1
|
Hamid RSB, Nagy F, Kaszler N, Domonkos I, Gombos M, Marton A, Vizler C, Molnár E, Pettkó‐Szandtner A, Bögre L, Fehér A, Magyar Z. RETINOBLASTOMA-RELATED Has Both Canonical and Noncanonical Regulatory Functions During Thermo-Morphogenic Responses in Arabidopsis Seedlings. PLANT, CELL & ENVIRONMENT 2025; 48:1217-1231. [PMID: 39420660 PMCID: PMC11695787 DOI: 10.1111/pce.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures. RBR became hyper-phosphorylated at a conserved CYCLIN-DEPENDENT KINASE (CDK) site in young seedlings growing at 28°C, in parallel with the stimulation of the expressions of the regulatory CYCLIN D/A subunits of CDK(s). Interestingly, while under warm temperatures ectopic RBR slowed down the acceleration of cell proliferation, it triggered elongation growth of post-mitotic cells in the hypocotyl. In agreement, the central regulatory genes of thermomorphogenic response, including PIF4 and PIF7, as well as their downstream auxin biosynthetic YUCCA genes (YUC1-2 and YUC8-9) were all up-regulated in the ectopic RBR expressing line but down-regulated in a mutant line with reduced RBR level. We suggest that RBR has both canonical and non-canonical functions under warm temperatures to control proliferative and elongation growth, respectively.
Collapse
Affiliation(s)
- Rasik Shiekh Bin Hamid
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Fruzsina Nagy
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Nikolett Kaszler
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Ildikó Domonkos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Magdolna Gombos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Annamária Marton
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Csaba Vizler
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Eszter Molnár
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | | | - László Bögre
- Department of Biological SciencesRoyal Holloway, University of LondonEgham, SurreyUK
| | - Attila Fehér
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Department of Plant BiologyFaculty of Science and Informatics, University of SzegedSzegedHungary
| | - Zoltán Magyar
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| |
Collapse
|
2
|
Ma Y, Xu J, Qi J, Zhao D, Jin M, Wang T, Yang Y, Shi H, Guo L, Zhang H. Crosstalk among plant hormone regulates the root development. PLANT SIGNALING & BEHAVIOR 2024; 19:2404807. [PMID: 39279500 PMCID: PMC11407385 DOI: 10.1080/15592324.2024.2404807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The plant root absorbs water and nutrients, anchors the plant in the soil, and promotes plant development. Root is developed from root apical meristem (RAM), which is formed during embryo stage and is maintained by dividing stem cells. Plant hormones have a predominant role in RAM maintenance. This review evaluates the functional crosstalk among three major hormones (auxin, cytokinin, and brassinolide) in RAM development in Arabidopsis, integrating a variety of experimental data into a regulatory network and revealing multiple layers of complexity in the crosstalk among these three hormones. We also discuss possible directions for future research on the roles of hormones in regulating RAM development and maintenance.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiahong Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hengshui University, Hengshui, China
| | - Mei Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tuo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yufeng Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haojia Shi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
3
|
Zamora-Zaragoza J, Klap K, Sánchez-Pérez J, Vielle-Calzada JP, Willemsen V, Scheres B. Developmental cues are encoded by the combinatorial phosphorylation of Arabidopsis RETINOBLASTOMA-RELATED protein RBR1. EMBO J 2024; 43:6656-6678. [PMID: 39468281 PMCID: PMC11649800 DOI: 10.1038/s44318-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
RETINOBLASTOMA-RELATED (RBR) proteins orchestrate cell division, differentiation, and survival in response to environmental and developmental cues through protein-protein interactions that are governed by multisite phosphorylation. Here we explore, using a large collection of transgenic RBR phosphovariants to complement protein function in Arabidopsis thaliana, whether differences in the number and position of RBR phosphorylation events cause a diversification of the protein's function. While the number of point mutations influence phenotypic strength, phosphosites contribute differentially to distinct phenotypes. RBR pocket domain mutations associate primarily with cell proliferation, while mutations in the C-region are linked to stem cell maintenance. Both phospho-mimetic and a phospho-defective variants promote cell death, suggesting that distinct mechanisms can lead to similar cell fates. We observed combinatorial effects between phosphorylated T406 and phosphosites in different protein domains, suggesting that specific, additive, and combinatorial phosphorylation events fine-tune RBR function. Suppression of dominant phospho-defective RBR phenotypes with a mutation that inhibits RBR interacting with LXCXE motifs, and an exhaustive protein-protein interaction assay, not only revealed the importance of DREAM complex members in phosphorylation-regulated RBR function but also pointed to phosphorylation-independent RBR roles in environmental responses. Thus, combinatorial phosphorylation defined and separated developmental, but not environmental, functions of RBR.
Collapse
Affiliation(s)
- Jorge Zamora-Zaragoza
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jaheli Sánchez-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands.
| |
Collapse
|
4
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Liu Z, Sun P, Li X, Xiao W, Pi L, Liang YK. BIG coordinates auxin and SHORT ROOT to promote asymmetric stem cell divisions in Arabidopsis roots. PLANT CELL REPORTS 2024; 43:188. [PMID: 38960994 DOI: 10.1007/s00299-024-03274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
KEY MESSAGE BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Xiao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
6
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Zaragoza JZ, Klap K, Heidstra R, Zhou W, Scheres B. The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is coordinated by the interaction with LXCXE-containing proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1194-1206. [PMID: 38321589 DOI: 10.1111/tpj.16665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.
Collapse
Affiliation(s)
- Jorge Zamora Zaragoza
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| |
Collapse
|
8
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
9
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Gutierrez C. A Journey to the Core of the Plant Cell Cycle. Int J Mol Sci 2022; 23:8154. [PMID: 35897730 PMCID: PMC9330084 DOI: 10.3390/ijms23158154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Production of new cells as a result of progression through the cell division cycle is a fundamental biological process for the perpetuation of both unicellular and multicellular organisms. In the case of plants, their developmental strategies and their largely sessile nature has imposed a series of evolutionary trends. Studies of the plant cell division cycle began with cytological and physiological approaches in the 1950s and 1960s. The decade of 1990 marked a turn point with the increasing development of novel cellular and molecular protocols combined with advances in genetics and, later, genomics, leading to an exponential growth of the field. In this article, I review the current status of plant cell cycle studies but also discuss early studies and the relevance of a multidisciplinary background as a source of innovative questions and answers. In addition to advances in a deeper understanding of the plant cell cycle machinery, current studies focus on the intimate interaction of cell cycle components with almost every aspect of plant biology.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Timilsina R, Kim Y, Park S, Park H, Park SJ, Kim JH, Park JH, Kim D, Park YI, Hwang D, Lee JC, Woo HR. ORESARA 15, a PLATZ transcription factor, controls root meristem size through auxin and cytokinin signalling-related pathways. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2511-2524. [PMID: 35139177 DOI: 10.1093/jxb/erac050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An optimal size of post-embryonic root apical meristem (RAM) is achieved by a balance between cell division and differentiation. Despite extensive research, molecular mechanisms underlying the coordination of cell division and differentiation are still fragmentary. Here, we report that ORESARA 15 (ORE15), an Arabidopsis PLANT A/T-RICH SEQUENCE-AND ZINC-BINDING PROTEIN (PLATZ) transcription factor preferentially expressed in the RAM, determines RAM size. Primary root length, RAM size, cell division rate, and stem cell niche activity were reduced in an ore15 loss-of-function mutant but enhanced in an activation-tagged line overexpressing ORE15, compared with wild type. ORE15 forms mutually positive and negative feedback loops with auxin and cytokinin signalling, respectively. Collectively, our findings imply that ORE15 controls RAM size by mediating the antagonistic interaction between auxin and cytokinin signalling-related pathways.
Collapse
Affiliation(s)
- Rupak Timilsina
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Yongmin Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sung-Jin Park
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Ji-Hwan Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doa Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Chan Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
12
|
Jiang F, Lyi SM, Sun T, Li L, Wang T, Liu J. Involvement of cytokinins in STOP1-mediated resistance to proton toxicity. STRESS BIOLOGY 2022; 2:17. [PMID: 37676526 PMCID: PMC10441851 DOI: 10.1007/s44154-022-00033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 09/08/2023]
Abstract
STOP1 (sensitive to proton rhizotoxicity1) is a master transcription factor that governs the expression of a set of regulatory and structural genes involved in resistance to aluminum and low pH (i.e., proton) stresses in Arabidopsis. However, the mechanisms and regulatory networks underlying STOP1-mediated resistance to proton stresses are largely unclear. Here, we report that low-pH stresses severely inhibited root growth of the stop1 plants by suppressing root meristem activities. Interestingly, the stop1 plants were less sensitive to exogenous cytokinins at normal and low pHs than the wild type. Significantly, low concentrations of cytokinins promoted root growth of the stop1 mutant under low-pH stresses. Moreover, lateral and adventitious root formation was stimulated in stop1 and by low-pH stresses but suppressed by cytokinins. Further studies of the expression patterns of a cytokinin signaling reporter suggest that both the loss-of-function mutation of STOP1 and low-pH stresses suppressed cytokinin signaling outputs in the root. Furthermore, the expression of critical genes involved in cytokinin biosynthesis, biodegradation, and signaling is altered in the stop1 mutant in response to low-pH stresses. In conclusion, our results reveal a complex network of resistance to low-pH stresses, which involves coordinated actions of STOP1, cytokinins, and an additional low-pH-resistant mechanism for controlling root meristem activities and root growth upon proton stresses.
Collapse
Affiliation(s)
- Fei Jiang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Sangbom M. Lyi
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
| | - Tianhu Sun
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
13
|
Hernández-Herrera P, Ugartechea-Chirino Y, Torres-Martínez HH, Arzola AV, Chairez-Veloz JE, García-Ponce B, Sánchez MDLP, Garay-Arroyo A, Álvarez-Buylla ER, Dubrovsky JG, Corkidi G. Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. PLANT PHYSIOLOGY 2022; 188:846-860. [PMID: 34791452 PMCID: PMC8825436 DOI: 10.1093/plphys/kiab530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 05/13/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) primary and lateral roots (LRs) are well suited for 3D and 4D microscopy, and their development provides an ideal system for studying morphogenesis and cell proliferation dynamics. With fast-advancing microscopy techniques used for live-imaging, whole tissue data are increasingly available, yet present the great challenge of analyzing complex interactions within cell populations. We developed a plugin "Live Plant Cell Tracking" (LiPlaCeT) coupled to the publicly available ImageJ image analysis program and generated a pipeline that allows, with the aid of LiPlaCeT, 4D cell tracking and lineage analysis of populations of dividing and growing cells. The LiPlaCeT plugin contains ad hoc ergonomic curating tools, making it very simple to use for manual cell tracking, especially when the signal-to-noise ratio of images is low or variable in time or 3D space and when automated methods may fail. Performing time-lapse experiments and using cell-tracking data extracted with the assistance of LiPlaCeT, we accomplished deep analyses of cell proliferation and clonal relations in the whole developing LR primordia and constructed genealogical trees. We also used cell-tracking data for endodermis cells of the root apical meristem (RAM) and performed automated analyses of cell population dynamics using ParaView software (also publicly available). Using the RAM as an example, we also showed how LiPlaCeT can be used to generate information at the whole-tissue level regarding cell length, cell position, cell growth rate, cell displacement rate, and proliferation activity. The pipeline will be useful in live-imaging studies of roots and other plant organs to understand complex interactions within proliferating and growing cell populations. The plugin includes a step-by-step user manual and a dataset example that are available at https://www.ibt.unam.mx/documentos/diversos/LiPlaCeT.zip.
Collapse
Affiliation(s)
- Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Yamel Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - José Eduardo Chairez-Veloz
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Cd. de México, C.P. 07350, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
14
|
Bertolotti G, Scintu D, Dello Ioio R. A small cog in a large wheel: crucial role of miRNAs in root apical meristem patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6755-6767. [PMID: 34350947 DOI: 10.1093/jxb/erab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.
Collapse
Affiliation(s)
- Gaia Bertolotti
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Daria Scintu
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Raffaele Dello Ioio
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| |
Collapse
|
15
|
Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6768-6788. [PMID: 34343283 DOI: 10.1093/jxb/erab360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.
Collapse
Affiliation(s)
- Amel Yamoune
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Abigail Rubiato Cuyacot
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
17
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
18
|
Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel) 2021; 13:cancers13050934. [PMID: 33668093 PMCID: PMC7956360 DOI: 10.3390/cancers13050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Retinoblastoma (RB) proteins and E2F transcription factors partner together to regulate the cell cycle in many eukaryotic organisms. In organisms that lack one or both of these proteins, other proteins have taken on the essential function of cell cycle regulation. RB and E2F also have important functions outside of the cell cycle, including DNA repair. This review summarizes the non-canonical functions of RB and E2F in maintaining genome integrity and raises the question of whether such functions have always been present or have evolved more recently. Abstract Members of the E2F transcription factor family regulate the expression of genes important for DNA replication and mitotic cell division in most eukaryotes. Homologs of the retinoblastoma (RB) tumor suppressor inhibit the activity of E2F factors, thus controlling cell cycle progression. Organisms such as budding and fission yeast have lost genes encoding E2F and RB, but have gained genes encoding other proteins that take on E2F and RB cell cycle-related functions. In addition to regulating cell proliferation, E2F and RB homologs have non-canonical functions outside the mitotic cell cycle in a variety of eukaryotes. For example, in both mammals and plants, E2F and RB homologs localize to DNA double-strand breaks (DSBs) and directly promote repair by homologous recombination (HR). Here, we discuss the parallels between mammalian E2F1 and RB and their Arabidopsis homologs, E2FA and RB-related (RBR), with respect to their recruitment to sites of DNA damage and how they help recruit repair factors important for DNA end resection. We also explore the question of whether this role in DNA repair is a conserved ancient function of the E2F and RB homologs in the last eukaryotic common ancestor or whether this function evolved independently in mammals and plants.
Collapse
|
19
|
Li K, Wang S, Wu H, Wang H. Protein Levels of Several Arabidopsis Auxin Response Factors Are Regulated by Multiple Factors and ABA Promotes ARF6 Protein Ubiquitination. Int J Mol Sci 2020; 21:ijms21249437. [PMID: 33322385 PMCID: PMC7763875 DOI: 10.3390/ijms21249437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
The auxin response factor (ARF) transcription factors are a key component in auxin signaling and play diverse functions in plant growth, development, and stress response. ARFs are regulated at the transcript level and posttranslationally by protein modifications. However, relatively little is known regarding the control of ARF protein levels. We expressed five different ARFs with an HA (hemagglutinin) tag and observed that their protein levels under the same promoter varied considerably. Interestingly, their protein levels were affected by several hormonal and environmental conditions, but not by the auxin treatment. ABA (abscisic acid) as well as 4 °C and salt treatments decreased the levels of HA-ARF5, HA-ARF6, and HA-ARF10, but not that of HA-ARF19, while 37 °C treatment increased the levels of the four HA-ARFs, suggesting that the ARF protein levels are regulated by multiple factors. Furthermore, MG132 inhibited the reduction of HA-ARF6 level by ABA and 4 °C treatments, suggesting that these treatments decrease HA-ARF6 level through 26S proteasome-mediated protein degradation. It was also found that ABA treatment drastically increased HA-ARF6 ubiquitination, without strongly affecting the ubiquitination profile of the total proteins. Together, these results reveal another layer of control on ARFs, which could serve to integrate multiple hormonal and environmental signals into the ARF-regulated gene expression.
Collapse
Affiliation(s)
- Keke Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresouces, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (H.W.); (H.W.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Correspondence: (H.W.); (H.W.)
| |
Collapse
|
20
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
21
|
Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V, Negri R, Dello Ioio R, Sabatini S, Ten Tusscher K. A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana. Dev Cell 2020; 53:431-443.e23. [PMID: 32386600 DOI: 10.1016/j.devcel.2020.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.
Collapse
Affiliation(s)
- Elena Salvi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Jacob Pieter Rutten
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa - via L. Ghini, 13, 56126 Pisa, Italy
| | - Laura Polverari
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy.
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
22
|
Salvi E, Di Mambro R, Sabatini S. Dissecting mechanisms in root growth from the transition zone perspective. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2390-2396. [PMID: 32064533 DOI: 10.1093/jxb/eraa079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/12/2020] [Indexed: 05/07/2023]
Abstract
The root of the plant Arabidopsis thaliana is a dynamic structure in which cells continuously divide and differentiate to sustain its postembryonic undetermined growth. Cells at different developmental stages are organized in distinguished zones whose position and activities are maintained constant during root growth. In this review, we will discuss the latest discoveries on the regulatory networks involved in root zonation and, in particular, in the mechanisms involved in maintaining the position of the transition zone, a root developmental boundary. Developmental boundaries physically divide cells with different functions and identities. The transition zone separates dividing cells from differentiating cells in two functional domains, preserving their identity during root growth and thus controlling root development.
Collapse
Affiliation(s)
- Elena Salvi
- Department of Biology and Biotechnology "Charles Darwin", Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Rome, Italy
| | | | - Sabrina Sabatini
- Department of Biology and Biotechnology "Charles Darwin", Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang J, Guo B, Sudini HK, Gopalakrishnan S, DasGupta M, Varshney RK, Pandey MK. Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and 'Crack-Entry' Legume Groundnut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E276. [PMID: 32093403 PMCID: PMC7076665 DOI: 10.3390/plants9020276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia. This mutualistic association is highly specific, and each rhizobia species/strain interacts with only a specific group of legumes, and vice versa. Nodulation involves multiple phases of interactions ranging from initial bacterial attachment and infection establishment to late nodule development, characterized by a complex molecular signalling between plants and rhizobia. Characteristically, legumes like groundnut display a bacterial invasion strategy popularly known as "crack-entry'' mechanism, which is reported approximately in 25% of all legumes. This article accommodates critical discussions on the bacterial infection mode, dynamics of nodulation, components of symbiotic signalling pathway, and also the effects of abiotic stresses and phytohormone homeostasis related to the root nodule symbiosis of groundnut and Bradyrhizobium. These parameters can help to understand how groundnut RNS is programmed to recognize and establish symbiotic relationships with rhizobia, adjusting gene expression in response to various regulations. This review further attempts to emphasize the current understanding of advancements regarding RNS research in the groundnut and speculates on prospective improvement possibilities in addition to ways for expanding it to other crops towards achieving sustainable agriculture and overcoming environmental challenges.
Collapse
Affiliation(s)
- Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Samrat Bhattacharyya
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
- Department of Botany, Sister Nibedita Government General Degree College for Girls, Kolkata 700027, India
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Kadaganchi-585367, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
- DBT-National Agri-food Biotechnology Institute (NABI), Punjab 140308, India
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto-5800, Córdoba, Argentina
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 103610, USA;
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture- Agriculture Research Service (USDA-ARS), Tifton, GA 31793, USA;
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| |
Collapse
|
24
|
Analysis of Cell Division Frequency in the Root Apical Meristem of Lycophytes, Non-seed Vascular Plants, Using EdU Labeling. Methods Mol Biol 2019. [PMID: 31797294 DOI: 10.1007/978-1-0716-0183-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The organization of the root apical meristem (RAM) provides insights into the evolution of roots in vascular plants. The RAM of seed plants has a quiescent center (QC), in which the cells divide infrequently and function to maintain neighboring stem cells. However, the existence of a QC and the mechanisms of RAM maintenance in non-seed plants are poorly understood. We analyzed the RAM organization of lycophytes focusing on cell division activity using the EdU labeling method and showed that the RAM of Lycopodium species has a region with a very low cell division frequency, which was named the QC-like region. Here, we describe an in situ EdU labeling method for the RAM of growing roots in nature.
Collapse
|
25
|
Duan Y, Chen Y, Li W, Pan M, Qu X, Shi X, Cai Z, Liu H, Zhao F, Kong L, Ye Y, Wang F, Xue Y, Wu W. RETINOBLASTOMA-RELATED Genes Specifically Control Inner Floral Organ Morphogenesis and Pollen Development in Rice. PLANT PHYSIOLOGY 2019; 181:1600-1614. [PMID: 31548267 PMCID: PMC6878013 DOI: 10.1104/pp.19.00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 05/25/2023]
Abstract
RETINOBLASTOMA-RELATED (RBR) is an essential gene in plants, but its molecular function outside of its role in cell cycle entry remains poorly understood. We characterized the functions of OsRBR1 and OsRBR2 in plant growth and development in rice using both forward- and reverse-genetics methods. The two genes were coexpressed and performed redundant roles in vegetative organs but exhibited separate functions in flowers. OsRBR1 was highly expressed in the floral meristem and regulated the expression of floral homeotic genes to ensure floral organ formation. Mutation of OsRBR1 caused loss of floral meristem identity, resulting in the replacement of lodicules, stamens, and the pistil with either a panicle-like structure or whorls of lemma-like organs. OsRBR2 was preferentially expressed in stamens and promoted pollen formation. Mutation of OsRBR2 led to deformed anthers without pollen. Similar to the protein interaction between AtRBR and AtMSI1 that is essential for floral development in Arabidopsis, OsMSI1 was identified as an interaction partner of OsRBR1 and OsRBR2. OsMSI1 was ubiquitously expressed and appears to be essential for development in rice (Oryza sativa), as the mutation of OsMSI1 was lethal. These results suggest that OsRBR1 and OsRBR2 function with OsMSI1 in reproductive development in rice. This work characterizes further functions of RBRs and improves current understanding of specific regulatory pathways of floral specification and pollen formation in rice.
Collapse
Affiliation(s)
- Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaguang Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqiang Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meizhen Pan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojie Qu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Shi
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaqing Liu
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Fen Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lan Kong
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Wang
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education and Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Di Mambro R, Svolacchia N, Dello Ioio R, Pierdonati E, Salvi E, Pedrazzini E, Vitale A, Perilli S, Sozzani R, Benfey PN, Busch W, Costantino P, Sabatini S. The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size. Curr Biol 2019; 29:1199-1205.e4. [PMID: 30880016 DOI: 10.1016/j.cub.2019.02.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/27/2018] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
Plant developmental plasticity relies on the activities of meristems, regions where stem cells continuously produce new cells [1]. The lateral root cap (LRC) is the outermost tissue of the root meristem [1], and it is known to play an important role during root development [2-6]. In particular, it has been shown that mechanical or genetic ablation of LRC cells affect meristem size [7, 8]; however, the molecular mechanisms involved are unknown. Root meristem size and, consequently, root growth depend on the position of the transition zone (TZ), a boundary that separates dividing from differentiating cells [9, 10]. The interaction of two phytohormones, cytokinin and auxin, is fundamental in controlling the position of the TZ [9, 10]. Cytokinin via the ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) control auxin distribution within the meristem, generating an instructive auxin minimum that positions the TZ [10]. We identify a cytokinin-dependent molecular mechanism that acts in the LRC to control the position of the TZ and meristem size. We show that auxin levels within the LRC cells depends on PIN-FORMED 5 (PIN5), a cytokinin-activated intracellular transporter that pumps auxin from the cytoplasm into the endoplasmic reticulum, and on irreversible auxin conjugation mediated by the IAA-amino synthase GRETCHEN HAGEN 3.17 (GH3.17). By titrating auxin in the LRC, the PIN5 and the GH3.17 genes control auxin levels in the entire root meristem. Overall, our results indicate that the LRC serves as an auxin sink that, under the control of cytokinin, regulates meristem size and root growth.
Collapse
Affiliation(s)
- Riccardo Di Mambro
- Department of Biology, University of Pisa - via L. Ghini, 13 - 56126 Pisa, Italy.
| | - Noemi Svolacchia
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Emanuela Pierdonati
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Elena Salvi
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche - Via Alfonso Corti, 12 - 20133 Milano, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche - Via Alfonso Corti, 12 - 20133 Milano, Italy
| | - Serena Perilli
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70 - 00185 Rome, Italy.
| |
Collapse
|
27
|
Di Mambro R, Sabatini S, Dello Ioio R. Patterning the Axes: A Lesson from the Root. PLANTS 2018; 8:plants8010008. [PMID: 30602700 PMCID: PMC6358898 DOI: 10.3390/plants8010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
How the body plan is established and maintained in multicellular organisms is a central question in developmental biology. Thanks to its simple and symmetric structure, the root represents a powerful tool to study the molecular mechanisms underlying the establishment and maintenance of developmental axes. Plant roots show two main axes along which cells pass through different developmental stages and acquire different fates: the root proximodistal axis spans longitudinally from the hypocotyl junction (proximal) to the root tip (distal), whereas the radial axis spans transversely from the vasculature tissue (centre) to the epidermis (outer). Both axes are generated by stereotypical divisions occurring during embryogenesis and are maintained post-embryonically. Here, we review the latest scientific advances on how the correct formation of root proximodistal and radial axes is achieved.
Collapse
Affiliation(s)
- Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13-56126 Pisa, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma "Sapienza", via dei Sardi, 70-00185 Rome, Italy.
| |
Collapse
|
28
|
Koldenkova VP, Hatsugai N. How do Plants Keep their Functional Integrity? PLANT SIGNALING & BEHAVIOR 2018; 13:e1464853. [PMID: 29727257 PMCID: PMC6149517 DOI: 10.1080/15592324.2018.1464853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Unlike animals, plants possess a non-strict and sometimes very fuzzy morphology. Mutual proportions of plant parts can vary to a much greater extent than in animals, changing according to the environmental conditions and the plant needs of nutrients, water and light. Despite the existence of this fundamental difference between plants and animals, it passes almost non-reflected in most studies on plants. In this review we make a preliminary attempt to gather together the mechanisms by which plants preserve their integrity, not loosing at the same time the physiological (and morphological) flexibility which allows them adapting to the different environments they can populate.
Collapse
Affiliation(s)
- Vadim Pérez Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330, Col. Doctores, Del. Cuauhtémoc. 06720, México D.F., Mexico
| | - Noriyuki Hatsugai
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota St Paul, MN, USA
| |
Collapse
|
29
|
Kong X, Liu G, Liu J, Ding Z. The Root Transition Zone: A Hot Spot for Signal Crosstalk. TRENDS IN PLANT SCIENCE 2018; 23:403-409. [PMID: 29500073 DOI: 10.1016/j.tplants.2018.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 05/25/2023]
Abstract
The root transition zone (TZ), located between the apical meristem and basal elongation region, has a unique role in root growth and development. The root TZ is not only the active site for hormone crosstalk, but also the perception site for various environmental cues, such as aluminum (Al) stress and low phosphate (Pi) stress. We propose that the root TZ is a hot spot for the integration of diverse inputs from endogenous (hormonal) and exogenous (sensorial) stimuli to control root growth.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China; These authors contributed equally to this work.
| | - Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China; These authors contributed equally to this work
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
30
|
Kundu A, DasGupta M. Silencing of Putative Cytokinin Receptor Histidine Kinase1 Inhibits Both Inception and Differentiation of Root Nodules in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:187-199. [PMID: 28876173 DOI: 10.1094/mpmi-06-17-0144-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rhizobia-legume interaction activates the SYM pathway that recruits cytokinin signaling for induction of nodule primordia in the cortex. In Arachis hypogaea, bradyrhizobia invade through natural cracks developed in the lateral root base and are directly endocytosed in the cortical cells to generate the nodule primordia. To unravel the role of cytokinin signaling in A. hypogaea, RNA-interference (RNAi) of cytokinin receptor histidine-kinase1 (AhHK1) was done. AhHK1-RNAi downregulated the expression of type-A response regulators such as AhRR5 and AhRR3 along with several symbiotic genes, indicating that both cytokinin signaling and the SYM pathway were affected. Accordingly, there was a drastic downregulation of nodulation in AhHK1-RNAi roots and the nodules that developed were ineffective. These nodules were densely packed, with infected cells having a higher nucleo-cytoplasmic ratio and distinctively high mitotic index, where the rod-shaped rhizobia failed to differentiate into bacteroids within spherical symbiosomes. In accordance with the proliferating state, expression of a mitotic-cyclin AhCycB2.1 was higher in AhHK1-RNAi nodules, whereas expression of a retinoblastoma-related (AhRBR) nodule that restrains proliferation was lower. Also, higher expression of the meristem maintenance factor WUSCHEL-RELATED HOMEOBOX5 correlated with the undifferentiated state of AhHK1-RNAi nodules. Our results suggest that AhHK1-mediated cytokinin signaling is important for both inception and differentiation during nodule development in A. hypogaea.
Collapse
Affiliation(s)
- Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
31
|
Han S, Hwang I. Integration of multiple signaling pathways shapes the auxin response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:189-200. [PMID: 28992118 DOI: 10.1093/jxb/erx232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is a pivotal signaling molecule that functions throughout the plant lifecycle. Proper regulation of the auxin response is critical for optimizing plant growth under ever-changing environmental conditions. Recent studies have demonstrated that the signaling components that modulate auxin sensitivity and responses are functionally and mechanically diverse. In addition to auxin itself, various environmental and hormonal signals are integrated to modulate the auxin response through directly controlling auxin signaling components. This review explores the non-canonical mechanisms that modulate auxin signaling components, including transcriptional, translational, and post-translational regulation. All of these contribute to the wide range in sensitivity and complexity in auxin responses to various signaling cues.
Collapse
Affiliation(s)
- Soeun Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| |
Collapse
|
32
|
Gutierrez C. 25 Years of Cell Cycle Research: What's Ahead? TRENDS IN PLANT SCIENCE 2016; 21:823-833. [PMID: 27401252 DOI: 10.1016/j.tplants.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 05/27/2023]
Abstract
We have reached 25 years since the first molecular approaches to plant cell cycle. Fortunately, we have witnessed an enormous advance in this field that has benefited from using complementary approaches including molecular, cellular, genetic and genomic resources. These studies have also branched and demonstrated the functional relevance of cell cycle regulators for virtually every aspect of plant life. The question is - where are we heading? I review here the latest developments in the field and briefly elaborate on how new technological advances should contribute to novel approaches that will benefit the plant cell cycle field. Understanding how the cell division cycle is integrated at the organismal level is perhaps one of the major challenges.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Wang WS, Zhu J, Zhang KX, Lü YT, Xu HH. A mutation of casein kinase 2 α4 subunit affects multiple developmental processes in Arabidopsis. PLANT CELL REPORTS 2016; 35:1071-1080. [PMID: 26883224 DOI: 10.1007/s00299-016-1939-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis. Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1-CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Shu Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jiang Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Ying-Tang Lü
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Heng-Hao Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China.
| |
Collapse
|
34
|
Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:95-103. [PMID: 26799131 DOI: 10.1016/j.pbi.2015.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 05/23/2023]
Abstract
Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery.
Collapse
Affiliation(s)
- Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
35
|
Kazda A, Akimcheva S, Watson JM, Riha K. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis. Methods Mol Biol 2016; 1370:169-82. [PMID: 26659962 DOI: 10.1007/978-1-4939-3142-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.
Collapse
Affiliation(s)
- Anita Kazda
- Gregor Mendel Institute of Plant Molecular Biology, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute of Plant Molecular Biology, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, 1030, Austria.
| | - Karel Riha
- Gregor Mendel Institute of Plant Molecular Biology, Vienna Biocenter, Dr. Bohr-Gasse 3, Vienna, 1030, Austria.
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
36
|
Zhao Y, Cheng S, Song Y, Huang Y, Zhou S, Liu X, Zhou DX. The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling. THE PLANT CELL 2015; 27:2469-83. [PMID: 26307379 PMCID: PMC4815106 DOI: 10.1105/tpc.15.00227] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 05/17/2023]
Abstract
Crown roots are the main components of the fibrous root system in rice (Oryza sativa). WOX11, a WUSCHEL-related homeobox gene specifically expressed in the emerging crown root meristem, is a key regulator in crown root development. However, the nature of WOX11 function in crown root development has remained elusive. Here, we identified a rice AP2/ERF protein, ERF3, which interacts with WOX11 and was expressed in crown root initials and during crown root growth. Functional analysis revealed that ERF3 was essential for crown root development and acts in auxin- and cytokinin-responsive gene expression. Downregulation of ERF3 in wox11 mutants produced a more severe root phenotype. Also, increased expression of ERF3 could partially complement wox11, indicating that the two genes functioned cooperatively to regulate crown root development. ERF3 and WOX11 shared a common target, the cytokinin-responsive gene RR2. The expression of ERF3 and WOX11 only partially overlapped, underlining a spatio-temporal control of RR2 expression and crown root development. Furthermore, ERF3-regulated RR2 expression was involved in crown root initiation, while the ERF3/WOX11 interaction likely repressed RR2 during crown root elongation. These results define a mechanism regulating gene expression involved in cytokinin signaling during different stages of crown root development in rice.
Collapse
Affiliation(s)
- Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaling Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yulan Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaoyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Sud 11, 91405 Orsay, France
| |
Collapse
|
37
|
Pacifici E, Polverari L, Sabatini S. Plant hormone cross-talk: the pivot of root growth. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1113-21. [PMID: 25628331 DOI: 10.1093/jxb/eru534] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.
Collapse
Affiliation(s)
- Elena Pacifici
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Polverari
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
38
|
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. THE PLANT CELL 2015; 27:44-63. [PMID: 25604447 PMCID: PMC4330578 DOI: 10.1105/tpc.114.133595] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
39
|
Shen C, Yue R, Yang Y, Zhang L, Sun T, Tie S, Wang H. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.). PLoS One 2014; 9:e112906. [PMID: 25386911 PMCID: PMC4227850 DOI: 10.1371/journal.pone.0112906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plant responses to phytohormone stimuli are the most important biological features for plants to survive in a complex environment. Cytokinin regulates growth and nutrient homeostasis, such as the phosphate (Pi) starvation response and Pi uptake in plants. However, the mechanisms underlying how cytokinin participates in Pi uptake and Pi signaling are largely unknown. In this study, we found that OsARF16 is required for the cytokinin response and is involved in the negative regulation of Pi uptake and Pi signaling by cytokinin. PRINCIPAL FINDINGS The mutant osarf16 showed an obvious resistance to exogenous cytokinin treatment and the expression level of the OsARF16 gene was considerably up-regulated by cytokinin. Cytokinin (6-BA) application suppressed Pi uptake and the Pi starvation response in wild-type Nipponbare (NIP) and all these responses were compromised in the osarf16 mutant. Our data showed that cytokinin inhibits the transport of Pi from the roots to the shoots and that OsARF16 is involved in this process. The Pi content in the osarf16 mutant was much higher than in NIP under 6-BA treatment. The expressions of PHOSPHATE TRANSPORTER1 (PHT1) genes, phosphate (Pi) starvation-induced (PSI) genes and purple PAPase genes were higher in the osarf16 mutant than in NIP under cytokinin treatment. CONCLUSION Our results revealed a new biological function for OsARF16 in the cytokinin-mediated inhibition of Pi uptake and Pi signaling in rice.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, United States of America
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- * E-mail: (CS); (ST); (HW)
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail: (CS); (ST); (HW)
| |
Collapse
|
40
|
Schaller GE, Street IH, Kieber JJ. Cytokinin and the cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:7-15. [PMID: 24994531 DOI: 10.1016/j.pbi.2014.05.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 05/22/2023]
Abstract
The phytohormone cytokinin influences many aspects of plant growth and development, including a prominent role in the regulation of cell proliferation. How the cytokinin response pathway integrates into the machinery regulating progression through the cell cycle is only beginning to be appreciated. Cytokinin is generally considered to promote mitotic cell division in the shoot, but differentiation and transition to the endocycle in the root. Here we consider recent data on the inputs by which cytokinins positively and negatively regulate transitions through the cell cycle. Cytokinin positively regulates cell division and also serves a key role in establishing organization within shoot stem cell centers. Both auxin-dependent and auxin-independent mechanisms have been uncovered by which cytokinin stimulates the endocycle in roots. We conclude with a model that reconciles the opposing effects of cytokinin on shoot and root cell division.
Collapse
Affiliation(s)
- G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA.
| | - Ian H Street
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599, USA.
| |
Collapse
|