Collapse
Affiliation(s)
- Zisiye Mu
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Zhun Liang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jing Yang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shixiang Wei
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yang Zhao
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Heying Zhou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Kim JM, Lee JW, Seo JS, Ha BK, Kwon SJ. Differentially Expressed Genes Related to Isoflavone Biosynthesis in a Soybean Mutant Revealed by a Comparative Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:584. [PMID: 38475431 DOI: 10.3390/plants13050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Soybean [Glycine max (L.) Merr.] isoflavones, which are secondary metabolites with various functions, are included in food, cosmetics, and medicine. However, the molecular mechanisms regulating the glycosylation and malonylation of isoflavone glycoconjugates remain unclear. In this study, we conducted an RNA-seq analysis to compare soybean genotypes with different isoflavone contents, including Danbaek and Hwanggeum (low-isoflavone cultivars) as well as DB-088 (high-isoflavone mutant). The transcriptome analysis yielded over 278 million clean reads, representing 39,156 transcripts. The analysis of differentially expressed genes (DEGs) detected 2654 up-regulated and 1805 down-regulated genes between the low- and high-isoflavone genotypes. The putative functions of these 4459 DEGs were annotated on the basis of GO and KEGG pathway enrichment analyses. These DEGs were further analyzed to compare the expression patterns of the genes involved in the biosynthesis of secondary metabolites and the genes encoding transcription factors. The examination of the relative expression levels of 70 isoflavone biosynthetic genes revealed the HID, IFS, UGT, and MAT expression levels were significantly up/down-regulated depending on the genotype and seed developmental stage. These expression patterns were confirmed by quantitative real-time PCR. Moreover, a gene co-expression analysis detected potential protein-protein interactions, suggestive of common functions. The study findings provide valuable insights into the structural genes responsible for isoflavone biosynthesis and accumulation in soybean seeds.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jeong Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
16
|
Mackon E, Guo Y, Jeazet Dongho Epse Mackon GC, Ma Y, Yao Y, Luo D, Dai X, Zhao N, Lu Y, Jandan TH, Liu P. OsGSTU34, a Bz2-like anthocyanin-related glutathione transferase transporter, is essential for rice (Oryza sativa L.) organs coloration. PHYTOCHEMISTRY 2024; 217:113896. [PMID: 37866445 DOI: 10.1016/j.phytochem.2023.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Anthocyanins are a flavonoid compound known as one of the most important chromogenic substances. They play several functions, including health promotion and sustaining plants during adverse conditions. They are synthesized at the endoplasmic reticulum and sequestered in the vacuole. In this work, we generated knock-out lines of OsGSTU34, a glutathione transporter's tau gene family, with no transgene line and off-target through CRISPR/Cas9 mutagenesis and highlighted the loss of pigmentation in rice flowers, leaves, stems, shoots, and caryopsis. The anthocyanin quantification in the wild-type BLWT and mutant line BLG34-8 caryopsis showed that cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G) were almost undetectable in the mutant line. A tandem mass tag (TMT) labeling proteomic analysis was conducted to elucidate the proteomic changes in the BLWT and BLG34-8. The result revealed that 1175 proteins were altered, including 408 that were down-regulated and 767 that were upregulated. The accumulation of the OsGSTU34-related protein (Q8L576), along with several anthocyanin-related proteins, was down-regulated. The enrichment analysis showed that the down-regulated proteins were enriched in different pathways, among which the phenylpropanoid biosynthesis pathway, flavonoid biosynthesis metabolites, and anthocyanin biosynthesis pathway. Protein interaction network prediction revealed that glutathione-S-transferase (Q8L576) was connected to the proteins involved in the flavonoid and anthocyanin biosynthesis pathways, such as flavanone 3-dioxygenase 1 (Q7XM21), leucoanthocyanidin dioxygenase 1 (Q93VC3), 4-coumarate-CoA ligase 2 (Q42982), phenylalanine ammonia-lyase (P14717), chalcone synthase 1 (Q2R3A1), and 4-coumarate-CoA ligase 5 (Q6ZAC1). However, the expression of the most important anthocyanin biosynthesis gene was not altered, suggesting that only the transport mechanism was affected. Our findings highlight new insight into the anthocyanin pigmentation in black rice and provide new perspectives for future research.
Collapse
Affiliation(s)
- Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University PR China.
| | - Yongqiang Guo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | | | - Yafei Ma
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Yuhang Yao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Dengjie Luo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University PR China.
| | - Xianggui Dai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Neng Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Ying Lu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Tahir Hussain Jandan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| |
Collapse
|
17
|
Wang P, Yan Y, Yan M, Piao X, Wang Y, Lei X, Yang H, Zhang N, Li W, Di P, Yang L. Identification and analysis of BAHD superfamily related to malonyl ginsenoside biosynthesis in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1301084. [PMID: 38186598 PMCID: PMC10768564 DOI: 10.3389/fpls.2023.1301084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Introduction The BAHD (benzylalcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase and deacetylvindoline 4-O-acetyltransferase), has various biological functions in plants, including catalyzing the biosynthesis of terpenes, phenolics and esters, participating in plant stress response, affecting cell stability, and regulating fruit quality. Methods Bioinformatics methods, real-time fluorescence quantitative PCR technology, and ultra-high-performance liquid chromatography combined with an Orbitrap mass spectrometer were used to explore the relationship between the BAHD gene family and malonyl ginsenosides in Panax ginseng. Results In this study, 103 BAHD genes were identified in P. ginseng, mainly distributed in three major clades. Most PgBAHDs contain cis-acting elements associated with abiotic stress response and plant hormone response. Among the 103 genes, 68 PgBAHDs are WGD (whole-genome duplication) genes. The significance of malonylation in biosynthesis has garnered considerable attention in the study of malonyltransferases. The phylogenetic tree results showed 34 PgBAHDs were clustered with genes that have malonyl characterization. Among them, seven PgBAHDs (PgBAHD4, 45, 65, 74, 90, 97, and 99) showed correlations > 0.9 with crucial enzyme genes involved in ginsenoside biosynthesis and > 0.8 with malonyl ginsenosides. These seven genes were considered potential candidates involved in the biosynthesis of malonyl ginsenosides. Discussion These results help elucidate the structure, evolution, and functions of the P. ginseng BAHD gene family, and establish the foundation for further research on the mechanism of BAHD genes in ginsenoside biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
19
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
20
|
Liu Y, Wu X, Sun C, Chen W, Zhang M, Liu N, Zhang Q, Xu L, Luo Z. Preferential transport activity of DkDTX5/MATE5 affects the formation of different astringency in persimmon. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2304-2319. [PMID: 37526209 DOI: 10.1111/jipb.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit. The expression pattern of DkDTX5/MATE5 was correlated with PA accumulation in NA-type fruit. Upregulation and downregulation of DkDTX5/MATE5 promoted and inhibited PA accumulation, respectively, in the NA-type fruit. Interestingly, transporter assays of Xenopus laevis oocytes indicated that DkDTX5/MATE5 preferentially transported the PA precursors catechin, epicatechin, and epicatechin gallate, resulting in their increased ratios relative to the total PAs, which was the main source of variation in PA accumulation between the A-type and NA-type. The allele lacking Ser-84 in DkDTX5/MATE5 was identified as a dominantly expressed gene in the A-type and lost its transport function. Site-directed mutagenesis revealed that DkDTX5/MATE5 binds to PA precursors via Ser-84. These findings clarify the association between the transporter function of DkDTX5/MATE5 and PA variation, and can contribute to the breeding of new cultivars with improved fruit quality.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenfeng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglin Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Qian T, Wang X, Liu J, Shi M, Zhao J, Sun P, Zheng G, Fang C, Xie X. ATP-binding cassette protein ABCC8 promotes anthocyanin accumulation in strawberry fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108037. [PMID: 37722280 DOI: 10.1016/j.plaphy.2023.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Anthocyanins are important health-promoting flavonoid compounds that substantially contribute to fruit quality. Anthocyanin biosynthesis and most regulatory mechanisms are relatively well understood. However, the functions of anthocyanin transport genes in strawberry fruit remain unclear. In this study, a gene encoding an ATP-binding cassette (ABC) protein of type C, ABCC8, was isolated from strawberry fruits. qRT-PCR analysis demonstrated that the transcript levels of FvABCC8 were the highest and were strongly correlated with anthocyanin accumulation during strawberry fruit ripening. Transient overexpression and RNAi of FvABCC8 led to an increase and decrease in anthocyanin content in strawberry fruits, respectively. Moreover, the ABCC8 promoter was activated by MYB and bHLH transcription factors MYB10, bHLH33, and MYC1. Sucrose enhanced anthocyanin accumulation in FvABCC8-overexpressing Arabidopsis, particularly at higher concentrations. FvABCC8-overexpressing lines were less sensitive to ABA during seed germination and seedling development. These results suggest that strawberry vacuolar anthocyanin transport may be mediated by the ABCC transporter ABCC8, the expression of which may be regulated by transcription factors MYB10, bHLH33, and MYC1.
Collapse
Affiliation(s)
- Ting Qian
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoshan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Xue JS, Qiu S, Jia XL, Shen SY, Shen CW, Wang S, Xu P, Tong Q, Lou YX, Yang NY, Cao JG, Hu JF, Shen H, Zhu RL, Murray JD, Chen WS, Yang ZN. Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. PLANT PHYSIOLOGY 2023; 193:627-642. [PMID: 37233029 DOI: 10.1093/plphys/kiad313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Lei Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chong-Wen Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Tong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Xia Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Ying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Guo Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wan-Sheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
23
|
Mackon E, Jeazet Dongho Epse Mackon GC, Yao Y, Guo Y, Ma Y, Dai X, Jandan TH, Liu P. Integrative HPLC profiling and transcriptome analysis revealed insights into anthocyanin accumulation and key genes at three developmental stages of black rice ( Oryza sativa. L) caryopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1211326. [PMID: 37727854 PMCID: PMC10505814 DOI: 10.3389/fpls.2023.1211326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Introduction Anthocyanins are plants' secondary metabolites belonging to the flavonoid class with potential health-promoting properties. They are greatly employed in the food industry as natural alternative food colorants for dairy and ready-to-eat desserts and pH indicators. These tremendous advantages make them economically important with increasing market trends. Black rice is a rich source of anthocyanin that can be used to ensure food and nutritional security around the world. However, research on anthocyanin accumulation and gene expression during rice caryopsis development is lacking. Methods In this study, we combined high-performance liquid chromatography (HPLC) and transcriptome analysis to profile the changes in anthocyanin content and gene expression dynamics at three developmental stages (milky, doughy, and mature). Results Our results showed that anthocyanin accumulation started to be visible seven days after flowering (DAF), increased rapidly from milky (11 DAF) to dough stage, then started decreasing after the peak was attained at 18 DAF. RNA-seq showed that 519 out of 14889, 477 out of 17914, and 1614 out of 18810 genes were uniquely expressed in the milky, doughy, and mature stages, respectively. We performed three pairwise comparisons: milky vs. dough, milky vs. mature, and dough vs. mature, and identified 6753, 9540, and 2531 DEGs, respectively. The DEGs' abundance was higher in milky vs. mature, with 5527 up-regulated genes and 4013 down-regulated genes, while it was smaller in dough vs. mature, with 1419 up-regulated genes and 1112 down-regulated DEGs. This result was consistent with the changes in anthocyanin profiling, and the expression of structural, regulatory, and transporter genes involved in anthocyanin biosynthesis showed their highest expression at the dough stage. Through the gene expression profile and protein interaction network, we deciphered six main contributors of the anthocyanin peak observed at dough stage, including OsANS, OsDFR, OsGSTU34, OsMYB3, OsbHLH015, and OsWD40-50. Discussion This study is the first to report the investigation of anthocyanin and gene expression at three developmental stages of black rice caryopsis. The findings of this study could aid in predicting the best harvesting time to achieve maximum anthocyanin content and the best time to collect samples for various gene expression analysis, laying the groundwork for future research into the molecular mechanisms underlying rice caryopsis coloration.
Collapse
Affiliation(s)
- Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Yuhang Yao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yongqiang Guo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yafei Ma
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xianggui Dai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tahir Hussain Jandan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Sedláková V, Zeljković SĆ, Štefelová N, Smýkal P, Hanáček P. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2687. [PMID: 37514301 PMCID: PMC10384132 DOI: 10.3390/plants12142687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. The relationship between selected phenolic and flavonoid metabolites of chickpea seed coats and dormancy level was assessed using wild and cultivated chickpea parental genotypes and a derived population of recombinant inbred lines (RILs). The selected phenolic and flavonoid metabolites were analyzed via the LC-MS/MS method. Significant differences in the concentration of certain phenolic acids were found among cultivated (Cicer arietinum, ICC4958) and wild chickpea (Cicer reticulatum, PI489777) parental genotypes. These differences were observed in the contents of gallic, caffeic, vanillic, syringic, p-coumaric, salicylic, and sinapic acids, as well as salicylic acid-2-O-β-d-glucoside and coniferaldehyde. Additionally, significant differences were observed in the flavonoids myricetin, quercetin, luteolin, naringenin, kaempferol, isoorientin, orientin, and isovitexin. When comparing non-dormant and dormant RILs, significant differences were observed in gallic, 3-hydroxybenzoic, syringic, and sinapic acids, as well as the flavonoids quercitrin, quercetin, naringenin, kaempferol, and morin. Phenolic acids were generally more highly concentrated in the wild parental genotype and dormant RILs. We compared the phenylpropanoid content of chickpea seed coats with related legumes, such as pea, lentil, and faba bean. This information could be useful in chickpea breeding programs to reduce dormancy.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Plant Biology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Sanja Ćavar Zeljković
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, 783 71 Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University, 783 71 Olomouc, Czech Republic
| | - Nikola Štefelová
- Czech Advanced Technology and Research Institute, Palacký University, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in Brno, 613 00 Brno, Czech Republic
| |
Collapse
|
25
|
Saad KR, Kumar G, Puthusseri B, Srinivasa SM, Giridhar P, Shetty NP. Genome-wide identification of MATE, functional analysis and molecular dynamics of DcMATE21 involved in anthocyanin accumulation in Daucus carota. PHYTOCHEMISTRY 2023; 210:113676. [PMID: 37059287 DOI: 10.1016/j.phytochem.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins are a subclass of flavonoids that are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Multidrug and toxic compound extrusion transporters (MATE) is a family of membrane transporters that transport ions and secondary metabolites, such as anthocyanins, in plants. Although various studies on MATE transporters have been carried out on different plant species, this is the first comprehensive report to mine the Daucus carota genome to identify the MATE gene family. Our study identified 45 DcMATEs through genome-wide analysis and detected five segmental and six tandem duplications from the genome. The chromosome distribution, phylogenetic analysis, and cis-regulatory elements revealed the structural diversity and numerous functions associated with the DcMATEs. In addition, we analyzed RNA-seq data obtained from the European Nucleotide Archive to screen for the expression of DcMATEs involved in anthocyanin biosynthesis. Among the identified DcMATEs, DcMATE21 correlated with anthocyanin content in the different D. carota varieties. In addition, the expression of DcMATE21 and anthocyanin biosynthesis genes was correlated under abscisic acid, methyl jasmonate, sodium nitroprusside, salicylic acid, and phenylalanine treatments, which were substantiated by anthocyanin accumulation in the in vitro cultures. Further molecular membrane dynamics of DcMATE21 with anthocyanin (cyanidin-3-glucoside) identified the binding pocket, showing extensive H-bond interactions with 10 crucial amino acids present in the transmembrane helix of 7, 8, and 10 of DcMATE21. The current investigation, using RNA-seq, in vitro cultures, and molecular dynamics studies revealed the involvement of DcMATE21 in anthocyanin accumulation in vitro cultures of D. carota.
Collapse
Affiliation(s)
- Kirti R Saad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Sudhanva M Srinivasa
- Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara, 571448, Karnataka, India.
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| |
Collapse
|
26
|
Wang W, Qiu X, Wang Z, Xie T, Sun W, Xu J, Zhang F, Yu S. Deciphering the Genetic Architecture of Color Variation in Whole Grain Rice by Genome-Wide Association. PLANTS (BASEL, SWITZERLAND) 2023; 12:927. [PMID: 36840275 PMCID: PMC9960595 DOI: 10.3390/plants12040927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Whole grain rice is recommended in a natural healthy diet because of its high nutritional and healthful benefits compared to polished or white rice. The whole grain contains the pericarp with many assorted colors (such as brown, red, and black) associated with taste and commercial quality. The color attributes of whole grain or brown rice are usually undesirable and need to be improved. To decipher the genetic basis of color variation in the whole grain rice, we conducted a genome-wide association analysis of three parameters of grain colors (brightness, redness, and yellowness) in a panel of 682 rice accessions. Twenty-six loci were identified for the color parameters, implying that grain color is under polygenic control. Among them, some major-effect loci were co-localized with the previously identified genes such as Rc and Rd. To eliminate the possible mask of Rc on other loci influencing grain color, we performed the association analysis in a subset of the panel that excluded the pigmented (red and black) rice. Eighteen loci or SNPs were detected to be associated with grain color in the subpopulation, many of which were not reported before. Two significant peak SNP regions on chromosomes 1 and 9 were validated using near-isogenic lines. Based on differential expression analysis of annotated genes within the SNP regions and metabolic analysis of pooled extreme samples, we found at least three annotated genes as potential candidates involved in the flavonoid metabolic pathway related to pericarp color. These results provide insights into the genetic basis of rice grain color and facilitate genomic breeding to improve appearance and commercial quality of whole grain rice.
Collapse
Affiliation(s)
- Wenjun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ziqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Chai Q, Wang X, Gao M, Zhao X, Chen Y, Zhang C, Jiang H, Wang J, Wang Y, Zheng M, Baltaevich AM, Zhao J, Zhao J. A glutathione S-transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:433-448. [PMID: 36385569 PMCID: PMC9884026 DOI: 10.1111/pbi.13965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Anthocyanin accumulations in the flowers can improve seed production of hybrid lines, and produce higher commodity value in cotton fibre. However, the genetic mechanism underlying the anthocyanin pigmentation in cotton petals is poorly understood. Here, we showed that the red petal phenotype was introgressed from Gossypium bickii through recombination with the segment containing the R3 bic region in the A07 chromosome of Gossypium hirsutum variety LR compared with the near-isogenic line of LW with white flower petals. The cyanidin-3-O-glucoside (Cy3G) was the major anthocyanin in red petals of cotton. A GhTT19 encoding a TT19-like GST was mapped to the R3 bic site associated with red petals via map-based cloning, but GhTT19 homologue gene from the D genome was not expressed in G. hirsutum. Intriguingly, allelic variations in the promoters between GhTT19LW and GhTT19LR , rather than genic regions, were found as genetic causal of petal colour variations. GhTT19-GFP was found localized in both the endoplasmic reticulum and tonoplast for facilitating anthocyanin transport. An additional MYB binding element found only in the promoter of GhTT19LR , but not in that of GhTT19LW , enhanced its transactivation by the MYB activator GhPAP1. The transgenic analysis confirmed the function of GhTT19 in regulating the red flower phenotype in cotton. The essential light signalling component GhHY5 bonded to and activated the promoter of GhPAP1, and the GhHY5-GhPAP1 module together regulated GhTT19 expression to mediate the light-activation of petal anthocyanin pigmentation in cotton. This study provides new insights into the molecular mechanisms for anthocyanin accumulation and may lay a foundation for faster genetic improvement of cotton.
Collapse
Affiliation(s)
- Qichao Chai
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Xiuli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Mingwei Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of HorticultureHunan Agricultural UniversityChangshaChina
| | - Ying Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Chao Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Hui Jiang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Jiabao Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Yongcui Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Meina Zheng
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Ahmedov Miraziz Baltaevich
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of HorticultureHunan Agricultural UniversityChangshaChina
| | - Junsheng Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
28
|
Pal L, Dwivedi V, Gupta SK, Saxena S, Pandey A, Chattopadhyay D. Biochemical analysis of anthocyanin and proanthocyanidin and their regulation in determining chickpea flower and seed coat colour. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:130-148. [PMID: 36205079 DOI: 10.1093/jxb/erac392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/06/2022] [Indexed: 05/20/2023]
Abstract
Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.
Collapse
Affiliation(s)
- Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Santosh Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
29
|
Azam M, Zhang S, Huai Y, Abdelghany AM, Shaibu AS, Qi J, Feng Y, Liu Y, Li J, Qiu L, Li B, Sun J. Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in soybean natural population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:13. [PMID: 36662254 DOI: 10.1007/s00122-023-04258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
We identified four hub genes for isoflavone biosynthesis based on BSA-seq and WGCNA methods and validated that GmIE3-1 positively contribute to isoflavone accumulation in soybean. Soybean isoflavones are secondary metabolites of great interest owing to their beneficial impact on human health. Herein, we profiled the seed isoflavone content by HPLC in 1551 soybean accessions grown in two locations for two years and constructed two extreme pools with high (4065.1 µg g-1) and low (1427.23 µg g-1) isoflavone contents to identify candidate genes involved in isoflavone biosynthesis pathways using bulk segregant analysis sequencing (BSA-seq) approach. The results showed that the average sequencing depths were 50.3× and 65.7× in high and low pools, respectively. A total of 23,626 polymorphic SNPs and 5299 InDels were detected between both pools and 1492 genes with different variations were identified. Based on differential genes in BSA-seq and weighted gene co-expression network analysis (WGCNA), four hub genes, Glyma.06G290400 (designated as GmIE3-1), Glyma.01G239200, Glyma.01G241500, Glyma.13G256100 were identified, encoding E3 ubiquitin-protein ligase, arm repeat protein interacting with ABF2, zinc metallopeptidase EGY3, and dynamin-related protein 3A, respectively. The allelic variation in GmIE3-1 showed a significant influence on isoflavone accumulation. The virus-induced gene silencing (VIGS) and RNAi hairy root transformation of GmIE3-1 revealed partial suppression of this gene could cause a significant decrease (P < 0.0001) of total isoflavone content, suggesting GmIE3-1 is a positive regulator for isoflavones. The present study demonstrated that the BSA-seq approach combined with WGCNA, VIGS and hairy root transformation can efficiently identify isoflavone candidate genes in soybean natural population.
Collapse
Affiliation(s)
- Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanyuan Huai
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ahmed M Abdelghany
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Abdulwahab S Shaibu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Agronomy, Bayero University, Kano, Nigeria
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yitian Liu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lijuan Qiu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bin Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
30
|
Islam NS, Duwadi K, Chen L, Pajak A, McDowell T, Marsolais F, Dhaubhadel S. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening. FRONTIERS IN PLANT SCIENCE 2022; 13:1046597. [PMID: 36438155 PMCID: PMC9686396 DOI: 10.3389/fpls.2022.1046597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kishor Duwadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
31
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
32
|
Gani U, Nautiyal AK, Kundan M, Rout B, Pandey A, Misra P. Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6186-6206. [PMID: 35662335 DOI: 10.1093/jxb/erac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The β-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
34
|
Darwish DBE, Ali M, Abdelkawy AM, Zayed M, Alatawy M, Nagah A. Constitutive overexpression of GsIMaT2 gene from wild soybean enhances rhizobia interaction and increase nodulation in soybean (Glycine max). BMC PLANT BIOLOGY 2022; 22:431. [PMID: 36076165 PMCID: PMC9461152 DOI: 10.1186/s12870-022-03811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Since the root nodules formation is regulated by specific and complex interactions of legume and rhizobial genes, there are still too many questions to be answered about the role of the genes involved in the regulation of the nodulation signaling pathway. RESULTS The genetic and biological roles of the isoflavone-7-O-beta-glucoside 6″-O-malonyltransferase gene GsIMaT2 from wild soybean (Glycine soja) in the regulation of nodule and root growth in soybean (Glycine max) were examined in this work. The effect of overexpressing GsIMaT2 from G. soja on the soybean nodulation signaling system and strigolactone production was investigated. We discovered that the GsIMaT2 increased nodule numbers, fresh nodule weight, root weight, and root length by boosting strigolactone formation. Furthermore, we examined the isoflavone concentration of transgenic G. max hairy roots 10 and 20 days after rhizobial inoculation. Malonyldaidzin, malonylgenistin, daidzein, and glycitein levels were considerably higher in GsMaT2-OE hairy roots after 10- and 20-days of Bradyrhizobium japonicum infection compared to the control. These findings suggest that isoflavones and their biosynthetic genes play unique functions in the nodulation signaling system in G. max. CONCLUSIONS Finally, our results indicate the potential effects of the GsIMaT2 gene on soybean root growth and nodulation. This study provides novel insights for understanding the epistatic relationship between isoflavones, root development, and nodulation in soybean. HIGHLIGHTS * Cloning and Characterization of 7-O-beta-glucoside 6″-O-malonyltransferase (GsIMaT2) gene from wild soybean (G. soja). * The role of GsIMaT2 gene in the regulation of root nodule development. *Overexpression of GsMaT2 gene increases the accumulation of isoflavonoid in transgenic soybean hairy roots. * This gene could be used for metabolic engineering of useful isoflavonoid production.
Collapse
Affiliation(s)
- Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511 Egypt
- Department of Biology, College of Science, Tabuk University, Tabuk, 74191 Saudi Arabia
| | - Mohammed Ali
- Department of Genetic Resources, Desert Research Center, Egyptian Deserts Gene Bank, North Sinai Research Station, 1 Mathaf El-Matarya St., El-Matareya, Cairo, 11753 Egypt
| | - Aisha M. Abdelkawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Muhammad Zayed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Shebin El-Kom, 32511 Egypt
| | - Marfat Alatawy
- Department of Biology, College of Science, Tabuk University, Tabuk, 74191 Saudi Arabia
| | - Aziza Nagah
- Botany and Microbiology Department, Faculty of Science, Banha University, Qalyubia Governorate, Benha, 13518 Egypt
| |
Collapse
|
35
|
Dean JV, Willis M, Shaban L. Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14. PHYSIOLOGIA PLANTARUM 2022; 174:e13780. [PMID: 36121340 DOI: 10.1111/ppl.13780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins are a group of pigments that have various roles in plants including attracting pollinators and seed dispersers and protecting against various types of stress. In vegetative tissue, these anthocyanins are sequestered in the vacuole following biosynthesis in the cytoplasm, though there remain questions as to the events leading to the vacuolar sequestration. In this study, we were able to show that the uptake of acylated anthocyanins by vacuolar membrane-enriched vesicles isolated from Arabidopsis was stimulated by the addition of MgATP and was inhibited by both vanadate and glybenclamide, but not by gramicidin D or bafilomycin A1 , suggesting that uptake involves an ATP-binding cassette (ABC) transporter and not an H+ -antiporter. Membrane vesicles isolated from yeast expressing the ABC transporters designated AtABCC1, AtABCC2, and AtABCC14 are capable of MgATP-dependent uptake of acylated anthocyanins. This uptake was not dependent on glutathione as seen previously for anthocyanidin 3-O-monoglucosides. Compared to the wild-type, the transport of acylated anthocyanins was lower in vacuolar membrane-enriched vesicles isolated from atabcc1 cell cultures providing evidence that AtABCC1 may be the predominant transporter of these compounds in vivo. In addition, the pattern of anthocyanin accumulation differed between the atabcc1, atabcc2, and atabcc14 mutants and the wild-type seedlings under anthocyanin inductive conditions. We suggest that AtABCC1, AtABCC2, and AtABCC14 are involved in the vacuolar transport of acylated anthocyanins produced in the vegetative tissue of Arabidopsis and that the pattern of anthocyanin accumulation can be altered depending on the presence or absence of a specific vacuolar ABC transporter.
Collapse
Affiliation(s)
- John V Dean
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Morgan Willis
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Laith Shaban
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
36
|
Debnath S, Mohanta D, Perveen K, Husain FM, Kesari KK, Ashraf MS, Mukerjee N, Rahin SA. Structural and Functional Characterization at the Molecular Level of the MATE Gene Family in Wheat in Silico. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9289007. [PMID: 39281829 PMCID: PMC11401716 DOI: 10.1155/2022/9289007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 09/18/2024]
Abstract
A series of multidrug extransporters known as the multidrug and potentially toxic extrusion (MATE) genes are found in all living things and are crucial for the removal of heavy metal ions, metalloids, exogenous xenobiotics, endogenous secondary metabolites, and other toxic substances from the cells. However, there has only been a small amount of them in silico analysis of the MATE family of genes in plant species. In the current study, the MATE gene family was characterized in silico where two families and seven subfamilies based on their evolutionary relationships were proposed. Plant breeders may use TraesCS1D02G030400, TraesCS4B02G244400, and TraesCS1A02G029900 genes for marker-assisted or transgenic breeding to develop novel cultivars since these genes have been hypothesized from protein-protein interaction study to play a critical role in the transport of toxic chemicals across cells. The exon number varies from 01 to 14. One exon has TraesCS1A02G188100, TraesCS5B02G562500, TraesCS6A02G256400, and TraesCS6D02G384300 genes, while 14 exons have only two genes that are TraesCS6A02G418800 and TraesCS6D02G407900. Biological stress (infestations of disease) affects the expression of most of the MATE genes, with the gene TraesCS5D02G355500 having the highest expression level in the wheat expression browser tool. Using the Grain interpretation search engine tool, it is found that the vast bulk of MATE genes are voiced throughout biotic environmental stresses caused by disease pests, with the genotype TraesCS5B02G326600.1 from family 1 exhibiting the greatest level of expression throughout Fusarium head blight infection by Fusarium graminearum after 4 days of infection. The researchers constructed 39 ternary plots, each with a distinct degree of expression under biotic and abiotic stress settings, and observed that 44% of the triplets have imbalanced outputs (extreme values) due to their higher tissue specificity and increased intensity.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Deepika Mohanta
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh-11495, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11421, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 11000 (Otakaari 1B), Espoo, Finland
| | - Mohd Shaikhul Ashraf
- Department of Botany, HKM Govt. Degree College Bandipora, Bandipora, Kashmir 193505, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India
| | | |
Collapse
|
37
|
Liu S, Li Y, Fang H, Huang B, Zhao C, Sun C, Li S, Chen K. Genome-wide identification and expression analysis of MATE gene family in citrus fruit (Citrus clementina). Genomics 2022; 114:110446. [PMID: 35953015 DOI: 10.1016/j.ygeno.2022.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Multidrug and toxic compound extrusion (MATE) proteins are a class of secondary active multidrug transporters. In plants, this family has significantly expanded and is involved in numerous plant physiological processes. Although MATE proteins have been identified in an increasing number of species, the understanding about this family in citrus remains unclear. In this study, a total of 69 MATE transporters were identified in the citrus genome (Citrus clementina) and classified into four groups by phylogenetic analysis. Tandem and segmental duplication events were the main causes of the citrus MATE family expansion. RNA-seq and qRT-PCR analyses were performed during citrus fruit development. The results indicated that CitMATE genes showed specific expression profiles in citrus peels and flesh at different developmental stages. Combined with the variations of flavonoids and citrate levels in citrus fruit, we suggested that CitMATE43 and CitMATE66 may be involved in the transport process of flavonoids and citrate in citrus fruit, respectively. In addition, two flavonoids positive regulators, CitERF32 and CitERF33, both directly bind to and activated the CitMATE43 promoter. Our results provide comprehensive information on citrus MATE genes and valuable understanding for the flavonoids and citrate metabolism in citrus fruit.
Collapse
Affiliation(s)
- Shengchao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yinchun Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Boyu Huang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Chenning Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Chongde Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
38
|
Jia Y, Pradeep K, Vance WH, Zhang X, Weir B, Wei H, Deng Z, Zhang Y, Xu X, Zhao C, Berger JD, Bell RW, Li C. Identification of two chickpea multidrug and toxic compound extrusion transporter genes transcriptionally upregulated upon aluminum treatment in root tips. FRONTIERS IN PLANT SCIENCE 2022; 13:909045. [PMID: 35991422 PMCID: PMC9389367 DOI: 10.3389/fpls.2022.909045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 μM Al3+) and Al treatments (15, 30 μM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.
Collapse
Affiliation(s)
- Yong Jia
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Karthika Pradeep
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Wendy H. Vance
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Brayden Weir
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Hongru Wei
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhiwei Deng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yujuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xuexin Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Changxing Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Richard William Bell
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
39
|
Lin Y, Laosatit K, Liu J, Chen J, Yuan X, Somta P, Chen X. The mungbean VrP locus encoding MYB90, an R2R3-type MYB protein, regulates anthocyanin biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:895634. [PMID: 35937322 PMCID: PMC9355716 DOI: 10.3389/fpls.2022.895634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 05/30/2023]
Abstract
Anthocyanins are water-soluble pigments present in several tissues/parts of plants. The pigments provide color and are wildly known for health benefits for human, insect attraction for plant pollination, and stress resistance in plants. Anthocyanin content variations in mungbean [Vigna radiata (L.) Wilczek] were first noticed a long time ago, but the genetic mechanism controlling the anthocyanins in mungbean remains unknown. An F2 population derived from the cross between purple-hypocotyl (V2709) and green-hypocotyl (Sulv1) mungbeans was used to map the VrP locus controlling purple hypocotyl. The VrP locus was mapped to a 78.9-kb region on chromosome 4. Sequence comparison and gene expression analysis identified an R2R3-MYB gene VrMYB90 as the candidate gene for the VrP locus. Haplotype analysis using 124 mungbean accessions suggested that 10 single nucleotide polymorphisms (SNPs) in exon 3 may lead to an abolished expression of VrMYB90 and an absence of anthocyanin accumulation in the hypocotyl of Sulv1 and KPS2. The overexpression of VrMYB90 in mungbean hairy root, tobacco leaf, and Arabidopsis resulted in anthocyanin accumulation (purple color). Gene expression analysis demonstrated that VrMYB90 regulated anthocyanin accumulation in the hypocotyl, stem, petiole, and flowers, and the expression was sensitive to light. VrMYB90 protein may upregulate VrDFR encoding dihydroflavonol 4-reductase at the late biosynthesis step of anthocyanins in mungbeans. These results suggest that VrMYB90 is the dominator in the spatiotemporal regulation of anthocyanin biosynthesis. Our results provide insight into the biosynthesis mechanism of anthocyanin and a theoretical basis for breeding mungbeans.
Collapse
Affiliation(s)
- Yun Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Thailand
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingbing Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Thailand
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
40
|
Buhrman K, Aravena-Calvo J, Ross Zaulich C, Hinz K, Laursen T. Anthocyanic Vacuolar Inclusions: From Biosynthesis to Storage and Possible Applications. Front Chem 2022; 10:913324. [PMID: 35836677 PMCID: PMC9273883 DOI: 10.3389/fchem.2022.913324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
The ability of plants to accumulate specific metabolites in concentrations beyond their solubility in both aqueous and lipid environments remains a key question in plant biology. Natural Deep Eutectic Solvents (NADES) are mixtures of natural compounds in specific molar ratios, which interact through hydrogen bonding. This results in a viscous liquid that can solubilize high amounts of natural products while maintaining a negligible vapor pressure to prevent release of volatile compounds. While all the components are presents in plant cells, identifying experimental evidence for the occurrence of NADES phases remains a challenging quest. Accumulation of anthocyanin flavonoids in highly concentrated inclusions have been speculated to involve NADES as an inert solvent. The inherent pigment properties of anthocyanins provide an ideal system for studying the formation of NADES in a cellular environment. In this mini-review we discuss the biosynthesis of modified anthocyanins that facilitate their organization in condensates, their transport and storage as a specific type of phase separated inclusions in the vacuole, and the presence of NADES constituents as a natural solution for storing high amounts of flavonoids and other natural products. Finally, we highlight how the knowledge gathered from studying the discussed processes could be used for specific applications within synthetic biology to utilize NADES derived compartments for the production of valuable compounds where the production is challenged by poor solubility, toxic intermediates or unstable and volatile products.
Collapse
Affiliation(s)
- Kees Buhrman
- Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javiera Aravena-Calvo
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Ross Zaulich
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Hinz
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Laursen
- Dynamic Metabolons Group, Section for Plant Biochemistry, Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tomas Laursen,
| |
Collapse
|
41
|
Wang R, Lu N, Liu C, Dixon RA, Wu Q, Mao Y, Yang Y, Zheng X, He L, Zhao B, Zhang F, Yang S, Chen H, Jun JH, Li Y, Liu C, Liu Y, Chen J. MtGSTF7, a TT19-like GST gene, is essential for accumulation of anthocyanins, but not proanthocyanins in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4129-4146. [PMID: 35294003 PMCID: PMC9232208 DOI: 10.1093/jxb/erac112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/12/2022] [Indexed: 05/20/2023]
Abstract
Anthocyanins and proanthocyanins (PAs) are two end products of the flavonoid biosynthesis pathway. They are believed to be synthesized in the endoplasmic reticulum and then sequestered into the vacuole. In Arabidopsis thaliana, TRANSPARENT TESTA 19 (TT19) is necessary for both anthocyanin and PA accumulation. Here, we found that MtGSTF7, a homolog of AtTT19, is essential for anthocyanin accumulation but not required for PA accumulation in Medicago truncatula. MtGSTF7 was induced by the anthocyanin regulator LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1), and its tissue expression pattern correlated with anthocyanin deposition in M. truncatula. Tnt1-insertional mutants of MtGSTF7 lost anthocyanin accumulation in vegetative organs, and introducing a genomic fragment of MtGSTF7 could complement the mutant phenotypes. Additionally, the accumulation of anthocyanins induced by LAP1 was significantly reduced in mtgstf7 mutants. Yeast-one-hybridization and dual-luciferase reporter assays revealed that LAP1 could bind to the MtGSTF7 promoter to activate its expression. Ectopic expression of MtGSTF7 in tt19 mutants could rescue their anthocyanin deficiency, but not their PA defect. Furthermore, PA accumulation was not affected in the mtgstf7 mutants. Taken together, our results show that the mechanism of anthocyanin and PA accumulation in M. truncatula is different from that in A. thaliana, and provide a new target gene for engineering anthocyanins in plants.
Collapse
Affiliation(s)
| | | | - Chenggang Liu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Fan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengchao Yang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Haitao Chen
- Sanjie Institute of Forage, Yangling, Shaanxi 712100, China
| | - Ji Hyung Jun
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ying Li
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | |
Collapse
|
42
|
Panara F, Passeri V, Lopez L, Porceddu A, Calderini O, Paolocci F. Functional Characterization of MtrGSTF7, a Glutathione S-Transferase Essential for Anthocyanin Accumulation in Medicago truncatula. PLANTS 2022; 11:plants11101318. [PMID: 35631744 PMCID: PMC9147808 DOI: 10.3390/plants11101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Flavonoids are essential compounds widespread in plants and exert many functions such as defence, definition of organ colour and protection against stresses. In Medicago truncatula, flavonoid biosynthesis and accumulation is finely regulated in terms of tissue specificity and induction by external factors, such as cold and other stresses. Among flavonoids, anthocyanin precursors are synthesised in the cytoplasm, transported to the tonoplast, then imported into the vacuole for further modifications and storage. In the present work, we functionally characterised MtrGSTF7, a phi-class glutathione S-transferase involved in anthocyanin transport to the tonoplast. The mtrgstf7 mutant completely lost the ability to accumulate anthocyanins in leaves both under control and anthocyanin inductive conditions. On the contrary, this mutant showed an increase in the levels of soluble proanthocyanidins (Pas) in their seeds with respect to the wild type. By complementation and expression data analysis, we showed that, differently from A. thaliana and similarly to V. vinifera, transport of anthocyanin and proanthocyanidins is likely carried out by different GSTs belonging to the phi-class. Such functional diversification likely results from the plant need to finely tune the accumulation of diverse classes of flavonoids according to the target organs and developmental stages.
Collapse
Affiliation(s)
- Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development, (ENEA), 75026 Rotondella, MT, Italy; (F.P.); (L.L.)
| | - Valentina Passeri
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, PG, Italy; (V.P.); (F.P.)
| | - Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development, (ENEA), 75026 Rotondella, MT, Italy; (F.P.); (L.L.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, SS, Italy;
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, PG, Italy; (V.P.); (F.P.)
- Correspondence: ; Tel.: +39-075-501-4858
| | - Francesco Paolocci
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, PG, Italy; (V.P.); (F.P.)
| |
Collapse
|
43
|
Behr M, Speeckaert N, Kurze E, Morel O, Prévost M, Mol A, Mahamadou Adamou N, Baragé M, Renaut J, Schwab W, El Jaziri M, Baucher M. Leaf necrosis resulting from downregulation of poplar glycosyltransferase UGT72A2. TREE PHYSIOLOGY 2022; 42:1084-1099. [PMID: 34865151 DOI: 10.1093/treephys/tpab161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Collapse
Affiliation(s)
- Marc Behr
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nathanael Speeckaert
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Oriane Morel
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Martine Prévost
- Unité de recherche Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Adeline Mol
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nassirou Mahamadou Adamou
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Moussa Baragé
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| |
Collapse
|
44
|
Qiu L, Zheng T, Liu W, Zhuo X, Li P, Wang J, Cheng T, Zhang Q. Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:884883. [PMID: 35599903 PMCID: PMC9120947 DOI: 10.3389/fpls.2022.884883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Prunus mume var. purpurea, commonly known as "Red Bone", is a special variety with pink or purple-red xylem. It is famous due to gorgeous petals and delightful aromas, playing important roles in urban landscaping. The regulation mechanism of color formation in P. mume var. purpurea stem development is unclear. Here, we conducted a comprehensive analysis of transcriptome and metabolome in WYY ('Wuyuyu' accession, red stem) and FLE ('Fei Lve' accession, green stem), and found a total of 256 differential metabolites. At least 14 anthocyanins were detected in WYY, wherein cyanidin 3,5-O-diglucoside and peonidin3-O-glucoside were significantly accumulated through LC-MS/MS analysis. Transcriptome data showed that the genes related to flavonoid-anthocyanin biosynthesis pathways were significantly enriched in WYY. The ratio of dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) expression levels may affect metabolic balance in WYY, suggesting a vital role in xylem color formation. In addition, several transcription factors were up-regulated, which may be the key factors contributing to transcriptional changes in anthocyanin synthesis. Overall, the results provide a reference for further research on the molecular mechanism of xylem color regulation in P. mume and lay a theoretical foundation for cultivating new varieties.
Collapse
Affiliation(s)
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
45
|
Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. THE NEW PHYTOLOGIST 2022; 234:902-917. [PMID: 35167117 PMCID: PMC9311817 DOI: 10.1111/nph.18026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Xiangsheng Zeng
- College of AgronomyAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene EditingSchool of Life SciencesLinyi UniversityShuangling RoadLinyi276000China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| |
Collapse
|
46
|
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:963. [PMID: 35406945 PMCID: PMC9002769 DOI: 10.3390/plants11070963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
47
|
Qi X, Liu C, Song L, Dong Y, Chen L, Li M. A Sweet Cherry Glutathione S-Transferase Gene, PavGST1, Plays a Central Role in Fruit Skin Coloration. Cells 2022; 11:cells11071170. [PMID: 35406734 PMCID: PMC8997526 DOI: 10.3390/cells11071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Sweet cherry, an economically important horticultural crop, has strong antioxidant activity. The fruits contain compounds potentially beneficial to human health—particularly anthocyanins, which are synthesized in cytosol and predominantly accumulated in vacuoles. Although anthocyanin levels differ among dark-red, blush, and yellow sweet cherry cultivars, the regulatory mechanism of anthocyanin transport and accumulation is not well understood in this species. In this study, we identified 53 glutathione S-transferase genes (PavGSTs) from sweet cherry and found that PavGST1 expression was well correlated with anthocyanin accumulation in cultivars with different fruit skin colors. TRV-mediated virus-induced silencing of PavGST1 decreased anthocyanin accumulation in sweet cherry fruits and downregulated the expressions of anthocyanin biosynthetic and regulatory genes. In addition, transient overexpression of PavGST1 promoted anthocyanin accumulation. Furthermore, yeast one-hybrid and dual-luciferase assays revealed that PavMYB10.1 and PavMYB75 directly bind to different MYB binding sites of the PavGST1 promoter (MBS-1 and MBS-3) to activate PavGST1 transcription. According to our results, PavGST1 plays a central role in sweet cherry fruit anthocyanin accumulation. Our findings provide novel insights into the coordinative regulatory mechanisms of PavGST1 and PavMYBs in anthocyanin accumulation in sweet cherry.
Collapse
|
48
|
The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. Int J Mol Sci 2022; 23:ijms23063377. [PMID: 35328796 PMCID: PMC8950252 DOI: 10.3390/ijms23063377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
The sharp eyespot, mainly caused by the soil-borne fungus Rhizoctonia cerealis, is a devastating disease endangering production of wheat (Triticum aestivum). Multi-Antimicrobial Extrusion (MATE) family genes are widely distributed in plant species, but little is known about MATE functions in wheat disease resistance. In this study, we identified TaPIMA1, a pathogen-induced MATE gene in wheat, from RNA-seq data. TaPIMA1 expression was induced by Rhizoctonia cerealis and was higher in sharp eyespot-resistant wheat genotypes than in susceptible wheat genotypes. Molecular biology assays showed that TaPIMA1 belonged to the MATE family, and the expressed protein could distribute in the cytoplasm and plasma membrane. Virus-Induced Gene Silencing plus disease assessment indicated that knock-down of TaPIMA1 impaired resistance of wheat to sharp eyespot and down-regulated the expression of defense genes (Defensin, PR10, PR1.2, and Chitinase3). Furthermore, TaPIMA1 was rapidly induced by exogenous H2O2 and jasmonate (JA) treatments, which also promoted the expression of pathogenesis-related genes. These results suggested that TaPIMA1 might positively regulate the defense against R. cerealis by up-regulating the expression of defense-associated genes in H2O2 and JA signal pathways. This study sheds light on the role of MATE transporter in wheat defense to Rhizoctonia cerealis and provides a potential gene for improving wheat resistance against sharp eyespot.
Collapse
|
49
|
Nimmy MS, Kumar V, Suthanthiram B, Subbaraya U, Nagar R, Bharadwaj C, Jain PK, Krishnamurthy P. A Systematic Phylogenomic Classification of the Multidrug and Toxic Compound Extrusion Transporter Gene Family in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:774885. [PMID: 35371145 PMCID: PMC8970042 DOI: 10.3389/fpls.2022.774885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species. We identified more than 4,000 MATEs, which were classified into 14 subgroups based on a systematic bioinformatics pipeline using USEARCH, blast+ and synteny network tools. Our classification was performed using a four-step process, whereby MATEs sharing ≥ 60% protein sequence identity with a ≤ 1E-05 threshold at different sequence lengths (either full-length, ≥ 60% length, or ≥ 150 amino acids) or retaining in the similar synteny blocks were assigned to the same subgroup. In this way, we assigned subgroups to 95.8% of the identified MATEs, which we substantiated using synteny network clustering analysis. The subgroups were clustered under four major phylogenetic groups and named according to their clockwise appearance within each group. We then generated a reference sequence dataset, the usefulness of which was demonstrated in the classification of MATEs in additional species not included in the original analysis. Approximately 74% of the plant MATEs exhibited synteny relationships with angiosperm-wide or lineage-, order/family-, and species-specific conservation. Most subgroups evolved independently, and their distinct evolutionary trends were likely associated with the development of functional novelties or the maintenance of conserved functions. Together with the systematic classification and synteny network profiling analyses, we identified all the major evolutionary events experienced by the MATE gene family in plants. We believe that our findings and the reference dataset provide a valuable resource to guide future functional studies aiming to explore the key roles of MATEs in different aspects of plant physiology. Our classification framework can also be readily extendable to other (super) families.
Collapse
Affiliation(s)
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Bhagalpur, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR–National Research Centre for Banana, Tiruchirappalli, India
| | - Ramawatar Nagar
- ICAR–National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
50
|
Lafferty DJ, Espley RV, Deng CH, Günther CS, Plunkett B, Turner JL, Jaakola L, Karppinen K, Allan AC, Albert NW. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1344-1356. [PMID: 34664645 DOI: 10.1093/jxb/erab460] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 05/28/2023]
Abstract
Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.
Collapse
Affiliation(s)
- Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Janice L Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew C Allan
- The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|