1
|
Wang C, Liu Y, Li Y, Guo L, Li C. Analysis of bZIP transcription factors in Rhododendron simsii and functional study of RsbZIP6 in regulating anthocyanin biosynthesis. Int J Biol Macromol 2024; 280:135889. [PMID: 39307497 DOI: 10.1016/j.ijbiomac.2024.135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors play a critical role in various plant biological processes, including anthocyanin biosynthesis. This study focuses on Rhododendron simsii, a notable ornamental species with insufficiently explored bZIP transcription factors. We identified 66 bZIP transcription factors in the R. simsii genome and conducted comprehensive bioinformatics analyses to determine their gene localization, phylogenetic relationships, grouping, gene/protein structure, duplication events, synteny, and expression profiles. Our analysis identified RsbZIP6, a homolog of HY5 known to influence anthocyanin biosynthesis in many plants, as a potential regulator of this pathway. We cloned the complete coding sequence of RsbZIP6, which encodes a 170-amino acid protein spanning 510 bp. Subcellular localization analysis verified the nuclear presence of the RsbZIP6 protein. RT-qPCR analysis revealed the highest expression of RsbZIP6 in petals, which correlated with anthocyanin accumulation. Transgenic experiments indicated that overexpressing RsbZIP6 in Arabidopsis enhanced anthocyanin accumulation by upregulating genes involved in anthocyanin biosynthesis (4CL, CHS, CHI, DFR, F3H, F3'H, ANS and UF3GT). Our findings enhance understanding of the bZIP transcription factor family in R. simsii and underscore the vital role of RsbZIP6 in anthocyanin biosynthesis, providing insights for future genetic enhancement strategies.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Yilin Liu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai 264200, China
| | - Lifan Guo
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China.
| |
Collapse
|
2
|
Muñoz-Díaz E, Fuenzalida-Valdivia I, Darrière T, de Bures A, Blanco-Herrera F, Rompais M, Carapito C, Sáez-Vásquez J. Proteomic profiling of Arabidopsis nuclei reveals distinct protein accumulation kinetics upon heat stress. Sci Rep 2024; 14:18914. [PMID: 39143125 PMCID: PMC11324732 DOI: 10.1038/s41598-024-65558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Heat stress (HS) impacts the nuclear proteome and, subsequently, protein activities in different nuclear compartments. In Arabidopsis thaliana, a short exposure to 37 °C leads to loss of the standard tripartite architecture of the nucleolus, the most prominent nuclear substructure, and, consequently, affects the assembly of ribosomes. Here, we report a quantitative label-free LC‒MS/MS (Liquid Chromatography coupled to tandem Mass Spectrometry) analysis to determine the nuclear proteome of Arabidopsis at 22 °C, HS (37 °C for 4 and 24 h), and a recovery phase. This analysis identified ten distinct groups of proteins based on relative abundance changes in the nucleus before, during and after HS: Early, Late, Transient, Early Persistent, Late Persistent, Recovery, Early-Like, Late-Like, Transient-Like and Continuous Groups (EG, LG, TG, EPG, LPG, RG, ELG, LLG, TLG and CG, respectively). Interestingly, the RNA polymerase I subunit NRPA3 and other main nucleolar proteins, including NUCLEOLIN 1 and FIBRILLARIN 1 and 2, were detected in RG and CG, suggesting that plants require increased nucleolar activity and likely ribosome assembly to restore protein synthesis after HS.
Collapse
Affiliation(s)
- E Muñoz-Díaz
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - I Fuenzalida-Valdivia
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - T Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - A de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - F Blanco-Herrera
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - J Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France.
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
3
|
Jang J, Lee S, Kim JI, Lee S, Kim JA. The Roles of Circadian Clock Genes in Plant Temperature Stress Responses. Int J Mol Sci 2024; 25:918. [PMID: 38255990 PMCID: PMC10815334 DOI: 10.3390/ijms25020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.
Collapse
Affiliation(s)
- Juna Jang
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sora Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sichul Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| |
Collapse
|
4
|
Gao J, Zhang R, Zheng L, Song L, Ji M, Li S, Wang J, Yang J, Kang G, Zhang P, Shi Y, Jiao Y, Pincus D, Zheng X. Blue light receptor CRY1 regulates HSFA1d nuclear localization to promote plant thermotolerance. Cell Rep 2023; 42:113117. [PMID: 37703177 PMCID: PMC10591714 DOI: 10.1016/j.celrep.2023.113117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Temperature increases as light intensity rises, but whether light signals can be directly linked to high temperature response in plants is unclear. Here, we find that light pre-treatment enables plants to survive better under high temperature, designated as light-induced thermotolerance (LIT). With short-term light treatment, plants induce light-signaling pathway genes and heat shock genes. Blue light photoreceptor cryptochrome 1 (CRY1) is required for LIT. We also find that CRY1 physically interacts with the heat shock transcription factor A1d (HsfA1d) and that HsfA1d is involved in thermotolerance under light treatment. Furthermore, CRY1 promotes HsfA1d nuclear localization through importin alpha 1 (IMPα1). Consistent with this, CRY1 shares more than half of the chromatin binding sites with HsfA1d. Mutation of CRY1 (cry1-304) diminishes a large number of HsfA1d binding sites that are shared with CRY1. We present a model where, by coupling light sensing to high-temperature stress, CRY1 confers thermotolerance in plants via HsfA1d.
Collapse
Affiliation(s)
- Jie Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Runcong Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lanjie Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Manchun Ji
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxi Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Guozhang Kang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Paifeng Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong Shi
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yongqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Molecular Genetics and Cell Biology and Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, USA.
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Horvath DP, Doherty CJ, Desai J, Clark N, Anderson JV, Chao WS. Weed-induced changes in the maize root transcriptome reveal transcription factors and physiological processes impacted early in crop-weed interactions. AOB PLANTS 2023; 15:plad013. [PMID: 37228420 PMCID: PMC10202722 DOI: 10.1093/aobpla/plad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
A new paradigm suggests weeds primarily reduce crop yield by altering crop developmental and physiological processes long before the weeds reduce resources through competition. Multiple studies have implicated stress response pathways are activated when crops such as maize are grown in close proximity with weeds during the first 4-8 weeks of growth-the point at which weeds have their greatest impact on subsequent crop yields. To date, these studies have mostly focused on the response of above-ground plant parts and have not examined the early signal transduction processes associated with maize root response to weeds. To investigate the impact of signals from a below-ground competitor on the maize root transcriptome when most vulnerable to weed pressure, a system was designed to expose maize to only below-ground signals. Gene set enrichment analyses identified over-represented ontologies associated with oxidative stress signalling throughout the time of weed exposure, with additional ontologies associated with nitrogen use and transport and abscisic acid (ABA) signalling, and defence responses being enriched at later time points. Enrichment of promoter motifs indicated over-representation of sequences known to bind FAR-RED IMPAIRED RESPONSE 1 (FAR1), several AP2/ERF transcription factors and others. Likewise, co-expression networks were identified using Weighted-Gene Correlation Network Analysis (WGCNA) and Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) algorithms. WGCNA highlighted the potential roles of several transcription factors including a MYB 3r-4, TB1, WRKY65, CONSTANS-like5, ABF3, HOMEOBOX 12, among others. These studies also highlighted the role of several specific proteins involved in ABA signalling as being important for the initiation of the early response of maize to weeds. SC-ION highlighted potential roles for NAC28, LOB37, NAC58 and GATA2 transcription factors, among many others.
Collapse
Affiliation(s)
| | - Colleen J Doherty
- Metabolism and Disease Molecular and Systems Biology, North Carolina State University, 120 Broughton Dr., Raleigh, NC 27607, USA
| | - Jigar Desai
- Wave Life Sciences, 733 Concord Ave, Cambridge, MA 02138, USA
| | - Natalie Clark
- Massachusetts Institute of Technology, Merkin Building, 415 Main St., Cambridge, MA 02142, USA
| | - James V Anderson
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| | - Wun S Chao
- Sunflower and Plant Biology Research Unit, USDA-ARS-ETSARC, 1616 Albrecht Blvd., Fargo, ND 58102, USA
| |
Collapse
|
6
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
7
|
Kang CH, Lee ES, Nawkar GM, Park JH, Wi SD, Bae SB, Chae HB, Paeng SK, Hong JC, Lee SY. Constitutive Photomorphogenic 1 Enhances ER Stress Tolerance in Arabidopsis. Int J Mol Sci 2021; 22:ijms221910772. [PMID: 34639112 PMCID: PMC8509555 DOI: 10.3390/ijms221910772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
Interaction between light signaling and stress response has been recently reported in plants. Here, we investigated the role of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a key regulator of light signaling, in endoplasmic reticulum (ER) stress response in Arabidopsis. The cop1-4 mutant Arabidopsis plants were highly sensitive to ER stress induced by treatment with tunicarmycin (Tm). Interestingly, the abundance of nuclear-localized COP1 increased under ER stress conditions. Complementation of cop1-4 mutant plants with the wild-type or variant types of COP1 revealed that the nuclear localization and dimerization of COP1 are essential for its function in plant ER stress response. Moreover, the protein amount of ELONGATED HYPOCOTYL 5 (HY5), which inhibits bZIP28 to activate the unfolded protein response (UPR), decreased under ER stress conditions in a COP1-dependent manner. Accordingly, the binding of bZIP28 to the BIP3 promoter was reduced in cop1-4 plants and increased in hy5 plants compared with the wild type. Furthermore, introduction of the hy5 mutant locus into the cop1-4 mutant background rescued its ER stress-sensitive phenotype. Altogether, our results suggest that COP1, a negative regulator of light signaling, positively controls ER stress response by partially degrading HY5 in the nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jong Chan Hong
- Correspondence: (J.C.H.); (S.Y.L.); Tel.: +82-55-772-1353 (J.C.H.); +82-55-772-1351 (S.Y.L.); Fax: +82-55-759-9363
| | - Sang Yeol Lee
- Correspondence: (J.C.H.); (S.Y.L.); Tel.: +82-55-772-1353 (J.C.H.); +82-55-772-1351 (S.Y.L.); Fax: +82-55-759-9363
| |
Collapse
|
8
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
9
|
Abstract
In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.
Collapse
|
10
|
Light regulates stomatal development by modulating paracrine signaling from inner tissues. Nat Commun 2021; 12:3403. [PMID: 34099707 PMCID: PMC8184810 DOI: 10.1038/s41467-021-23728-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata—essential pores for gas exchange in plants—is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types. Light promotes stomatal development in plants. Here Wang et al. show that light stimulates stomatal development via the HY5 transcription factor which induces expression of STOMAGEN, a mesophyll-derived secreted peptide, that in turn leads to stabilization of a master regulator of stomatal development in the epidermis.
Collapse
|
11
|
Li XY, Wang Y, Dai Y, He Y, Li CX, Mao P, Ma XR. The transcription factors of tall fescue in response to temperature stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:89-99. [PMID: 33078492 DOI: 10.1111/plb.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Tall fescue (Festuca arundinacea) is an important grass species worldwide, but temperature stress severely affects its distribution and yield. Transcription factors (TFs), as the master switches in sophisticated regulatory networks, play essential roles in plant growth development and abiotic stress responses. In this study, the comparative transcriptome analysis was performed to explore the commonalities and differences in the response of TFs to the heat (40 °C), cold (10 °C) and control (22 °C) conditions. A total of 877 TF genes belonging to 35 families were identified. Most of them (784) were differentially expressed genes (DEG), indicating TF genes actively responded to temperature stress. The expression of bZIP and GTF family members was up-regulated when exposed to both heat and cold, but conversely, the expression of the most WRKY and NAC families members decreased. The HSF and GTE families and DREB2B were up-regulated upon heat, while bHLH, MYB, HD-ZIP and ERF families were elevated under cold stress. The TFs involved in 'Plant hormone signal transduction', 'Plant-pathogen interaction', 'Circadian rhythm' play major roles in responding to temperature stresses. The results showed the temperature threats up-regulated the expression of stress tolerance-related genes, and down-regulated those genes associated with growth and disease resistance, indicating TFs exert crucial roles in plant adaptation to an adverse environment. This study profiled the responsive pattern of TFs to temperature stresses, partially explained the mechanism of adaptations of cold-season forage crops and screened many candidate stress-tolerant TF genes.
Collapse
Affiliation(s)
- X Y Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Chengdu, China
| | - Y Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C X Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Chengdu, China
| | - P Mao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - X R Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Callwood J, Melmaiee K, Kulkarni KP, Vennapusa AR, Aicha D, Moore M, Vorsa N, Natarajan P, Reddy UK, Elavarthi S. Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species. Int J Mol Sci 2021; 22:ijms22052481. [PMID: 33804571 PMCID: PMC7957502 DOI: 10.3390/ijms22052481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.
Collapse
Affiliation(s)
- Jodi Callwood
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
- Correspondence:
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Diarra Aicha
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Michael Moore
- Optical Science Center for Applied Research (OSCAR), Delaware State University, Dover, DE 19901, USA;
| | - Nicholi Vorsa
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA;
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| |
Collapse
|
13
|
Wang Y, Zhang X, Zhao Y, Yang J, He Y, Li G, Ma W, Huang X, Su J. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear 'Yunhongli No. 1'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:665-674. [PMID: 32738704 DOI: 10.1016/j.plaphy.2020.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 05/25/2023]
Abstract
'Yunhongli No. 1' is a rare and well-colored red pear (Pyrus pyrifolia) germplasm resource, and is popular in the market due to its bright red color and high quality. Light induces the expression of transportation factor genes MYB10, WD40, and HY5, which then activate the expression of critical genes in the anthocyanin biosynthesis pathway to promote the synthesis and accumulation of anthocyanin, thus giving the red coloration. Protein HY5 is considered to be a key regulator for induction of anthocyanin biosynthesis. The MYB10 genes physically interact with HY5 to positively regulate anthocyanin biosynthesis in Arabidopsis, apple, and pear by binding to G-box motifs. However, how these transcription factors are regulated by sunlight remains unclear in 'Yunhongli No. 1'. In this study, the transcription factor PyHY5 was cloned, and subcellular localization assay showed that PyHY5 was distributed in the nucleus. The DNA fragments of PyHY5 had a typical BRLZ domain of the bZIP family, and then were aligned against the promoter sequences of PyMYB10 and PyWD40. Electrophoretic mobility shift and transient expression assays showed that PyHY5 could directly recognize and bind to the G-box motifs in the promoters of PyMYB10 and PyWD40, and so boosted transcriptional activation by co-expression. The results demonstrated that PyHY5 binding to G-box motifs of the promoters of PyMYB10 and PyWD40, enhanced its expression, and then promoted accumulation of anthocyanin in red 'Yunhongli No. 1'.
Collapse
Affiliation(s)
- Yuying Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaodong Zhang
- College of Food and Bioengineering of Xuchang, Xuchang, 461000, Henan, China
| | - Yiran Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin Yang
- Industrial Crop Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Yingyun He
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Guochang Li
- Station of Shi Lin Industrial Crop, Shilin, 652200, Yunnan, China
| | - Weirong Ma
- Station of Hong He Industrial Crop, Mengzi, 654400, Yunnan, China
| | - Xinglong Huang
- Station of Shi Lin Industrial Crop, Shilin, 652200, Yunnan, China
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China.
| |
Collapse
|
14
|
Bian Z, Wang Y, Zhang X, Li T, Grundy S, Yang Q, Cheng R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020; 9:E732. [PMID: 32503134 PMCID: PMC7353485 DOI: 10.3390/foods9060732] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.
Collapse
Affiliation(s)
- Zhonghua Bian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Yu Wang
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| | - Steven Grundy
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| |
Collapse
|
15
|
Arico D, Legris M, Castro L, Garcia CF, Laino A, Casal JJ, Mazzella MA. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:2554-2566. [PMID: 31069808 DOI: 10.1111/pce.13575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Due to the preeminence of reductionist approaches, understanding of plant responses to combined stresses is limited. We speculated that light-quality signals of neighbouring vegetation might increase susceptibility to heat shocks because shade reduces tissue temperature and hence the likeness of heat shocks. In contrast, plants of Arabidopsis thaliana grown under low-red/far-red ratios typical of shade were less damaged by heat stress than plants grown under simulated sunlight. Neighbour signals reduce the activity of phytochrome B (phyB), increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs). The phyB mutant showed high tolerance to heat stress even under simulated sunlight, and a pif multiple mutant showed low tolerance under simulated shade. phyB and red/far-red ratio had no effects on seedlings acclimated with nonstressful warm temperatures before the heat shock. The phyB mutant showed reduced expression of several fatty acid desaturase (FAD) genes and less proportion of fully unsaturated fatty acids and electrolyte leakage of membranes exposed to heat shocks. Red-light-activated phyB also reduced thermotolerance of dark-grown seedlings but not via changes in FADs expression and membrane stability. We propose that the reduced photosynthetic capacity linked to thermotolerant membranes would be less costly under shade, where the light input limits photosynthesis.
Collapse
Affiliation(s)
- Denise Arico
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| | - Martina Legris
- Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Fundación Instituto Leloir (FIL), Buenos Aires, 1405, Argentina
| | - Luciana Castro
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, 1900, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, 1900, Argentina
| | - Jorge José Casal
- Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Fundación Instituto Leloir (FIL), Buenos Aires, 1405, Argentina
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Buenos Aires, 1417, Argentina
| | - Maria Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| |
Collapse
|
16
|
Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. PLANT, CELL & ENVIRONMENT 2019; 42:2090-2104. [PMID: 30919454 DOI: 10.1111/pce.13552] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation and low temperature promote the accumulation of anthocyanins, which give apple skins their red colour. Although many transcription regulators have been characterized in the UV-B and low-temperature pathways, their interregulation and synergistic effects are not well understood. Here, a B-box transcription factor gene, MdBBX20, was characterized in apple and identified to promote anthocyanin biosynthesis under UV-B conditions in field experiments and when overexpressed in transgenic apple calli. The transcript level of MdBBX20 was significantly induced by UV-B. Specific G-box elements in the promoters of target genes were identified as interaction sites for MdBBX20. Further experimental interrogation of the UV-B signalling pathways showed that MdBBX20 could interact with MdHY5 in vitro and in vivo and that this interaction was required to significantly enhance the promoter activity of MdMYB1. MdBBX20 also responded to low temperature (14°C) with the participation of MdbHLH3, which directly bound a low temperature-response cis elements in the MdBBX20 promoter. These findings demonstrate the molecular mechanism by which MdBBX20 integrates low-temperature- and UV-B-induced anthocyanin accumulation in apple skin.
Collapse
Affiliation(s)
- Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhui Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuanxuan Yue
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiafei Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
17
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
18
|
Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol 2019; 92:114-121. [PMID: 30946988 DOI: 10.1016/j.semcdb.2019.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Light is a crucial environmental cue not only for photosynthetic energy production but also for plant growth and development. Plants employ sophisticated methods to detect and interpret information from incoming light. Five classes of photoreceptors have been discovered in the model plant Arabidopsis thaliana. These photoreceptors act either distinctly and/or redundantly in fine-tuning many aspects of plant life cycle. Unlike mobile animals, sessile plants have developed an enormous plasticity to adapt and survive in changing environment. By monitoring different information arising from ambient light, plants precisely regulate downstream signaling pathways to adapt accordingly. Given that changes in the light environment is typically synchronized with other environmental cues such as temperature, abiotic stresses, and seasonal changes, it is not surprising that light signaling pathways are interconnected with multiple pathways to regulate plant physiology and development. Indeed, recent advances in plant photobiology revealed a large network of co-regulation among different photoreceptor signaling pathways as well as other internal signaling pathways (e.g., hormone signaling). In addition, some photoreceptors are directly involved in perception of non-light stimuli (e.g., temperature). Therefore, understanding highly inter-connected signaling networks is essential to explore the photoreceptor functions in plants. Here, we summarize how plants co-ordinate multiple photoreceptors and their internal signaling pathways to regulate a myriad of downstream responses at molecular and physiological levels.
Collapse
|
19
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
20
|
Oh Y, Fragoso V, Guzzonato F, Kim SG, Park CM, Baldwin IT. Root-expressed phytochromes B1 and B2, but not PhyA and Cry2, regulate shoot growth in nature. PLANT, CELL & ENVIRONMENT 2018; 41:2577-2588. [PMID: 29766532 DOI: 10.1111/pce.13341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Although photoreceptors are expressed throughout all plant organs, most studies have focused on their function in aerial parts with laboratory-grown plants. Photoreceptor function in naturally dark-grown roots of plants in their native habitats is lacking. We characterized patterns of photoreceptor expression in field- and glasshouse-grown Nicotiana attenuata plants, silenced the expression of PhyB1/B2/A/Cry2 whose root transcripts levels were greater/equal to those of shoots, and by micrografting combined empty vector transformed shoots onto photoreceptor-silenced roots, creating chimeric plants with "blind" roots but "sighted" shoots. Micrografting procedure was robust in both field and glasshouse, as demonstrated by transcript accumulation patterns, and a spatially-explicit lignin visual reporter chimeric line. Field- and glasshouse-grown plants with PhyB1B2, but not PhyA or Cry2, -blind roots, were delayed in stalk elongation compared with control plants, robustly for two field seasons. Wild-type plants with roots directly exposed to FR phenocopied the growth of irPhyB1B2-blind root grafts. Additionally, root-expressed PhyB1B2 was required to activate the positive photomorphogenic regulator, HY5, in response to aboveground light. We conclude that roots of plants growing deep into the soil in nature sense aboveground light, and possibly soil temperature, via PhyB1B2 to control key traits, such as stalk elongation.
Collapse
Affiliation(s)
- Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Francesco Guzzonato
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
21
|
Mwimba M, Karapetyan S, Liu L, Marqués J, McGinnis EM, Buchler NE, Dong X. Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat Commun 2018; 9:4290. [PMID: 30327472 PMCID: PMC6191426 DOI: 10.1038/s41467-018-06692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/20/2018] [Indexed: 01/27/2023] Open
Abstract
Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.
Collapse
Affiliation(s)
- Musoki Mwimba
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Erin M McGinnis
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA.,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.,Department of Physics, Duke University, Durham, NC, 27708, USA.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA. .,Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
22
|
Casal JJ, Qüesta JI. Light and temperature cues: multitasking receptors and transcriptional integrators. THE NEW PHYTOLOGIST 2018; 217:1029-1034. [PMID: 29139132 DOI: 10.1111/nph.14890] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1029 I. Introduction 1029 II. Convergence at the receptor 1030 III. Convergence at transcriptional hubs 1031 IV. Convergence involving clock components 1033 V. Conclusions 1033 Acknowledgements 1033 References 1033 SUMMARY: The combined information provided by light and temperature cues helps to optimise plant body architecture and physiology. Plants possess elaborate systems to sense and respond to these stimuli. Simultaneous perception of light and temperature by dual receptors such as phytochrome B and phototropin leads to immediate signalling convergence. Conversely, cue asynchronies initiate separate pathways and the information of the earliest cue is stored, awaiting the arrival of the later cue to control transcription. Storage mechanisms can involve changes in the activity of selected clock components or epigenetic modifications, depending on the time delay between cues (hours, days or several months). We propose a conceptual framework in which the mechanisms of integration relate to the timing of cue sensing.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, 1405, Argentina
| | - Julia I Qüesta
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
23
|
Park YJ, Lee HJ, Ha JH, Kim JY, Park CM. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. THE NEW PHYTOLOGIST 2017; 215:269-280. [PMID: 28418582 DOI: 10.1111/nph.14581] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/21/2017] [Indexed: 05/19/2023]
Abstract
Plants adjust their architecture to optimize growth and reproductive success under changing climates. Hypocotyl elongation is a pivotal morphogenic trait that is profoundly influenced by light and temperature conditions. While hypocotyl photomorphogenesis has been well characterized at the molecular level, molecular mechanisms underlying hypocotyl thermomorphogenesis remains elusive. Here, we demonstrate that the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) conveys warm temperature signals to hypocotyl thermomorphogenesis. To investigate the roles of COP1 and its target ELONGATED HYPOCOTYL 5 (HY5) during hypocotyl thermomorphogenesis, we employed Arabidopsis mutants that are defective in their genes. Transgenic plants overexpressing the genes were also produced. We examined hypocotyl growth and thermoresponsive turnover rate of HY5 protein at warm temperatures under both light and dark conditions. Elevated temperatures trigger the nuclear import of COP1, thereby alleviating the suppression of hypocotyl growth by HY5. While the thermal induction of hypocotyl growth is circadian-gated, the degradation of HY5 by COP1 is uncoupled from light responses and timing information. We propose that thermal activation of COP1 enables coincidence between warm temperature signaling and circadian rhythms, which allows plants to gate hypocotyl thermomorphogenesis at the most profitable time at warm temperatures.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
24
|
Abstract
Circadian clocks are molecular timekeepers that synchronise internal physiological processes with the external environment by integrating light and temperature stimuli. As in other eukaryotic organisms, circadian rhythms in plants are largely generated by an array of nuclear transcriptional regulators and associated co-regulators that are arranged into a series of interconnected molecular loops. These transcriptional regulators recruit chromatin-modifying enzymes that adjust the structure of the nucleosome to promote or inhibit DNA accessibility and thus guide transcription rates. In this review, we discuss the recent advances made in understanding the architecture of the
Arabidopsis oscillator and the chromatin dynamics that regulate the generation of rhythmic patterns of gene expression within the circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Seth J Davis
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
25
|
Song J, Liu Q, Hu B, Wu W. Photoreceptor PhyB Involved in Arabidopsis Temperature Perception and Heat-Tolerance Formation. Int J Mol Sci 2017; 18:ijms18061194. [PMID: 28587227 PMCID: PMC5486017 DOI: 10.3390/ijms18061194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of temperature on plants is essential. However, our knowledge on the intricate regulation process underlying heat stress (HS) response in plants is limited. Recently, information about thermal sensors in vivo has begun to emerge. In this study, another primary environmental stimulus, light, was verified once again to work with temperature synergistically on plants, through the modulation of numerous biological processes. With the application of transcriptomic analysis, a substantial number of heat-responsive genes were detected involved in both light- and phytohormone-mediated pathways in Arabidopsis. During this process, phytoreceptor phyB acts as a molecular switch to turn on or turn off several other genes HS response, under different light conditions. Furthermore, a morphological study showed the afunction of phyB enhanced plants thermal tolerance, confirming the important role of this phytochrome in temperature perception and response in plants. This study adds data to the picture of light and temperature signaling cross-talk in plants, which is important for the exploration of complicated HS responses or light-mediated mechanisms. Furthermore, based on its influence on Arabidopsis thermal response in both morphological and physiological levels, phyB is a photoreceptor, as revealed before, as well as an essential thermal sensor in plants.
Collapse
Affiliation(s)
- Junyi Song
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Qijun Liu
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Biru Hu
- College of Science, National University of Defense Technology, Changsha 410073, China.
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha 410073, China.
- State Key Lab of Nuclear, Biological and Chemical Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
26
|
Hoecker U. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:63-69. [PMID: 28433946 DOI: 10.1016/j.pbi.2017.03.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Light is a critical signal to integrate plant growth and development with the environment. Downstream of photoreceptors, the E3 ubiquitin ligase COP1/SPA is a key repressor of photomorphogenesis which targets many positive regulators of light signaling, mainly transcription factors, for degradation in darkness. In light-grown plants COP1/SPA activity is repressed, allowing light responses to occur. This review provides an overview on our current knowledge on COP1/SPA repressor function, focusing in particular on the roles of the respective protein domains and the mechanisms of light-induced inactivation of COP1/SPA. Moreover, we summarize how COP1 activity is regulated by other interacting proteins, such as a SUMO E3 ligase and Phytochrome-Interacting Factors (PIFs), as well as by hormones. At last, several novel functions of COP1 that were recently revealed are included.
Collapse
Affiliation(s)
- Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany.
| |
Collapse
|
27
|
Legris M, Nieto C, Sellaro R, Prat S, Casal JJ. Perception and signalling of light and temperature cues in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:683-697. [PMID: 28008680 DOI: 10.1111/tpj.13467] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 05/18/2023]
Abstract
Light and temperature patterns are often correlated under natural plant growth conditions. In this review, we analyse the perception and signalling mechanisms shared by both these environmental cues and discuss the functional implications of their convergence to control plant growth. The first point of integration is the phytochrome B (phyB) receptor, which senses light and temperature. Downstream of phyB, the signalling core comprises two branches, one involving PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and the other CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and ELONGATED HYPOCOTYL 5 (HY5). The dynamics of accumulation and/or localization of each of these core signalling components depend on light and temperature conditions. These pathways are connected through COP1, which enhances the activity of PIF4. The circadian clock modulates this circuit, since EARLY FLOWERING 3 (ELF3), an essential component of the evening complex (EC), represses expression of the PIF4 gene and PIF4 transcriptional activity. Phytochromes are probably not the only entry point of temperature into this network, but other sensors remain to be established. The sharing of mechanisms of action for two distinct environmental cues is to some extent unexpected, as it renders these responses mutually dependent. There are nonetheless many ecological contexts in which such a mutual influence could be beneficial.
Collapse
Affiliation(s)
- Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
| | - Cristina Nieto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Salomé Prat
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Jorge J Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| |
Collapse
|
28
|
HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:2084-2089. [PMID: 28167764 DOI: 10.1073/pnas.1609844114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.
Collapse
|
29
|
An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. HORTICULTURE RESEARCH 2017; 4:17023. [PMID: 28611922 PMCID: PMC5461414 DOI: 10.1038/hortres.2017.23] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 05/18/2023]
Abstract
The basic leucine zipper (bZIP) transcription factor HY5 plays a multifaceted role in plant growth and development. Here the apple MdHY5 gene was cloned based on its homology with Arabidopsis HY5. Expression analysis demonstrated that MdHY5 transcription was induced by light and abscisic acid treatments. Electrophoretic mobility shift assays and transient expression assays subsequently showed that MdHY5 positively regulated both its own transcription and that of MdMYB10 by binding to E-box and G-box motifs, respectively. Furthermore, we obtained transgenic apple calli that overexpressed the MdHY5 gene, and apple calli coloration assays showed that MdHY5 promoted anthocyanin accumulation by regulating expression of the MdMYB10 gene and downstream anthocyanin biosynthesis genes. In addition, the transcript levels of a series of nitrate reductase genes and nitrate uptake genes in both wild-type and transgenic apple calli were detected. In association with increased nitrate reductase activities and nitrate contents, the results indicated that MdHY5 might be an important regulator in nutrient assimilation. Taken together, these results indicate that MdHY5 plays a vital role in anthocyanin accumulation and nitrate assimilation in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Feng-Jia Qu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Ji-Fang Yao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Xiao-Na Wang
- College of Life Science, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
- ()
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’An 271018, Shandong, China
- ()
| |
Collapse
|
30
|
Cantalapiedra CP, García-Pereira MJ, Gracia MP, Igartua E, Casas AM, Contreras-Moreira B. Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. FRONTIERS IN PLANT SCIENCE 2017; 8:647. [PMID: 28507554 PMCID: PMC5410667 DOI: 10.3389/fpls.2017.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Drought causes important losses in crop production every season. Improvement for drought tolerance could take advantage of the diversity held in germplasm collections, much of which has not been incorporated yet into modern breeding. Spanish landraces constitute a promising resource for barley breeding, as they were widely grown until last century and still show good yielding ability under stress. Here, we study the transcriptome expression landscape in two genotypes, an outstanding Spanish landrace-derived inbred line (SBCC073) and a modern cultivar (Scarlett). Gene expression of adult plants after prolonged stresses, either drought or drought combined with heat, was monitored. Transcriptome of mature leaves presented little changes under severe drought, whereas abundant gene expression changes were observed under combined mild drought and heat. Developing inflorescences of SBCC073 exhibited mostly unaltered gene expression, whereas numerous changes were found in the same tissues for Scarlett. Genotypic differences in physiological traits and gene expression patterns confirmed the different behavior of landrace SBCC073 and cultivar Scarlett under abiotic stress, suggesting that they responded to stress following different strategies. A comparison with related studies in barley, addressing gene expression responses to drought, revealed common biological processes, but moderate agreement regarding individual differentially expressed transcripts. Special emphasis was put in the search of co-expressed genes and underlying common regulatory motifs. Overall, 11 transcription factors were identified, and one of them matched cis-regulatory motifs discovered upstream of co-expressed genes involved in those responses.
Collapse
Affiliation(s)
- Carlos P. Cantalapiedra
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María J. García-Pereira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María P. Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Bruno Contreras-Moreira
| |
Collapse
|
31
|
Gangappa SN, Botto JF. The Multifaceted Roles of HY5 in Plant Growth and Development. MOLECULAR PLANT 2016; 9:1353-1365. [PMID: 27435853 DOI: 10.1016/j.molp.2016.07.002] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 05/18/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden.
| | - Javier F Botto
- IFEVA, UBA, CONICET, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| |
Collapse
|
32
|
Lin XL, Niu D, Hu ZL, Kim DH, Jin YH, Cai B, Liu P, Miura K, Yun DJ, Kim WY, Lin R, Jin JB. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity. PLoS Genet 2016; 12:e1006016. [PMID: 27128446 PMCID: PMC4851335 DOI: 10.1371/journal.pgen.1006016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants. In darkness, the ubiquitin E3 ligase COP1 accumulates in the nucleus and mediates ubiquitination and degradation of positive regulators of photomorphogenesis, such as HY5. In response to light, COP1 activity is reduced to ensure proper photomorphogenic development. However, post-translational modifications that regulate COP1 activity are largely unknown. We have found that the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates photomorphogenesis. Genetic and biochemical lines of evidence demonstrate that SIZ1-mediated SUMO modification of COP1 enhances its E3 ubiquitin ligase activity, which causes increased ubiquitination and degradation of HY5. In response to the light, sumoylation level of COP1 is decreased, which may also contributes to the reduction of COP1 activity in the light. Moreover, COP1 mediates ubiquitination and 26S proteasome-dependent degradation of SIZ1 and this feedback repression may ensure the moderate levels of COP1 activity. Our study established a post-translational regulatory modular consisting of SIZ1-mediated sumoylation and COP1-mediated ubiquitination that tightly regulate photomorphogenesis.
Collapse
Affiliation(s)
- Xiao-Li Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zi-Liang Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, Republic of Korea
| | - Yin Hua Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21Plus), PMBBRC & IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), PMBBRC & IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Xu D, Lin F, Jiang Y, Ling J, Hettiarachchi C, Tellgren-Roth C, Holm M, Wei N, Deng XW. Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association. PLoS Genet 2015; 11:e1005747. [PMID: 26714275 PMCID: PMC4694719 DOI: 10.1371/journal.pgen.1005747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a key regulator of light mediated developmental processes and it works as an E3 ubiquitin ligase controlling the abundance of multiple transcription factors. In the work presented here, we identified a novel repressor of COP1, the COP1 SUPPRESSOR 2 (CSU2), via a forward genetic screen. Mutations in CSU2 completely suppress cop1-6 constitutive photomorphogenic phenotype in darkness. CSU2 interacts and co-localizes with COP1 in nuclear speckles via the coiled-coil domain association. CSU2 negatively regulates COP1 E3 ubiquitin ligase activity, and repress COP1 mediated HY5 degradation in cell-free extracts.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Junjie Ling
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | | | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Uppsala, Sweden
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (NW); (XWD)
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- * E-mail: (NW); (XWD)
| |
Collapse
|
34
|
Bendix C, Marshall CM, Harmon FG. Circadian Clock Genes Universally Control Key Agricultural Traits. MOLECULAR PLANT 2015; 8:1135-52. [PMID: 25772379 DOI: 10.1016/j.molp.2015.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/17/2023]
Abstract
Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, including growth, development, and reproduction, primarily through controlling a substantial proportion of transcriptional activity and protein function. This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants. The focus here is on three groups of circadian clock genes essential to clock function in Arabidopsis thaliana: PSEUDO-RESPONSE REGULATORs, GIGANTEA, and the evening complex genes early flowering 3, early flowering 4, and lux arrhythmo. homologous genes from each group underlie quantitative trait loci that have beneficial influences on key agricultural traits, especially flowering time but also yield, biomass, and biennial growth habit. Emerging insights into circadian clock regulation of other fundamental plant processes, including responses to abiotic and biotic stresses, are discussed to highlight promising avenues for further crop improvement.
Collapse
Affiliation(s)
- Claire Bendix
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carine M Marshall
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Horvath DP, Hansen SA, Moriles-Miller JP, Pierik R, Yan C, Clay DE, Scheffler B, Clay SA. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean. THE NEW PHYTOLOGIST 2015; 207:196-210. [PMID: 25711503 DOI: 10.1111/nph.13351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/30/2015] [Indexed: 05/20/2023]
Abstract
Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean.
Collapse
Affiliation(s)
- David P Horvath
- Sunflower and Plant Biology Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Stephanie A Hansen
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | | | - Ronald Pierik
- Graduate School of Life Sciences, Universiteit Utrecht, Utrecht, the Netherlands
| | - Changhui Yan
- Computer Science Department, North Dakota State University, Fargo, ND, 58105, USA
| | - David E Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| | - Brian Scheffler
- MSA Genomics Laboratory, USDA-ARS, Stoneville, MS, 38776, USA
| | - Sharon A Clay
- Plant Biology Department, South Dakota State University, Brookings, SD, 57006, USA
| |
Collapse
|
36
|
Deng W, Clausen J, Boden S, Oliver SN, Casao MC, Ford B, Anderssen RS, Trevaskis B. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings. PLoS One 2015; 10:e0129781. [PMID: 26068005 PMCID: PMC4465908 DOI: 10.1371/journal.pone.0129781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.
Collapse
Affiliation(s)
- Weiwei Deng
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jenni Clausen
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Scott Boden
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Sandra N. Oliver
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - M. Cristina Casao
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, D50829, Germany
| | - Brett Ford
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | - Ben Trevaskis
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
37
|
Huang X, Ouyang X, Deng XW. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:96-103. [PMID: 25061897 DOI: 10.1016/j.pbi.2014.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 05/04/2023]
Abstract
Light is a pivotal environmental stimulus that promotes plant photomorphogenesis. Substantial progress has been achieved in defining the central repressors of photomorphogenesis, the CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) loci, in the past 20 years. COP/DET/FUS proteins are well-conserved, and regulate a variety of biological processes in plants and animals. The fact that these proteins contribute to the repression of plant photomorphogenesis by regulating the ubiquitin-proteasome-dependent pathway has been well established. Recently, molecular insight has been gained into the functional diversity of COP/DET/FUS. Here, we review the current research on the roles of COP/DET/FUS, with a focus on the functional conversion of COP1 in photomorphogenesis.
Collapse
Affiliation(s)
- Xi Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA.
| |
Collapse
|
38
|
Pacín M, Legris M, Casal JJ. Rapid decline in nuclear costitutive photomorphogenesis1 abundance anticipates the stabilization of its target elongated hypocotyl5 in the light. PLANT PHYSIOLOGY 2014; 164:1134-8. [PMID: 24434030 PMCID: PMC3938608 DOI: 10.1104/pp.113.234245] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/15/2014] [Indexed: 05/20/2023]
Abstract
The classic view is challenged that the migration of the repressor of photomorphogenesis COP1 from the nucleus to the cytoplasm is too slow to participate in light-mediated developmental events.
Collapse
|
39
|
Leivar P, Monte E. PIFs: systems integrators in plant development. THE PLANT CELL 2014; 26:56-78. [PMID: 24481072 PMCID: PMC3963594 DOI: 10.1105/tpc.113.120857] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 05/17/2023]
Abstract
Phytochrome-interacting factors (PIFs) are members of the Arabidopsis thaliana basic helix-loop-helix family of transcriptional regulators that interact specifically with the active Pfr conformer of phytochrome (phy) photoreceptors. PIFs are central regulators of photomorphogenic development that act to promote stem growth, and this activity is reversed upon interaction with phy in response to light. Recently, significant progress has been made in defining the transcriptional networks directly regulated by PIFs, as well as the convergence of other signaling pathways on the PIFs to modulate growth. Here, we summarize and highlight these findings in the context of PIFs acting as integrators of light and other signals. We discuss progress in our understanding of the transcriptional and posttranslational regulation of PIFs that illustrates the integration of light with hormonal pathways and the circadian clock, and we review seedling hypocotyl growth as a paradigm of PIFs acting at the interface of these signals. Based on these advances, PIFs are emerging as required factors for growth, acting as central components of a regulatory node that integrates multiple internal and external signals to optimize plant development.
Collapse
|