1
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
2
|
Weiss T, Kumar J, Chen C, Guo S, Schlegel O, Lutterman J, Ling K, Zhang F. Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species. Nat Commun 2024; 15:6293. [PMID: 39060288 PMCID: PMC11282277 DOI: 10.1038/s41467-024-50676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ's dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shengsong Guo
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Oliver Schlegel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Lutterman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA.
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA.
| |
Collapse
|
3
|
Morales-Ruiz T, Beltrán-Melero C, Ortega-Paredes D, Luna-Morillo JA, Martínez-Macías MI, Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. The enzymatic properties of Arabidopsis thaliana DNA polymerase λ suggest a role in base excision repair. PLANT MOLECULAR BIOLOGY 2024; 114:3. [PMID: 38217735 PMCID: PMC10787897 DOI: 10.1007/s11103-023-01407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Base excision repair (BER) generates gapped DNA intermediates containing a 5'-terminal 2-deoxyribose-5-phosphate (5'-dRP) group. In mammalian cells, gap filling and dRP removal are catalyzed by Pol β, which belongs to the X family of DNA polymerases. In higher plants, the only member of the X family of DNA polymerases is Pol λ. Although it is generally believed that plant Pol λ participates in BER, there is limited experimental evidence for this hypothesis. Here we have characterized the biochemical properties of Arabidopsis thaliana Pol λ (AtPol λ) in a BER context, using a variety of DNA repair intermediates. We have found that AtPol λ performs gap filling inserting the correct nucleotide, and that the rate of nucleotide incorporation is higher in substrates containing a C in the template strand. Gap filling catalyzed by AtPol λ is most efficient with a phosphate at the 5'-end of the gap and is not inhibited by the presence of a 5'-dRP mimic. We also show that AtPol λ possesses an intrinsic dRP lyase activity that is reduced by mutations at two lysine residues in its 8-kDa domain, one of which is present in Pol λ exclusively and not in any Pol β homolog. Importantly, we also found that the dRP lyase activity of AtPol λ allows efficient completion of uracil repair in a reconstituted short-patch BER reaction. These results suggest that AtPol λ plays an important role in plant BER.
Collapse
Affiliation(s)
- T Morales-Ruiz
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - C Beltrán-Melero
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - D Ortega-Paredes
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - J A Luna-Morillo
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - M I Martínez-Macías
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - T Roldán-Arjona
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - R R Ariza
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
| | - D Córdoba-Cañero
- Department of Genetics, University of Córdoba, Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
4
|
Wen X, Li J, Yang F, Zhang X, Li Y. Exploring the Effect of High-Energy Heavy Ion Beam on Rice Genome: Transposon Activation. Genes (Basel) 2023; 14:2178. [PMID: 38137000 PMCID: PMC10742395 DOI: 10.3390/genes14122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
High-energy heavy ion beams are a new type of physical mutagen that can produce a wide range of phenotypic variations. In order to understand the mechanism of high-energy heavy ion beams, we resequenced the whole genome of individual plants with obvious phenotypic variations in rice. The sequence alignment results revealed a large number of SNPs and InDels, as well as genetic variations related to grain type and heading date. The distribution of SNP and InDel on chromosomes is random, but they often occur in the up/downstream regions and the intergenic region. Mutagenesis can cause changes in transposons such as Dasheng, mPing, Osr13 and RIRE2, affecting the stability of the genome. This study obtained the major gene mutation types, discovered differentially active transposons, screened out gene variants related to phenotype, and explored the mechanism of high-energy heavy ion beam radiation on rice genes.
Collapse
Affiliation(s)
- Xiaoting Wen
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingpeng Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun 130299, China
| | - Fu Yang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
| | - Yiwei Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.W.); (F.Y.); (X.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Rechkunova NI, Zhdanova PV, Lebedeva NA, Maltseva EA, Koval VV, Lavrik OI. Structural features of DNA polymerases β and λ in complex with benzo[a]pyrene-adducted DNA cause a difference in lesion tolerance. DNA Repair (Amst) 2022; 116:103353. [DOI: 10.1016/j.dnarep.2022.103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
|
7
|
Youssef OA, Tammam AA, El-Bakatoushi RF, Alframawy AM, Emara MM, El-Sadek LM. Uptake of hematite nanoparticles in maize and their role in cell cycle dynamics, PCNA expression and mitigation of cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1177-1189. [PMID: 34374200 DOI: 10.1111/plb.13315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium toxicity is considered a major threat to several crops worldwide. Hematite nanoparticles (NPs), due to their small size and large specific surface area, could be applied as an adsorbent for toxic heavy metals in soil. Also, they serve as an efficient nano-fertilizer, promoting Fe availability and biomass production in plants, thus enabling Cd2+ -induced stress tolerance. The phytotoxicity of five different concentrations of hematite NPs, ranging from 500 to 8,000 mg·kg-1 , and Cd2+ concentrations (110 or 130 mg·kg-1 Cd2+ ) alone or combined with 500 mg·kg-1 NPs was evaluated in maize. The changes in fresh weight, element analysis, cell cycle regulation, DNA banding patterns and proliferating cell nuclear antigen (PCNA) expression were used as biomarkers. The results revealed that increased fresh weight and fewest polymorphic DNA bands were detectable after treatment with 500 mg·kg-1 NPs. However, at 8,000 mg·kg-1 NPs, PCNA expression increased significantly, which resulted in cell cycle arrest at the G1/S checkpoint in roots. Significant reductions in fresh weight, altered nutrient profiles and cell cycle perturbations are considered symptoms of Cd2+ toxicity in maize. Conversely, amending 500 mg·kg-1 NPs with 130 mg·kg-1 Cd2+ increased fresh weight, Fe concentration and genomic template stability, while reducing Cd2+ uptake and PCNA1 expression. Overall, 8,000 mg·kg-1 hematite NPs interfered with the cellular homeostatic balance of maize, resulting in a cascade of genotoxic events, leading to growth inhibition. Although 500 mg·kg-1 hematite NPs alleviated Cd2+ -induced DNA damage to a certain extent, their impact on cell cycle progression requires further verification.
Collapse
Affiliation(s)
- O A Youssef
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| | - A A Tammam
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| | - R F El-Bakatoushi
- Biology and Geology Sciences Department, Faculty of Education, Alexandria University, Alexandria, El-shatby, 526, Egypt
| | - A M Alframawy
- Nucleic Acids Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Borg El-Arab, 21933, Egypt
| | - M M Emara
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Ibrahimia, 21321, Egypt
| | - L M El-Sadek
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Camp Caesar, 21525, Egypt
| |
Collapse
|
8
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
9
|
Kiran KR, Deepika VB, Swathy PS, Prasad K, Kabekkodu SP, Murali TS, Satyamoorthy K, Muthusamy A. ROS-dependent DNA damage and repair during germination of NaCl primed seeds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 213:112050. [PMID: 33075649 DOI: 10.1016/j.jphotobiol.2020.112050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Reactive oxygen species (ROS) generated during rehydration of seeds is a major source of cellular damage. Successful germination depends on maintaining the oxidative window and ability of the cells to repair the DNA damage accumulated during seed developmental process, maturational drying, and germination. We explored the role of DNA damage, repair, cell cycle progression and antioxidant machinery in germination of seeds of Solanum melongena L. primed with 0, 320, 640 and 1200 mM sodium chloride (NaCl). The expression of antioxidant genes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase2 (CAT2), and glutathione reductase (GR) was upregulated to maintain the oxidative window required for germination in seeds treated with 320 mM NaCl. ROS generated upon treatment with 320 mM NaCl resulted in minimal DNA damage and activated non-homologous end joining (NHEJ) and mismatch repair (MMR) pathway genes such as KU70 and mutS homolog 2 (MSH2) respectively. Treatment with higher concentrations of NaCl resulted in increased DNA damage despite lower ROS, without evoking DNA repair mechanisms. Uncontrolled rehydration resulted in higher levels of ROS and DNA damage, but activation of homologous recombination (HR) pathway gene, Nijmegen breakage syndrome 1 (NBS1), and genes involved in repairing oxidized guanine, such as oxoguanine DNA glycosylase (OGG1) and proliferating cell nuclear antigen (PCNA). In summary, controlled rehydration with 320 mM NaCl decreased the DNA damage, reactivated the antioxidant and DNA repair machinery, and cell cycle progression, thereby enhancing the seed germination.
Collapse
Affiliation(s)
- Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vishwanath Bhat Deepika
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Puthanvila Surendrababu Swathy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
10
|
Abstract
DNA-protein crosslinks represent a severe kind of DNA damage as they disturb essential processes, such as transcription and DNA replication, due to their bulkiness. To ensure the maintenance of genome integrity, it is necessary for all living organisms to repair these lesions in a timely manner. Over recent years, much knowledge has been obtained regarding the repair of DNA-protein crosslinks (DPC), but it was only recently that the first insights into the mechanisms of DPC repair in plants were obtained. The plant DPC repair network consists of at least three parallel pathways that resolve DPC by distinct biochemical mechanisms. The endonuclease MUS81 resolves the DPC by cleaving the DNA part of the crosslink, the protease WSS1A is able to degrade the protein part and the tyrosyl-DNA-phosphodiesterase TDP1 can hydrolyse the crosslink between a protein and the DNA. However, due to the variety of different DPC types and the evolutionary conservation of pathways between eukaryotes, we expect that future research will reveal additional factors involved in DPC repair in plants.
Collapse
|
11
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
12
|
Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. Active DNA Demethylation in Plants. Int J Mol Sci 2019; 20:E4683. [PMID: 31546611 PMCID: PMC6801703 DOI: 10.3390/ijms20194683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.
Collapse
Affiliation(s)
- Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| |
Collapse
|
13
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
14
|
Qian J, Chen Y, Xu Y, Zhang X, Kang Z, Jiao J, Zhao J. Interactional similarities and differences in the protein complex of PCNA and DNA replication factor C between rice and Arabidopsis. BMC PLANT BIOLOGY 2019; 19:257. [PMID: 31200645 PMCID: PMC6570896 DOI: 10.1186/s12870-019-1874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/06/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA), a conserved trimeric ring complex, is loaded onto replication fork through a hetero-pentameric AAA+ ATPase complex termed replication factor C (RFC) to maintain genome stability. Although architectures of PCNA-RFC complex in yeast have been revealed, the functions of PCNA and protein-protein interactions of PCNA-RFC complex in higher plants are not very clear. Here, essential regions mediating interactions between PCNA and RFC subunits in Arabidopsis and rice were investigated via yeast-two-hybrid method and bimolecular fluorescence complementation techniques. RESULTS We observed that OsPCNA could interact with all OsRFC subunits, while protein-protein interactions only exist between Arabidopsis RFC2/3/4/5 and AtPCNA1/2. The truncated analyses indicated that the C-terminal of Arabidopsis RFC2/3/4/5 and rice RFC1/2 is essential for binding PCNA while the region of rice RFC3/4/5 mediating interaction with PCNA distributed both at the N- and C-terminal. On the other hand, we found that the C- and N-terminal of Arabidopsis and rice PCNA contribute equally to PCNA-PCNA interaction, and the interdomain connecting loop (IDCL) domain and C-terminal of PCNAs are indispensable for interacting RFC subunits. CONCLUSIONS These results indicated that Arabidopsis and rice PCNAs are highly conserved in sequence, structure and pattern of interacting with other PCNA monomer. Nevertheless, there are also significant differences between the Arabidopsis and rice RFC subunits in binding PCNA. Taken together, our results could be helpful for revealing the biological functions of plant RFC-PCNA complex.
Collapse
Affiliation(s)
- Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yueyue Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yaxing Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiufeng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuang Kang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinxia Jiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Pradhan S, Kalia I, Roy SS, Singh OP, Adak T, Singh AP, Dhar SK. Molecular characterization and expression profile of an alternate proliferating cell nuclear antigen homolog PbPCNA2 in
Plasmodium berghei. IUBMB Life 2019; 71:1293-1301. [DOI: 10.1002/iub.2036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sabyasachi Pradhan
- Special Centre for Molecular MedicineJawaharlal Nehru University New Delhi India
| | | | - Sourav Singha Roy
- Special Centre for Molecular MedicineJawaharlal Nehru University New Delhi India
| | - Om P. Singh
- National Institute of Malaria Research New Delhi India
| | - Tridibes Adak
- National Institute of Malaria Research New Delhi India
| | | | - Suman K. Dhar
- Special Centre for Molecular MedicineJawaharlal Nehru University New Delhi India
| |
Collapse
|
16
|
Wang Q, Liu S, Lu C, La Y, Dai J, Ma H, Zhou S, Tan F, Wang X, Wu Y, Kong W, La H. Roles of CRWN-family proteins in protecting genomic DNA against oxidative damage. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:20-30. [PMID: 30576929 DOI: 10.1016/j.jplph.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 05/22/2023]
Abstract
CROWDED NUCLEI (CRWN) family in Arabidopsis consists of four members, CRWN1 to CRWN4. It has been previously reported that the CRWN proteins are involved in the control of nuclear morphology and degradation of ABI5. In this study, however, we discover that CRWN-family proteins are not only involved in attenuating responsiveness to abscisic acid (ABA), but also implicated in inhibiting reactive oxygen species (ROS) production and DNA damage induced by genotoxic agent methyl methanesulfonate (MMS). Our results demonstrate that three crwn double mutants, i.e. crwn1 crwn3, crwn2 crwn3, and crwn2 crwn4, show slightly earlier leaf senescence, enhanced leaf cell death, and obvious overaccumulation of ROS under regular growth conditions. When treated with 0.15 μM ABA or 0.01% MMS, two double mutants, crwn1 crwn3 and crwn2 crwn3, exhibit significant decreased germination rates as well as leaf opening and greening rates. Moreover, subsequent investigations indicate that the MMS treatment strongly inhibits the growth of crwn mutant seedlings, while this inhibition is substantially relieved by imidazole (IMZ); by contrast, DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) has no effect on relief of the growth inhibition. Further studies reveal that under 0.01% MMS treatment conditions, crwn mutants, especially the three double mutants, accumulate more ROS compared to Col-0, and their genomic DNA suffers from more severe DNA damage relative to Col-0, which is indicated by significantly higher 8-oxo-7-hydrodeoxyguanosine (8-oxo dG) content as observed in the crwn mutants. Altogether, these data clearly demonstrate that the CRWN-family proteins play important roles in diminishing ROS accumulation and protecting genomic DNA against excessive oxidative damage caused by MMS.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuai Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yumei La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shaoxia Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiangyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
Sakamoto AN. Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond. FRONTIERS IN PLANT SCIENCE 2019; 10:1208. [PMID: 31649692 PMCID: PMC6794406 DOI: 10.3389/fpls.2019.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.
Collapse
|
18
|
Yang G, Luo W, Zhang J, Yan X, Du Y, Zhou L, Li W, Wang H, Chen Z, Guo T. Genome-Wide Comparisons of Mutations Induced by Carbon-Ion Beam and Gamma-Rays Irradiation in Rice via Resequencing Multiple Mutants. FRONTIERS IN PLANT SCIENCE 2019; 10:1514. [PMID: 31850019 PMCID: PMC6892775 DOI: 10.3389/fpls.2019.01514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/31/2019] [Indexed: 05/19/2023]
Abstract
Physical mutagens, such as carbon-ion beams (CIBs) and gamma rays (GRs), induce mutations with high frequency at a relatively low dose and are more user-friendly and environment-friendly in mutation breeding. Previous studies showed that CIBs induced large sized deletions and insertions, and chromosomal rearrangements, whereas GRs induce shorter deletions and insertions, and more frequent base substitutions. However, the difference on the genomic level between CIB- and GR-induced mutations remains to be clarified. In the present study, we re-sequence six mutagenized lines derived from CIB irradiation and four mutagenized lines derived from GRs. A total of 283 and 381 variations are induced in these mutants by CIBs and GRs, respectively, including single base substitutions (SBSs), small insertion and deletions (InDels), multiple nucleotide variants (MNVs). SBSs are the most abundant type of mutation and single base transition is the main form for SBSs. CIB-induced InDels accounted for 25.44% of the total variations, while GR-induced InDels accounted for 17.85%. On the contrary, the frequency of MNVs induced by GRs was approximately 2.19 times that induced by CIBs, which indicates CIBs induced increased InDels, whereas GRs induced increased MNVs. Notably, multiple base deletions (≥5 bp) were induced at a much higher frequency by CIBs than by GRs. We also find mutations induced by CIBs and GRs are unevenly distributed on chromosomes. Unusual high-frequency (HF) and low-frequency (LF) mutation regions are discovered by analyzing mutations per 1Mb along the genome. The mutation frequency within the HF regions were significantly higher than the LF regions (P < 0.05). A large majority of SBSs, InDels, and MNVs induced by CIBs and GRs occurred in upstream and downstream regions. Our study compares difference of mutation profiles induced by the CIB irradiation and GR on rice genomes, and give some clues for understanding the mutagenesis mechanism of physical radiation and improving the mutagenesis efficiency.
Collapse
Affiliation(s)
- Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Wenlong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Jian Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Xiancheng Yan
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Yan Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- *Correspondence: Tao Guo,
| |
Collapse
|
19
|
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med 2018; 41:1817-1825. [PMID: 29393357 DOI: 10.3892/ijmm.2018.3406] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 12/13/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is increasingly recognized as a central event contributing to the degeneration of dopaminergic neurons in the pathogenesis of Parkinson's disease (PD). Although reactive oxygen species (ROS) production is implicated as a causative factor in PD, the cellular and molecular mechanisms linking oxidative stress with dopaminergic neuron death are complex and not well characterized. The primary insults cause the greatest production of ROS, which contributes to oxidative damage by attacking all macromolecules, including lipids, proteins and nucleic acids, leading to defects in their physiological function. Consequently, the defects in these macromolecules result in mitochondrial dysfunction and neuroinflammation, which subsequently enhance the production of ROS and ultimately neuronal damage. The interaction between these various mechanisms forms a positive feedback loop that drives the progressive loss of dopaminergic neurons in PD, and oxidative stress‑mediated neuron damage appears to serve a central role in the neurodegenerative process. Thus, understanding the cellular and molecular mechanisms by which oxidative stress contributes to the loss of dopaminergic neurons may provide a promising therapeutic approach in PD treatment.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Department of Neurology, The First Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Liang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Sihi S, Maiti S, Bakshi S, Nayak A, Chaudhuri S, Sengupta DN. Understanding the role of DNA polymerase λ gene in different growth and developmental stages of Oryza sativa L. indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:156-168. [PMID: 29031161 DOI: 10.1016/j.plaphy.2017.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
DNA polymerase λ (Pol λ) is the only member of DNA polymerase family X present in plants. The enzyme is ddNTP sensitive as it contains the conserved C-terminal Pol β domain. The 1.1 kb partial coding sequence isolated spanned the whole 3' regions of the gene containing functionally important domains of the Pol λ gene. Comparative in silico studies from both indica and japonica cultivars involving homology modelling showed that the model for the partial Pol λ gene was stable and acceptable. The alignment of both the protein models showed a RMS value of 0.783. Apart from this, expression of Pol λ and its relative activity is studied during different development stages of three different indica rice cultivars (IR29, Nonabokra and N22). Enhanced accumulation and higher activity of Pol λ during the early seedling stage was detected. Higher expression and activity were observed in the anthers, which was probably necessary for DNA repair during microspore formation. However, during the maturation stage of seed development and plant growth, expression and the activity of Pol λ decreased due to slow metabolic activity and a reduced rate of cell division respectively. Furthermore, the expression and activity of Pol λ were found to be higher in IR29 in comparison to Nonabokra and N22. IR29 is a rice cultivar susceptible to environmental stresses and hence it encounters higher DNA damages. The enhanced presence and activity of the Pol λ enzyme in IR29 with respect to the other two cultivars, which are more tolerant to the environmental stresses during various developmental stages, is therefore explainable.
Collapse
Affiliation(s)
- Sayantani Sihi
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Soumitra Maiti
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Sankar Bakshi
- Vidyasagar College for Women, 39 Sankar Ghosh Lane Kolkata 700006, India
| | - Arup Nayak
- Division of Plant Biology, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | | |
Collapse
|
21
|
van Loon B, Hübscher U, Maga G. Living on the Edge: DNA Polymerase Lambda between Genome Stability and Mutagenesis. Chem Res Toxicol 2017; 30:1936-1941. [DOI: 10.1021/acs.chemrestox.7b00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara van Loon
- Department
of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Erling Skjalgssons gt 1, N-7491 Trondheim, Norway
- Department
of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Ulrich Hübscher
- Department
of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Giovanni Maga
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
22
|
Wang Q, An B, Shi H, Luo H, He C. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis. Int J Mol Sci 2017; 18:ijms18050991. [PMID: 28475148 PMCID: PMC5454904 DOI: 10.3390/ijms18050991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
N-acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis, through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Li DW, Wang YD, Zhou SY, Sun WP. α-lipoic acid exerts neuroprotective effects on neuronal cells by upregulating the expression of PCNA via the P53 pathway in neurodegenerative conditions. Mol Med Rep 2016; 14:4360-4366. [DOI: 10.3892/mmr.2016.5754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/15/2016] [Indexed: 11/06/2022] Open
|
24
|
Li DW, Li GR, Zhang BL, Feng JJ, Zhao H. Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson's disease. Int J Mol Med 2015; 37:429-35. [PMID: 26677001 DOI: 10.3892/ijmm.2015.2430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is widely considered as a central event in the pathogenesis of Parkinson's disease (PD). The mechanisms underlying the oxidative damage-mediated loss of dopaminergic neurons in PD are not yet fully understood. Accumulating evidence has indicated that oxidative DNA damage plays a crucial role in programmed neuronal cell death, and is considered to be at least partly responsible for the degeneration of dopaminergic neurons in PD. This process involves a number of signaling cascades and molecular proteins. Proliferating cell nuclear antigen (PCNA) is a pleiotropic protein affecting a wide range of vital cellular processes, including chromatin remodelling, DNA repair and cell cycle control, by interacting with a number of enzymes and regulatory proteins. In the present study, the exposure of PC12 cells to 1-methyl-4-phenylpyridinium (MPP+) led to the loss of cell viability and decreased the expression levels of PCNA in a dose- and time-dependent manner, indicating that this protein may be involved in the neurotoxic actions of MPP+ in dopaminergic neuronal cells. In addition, a significant upregulation in p53 expression was also observed in this cellular model of PD. p53 is an upstream inducer of PCNA and it has been recognized as a key contributor responsible for dopaminergic neuronal cell death in mouse models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. This indicates that MPP+-induced oxidative damage is mediated by the downregulation of PCNA through the p53 pathway in a cellular model of PD. Thus, our results may provide some novel insight into the molecular mechanisms responsible for the development of PD and provide new possible therapeutic targets for the treatment of PD.
Collapse
Affiliation(s)
- Da-Wei Li
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bei-Lin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing-Jing Feng
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hua Zhao
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Roy S, Banerjee V, Das KP. Understanding the Physical and Molecular Basis of Stability of Arabidopsis DNA Pol λ under UV-B and High NaCl Stress. PLoS One 2015; 10:e0133843. [PMID: 26230318 PMCID: PMC4521722 DOI: 10.1371/journal.pone.0133843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023] Open
Abstract
Here, we have investigated the physical and molecular basis of stability of Arabidopsis DNA Pol λ, the sole X family DNA polymerase member in plant genome, under UV-B and salinity stress in connection with the function of the N-terminal BRCT (breast cancer-associated C terminus) domain and Ser-Pro rich region in the regulation of the overall structure of this protein. Tryptophan fluorescence studies, fluorescence quenching and Bis-ANS binding experiments using purified recombinant full length Pol λ and its N-terminal deletion forms have revealed UV-B induced conformational change in BRCT domain deficient Pol λ. On the other hand, the highly conserved C-terminal catalytic core PolX domain maintained its tertiary folds under similar condition. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectral studies have indicated appreciable change in the secondary structural elements in UV-B exposed BRCT domain deficient Pol λ. Increased thermodynamic stability of the C-terminal catalytic core domain suggested destabilizing effect of the N-terminal Ser-Pro rich region on the protein structure. Urea-induced equilibrium unfolding studies have revealed increased stability of Pol λ and its N-terminal deletion mutants at high NaCl concentration. In vivo aggregation studies using transient expression systems in Arabidopsis and tobacco indicated possible aggregation of Pol λ lacking the BRCT domain. Immunoprecipitation assays revealed interaction of Pol λ with the eukaryotic molecular chaperone HSP90, suggesting the possibility of regulation of Pol λ stability by HSP90 in plant cell. Overall, our results have provided one of the first comprehensive information on the biophysical characteristics of Pol λ and indicated the importance of both BRCT and Ser-Pro rich modules in regulating the stability of this protein under genotoxic stress in plants.
Collapse
Affiliation(s)
- Sujit Roy
- Protein Chemistry laboratory, Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| | - Victor Banerjee
- Protein Chemistry laboratory, Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Kali Pada Das
- Protein Chemistry laboratory, Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Strzalka WK, Aggarwal C, Krzeszowiec W, Jakubowska A, Sztatelman O, Banas AK. Arabidopsis PCNAs form complexes with selected D-type cyclins. FRONTIERS IN PLANT SCIENCE 2015; 6:516. [PMID: 26379676 PMCID: PMC4550699 DOI: 10.3389/fpls.2015.00516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes.
Collapse
Affiliation(s)
- Wojciech K. Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
- The Bioremediation Department, Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Chhavi Aggarwal
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz UniversityPoznan, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agata Jakubowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Agnieszka K. Banas
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
27
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
28
|
Gao L, Yang S, Zhu Y, Zhang J, Zhuo M, Miao M, Tang X, Liu Y, Wang S. The tomato DDI2, a PCNA ortholog, associating with DDB1-CUL4 complex is required for UV-damaged DNA repair and plant tolerance to UV stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:101-10. [PMID: 25900570 DOI: 10.1016/j.plantsci.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
CULLIN 4 (CUL4)-DAMAGED DNA binding protein 1 (DDB1)-based ubiquitin E3 ligase modulates diverse cellular processes including repair of damaged genomic DNA. In this study, an uncharacterized gene termed as DDB1-Interacting protein 2 (DDI2) was identified in yeast two-hybrid screening with bait gene DDB1. The co-immunoprecipitation (co-IP) assays further demonstrated that DDI2 is associated with tomato DDB1-CUL4 complex in vivo. It appears that DDI2 encodes an ortholog of proliferating cell nuclear antigen (PCNA). Confocal microscope observation indicated that DDI2-GFP fusion protein was localized in nuclei. The expression of DDI2 gene is constitutive but substantially enhanced by UV-C irradiation. The transgenic tomato plants with overexpression or knockdown of DDI2 gene displayed the increased or decreased tolerance, respectively, to UV-C stress and chemical mutagen cisplatin. The quantitative analysis of UV-induced DNA lesions indicated that the dark repair of DNA damage was accelerated in DDI2 overexpression lines but delayed in knockdown lines. Conclusively, tomato DDI2 gene is required for UV-induced DNA damage repair and plant tolerance to UV stress. In addition, fruits of DDI2 transgenic plants are indistinguishable from that of wild type, regarding fresh weight and nutrient quality. Therefore, overexpression of DDI2 offers a suitable strategy for genetic manipulation of enhancing plant tolerance to UV stress.
Collapse
Affiliation(s)
- Lanyang Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Yunye Zhu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junfang Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ming Zhuo
- Institute of Flower, Sichuan Academy of Botanical Engineering, Zizhong 641200, China
| | - Ming Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
29
|
Kim W, Park CM, Park JJ, Akamatsu HO, Peever TL, Xian M, Gang DR, Vandemark G, Chen W. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:482-96. [PMID: 25372118 DOI: 10.1094/mpmi-08-14-0234-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds including solanapyrones A, B, and C. Although both the phytotoxicity of solanapyrones and their universal production among field isolates have been documented, the role of solanapyrones in pathogenicity is not well understood. Here, we report the functional characterization of the sol5 gene, which encodes a Diels-Alderase that catalyzes the final step of solanapyrone biosynthesis. Deletion of sol5 in both Ascochyta rabiei and Alternaria solani completely prevented production of solanapyrones and led to accumulation of the immediate precursor compound, prosolanapyrone II-diol, which is not toxic to plants. Deletion of sol5 did not negatively affect growth rate or spore production in vitro, and led to overexpression of the other solanapyrone biosynthesis genes, suggesting a possible feedback regulation mechanism. Phytotoxicity tests showed that solanapyrone A is highly toxic to several legume species and Arabidopsis thaliana. Despite the apparent phytotoxicity of solanapyrone A, pathogenicity tests showed that solanapyrone-minus mutants of Ascochyta rabiei and Alternaria solani were equally virulent as their corresponding wild-type progenitors, suggesting that solanapyrones are not required for pathogenicity.
Collapse
|
30
|
Similarities and differences between Arabidopsis PCNA1 and PCNA2 in complementing the yeast DNA damage tolerance defect. DNA Repair (Amst) 2015; 28:28-36. [DOI: 10.1016/j.dnarep.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
|
31
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
32
|
Furukawa T, Angelis KJ, Britt AB. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene. FRONTIERS IN PLANT SCIENCE 2015; 6:357. [PMID: 26074930 PMCID: PMC4444747 DOI: 10.3389/fpls.2015.00357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/05/2015] [Indexed: 05/20/2023]
Abstract
The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- Department of Plant Biology, University of California at DavisDavis, CA, USA
| | - Karel J. Angelis
- DNA Repair Lab, Institute of Experimental Botany of the Academy of Sciences of the Czech RepublicPraha, Czech Republic
| | - Anne B. Britt
- Department of Plant Biology, University of California at DavisDavis, CA, USA
- *Correspondence: Anne B. Britt, Department of Plant Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Kim W, Park CM, Park JJ, Akamatsu HO, Peever TL, Xian M, Gang DR, Vandemark G, Chen W. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:1-15. [PMID: 27839072 DOI: 10.1094/mpmi-08-14-0234-r.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds including solanapyrones A, B, and C. Although both the phytotoxicity of solanapyrones and their universal production among field isolates have been documented, the role of solanapyrones in pathogenicity is not well understood. Here, we report the functional characterization of the sol5 gene, which encodes a Diels-Alderase that catalyzes the final step of solanapyrone biosynthesis. Deletion of sol5 in both Ascochyta rabiei and Alternaria solani completely prevented production of solanapyrones and led to accumulation of the immediate precursor compound, prosolanapyrone II-diol, which is not toxic to plants. Deletion of sol5 did not negatively affect growth rate or spore production in vitro, and led to overexpression of the other solanapyrone biosynthesis genes, suggesting a possible feedback regulation mechanism. Phytotoxicity tests showed that solanapyrone A is highly toxic to several legume species and Arabidopsis thaliana. Despite the apparent phytotoxicity of solanapyrone A, pathogenicity tests showed that solanapyrone-minus mutants of Ascochyta rabiei and Alternaria solani were equally virulent as their corresponding wild-type progenitors, suggesting that solanapyrones are not required for pathogenicity.
Collapse
Affiliation(s)
| | | | - Jeong-Jin Park
- 3 Institute of Biological Chemistry, Washington State University, Pullman 99164, U.S.A.; and
| | | | | | | | - David R Gang
- 3 Institute of Biological Chemistry, Washington State University, Pullman 99164, U.S.A.; and
| | - George Vandemark
- 1 Department of Plant Pathology
- 4 United States Department of Agriculture-Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman
| | - Weidong Chen
- 1 Department of Plant Pathology
- 4 United States Department of Agriculture-Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman
| |
Collapse
|
34
|
Gopalakrishnan Nair PM, Chung IM. Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:719-725. [PMID: 24652625 DOI: 10.1007/s00128-014-1254-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
The expression of cell cycle genes and DNA mismatch repair (MMR) genes were analyzed in Arabidopsis thaliana seedlings exposed to 0, 0.2, 0.5 and 1 mg/L of silver nanoparticles for 24, 48 and 72 h using real-time PCR. Significant up-regulation of AtPCNA1 was observed after 24 h exposure to 0.2 and 0.5 mg/L of silver nanoparticles. AtPCNA2 gene was up-regulated after 24, 48 and 72 h exposure to 0.5 and 1 mg/L of silver nanoparticles. AtMLH1 gene was up-regulated after 48 h exposure to 0.5 and 1 mg/L of silver nanoparticles and down-regulated after 72 h. Down-regulation of AtMSH2, AtMSH3, AtMSH6 and AtMSH7 mRNA was observed after exposure to all concentrations of silver nanoparticles for different time periods. Exposure to silver ions showed no significant change in the expression levels of AtPCNA and MMR genes. The results show that AtPCNA and MMR genes could be used as potential molecular biomarkers.
Collapse
Affiliation(s)
- Prakash M Gopalakrishnan Nair
- Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
35
|
Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair. Proc Natl Acad Sci U S A 2014; 111:6684-9. [PMID: 24760826 DOI: 10.1073/pnas.1321854111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The insertion of DNA into a genome can result in the duplication and dispersal of functional sequences through the genome. In addition, a deeper understanding of insertion mechanisms will inform methods of genetic engineering and plant transformation. Exploiting structural variations in numerous rice accessions, we have inferred and analyzed intermediate length (10-1,000 bp) insertions in plants. Insertions in this size class were found to be approximately equal in frequency to deletions, and compound insertion-deletions comprised only 0.1% of all events. Our findings indicate that, as observed in humans, tandem or partially tandem duplications are the dominant form of insertion (48%), although short duplications from ectopic donors account for a sizable fraction of insertions in rice (38%). Many nontandem duplications contain insertions from nearby DNA (within 200 bp) and can contain multiple donor sources--some distant--in single events. Although replication slippage is a plausible explanation for tandem duplications, the end homology required in such a model is most often absent and rarely is >5 bp. However, end homology is commonly longer than expected by chance. Such findings lead us to favor a model of patch-mediated double-strand-break creation followed by nonhomologous end-joining. Additionally, a striking bias toward 31-bp partially tandem duplications suggests that errors in nucleotide excision repair may be resolved via a similar, but distinct, pathway. In summary, the analysis of recent insertions in rice suggests multiple underappreciated causes of structural variation in eukaryotes.
Collapse
|
36
|
Strzalka W, Aggarwal C. Arabidopsis thaliana: proliferating cell nuclear antigen 1 and 2 possibly form homo- and hetero-trimeric complexes in the plant cell. PLANT SIGNALING & BEHAVIOR 2013; 8:e24837. [PMID: 23656863 PMCID: PMC3909058 DOI: 10.4161/psb.24837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 05/29/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.
Collapse
|
37
|
Roy S, Choudhury SR, Sengupta DN, Das KP. Involvement of AtPolλ in the repair of high salt- and DNA cross-linking agent-induced double strand breaks in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1195-210. [PMID: 23660835 PMCID: PMC3668049 DOI: 10.1104/pp.113.219022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/06/2013] [Indexed: 05/21/2023]
Abstract
DNA polymerase λ (Pol λ) is the sole member of family X DNA polymerase in plants and plays a crucial role in nuclear DNA damage repair. Here, we report the transcriptional up-regulation of Arabidopsis (Arabidopsis thaliana) AtPolλ in response to abiotic and genotoxic stress, including salinity and the DNA cross-linking agent mitomycin C (MMC). The increased sensitivity of atpolλ knockout mutants toward high salinity and MMC treatments, with higher levels of accumulation of double strand breaks (DSBs) than wild-type plants and delayed repair of DSBs, has suggested the requirement of Pol λ in DSB repair in plants. AtPolλ overexpression moderately complemented the deficiency of DSB repair capacity in atpolλ mutants. Transcriptional up-regulation of major nonhomologous end joining (NHEJ) pathway genes KU80, X-RAY CROSS COMPLEMENTATION PROTEIN4 (XRCC4), and DNA Ligase4 (Lig4) along with AtPolλ in Arabidopsis seedlings, and the increased sensitivity of atpolλ-2/atxrcc4 and atpolλ-2/atlig4 double mutants toward high salinity and MMC treatments, indicated the involvement of NHEJ-mediated repair of salinity- and MMC-induced DSBs. The suppressed expression of NHEJ genes in atpolλ mutants suggested complex transcriptional regulation of NHEJ genes. Pol λ interacted directly with XRCC4 and Lig4 via its N-terminal breast cancer-associated C terminus (BRCT) domain in a yeast two-hybrid system, while increased sensitivity of BRCT-deficient Pol λ-expressing transgenic atpolλ-2 mutants toward genotoxins indicated the importance of the BRCT domain of AtPolλ in mediating the interactions for processing DSBs. Our findings provide evidence for the direct involvement of DNA Pol λ in the repair of DSBs in a plant genome.
Collapse
Affiliation(s)
- Sujit Roy
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, Kolkata 700 009, West Bengal, India.
| | | | | | | |
Collapse
|
38
|
Roy S, Roy Choudhury S, Das K. The interplay of DNA polymerase λ in diverse DNA damage repair pathways in higher plant genome in response to environmental and genotoxic stress factors. PLANT SIGNALING & BEHAVIOR 2013; 8:e22715. [PMID: 23221752 PMCID: PMC3745575 DOI: 10.4161/psb.22715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/30/2012] [Indexed: 05/29/2023]
Abstract
DNA repair mechanisms are essential for the maintenance of genomic stability, proper cellular function and survival for all organisms. Plants, with their intrinsic immobility, are vastly exposed to a wide range of environmental agents and also endogenous processes which frequently cause damage to DNA and impose genotoxic stress. Therefore, in order to survive under frequent and extreme environmental stress conditions, plants have developed a vast array of efficient and powerful DNA damage repair mechanisms to ensure rapid and precise repair of genetic material for maintaining genome stability and faithful transfer of genetic information over generations. (1) Recently, we have defined the role of DNA polymerase λ in repair of UV-B-induced photoproducts in Arabidopsis thaliana via nucleotide excision repair pathway. (2) Here, we have further discussed potential function of DNA polymerase λ in various DNA repair pathways in higher plant genome in response to environmental and genotoxic stress factors.
Collapse
Affiliation(s)
- Sujit Roy
- Bose Institute; Department of Chemistry; West Bengal, India
| | | | - Kalipada Das
- Bose Institute; Department of Chemistry; West Bengal, India
| |
Collapse
|
39
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Betti M, Pérez-Delgado C, García-Calderón M, Díaz P, Monza J, Márquez AJ. Cellular Stress Following Water Deprivation in the Model Legume Lotus japonicus. Cells 2012; 1:1089-106. [PMID: 24710544 PMCID: PMC3901144 DOI: 10.3390/cells1041089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 01/12/2023] Open
Abstract
Drought stress is one of the most important factors in the limitation of plant productivity worldwide. In order to cope with water deprivation, plants have adopted several strategies that produce major changes in gene expression. In this paper, the response to drought stress in the model legume Lotus japonicus was studied using a transcriptomic approach. Drought induced an extensive reprogramming of the transcriptome as related to various aspects of cellular metabolism, including genes involved in photosynthesis, amino acid metabolism and cell wall metabolism, among others. A particular focus was made on the genes involved in the cellular stress response. Key genes involved in the control of the cell cycle, antioxidant defense and stress signaling, were modulated as a consequence of water deprivation. Genes belonging to different families of transcription factors were also highly responsive to stress. Several of them were homologies to known stress-responsive genes from the model plant Arabidopsis thaliana, while some novel transcription factors were peculiar to the L. japonicus drought stress response.
Collapse
Affiliation(s)
- Marco Betti
- Department of Vegetal Biochemistry and Molecular Biology, Chemistry Faculty, University of Seville, Apartado 1203, 41071-Sevilla, Spain.
| | - Carmen Pérez-Delgado
- Department of Vegetal Biochemistry and Molecular Biology, Chemistry Faculty, University of Seville, Apartado 1203, 41071-Sevilla, Spain.
| | - Margarita García-Calderón
- Department of Vegetal Biochemistry and Molecular Biology, Chemistry Faculty, University of Seville, Apartado 1203, 41071-Sevilla, Spain.
| | - Pedro Díaz
- Biochemistry Laboratory, Department of Vegetal Biology, Agronomy Faculty, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay.
| | - Jorge Monza
- Biochemistry Laboratory, Department of Vegetal Biology, Agronomy Faculty, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay.
| | - Antonio J Márquez
- Department of Vegetal Biochemistry and Molecular Biology, Chemistry Faculty, University of Seville, Apartado 1203, 41071-Sevilla, Spain.
| |
Collapse
|
41
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:693-702. [PMID: 21781197 DOI: 10.1111/j.1365-313x.2011.04720.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.
Collapse
|
42
|
Crespan E, Garbelli A, Amoroso A, Maga G. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Molecules 2011; 16:7994-8019. [PMID: 21926946 PMCID: PMC6264456 DOI: 10.3390/molecules16097994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/26/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
The genome is constantly exposed to mutations that can originate during replication or as a result of the action of both endogenous and/or exogenous damaging agents [such as reactive oxygen species (ROS), UV light, genotoxic environmental compounds, etc.]. Cells have developed a set of specialized mechanisms to counteract this mutational burden. Many cancer cells have defects in one or more DNA repair pathways, hence they rely on a narrower set of specialized DNA repair mechanisms than normal cells. Inhibiting one of these pathways in the context of an already DNA repair-deficient genetic background, will be more toxic to cancer cells than to normal cells, a concept recently exploited in cancer chemotherapy by the synthetic lethality approach. Essential to all DNA repair pathways are the DNA pols. Thus, these enzymes are being regarded as attractive targets for the development of specific inhibitors of DNA repair in cancer cells. In this review we examine the current state-of-the-art in the development of nucleotide analogs as inhibitors of repair DNA polymerases.
Collapse
Affiliation(s)
- Emmanuele Crespan
- DNA Enzymology & Molecular Virology, Insititute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | |
Collapse
|
43
|
Huefner ND, Mizuno Y, Weil CF, Korf I, Britt AB. Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair (Amst) 2011; 10:1023-33. [PMID: 21889425 DOI: 10.1016/j.dnarep.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023]
Abstract
The transposases of DNA transposable elements catalyze the excision of the element from the host genome, but are not involved in the repair of the resulting double-strand break. To elucidate the role of various host DNA repair and damage response proteins in the repair of the hairpin-ended double strand breaks (DSBs) generated during excision of the maize Ac element in Arabidopsis thaliana, we deep-sequenced hundreds of thousands of somatic excision products from a variety of repair- or response-defective mutants. We find that each of these repair/response defects negatively affects the preservation of the ends, resulting in an enhanced frequency of deletions, insertions, and inversions at the excision site. The spectra of the resulting repair products demonstrate, not unexpectedly, that the canonical nonhomologous end joining (NHEJ) proteins DNA ligase IV and KU70 play an important role in the repair of the lesion generated by Ac excision. Our data also indicate that auxiliary NHEJ repair proteins such as DNA ligase VI and DNA polymerase lambda are routinely involved in the repair of these lesions. Roles for the damage response kinases ATM and ATR in the repair of transposition-induced DSBs are also discussed.
Collapse
Affiliation(s)
- Neil D Huefner
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|