1
|
Xiao L, Shi Y, Wang R, Feng Y, Wang L, Zhang H, Shi X, Jing G, Deng P, Song T, Jing W, Zhang W. The transcription factor OsMYBc and an E3 ligase regulate expression of a K+ transporter during salt stress. PLANT PHYSIOLOGY 2022; 190:843-859. [PMID: 35695778 PMCID: PMC9434319 DOI: 10.1093/plphys/kiac283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 05/27/2023]
Abstract
Sodium (Na+) and potassium (K+) homeostasis is essential for plant survival in saline soils. A member of the High-Affinity K+ Transporter (HKT) family in rice (Oryza sativa), OsHKT1;1, is a vital regulator of Na+ exclusion from shoots and is bound by a MYB transcription factor (OsMYBc). Here, we generated transgenic rice lines in the oshkt1;1 mutant background for genetic complementation using genomic OsHKT1;1 containing a native (Com) or mutated (mCom) promoter that cannot be bound by OsMYBc. In contrast to wild-type (WT) or Com lines, the mCom lines were not able to recover the salt-sensitive phenotype of oshkt1;1. The OsMYBc-overexpressing plants were more tolerant to salt stress than WT plants. A yeast two-hybrid screen using the OsMYBc N-terminus as bait identified a rice MYBc stress-related RING finger protein (OsMSRFP). OsMSRFP is an active E3 ligase that ubiquitinated OsMYBc in vitro and mediated 26S proteasome-mediated degradation of OsMYBc under semi-in vitro and in vivo conditions. OsMSRFP attenuated OsMYBc-mediated OsHKT1;1 expression, and knockout of OsMSRFP led to rice salt tolerance. These findings uncover a regulatory mechanism of salt response that fine-tunes OsHKT1;1 transcription by ubiquitination of OsMYBc.
Collapse
Affiliation(s)
- Longyun Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yiyuan Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lesheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingyu Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangqin Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengzhao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- Authors for correspondence: (W.Z.); (W.J.)
| | | |
Collapse
|
2
|
Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:769599. [PMID: 34956268 PMCID: PMC8695444 DOI: 10.3389/fpls.2021.769599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Glehnia littoralis is a medicinal halophyte that inhabits sandy beaches and has high ecological and commercial value. However, the molecular mechanism of salt adaptation in G. littoralis remains largely unknown. Here, we cloned and identified a non-specific phospholipase C gene (GlNPC3) from G. littoralis, which conferred lipid-mediated signaling during the salt stress response. The expression of GlNPC3 was induced continuously by salt treatment. Overexpression of GlNPC3 in Arabidopsis thaliana increased salt tolerance compared to wild-type (WT) plants. GlNPC3-overexpressing plants had longer roots and higher fresh and dry masses under the salt treatment. The GlNPC3 expression pattern revealed that the gene was expressed in most G. littoralis tissues, particularly in roots. The subcellular localization of GlNPC3 was mainly at the plasma membrane, and partially at the tonoplast. GlNPC3 hydrolyzed common membrane phospholipids, such as phosphotidylserine (PS), phosphoethanolamine (PE), and phosphocholine (PC). In vitro enzymatic assay showed salt-induced total non-specific phospholipase C (NPC) activation in A. thaliana GlNPC3-overexpressing plants. Plant lipid profiling showed a significant change in the membrane-lipid composition of A. thaliana GlNPC3-overexpressing plants compared to WT after the salt treatment. Furthermore, downregulation of GlNPC3 expression by virus-induced gene silencing in G. littoralis reduced the expression levels of some stress-related genes, such as SnRK2, P5SC5, TPC1, and SOS1. Together, these results indicated that GlNPC3 and GlNPC3-mediated membrane lipid change played a positive role in the response of G. littoralis to a saline environment.
Collapse
Affiliation(s)
- Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yang Bai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Qiutong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Dongmei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
3
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
4
|
|
5
|
Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153019. [PMID: 31437808 DOI: 10.1016/j.jplph.2019.153019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a key enzyme in the Kennedy pathway of triacylglycerol (TAG) synthesis. It catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to form TAG. DGATs in soybean (Glycine max) have been reported, but their functions are largely unclear. Here we cloned three members of DGAT1 and four members of DGAT2 family from soybean, named GmDGAT1A to GmDGAT1C, and GmDGAT2A to GmDGAT2D, respectively. GmDGAT1A and GmDGAT1C were expressed at a high level in immature seeds, GmDGAT2B in mature seeds, and GmDGAT2C in older leaves. The seven genes were transformed into the H1246 quadruple mutant yeast strain, in which GmDGAT1A, GmDGAT1B, GmDGAT1C, GmDGAT2A, and GmDGAT2B had the ability to produce TAG. Six genes were transformed into Arabidopsis respectively, and constitutive expression of GmDGAT1A and GmDGAT1B resulted in an increase in oil content at the cost of reduced protein content in seeds. Overexpression of GmDGAT1A produced heavier weight of individual seed, but did not affect the weight of total seeds from a plant. Our results reveal the functions of soybean DGATs in seed oil synthesis using transgenic Arabidopsis. The implications for the biotechnological modification of the oil contents in soybeans by altering DGAT expression are discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shuxiang Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Dan Zhou
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guangqin Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kewei Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Li C, Lu H, Li W, Yuan M, Fu Y. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1127-1142. [PMID: 28070891 DOI: 10.1111/pce.12905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance.
Collapse
Affiliation(s)
- Changjiang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hanmei Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Li L, Wang F, Yan P, Jing W, Zhang C, Kudla J, Zhang W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca 2+ signals and confers salt tolerance to rice. THE NEW PHYTOLOGIST 2017; 214:1172-1187. [PMID: 28157263 DOI: 10.1111/nph.14426] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 05/20/2023]
Abstract
In animal cells, phospholipase C (PLC) isoforms predominantly hydrolyze phosphatidylinositol-4,5-biphosphates [PtdIns(4,5)P2 ] into the second messengers diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to regulate diverse biological processes. By contrast, the molecular mechanisms and physiological significance of PLC signaling in plants still awaits full elucidation. Here, we identified a rice (Oryza sativa cv) PI-PLC, OsPLC1, which preferred to hydrolyze phosphatidylinositol-4-phosphate (PtdIns4P) and elicited stress-induced Ca2+ signals regulating salt tolerance. Analysis by ion chromatography revealed that the concentration of PtdIns4P was c. 28 times of that of PtdIns(4,5)P2 in shoots. OsPLC1 not only converted PtdIns(4,5)P2 but also - and even more efficiently - converted PtdIns4P into DAG and Ins(1,4,5)P3 in vitro and in vivo. Salt stress induced the recruitment of OsPLC1 from cytoplasm to plasma membrane, where it hydrolyzed PtdIns4P. The stress-induced Ca2+ signaling was dependent on OsPLC1, and the PLC-mediated Ca2+ signaling was essential for controlling Na+ accumulation in leaf blades, thus establishing whole plant salt tolerance. Our work identifies a conversion pathway and physiological function for PtdIns4P pools in rice and reveals the connection between phosphoinositides and Ca2+ signals mediated by PLC during salt stress responses.
Collapse
Affiliation(s)
- Li Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fawei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiwen Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunxia Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, Münster, 48149, Germany
- College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Kang E, Zheng M, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth. PLANT PHYSIOLOGY 2017; 174:202-222. [PMID: 28314794 PMCID: PMC5411128 DOI: 10.1104/pp.16.01243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/14/2017] [Indexed: 05/24/2023]
Abstract
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.
Collapse
Affiliation(s)
- Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Mingzhi Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Shaul Yalovsky
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| |
Collapse
|
9
|
Zhang Q, Qu Y, Wang Q, Song P, Wang P, Jia Q, Guo J. Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. JOURNAL OF PLANT RESEARCH 2017; 130:193-202. [PMID: 27864640 DOI: 10.1007/s10265-016-0870-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are emerging as essential regulators of cytoskeleton organization in plants. However, the underlying molecular mechanisms of PA-mediated microtubule reorganization in plants remain largely unknown. In this study, we used pharmacological and genetic approaches to analyze the function of Arabidopsis thaliana PLDα1 in the regulation of microtubule organization and cell development in response to microtubule-affecting drugs. Treatment with the microtubule-stabilizing drug paclitaxel resulted in less growth inhibition and decreased rightward slant of roots, longitudinal alignment of microtubules, and enhanced length of hypocotyl epidermal cells in the pldα1 mutant, the phenotype of which was rescued by exogenous application of PA. Moreover, the pldα1 mutant was sensitive to the microtubule-disrupting drugs oryzalin and propyzamide in terms of seedling survival ratio, left-skewing angle of roots and microtubule organization. In addition, both disruption and stabilization of microtubules induced by drugs activated PLDα1 activity. Our findings demonstrate that in A. thaliana, PLDα1/PA might regulate cell development by modulating microtubule organization in an activity-dependent manner.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
10
|
Chen L, Peng Y, Tian J, Wang X, Kong Z, Mao T, Yuan M, Li Y. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006266. [PMID: 27768706 PMCID: PMC5074588 DOI: 10.1371/journal.pgen.1006266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules. The particular shape of plant cells is not only crucial for their biological functions but also affects the overall shape of organs. How cell shape is controlled is a fundamental question in developmental biology, and the study of plant cell shape regulation is an interesting part of plant biology. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. In this study, we use Arabidopsis trichomes as a model to identify the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number. TCS1 encodes a microtubule binding protein, which is required for the stability of microtubules. We further find that TCS1 physically interacts with a microtubule motor involved in the regulation of trichome branch number. TCS1 acts genetically with this microtubule motor to control trichome branch number. Thus, our findings provide important insights into how the microtubule cytoskeleton determines cell shape.
Collapse
Affiliation(s)
- Liangliang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Yuancheng Peng
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
- School of Life Science, Anhui Agricultural University, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, China
| | - Xiaohong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
- * E-mail:
| |
Collapse
|
11
|
Oh SA, Jeon J, Park HJ, Grini PE, Twell D, Park SK. Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:188-201. [PMID: 27121542 DOI: 10.1111/tpj.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin-celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6-1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)-dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6-1 during male meiosis and pollen mitosis I using fluorescent MT-markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6-1 mutants as a valuable tool for the investigation of augmin-dependent MT nucleation and dynamics in plant cells.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jien Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hyo-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Paul Eivind Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - David Twell
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| |
Collapse
|
12
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
13
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
14
|
Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016; 7:81-8. [PMID: 26687389 PMCID: PMC4742386 DOI: 10.1007/s13238-015-0233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Ma Q, Sun J, Mao T. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated hypocotyls. J Cell Sci 2016; 129:2043-51. [DOI: 10.1242/jcs.184408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the "triple response"). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation.
Collapse
Affiliation(s)
- Qianqian Ma
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingbo Sun
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Oda Y. Cortical microtubule rearrangements and cell wall patterning. FRONTIERS IN PLANT SCIENCE 2015; 6:236. [PMID: 25904930 PMCID: PMC4389349 DOI: 10.3389/fpls.2015.00236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/25/2015] [Indexed: 05/17/2023]
Abstract
Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- *Correspondence: Yoshihisa Oda, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411–8540, Japan
| |
Collapse
|
17
|
Atkinson S, Kirik A, Kirik V. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5867-75. [PMID: 25135522 PMCID: PMC4203123 DOI: 10.1093/jxb/eru325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface.
Collapse
Affiliation(s)
- Samantha Atkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Angela Kirik
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
18
|
Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh KW, Sherameti I, Lou B, Baldwin IT, Oelmüller R. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC PLANT BIOLOGY 2014; 14:268. [PMID: 25297988 PMCID: PMC4198706 DOI: 10.1186/s12870-014-0268-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/29/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Verticillium dahliae (Vd) is a soil-borne vascular pathogen which causes severe wilt symptoms in a wide range of plants. The microsclerotia produced by the pathogen survive in soil for more than 15 years. RESULTS Here we demonstrate that an exudate preparation induces cytoplasmic calcium elevation in Arabidopsis roots, and the disease development requires the ethylene-activated transcription factor EIN3. Furthermore, the beneficial endophytic fungus Piriformospora indica (Pi) significantly reduced Vd-mediated disease development in Arabidopsis. Pi inhibited the growth of Vd in a dual culture on PDA agar plates and pretreatment of Arabidopsis roots with Pi protected plants from Vd infection. The Pi-pretreated plants grew better after Vd infection and the production of Vd microsclerotia was dramatically reduced, all without activating stress hormones and defense genes in the host. CONCLUSIONS We conclude that Pi is an efficient biocontrol agent that protects Arabidopsis from Vd infection. Our data demonstrate that Vd growth is restricted in the presence of Pi and the additional signals from Pi must participate in the regulation of the immune response against Vd.
Collapse
Affiliation(s)
- Chao Sun
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Yongqi Shao
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Khabat Vahabi
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Jing Lu
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- />Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Samik Bhattacharya
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Sheqin Dong
- />College of Life Sciences, Yangtze University, Jingzhou, China
| | - Kai-Wun Yeh
- />Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Irena Sherameti
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Binggan Lou
- />Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Ralf Oelmüller
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
19
|
Lipka E, Müller S. Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4177-89. [PMID: 24803503 PMCID: PMC4112629 DOI: 10.1093/jxb/eru194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microtubules (MTs) are essential components of the cytoskeleton and fulfil multiple cellular functions in developmental processes, readily responding to intrinsic and external cues. Nitric oxide signalling is well established in plants, and the MT cytoskeleton is one of its potential targets. To mimic low level nitrosative stress, growth medium was supplemented with 3-nitro-L-tyrosine (NO2-Tyr), a nitrated form of the amino acid tyrosine, and concentration-dependent changes in root growth rate and a reduction in cell division frequencies in Arabidopsis thaliana were observed. In addition, it is reported that exposure to low NO2-Tyr concentrations was not detrimental to plant health and caused subtle and reversible defects. In contrast, growth defects caused by high NO2-Tyr concentrations could not be reversed. Live cell imaging of an MT reporter line revealed that treatment with a low concentration of NO2-Tyr correlated with disorganized cortical MT arrays and associated non-polar cell expansion in the elongation zone. NO2-Tyr treatment antagonized the effects of taxol and oryzalin, further supporting the association of NO2-Tyr with MTs. Furthermore, oblique division plane orientations were observed which were probably induced prior to cytokinesis.
Collapse
Affiliation(s)
- Elisabeth Lipka
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Sabine Müller
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Boron AK, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. PLANT CELL REPORTS 2014; 33:697-706. [PMID: 24633990 DOI: 10.1007/s00299-014-1591-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Plant Growth and Development, Biology Department, University of Antwerp, Groenenborgerlaan 122, 2020, Antwerp, Belgium
| | | |
Collapse
|
21
|
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, Merdes A, Raynaud-Messina B. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J 2014; 33:114-28. [PMID: 24421324 DOI: 10.1002/embj.201385967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre Biologie du Développement, UMR 5547 CNRS-UPS Toulouse 3, Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
Shaw SL. Reorganization of the plant cortical microtubule array. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:693-7. [PMID: 24446545 DOI: 10.1016/j.pbi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interphase microtubule arrays in flowering plant cells assemble at the cell cortex into patterns that affect cellular morphogenesis. A decade of live cell imaging studies has provided significant information about the in vivo properties of the microtubule polymers. Efforts to extrapolate individual properties to larger roles in organizing or patterning the microtubule array have produced models focused on self-organization and local levels of biological control. Recent studies looking at cortical microtubule arrays as they transition from an existing pattern to a new pattern have re-emerged as a testbed for examining these models and the molecular hypotheses underpinning them. The evidence suggests that microtubule patterning is locally controlled on the scale of a cell face, using or circumventing self-organizating properties as necessary.
Collapse
|
24
|
Farquharson KL. AUGMIN subunit8 participates in microtubule reorientation in Arabidopsis hypocotyls. THE PLANT CELL 2013; 25:1913. [PMID: 23749846 PMCID: PMC3723600 DOI: 10.1105/tpc.113.250612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|