1
|
Singh A, Khare S, Niharika, Gupta P. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109918. [PMID: 40239245 DOI: 10.1016/j.plaphy.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
In recent years, advancements in molecular techniques have considerably deepened the understanding of mechanisms governing sulfur and phosphorus metabolism and transport in plants. These macronutrients play essential roles in regulating plant growth, development, and stress responses. Plants absorb sulfur and phosphorus through their roots in the form of inorganic sulfate (SO42-) and phosphate (H2PO4- or HPO42-or PO42-) ions through specialized sulfate (SULTR) and phosphate (PHT) transporter families, respectively. The molecular characterization and regulatory control of these transporter genes, along with insights into their cellular localization, offer promising strategies for improving nutrient use efficiency in crops. Additionally, plants have evolved intricate signalling networks that integrate nutrient sensing, uptake, and homeostasis, with feedback mechanisms to regulate transporter activity in response to nutrient deficiencies. This review provides a comprehensive analysis of the molecular mechanisms underlying distribution, functional dynamics, and regulatory pathways for sulfur and phosphorus transporters in plants. It also highlights their crucial role in plant adaptation to environmental stresses, emphasizing their integration with stress signalling networks. Furthermore, the critical role of phytohormones in coordinating sulfur and phosphorus homeostasis to enhance abiotic stress tolerance is critically described.
Collapse
Affiliation(s)
- Ajey Singh
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Shubhra Khare
- Department of Applied Sciences and Humanities, Invertis University, Bareilly, 243123, U.P., India
| | - Niharika
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Praveen Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India.
| |
Collapse
|
2
|
McCombe CL, Wegner A, Wirtz L, Zamora CS, Casanova F, Aditya S, Greenwood JR, de Paula S, England E, Shang S, Ericsson DJ, Oliveira-Garcia E, Williams SJ, Schaffrath U. Plant pathogenic fungi hijack phosphate signaling with conserved enzymatic effectors. Science 2025; 387:955-962. [PMID: 40014726 DOI: 10.1126/science.adl5764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
Inorganic phosphate (Pi) is essential for life, and plant cells monitor Pi availability by sensing inositol pyrophosphate (PP-InsP) levels. In this work, we describe the hijacking of plant phosphate sensing by a conserved family of Nudix hydrolase effectors from pathogenic Magnaporthe and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze PP-InsP. Gene deletion experiments of Nudix effectors in Magnaporthe oryzae, Colletotrichum higginsianum, and Colletotrichum graminicola indicate that PP-InsP hydrolysis substantially enhances disease symptoms in diverse pathosystems. Further, we show that this conserved effector family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, used by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.
Collapse
Affiliation(s)
- Carl L McCombe
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Alex Wegner
- Department of Molecular Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Louisa Wirtz
- Department of Molecular Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Chenie S Zamora
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Florencia Casanova
- Department of Molecular Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Shouvik Aditya
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Julian R Greenwood
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Samuel de Paula
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Eleanor England
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sascha Shang
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Daniel J Ericsson
- ANSTO, Australian Synchrotron, Crystallography Beamline Group, Melbourne, VIC, Australia
| | - Ely Oliveira-Garcia
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ulrich Schaffrath
- Department of Molecular Plant Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Wang R, Bowerman AF, Chen Y, Zheng L, Shen R, Pogson B, Lan P. Ethylene modulates wheat response to phosphate deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1314-1332. [PMID: 39584670 DOI: 10.1093/jxb/erae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Ethylene is involved in the response to P deficiency in some model plants such as Arabidopsis and rice, but its role in wheat remains unclear. Following our recent study demonstrating the role of differentially expressed genes encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate remodeling of the ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of the exogenous ethylene analogue, ethephon, or ethylene inhibitors. ERFs with at least a 2-fold expression change upon P deficiency had a distribution biased towards chromosome 4B. A group of genes encoding aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase were up-regulated under P starvation, suggesting an increase in ACC and ethylene content, which was verified by biochemical measurements and gas chromatography-mass spectrometry analysis. Under P deficiency, both root and shoot biomass decreased with application of exogenous ethephon or ethylene inhibitors, while root fork numbers and root surface area decreased upon ethephon treatment. Phosphate (Pi) concentrations in roots and old leaves increased with ethephon treatment, and Pi redistribution in roots and younger leaves was altered under Pi starvation. Our findings can guide breeding of germplasm with high Pi efficiency.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Andrew F Bowerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Barry Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
4
|
Pant P, Duan H, Krom N, Huertas R, Scheible WR. Comparative transcriptomics pinpoints conserved and specific transcriptional responses to phosphorus limitation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:621-638. [PMID: 39786159 DOI: 10.1093/jxb/erae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs. Here, we conducted a large-scale RNA sequencing based transcriptomics study of Arabidopsis, Medicago, Brachypodium, and Setaria grown side-by-side in phosphorus (P)-sufficient and P-limited conditions to generate comparable transcriptomics datasets. Comparison of top 200 P-limitation-induced genes in Arabidopsis revealed that ~80% of these genes have identifiable close homologs in the other three species but only ~50% retain their P-limitation response in the legume and grasses. Most of the hallmark genes of the P-starvation response were found conserved in all four species. This study reveals many known, novel, unannotated, conserved, and species-specific forms of regulation of the transcriptional P-starvation response. Identification and experimental verification of expressologs by independent RT-qPCR for P-limitation marker genes in Prunus showed the usefulness of comparative transcriptomics in pinpointing the functional orthologs in diverse crop species. This study provides an unprecedented resource for functional genomics and translational research to create P-efficient crops.
Collapse
Affiliation(s)
- Pooja Pant
- Noble Research Institute, Ardmore, OK 73401, USA
- Floral and Nursery Plants Research Unit, USDA-ARS, U.S. National Arboretum, Beltsville, MD 20705, USA
| | - Hui Duan
- Floral and Nursery Plants Research Unit, USDA-ARS, U.S. National Arboretum, Beltsville, MD 20705, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, OK 73401, USA
| | - Raul Huertas
- Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
5
|
Lu H, Ren M, Lin R, Jin K, Mao C. Developmental responses of roots to limited phosphate availability: Research progress and application in cereals. PLANT PHYSIOLOGY 2024; 196:2162-2174. [PMID: 39288198 DOI: 10.1093/plphys/kiae495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Phosphorus (P), an essential macronutrient, is crucial for plant growth and development. However, available inorganic phosphate (Pi) is often scarce in soil, and its limited mobility exacerbates P deficiency in plants. Plants have developed complex mechanisms to adapt to Pi-limited soils. The root, the primary interface of the plant with soil, plays an essential role in plant adaptation to Pi-limited soil environments. Root system architecture significantly influences Pi acquisition via the dynamic modulation of primary root and/or crown root length, lateral root proliferation and length, root hair development, and root growth angle in response to Pi availability. This review focuses on the physiological, anatomical, and molecular mechanisms underpinning changes in root development in response to Pi starvation in cereals, mainly focusing on the model monocot plant rice (Oryza sativa). We also review recent efforts to modify root architecture to enhance P uptake efficiency in crops and propose future research directions aimed at the genetic improvement of Pi uptake and use efficiency in crops based on root system architecture.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangming Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhang Z, Mo X, Zhao H, Lu X, Fan S, Huang X, Mai H, Liao H, Zhang Y, Liang C, Tian J. Crystal structure and function of a phosphate starvation responsive protein phosphatase, GmHAD1-2 regulating soybean root development and flavonoid metabolism. THE NEW PHYTOLOGIST 2024; 244:2396-2412. [PMID: 39370627 DOI: 10.1111/nph.20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Phosphate (Pi) availability is well known to regulate plant root growth. However, it remains largely unknown how flavonoid synthesis participates in affecting plant root growth in response to Pi starvation. In the study, the crystal structure of a plant protein phosphatase, GmHAD1-2, was dissected using X-ray crystallography for the first time. It was revealed that GmHAD1-2 contained a modified Rossmannoid class of α/β folds with three layered α/β sandwich. Transcripts of GmHAD1-2 were increased by Pi starvation in soybean roots, especially in lateral root tips. GmHAD1-2 suppression or overexpression significantly influenced soybean lateral root length and number, as well as phosphorus (P) content. Furthermore, GmHAD1-2 was found to interact with a chalcone reductase, GmCHR1. Suppression of GmHAD1-2 significantly changed the flavonoid biosynthesis pathway in soybean roots. Taken together, the results highlight that GmHAD1-2 can regulate soybean root growth by influencing flavonoid metabolism.
Collapse
Affiliation(s)
- Zeyu Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hongbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shilong Fan
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xiaojia Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yinghe Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Dong Y, Krishnamoorthi S, Tan GZH, Poh ZY, Urano D. Co-option of plant gene regulatory network in nutrient responses during terrestrialization. NATURE PLANTS 2024; 10:1955-1968. [PMID: 39592744 DOI: 10.1038/s41477-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte Marchantia polymorpha and the streptophyte alga Klebsormidium nitens. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, M. polymorpha GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor CSD. In M. polymorpha, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.
Collapse
Affiliation(s)
- Yating Dong
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | | | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
James M, Tyagi W, Magudeeswari P, Neeraja CN, Rai M. Genome-Wide Association-Based Identification of Alleles, Genes and Haplotypes Influencing Yield in Rice ( Oryza sativa L.) Under Low-Phosphorus Acidic Lowland Soils. Int J Mol Sci 2024; 25:11673. [PMID: 39519225 PMCID: PMC11546970 DOI: 10.3390/ijms252111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Rice provides poor yields in acidic soils due to several nutrient deficiencies and metal toxicities. The low availability of phosphorus (P) in acidic soils offers a natural condition for screening genotypes for grain yield and phosphorus utilization efficiency (PUE). The objective of this study was to phenotype a subset of indica rice accessions from 3000 Rice Genome Project (3K-RGP) under acidic soils and find associated genes and alleles. A panel of 234 genotypes, along with checks, were grown under low-input acidic soils for two consecutive seasons, followed by a low-P-based hydroponic screening experiment. The heritability of the agro-morphological traits was high across seasons, and Ward's clustering method identified 46 genotypes that can be used as low-P-tolerant donors in acidic soil conditions. Genotypes ARC10145, RPA5929, and K1559-4, with a higher grain yield than checks, were identified. Over 29 million SNPs were retrieved from the Rice SNP-Seek database, and after quality control, they were utilized for a genome-wide association study (GWAS) with seventeen traits. Ten quantitative trait nucleotides (QTNs) for three yield traits and five QTNs for PUE were identified. A set of 34 candidate genes for yield-related traits was also identified. An association study using this indica panel for an already reported 1.84 Mbp region on chromosome 2 identified genes Os02g09840 and Os02g08420 for yield and PUE, respectively. A haplotype analysis for the candidate genes identified favorable allelic combinations. Donors carrying the superior haplotypic combinations for the identified genes could be exploited in future breeding programs.
Collapse
Affiliation(s)
- M. James
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India; (M.J.); (W.T.); (P.M.)
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India; (M.J.); (W.T.); (P.M.)
- Research Program—Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Telangana, India
| | - P. Magudeeswari
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India; (M.J.); (W.T.); (P.M.)
| | - C. N. Neeraja
- ICAR—Indian Institute of Rice Research, Hyderabad 500030, Telangana, India;
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam 793103, Meghalaya, India; (M.J.); (W.T.); (P.M.)
- Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Samastipur 848125, Bihar, India
| |
Collapse
|
9
|
Li C, Haider I, Wang JY, Quinodoz P, Suarez Duran HG, Méndez LR, Horber R, Fiorilli V, Votta C, Lanfranco L, Correia de Lemos SM, Jouffroy L, Moegle B, Miesch L, De Mesmaeker A, Medema MH, Al-Babili S, Dong L, Bouwmeester HJ. OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. SCIENCE ADVANCES 2024; 10:eadq3942. [PMID: 39196928 PMCID: PMC11352842 DOI: 10.1126/sciadv.adq3942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.
Collapse
Affiliation(s)
- Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Yuelushan Laboratory, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, 410082, Changsha, P. R. China
| | - Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jian You Wang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Pierre Quinodoz
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Lucía Reyes Méndez
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Robin Horber
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Samara M. Correia de Lemos
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Plant genomics and transcriptomics group, Institute of Biosciences, Sao Paulo State University, 13506-900 Rio Claro, Brazil
| | - Lucile Jouffroy
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie du CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, The BioActives Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
10
|
Fang X, Yang D, Deng L, Zhang Y, Lin Z, Zhou J, Chen Z, Ma X, Guo M, Lu Z, Ma L. Phosphorus uptake, transport, and signaling in woody and model plants. FORESTRY RESEARCH 2024; 4:e017. [PMID: 39524430 PMCID: PMC11524236 DOI: 10.48130/forres-0024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P), a critical macronutrient for plant growth and reproduction, is primarily acquired and translocated in the form of inorganic phosphate (Pi) by roots. Pi deficiency is widespread in many natural ecosystems, including forest plantations, due to its slow movement and easy fixation in soils. Plants have evolved complex and delicate regulation mechanisms on molecular and physiological levels to cope with Pi deficiency. Over the past two decades, extensive research has been performed to decipher the underlying molecular mechanisms that regulate the Pi starvation responses (PSR) in plants. This review highlights the prospects of Pi uptake, transport, and signaling in woody plants based on the backbone of model and crop plants. In addition, this review also highlights the interactions between phosphorus and other mineral nutrients such as Nitrogen (N) and Iron (Fe). Finally, this review discusses the challenges and potential future directions of Pi research in woody plants, including characterizing the woody-specific regulatory mechanisms of Pi signaling and evaluating the regulatory roles of Pi on woody-specific traits such as wood formation and ultimately generating high Phosphorus Use Efficiency (PUE) woody plants.
Collapse
Affiliation(s)
- Xingyan Fang
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Deming Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Lichuan Deng
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Yaxin Zhang
- College of Landscape Architecture, Guangdong Eco-engineering Polytechinic, Guangzhou 510520, Guangdong Province, PR China
| | - Zhiyong Lin
- Fujian Academy of Forestry, Fuzhou 350012, Fujian Province, PR China
| | - Jingjing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Zhichang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Xiangqing Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaohua Lu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Liuyin Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| |
Collapse
|
11
|
Li X, Xu Y, Zhang J, Xu K, Zheng X, Luo J, Lu J. Integrative physiology and transcriptome reveal salt-tolerance differences between two licorice species: Ion transport, Casparian strip formation and flavonoids biosynthesis. BMC PLANT BIOLOGY 2024; 24:272. [PMID: 38605293 PMCID: PMC11007891 DOI: 10.1186/s12870-024-04911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ying Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiade Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ke Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xuerong Zheng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiafen Luo
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiahui Lu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
12
|
Kangi E, Brzostek ER, Bills RJ, Callister SJ, Zink EM, Kim YM, Larsen PE, Cumming JR. A multi-omic survey of black cottonwood tissues highlights coordinated transcriptomic and metabolomic mechanisms for plant adaptation to phosphorus deficiency. FRONTIERS IN PLANT SCIENCE 2024; 15:1324608. [PMID: 38645387 PMCID: PMC11032019 DOI: 10.3389/fpls.2024.1324608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
Introduction Phosphorus (P) deficiency in plants creates a variety of metabolic perturbations that decrease photosynthesis and growth. Phosphorus deficiency is especially challenging for the production of bioenergy feedstock plantation species, such as poplars (Populus spp.), where fertilization may not be practically or economically feasible. While the phenotypic effects of P deficiency are well known, the molecular mechanisms underlying whole-plant and tissue-specific responses to P deficiency, and in particular the responses of commercially valuable hardwoods, are less studied. Methods We used a multi-tissue and multi-omics approach using transcriptomic, proteomic, and metabolomic analyses of the leaves and roots of black cottonwood (Populus trichocarpa) seedlings grown under P-deficient (5 µM P) and replete (100 µM P) conditions to assess this knowledge gap and to identify potential gene targets for selection for P efficiency. Results In comparison to seedlings grown at 100 µM P, P-deficient seedlings exhibited reduced dry biomass, altered chlorophyll fluorescence, and reduced tissue P concentrations. In line with these observations, growth, C metabolism, and photosynthesis pathways were downregulated in the transcriptome of the P-deficient plants. Additionally, we found evidence of strong lipid remodeling in the leaves. Metabolomic data showed that the roots of P-deficient plants had a greater relative abundance of phosphate ion, which may reflect extensive degradation of P-rich metabolites in plants exposed to long-term P-deficiency. With the notable exception of the KEGG pathway for Starch and Sucrose Metabolism (map00500), the responses of the transcriptome and the metabolome to P deficiency were consistent with one another. No significant changes in the proteome were detected in response to P deficiency. Discussion and conclusion Collectively, our multi-omic and multi-tissue approach enabled the identification of important metabolic and regulatory pathways regulated across tissues at the molecular level that will be important avenues to further evaluate for P efficiency. These included stress-mediating systems associated with reactive oxygen species maintenance, lipid remodeling within tissues, and systems involved in P scavenging from the rhizosphere.
Collapse
Affiliation(s)
- Emel Kangi
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Edward R. Brzostek
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Robert J. Bills
- Biology Department, Willamette University, Salem, OR, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erika M. Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Peter E. Larsen
- Loyola Genomics Facility, Loyola University Chicago, Maywood, IL, United States
| | - Jonathan R. Cumming
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
13
|
Kun Yuan, Zhang H, Yu C, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. MOLECULAR PLANT 2023; 16:1811-1831. [PMID: 37794682 DOI: 10.1016/j.molp.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.
Collapse
Affiliation(s)
- Kun Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoji Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ertao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Zhu Z, Tian H, Tang X, Li J, Zhang Z, Chai G, Wu X. NPs-Ca promotes Cd accumulation and enhances Cd tolerance of rapeseed shoots by affecting Cd transfer and Cd fixation in pectin. CHEMOSPHERE 2023; 341:140001. [PMID: 37659510 DOI: 10.1016/j.chemosphere.2023.140001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The use of rapeseed (Brassica napus) as a hyperaccumulator plant has shown great promise for the remediation of cadmium (Cd) contaminated soils. Nanosized materials (NPs) have been shown to mitigate heavy metal toxicity in plants, but it is unknown how l-aspartate nano-calcium (NPs-Ca) affects Cd uptake, transport, and tolerance in rapeseed. A soil pot experiment was conducted with two treatments: a control treatment (CK) with 2.16 g CaCl2 and NPs-Ca treatment with 6.00 g NPs-Ca, to evaluate the effects and mechanisms of NPs-Ca on Cd tolerance in rapeseed. Compared to CaCl2, NPs-Ca promoted Cd transportation from roots to shoots by up-regulating the expression of Cd transport genes (ABCC12, HMA8, NRAM6, ZIP6, CAX4, PCR2, and HIP6). Therefore, NPs-Ca increased Cd accumulation in rapeseed shoots by 39.4%. Interestingly, NPs-Ca also enhanced Cd tolerance in the shoots, resulting in lower hydrogen peroxide (H2O2) accumulation and proline content, as well as higher antioxidant enzyme activities (POD, CAT). Moreover, NPs-Ca reduced the activity of pectin-degrading enzymes (polygalacturonase: PG, β-galactosidase: β-GAL), promoted the activity of pectin methyl esterase (PME), and changed transcription levels of related genes (PME, PMEI, PG, PGIP, and β-GAL). NPs-Ca treatment also significantly increased the Cd content in cell walls by 59.8%, that is, more Cd was immobilized in cell walls, and less Cd entered organelles in shoots of NPs-Ca treatment due to increased pectin content and degree of pectin demethylation. Overall, NPs-Ca increased Cd accumulation in rapeseed shoots by promoting Cd transport from roots to shoots. And meantime, NPs-Ca enhanced Cd tolerance of shoots by inhibiting pectin degradation, promoting pectin demethylation and increasing Cd fixation in pectin. These findings suggest that NPs-Ca can improve the potential of rapeseed as a hyperaccumulator for the remediation of Cd-contaminated soil and the protection of the environment. Furthermore, the study provides a theoretical basis for the application of NPs-Ca in the phytoremediation of Cd-contaminated soils with hyperaccumulating plants.
Collapse
Affiliation(s)
- Zihan Zhu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China.
| | - Hui Tian
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xu Tang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Jinsheng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Zetao Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China.
| | - Xiuwen Wu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
15
|
Guigard L, Jobert L, Busset N, Moulin L, Czernic P. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1278990. [PMID: 37941658 PMCID: PMC10628536 DOI: 10.3389/fpls.2023.1278990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.
Collapse
Affiliation(s)
| | | | | | | | - Pierre Czernic
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
16
|
Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism. PLANT PHYSIOLOGY 2023; 193:389-409. [PMID: 37300541 DOI: 10.1093/plphys/kiad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qing-Qing Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
17
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
18
|
Chen Y, Han J, Wang X, Chen X, Li Y, Yuan C, Dong J, Yang Q, Wang P. OsIPK2, a Rice Inositol Polyphosphate Kinase Gene, Is Involved in Phosphate Homeostasis and Root Development. PLANT & CELL PHYSIOLOGY 2023; 64:893-905. [PMID: 37233621 DOI: 10.1093/pcp/pcad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Phosphorus (P) is a growth-limiting nutrient for plants, which is taken up by root tissue from the environment as inorganic phosphate (Pi). To maintain an appropriate status of cellular Pi, plants have developed sophisticated strategies to sense the Pi level and modulate their root system architecture (RSA) under the ever-changing growth conditions. However, the molecular basis underlying the mechanism remains elusive. Inositol polyphosphate kinase (IPK2) is a key enzyme in the inositol phosphate metabolism pathway, which catalyzes the phosphorylation of IP3 into IP5 by consuming ATP. In this study, the functions of a rice inositol polyphosphate kinase gene (OsIPK2) in plant Pi homeostasis and thus physiological response to Pi signal were characterized. As a biosynthetic gene for phytic acid in rice, overexpression of OsIPK2 led to distinct changes in inositol polyphosphate profiles and an excessive accumulation of Pi levels in transgenic rice under Pi-sufficient conditions. The inhibitory effects of OsIPK2 on root growth were alleviated by Pi-deficient treatment compared with wild-type plants, suggesting the involvement of OsIPK2 in the Pi-regulated reconstruction of RSA. In OsIPK2-overexpressing plants, the altered acid phosphatase (APase) activities and misregulation of Pi-starvation-induced (PSI) genes were observed in roots under different Pi supply conditions. Notably, the expression of OsIPK2 also altered the Pi homeostasis and RSA in transgenic Arabidopsis. Taken together, our findings demonstrate that OsIPK2 plays an important role in Pi homeostasis and RSA adjustment in response to different environmental Pi levels in plants.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jianming Han
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xiaoyu Wang
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xinyu Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Yonghui Li
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Congying Yuan
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Junyi Dong
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Qiaofeng Yang
- College of Food and Bioengineering, Henan University of Animal Husbandry and Ecomomy, Zhengzhou, Henan 450046, China
| | - Peng Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
19
|
Guo R, Zhang Q, Qian K, Ying Y, Liao W, Gan L, Mao C, Wang Y, Whelan J, Shou H. Phosphate-dependent regulation of vacuolar trafficking of OsSPX-MFSs is critical for maintaining intracellular phosphate homeostasis in rice. MOLECULAR PLANT 2023; 16:1304-1320. [PMID: 37464739 DOI: 10.1016/j.molp.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Vacuolar storage of inorganic phosphate (Pi) is essential for Pi homeostasis in plants. The SPX-MFS family proteins have been demonstrated to be vacuolar Pi transporters in many plant species. Transcriptional regulation of the predominant transporter among rice SPX-MFSs, OsSPX-MFS3, was only moderately suppressed by Pi starvation. Thus, post-transcriptional mechanisms were hypothesized to regulate the activity of OsSPX-MFS3. In this study, we found that the tonoplast localization of OsSPX-MFSs is inhibited under Pi-depleted conditions, resulting in their retention in the pre-vacuolar compartments (PVCs). A yeast two-hybrid screen identified that two SNARE proteins, OsSYP21 and OsSYP22, interact with the MFS domain of OsSPX-MFS3. Further genetic and cytological analyses indicate that OsSYP21 and OsSYP22 facilitate trafficking of OsSPX-MFS3 from PVCs to the tonoplast. Although a homozygous frameshift mutation in OsSYP22 appeared to be lethal, tonoplast localization of OsSPX-MFS3 was significantly inhibited in transgenic plants expressing a negative-dominant form of OsSYP22 (OsSYP22-ND), resulting in reduced vacuolar Pi concentrations in OsSYP22-ND plants. Under Pi-depleted conditions, the interaction between OsSYP22 and OsSPX-MFS3 was disrupted, and this process depended on the presence of the SPX domain. Deleting the SPX domains of OsSPX-MFSs resulted in their tonoplast localization under both Pi-depleted and Pi-replete conditions. Complementation of the osspx-mfs1/2/3 triple mutants with the MFS domain or the SPX domain of OsSPX-MFS3 confirmed that the MFS and SPX domains are responsive to Pi transport activity and Pi-dependent regulation, respectively. These data indicated that the SPX domains of OsSPX-MFSs sense cellular Pi (InsP) levels and, under Pi-depleted conditions, inhibit the interaction between OsSPX-MFSs and OsSYP21/22 and subsequent trafficking of OsSPX-MFSs from PVCs to the tonoplast.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China; Zhijiang lab, Hangzhou 310012, China
| | - Kun Qian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Lening Gan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China.
| |
Collapse
|
20
|
Zhang Y, Zhang Q, Guo M, Wang X, Li T, Wu Q, Li L, Yi K, Ruan W. NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1874-1889. [PMID: 37096648 DOI: 10.1111/jipb.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.
Collapse
Affiliation(s)
- Yuxin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing, 100083, China
| | - Xueqing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Tianjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| |
Collapse
|
21
|
Wang Y, Wang H, Wang H, Zhou R, Wu J, Zhang Z, Jin Y, Li T, Kohnen MV, Liu X, Wei W, Chen K, Gao Y, Ding J, Zhang H, Liu B, Lin C, Gu L. Multi-omics of Circular RNAs and Their Responses to Hormones in Moso Bamboo (Phyllostachys edulis). GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:866-885. [PMID: 36805531 PMCID: PMC10787125 DOI: 10.1016/j.gpb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs with covalently closed structures, which have important functions in plants. However, their biogenesis, degradation, and function upon treatment with gibberellins (GAs) and auxins (1-naphthaleneacetic acid, NAA) remain unknown. Here, we systematically identified and characterized the expression patterns, evolutionary conservation, genomic features, and internal structures of circRNAs using RNase R-treated libraries from moso bamboo (Phyllostachys edulis) seedlings. Moreover, we investigated the biogenesis of circRNAs dependent on both cis- and trans-regulation. We explored the function of circRNAs, including their roles in regulating microRNA (miRNA)-related genes and modulating the alternative splicing of their linear counterparts. Importantly, we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs. Finally, we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA. Collectively, our study provides insights into the biogenesis, function, and miRNA-mediated degradation of circRNAs in moso bamboo.
Collapse
Affiliation(s)
- Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruifan Zhou
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zekun Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yandong Jin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiazhi Ding
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Gu P, Tao W, Tao J, Sun H, Hu R, Wang D, Zong G, Xie X, Ruan W, Xu G, Yi K, Zhang Y. The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. THE NEW PHYTOLOGIST 2023; 239:673-686. [PMID: 37194447 DOI: 10.1111/nph.18963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.
Collapse
Affiliation(s)
- Pengyuan Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huwei Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ripeng Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guoxinan Zong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaonan Xie
- Utsunomiya University, 321-8505, Utsunomiya, Japan
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, China
| |
Collapse
|
23
|
Huertas R, Torres-Jerez I, Curtin SJ, Scheible W, Udvardi M. Medicago truncatula PHO2 genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2023; 14:1211107. [PMID: 37409286 PMCID: PMC10319397 DOI: 10.3389/fpls.2023.1211107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
Three PHO2-like genes encoding putative ubiquitin-conjugating E2 enzymes of Medicago truncatula were characterized for potential roles in phosphorous (P) homeostasis and symbiotic nitrogen fixation (SNF). All three genes, MtPHO2A, B and C, contain miR399-binding sites characteristic of PHO2 genes in other plant species. Distinct spatiotemporal expression patterns and responsiveness of gene expression to P- and N-deprivation in roots and shoots indicated potential roles, especially for MtPHO2B, in P and N homeostasis. Phenotypic analysis of pho2 mutants revealed that MtPHO2B is integral to Pi homeostasis, affecting Pi allocation during plant growth under nutrient-replete conditions, while MtPHO2C had a limited role in controlling Pi homeostasis. Genetic analysis also revealed a connection between Pi allocation, plant growth and SNF performance. Under N-limited, SNF conditions, Pi allocation to different organs was dependent on MtPHO2B and, to a lesser extent, MtPHO2C and MtPHO2A. MtPHO2A also affected Pi homeostasis associated with nodule formation. Thus, MtPHO2 genes play roles in systemic and localized, i.e., nodule, P homeostasis affecting SNF.
Collapse
Affiliation(s)
- Raul Huertas
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Shaun J. Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Wolf Scheible
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
24
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
25
|
Bhadouria J, Mehra P, Verma L, Pazhamala LT, Rumi R, Panchal P, Sinha AK, Giri J. Root-Expressed Rice PAP3b Enhances Secreted APase Activity and Helps Utilize Organic Phosphate. PLANT & CELL PHYSIOLOGY 2023; 64:501-518. [PMID: 36807470 DOI: 10.1093/pcp/pcad013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Phosphate (Pi) deficiency leads to the induction of purple acid phosphatases (PAPs) in plants, which dephosphorylate organic phosphorus (P) complexes in the rhizosphere and intracellular compartments to release Pi. In this study, we demonstrate that OsPAP3b belongs to group III low-molecular weight PAP and is low Pi-responsive, preferentially in roots. The expression of OsPAP3b is negatively regulated with Pi resupply. Interestingly, OsPAP3b was found to be dual localized to the nucleus and secretome. Furthermore, OsPAP3b is transcriptionally regulated by OsPHR2 as substantiated by DNA-protein binding assay. Through in vitro biochemical assays, we further demonstrate that OsPAP3b is a functional acid phosphatase (APase) with broad substrate specificity. The overexpression (OE) of OsPAP3b in rice led to increased secreted APase activity and improved mineralization of organic P sources, which resulted in better growth of transgenics compared to the wild type when grown on organic P as an exogenous P substrate. Under Pi deprivation, OsPAP3b knock-down and knock-out lines showed no significant changes in total P content and dry biomass. However, the expression of other phosphate starvation-induced genes and the levels of metabolites were found to be altered in the OE and knock-down lines. In addition, in vitro pull-down assay revealed multiple putative interacting proteins of OsPAP3b. Our data collectively suggest that OsPAP3b can aid in organic P utilization in rice. The APase isoform behavior and nuclear localization indicate its additional role, possibly in stress signaling. Considering its important roles, OsPAP3b could be a potential target for improving low Pi adaptation in rice.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Poonam Mehra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Rumi Rumi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| |
Collapse
|
26
|
Prathap V, Kumar S, Tyagi A. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice. Int J Biol Macromol 2023; 234:123760. [PMID: 36812961 DOI: 10.1016/j.ijbiomac.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Phosphorus (P)-deficiency is one of the major nutrient constraints for global rice production. P-deficiency tolerance in rice involves complex regulatory mechanisms. To gain insights into the proteins involved in phosphorus acquisition and use efficiency in rice, proteome analysis of a high-yielding rice cultivar Pusa-44 and its near-isogenic line (NIL)-23 harboring a major phosphorous uptake (Pup1) QTL, grown under control and P-starvation stress, was performed. Comparative proteome profiling of shoot and root tissues from the plants grown hydroponically with P (16 ppm, +P) or without P (0 ppm, -P) resulted in the identification of 681 and 567 differentially expressed proteins (DEPs) in shoot of Pusa-44 and NIL-23, respectively. Similarly, 66 and 93 DEPs were identified in root of Pusa-44 and NIL-23, respectively. These P-starvation responsive DEPs were annotated to be involved in metabolic processes like photosynthesis, starch-, sucrose-, energy-metabolism, transcription factors (mainly ARF, ZFP, HD-ZIP, MYB), and phytohormone signaling. Comparative analysis of the expression patterns observed by proteome analysis with that reported at the transcriptome level indicated the Pup1 QTL-mediated post-transcriptional regulation plays an important role under -P stress. Thus, the present study describes the molecular aspect of the regulatory functions of Pup1 QTL under P-starvation stress in rice, which might help develop an efficient rice cultivar with enhanced P acquisition and assimilation for better performance in P-deficient soil.
Collapse
Affiliation(s)
- V Prathap
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
27
|
Sun Y, Wu Q, Xie Z, Huang J. Transcription factor OsNAC016 negatively regulates phosphate-starvation response in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111618. [PMID: 36738935 DOI: 10.1016/j.plantsci.2023.111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phosphate (Pi), the main form of inorganic phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients in plants. However, the underlying molecular mechanism determining how plants sense external Pi levels and reprogram transcriptional and adaptive responses is incompletely understood. At present, few rice NAC members have been reported to be involved in the signaling pathways of Pi homeostasis in plants. Here, our research demonstrated that OsNAC016, a Pi-starvation responsive gene in rice, was regulated by PHOSPHATE STARVATION RESPONSE protein 1 (OsPHR1) and OsPHR4. Under Pi-starvation stress, the root growth of OsNAC016-overexpression lines was inhibited more severely, and overexpression plants had lower Pi content than wild type, while osnac016 mutant was hyposensitive to Pi starvation, indicating that OsNAC016 negatively modulates rice Pi-starvation response. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis and transient transactivation assays indicated that OsNAC016 could activate the SPX-domain-containing protein 2 (OsSPX2) gene through binding to its promoter. Further, we found that Pi starvation enhanced OsNAC016 binding to the OsSPX2 promoter, thus strongly promoting OsSPX2 expression. At the same time, Pi starvation induced OsNAC016 protein accumulation in plants. Moreover, similar to OsSPX2, OsNAC016 negatively regulates leaf inclination by repressing the cell elongation in lamina joint in rice under Pi-starvation stress. Together, our findings demonstrate that OsNAC016 negatively regulates rice phosphate-starvation response and leaf inclination by activating OsSPX2 expression under Pi-starvation conditions. These data provide a strategy to create smart crops with ideal shoot architecture and high phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
28
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
30
|
Haider I, Yunmeng Z, White F, Li C, Incitti R, Alam I, Gojobori T, Ruyter-Spira C, Al-Babili S, Bouwmeester HJ. Transcriptome analysis of the phosphate starvation response sheds light on strigolactone biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:355-370. [PMID: 36775978 DOI: 10.1111/tpj.16140] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 05/10/2023]
Abstract
Phosphorus (P) is a major element required for plant growth and development. To cope with P shortage, plants activate local and long-distance signaling pathways, such as an increase in the production and exudation of strigolactones (SLs). The role of the latter in mitigating P deficiency is, however, still largely unknown. To shed light on this, we studied the transcriptional response to P starvation and replenishment in wild-type rice and a SL mutant, dwarf10 (d10), and upon exogenous application of the synthetic SL GR24. P starvation resulted in major transcriptional alterations, such as the upregulation of P TRANSPORTER, SYG1/PHO81/XPR1 (SPX) and VACUOLAR PHOSPHATE EFFLUX TRANSPORTER. Gene Ontology (GO) analysis of the genes induced by P starvation showed enrichment in phospholipid catabolic process and phosphatase activity. In d10, P deficiency induced upregulation of genes enriched for sesquiterpenoid production, secondary shoot formation and metabolic processes, including lactone biosynthesis. Furthermore, several genes induced by GR24 treatment shared the same GO terms with P starvation-induced genes, such as oxidation reduction, heme binding and oxidoreductase activity, hinting at the role that SLs play in the transcriptional reprogramming upon P starvation. Gene co-expression network analysis uncovered a METHYL TRANSFERASE that displayed co-regulation with known rice SL biosynthetic genes. Functional characterization showed that this gene encodes an enzyme catalyzing the conversion of carlactonoic acid to methyl carlactonoate. Our work provides a valuable resource to further studies on the response of crops to P deficiency and reveals a tool for the discovery of SL biosynthetic genes.
Collapse
Affiliation(s)
- Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhang Yunmeng
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, PO Box 658, 6700 AR, The Netherlands
| | - Fred White
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Roberto Incitti
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, PO Box 658, 6700 AR, The Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Division of Biological and Environmental Science and Engineering, The Plant Science Program, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Sharma N, Jaiswal DK, Kumari S, Dash GK, Panda S, Anandan A, Raghuram N. Genome-Wide Urea Response in Rice Genotypes Contrasting for Nitrogen Use Efficiency. Int J Mol Sci 2023; 24:6080. [PMID: 37047052 PMCID: PMC10093866 DOI: 10.3390/ijms24076080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 04/14/2023] Open
Abstract
Rice is an ideal crop for improvement of nitrogen use efficiency (NUE), especially with urea, its predominant fertilizer. There is a paucity of studies on rice genotypes contrasting for NUE. We compared low urea-responsive transcriptomes of contrasting rice genotypes, namely Nidhi (low NUE) and Panvel1 (high NUE). Transcriptomes of whole plants grown with media containing normal (15 mM) and low urea (1.5 mM) revealed 1497 and 2819 differentially expressed genes (DEGs) in Nidhi and Panvel1, respectively, of which 271 were common. Though 1226 DEGs were genotype-specific in Nidhi and 2548 in Panvel1, there was far higher commonality in underlying processes. High NUE is associated with the urea-responsive regulation of other nutrient transporters, miRNAs, transcription factors (TFs) and better photosynthesis, water use efficiency and post-translational modifications. Many of their genes co-localized to NUE-QTLs on chromosomes 1, 3 and 9. A field evaluation under different doses of urea revealed better agronomic performance including grain yield, transport/uptake efficiencies and NUE of Panvel1. Comparison of our urea-based transcriptomes with our previous nitrate-based transcriptomes revealed many common processes despite large differences in their expression profiles. Our model proposes that differential involvement of transporters and TFs, among others, contributes to better urea uptake, translocation, utilization, flower development and yield for high NUE.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Dinesh Kumar Jaiswal
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Supriya Kumari
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Institute of Agricultural Sciences, SOA (DU), Bhubaneswar 751003, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Regional Station, Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science, Bengaluru 560065, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| |
Collapse
|
32
|
Yan M, Feng F, Xu X, Fan P, Lou Q, Chen L, Zhang A, Luo L, Mei H. Genome-wide association study identifies a gene conferring high physiological phosphorus use efficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1153967. [PMID: 36998687 PMCID: PMC10043302 DOI: 10.3389/fpls.2023.1153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Phosphate (Pi) is indispensable for the growth and development of plant, and low-Pi stress is a major limitation for crop growth and yield worldwide. The tolerance to low-Pi stress varied among rice germplasm resources. However, the mechanisms underlying the tolerance of rice to low-Pi stress, as a complex quantitative trait, are not clear. We performed a genome-wide association study (GWAS) through a diverse worldwide collection of 191 rice accessions in the field under normal-Pi and low-Pi supply in two years. Twenty and three significant association loci were identified for biomass and grain yield per plant under low-Pi supply respectively. The expression level of OsAAD as a candidate gene from a associated locus was significantly up-regulated after low-Pi stress treatment for five days and tended to return to normal levels after Pi re-supply in shoots. Suppression of OsAAD expression could improve the physiological phosphorus use efficiency (PPUE) and grain yields through affecting the expression of several genes associated with GA biosynthesis and metabolism. OsAAD would be a promising gene for increasing PPUE and grain yield in rice under normal- and low-Pi supply via genome editing.
Collapse
Affiliation(s)
- Ming Yan
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Fangjun Feng
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaoyan Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Peiqing Fan
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
33
|
Tariq A, Zeng F, Graciano C, Ullah A, Sadia S, Ahmed Z, Murtaza G, Ismoilov K, Zhang Z. Regulation of Metabolites by Nutrients in Plants. PLANT IONOMICS 2023:1-18. [DOI: 10.1002/9781119803041.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Iqbal A, Qiang D, Xiangru W, Huiping G, Hengheng Z, Xiling Z, Meizhen S. Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:302-317. [PMID: 36738510 DOI: 10.1016/j.plaphy.2023.01.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes; however, the molecular details of these pathways remain largely unknown. In this study, physiological, transcriptome, and metabolome analysis were compared for two cotton genotypes with different low P tolerance under P starvation and resupply. The results showed that the glucose, fructose, sucrose, and starch contents increased by 18.2%, 20.4%, 20.2%, and 14.3% in the roots and 18.3%, 23.3%, 11.0%, and 13.6% in the shoot of Jimian169 than DES926, respectively. Moreover, the activities of enzymes related to carbon and phosphorus metabolism were higher in the roots and shoots of Jimian169 than DES926. In addition, transcriptome analysis revealed that the number of differentially expressed genes (DEGs) was higher in both roots (830) and shoots (730) under P starvation and the DEGs drastically reduced upon P resupply. The KEGG analysis indicated that DEGs were mainly enriched in phenylpropanoid biosynthesis, carbon metabolism, and photosynthesis. The metabolome analysis showed the enrichment of phenylpropanoid, organic acids and derivatives, and lipids in all the pairs at a given time point. The combined transcriptome and metabolome analysis revealed that carbon metabolism and flavonoid biosynthesis are involved in the P starvation response in cotton. Moreover, co-expression network analysis identified 3 hub genes in the roots and shoots that regulate the pathways involved in the P starvation response. This study provides the foundation for understanding the mechanisms of low P tolerance and the hub genes as a potential target for the development of low P tolerant genotypes.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, PR China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, PR China.
| |
Collapse
|
35
|
Zhi S, Zou W, Li J, Meng L, Liu J, Chen J, Ye G. Mapping QTLs and gene validation studies for Mg 2+ uptake and translocation using a MAGIC population in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1131064. [PMID: 36909447 PMCID: PMC9996051 DOI: 10.3389/fpls.2023.1131064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Magnesium (Mg) is an essential element for plant growth and development. Rice is an important food crop in the world, but there are few studies on the uptake and translocation of Mg2+ in rice. We used a multi-parent advanced generation inter-cross (MAGIC) population constructed using four parental lines and genotyped by a 55 K rice SNP array for association analysis to locate QTLs related to Mg2+ uptake and translocation in rice at the seedling stage. Four QTLs (qRMg1, qRMg2, qRMg7 and qRMg8) were detected for the root Mg2+ concentration, which explained 11.45-13.08% of the phenotypic variation. The Mg2+ transporter gene, OsMGT1, was within the region of qRMg1. Three QTLs (qSMg3, qSMg7 and qSMg10) were detected for the shoot Mg2+ concentration, which explained 4.30-5.46% of the phenotypic variation. Two QTLs (qTrMg3 and qTrMg8) were found to affect the translocation of Mg2+ from the roots to the shoots, and explained 10.91% and 9.63% of phenotypic variation. qSMg3 and qTrMg3 might be the same, since they are very close to each other on chromosome 3. Analysis of candidate genes in the region of qSMg3 and qTrMg3 through qRT-PCR, complementation assay in the yeast Mg2+ transport-defective mutant CM66, and sequence analysis of the parental lines suggested that LOC_Os03g04360 may play important roles in Mg2+ uptake, translocation and accumulation in rice. Overexpression of LOC_Os03g04360 can significantly increase the Mg2+ concentration in rice seedlings, especially under the condition of low Mg2+ supply.
Collapse
Affiliation(s)
- Shuai Zhi
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jinyan Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Jindong Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jingguang Chen
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
36
|
Wang S, Xu T, Chen M, Geng L, Huang Z, Dai X, Qu H, Zhang J, Li H, Gu M, Xu G. The transcription factor OsWRKY10 inhibits phosphate uptake via suppressing OsPHT1;2 expression under phosphate-replete conditions in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1074-1089. [PMID: 36402551 PMCID: PMC9899414 DOI: 10.1093/jxb/erac456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 05/28/2023]
Abstract
Plants have evolved delicate systems for stimulating or inhibiting inorganic phosphate (Pi) uptake in response to the fluctuating Pi availability in soil. However, the negative regulators inhibiting Pi uptake at the transcriptional level are largely unexplored. Here, we functionally characterized a transcription factor in rice (Oryza sativa), OsWRKY10. OsWRKY10 encodes a nucleus-localized protein and showed preferential tissue localization. Knockout of OsWRKY10 led to increased Pi uptake and accumulation under Pi-replete conditions. In accordance with this phenotype, OsWRKY10 was transcriptionally induced by Pi, and a subset of PHOSPHATE TRANSPORTER 1 (PHT1) genes were up-regulated upon its mutation, suggesting that OsWRKY10 is a transcriptional repressor of Pi uptake. Moreover, rice plants expressing the OsWRKY10-VP16 fusion protein (a dominant transcriptional activator) accumulated even more Pi than oswrky10. Several lines of biochemical evidence demonstrated that OsWRKY10 directly suppressed OsPHT1;2 expression. Genetic analysis showed that OsPHT1;2 was responsible for the increased Pi accumulation in oswrky10. Furthermore, during Pi starvation, OsWRKY10 protein was degraded through the 26S proteasome. Altogether, the OsWRKY10-OsPHT1;2 module represents a crucial loop in the Pi signaling network in rice, inhibiting Pi uptake when there is ample Pi in the environment.
Collapse
Affiliation(s)
- Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyang Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
37
|
Ai H, Liu X, Hu Z, Cao Y, Kong N, Gao F, Hu S, Shen X, Huang X, Xu G, Sun S. Mutation of OsLPR3 Enhances Tolerance to Phosphate Starvation in Rice. Int J Mol Sci 2023; 24:ijms24032437. [PMID: 36768758 PMCID: PMC9917114 DOI: 10.3390/ijms24032437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Low Phosphate Root (LPR) encodes a protein localized to the endoplasmic reticulum (ER) and cell wall. This gene plays a key role in responding to phosphate (Pi) deprivation, especially in remodeling the root system architecture (RSA). An identification and expression analysis of the OsLPR family in rice (Oryza sativa) has been previously reported, and OsLPR5, functioning in Pi uptake and translocation, is required for the normal growth and development of rice. However, the role of OsLPR3, one of the five members of this family in rice, in response to Pi deficiency and/or in the regulation of plant growth and development is unknown. Therefore, in this study, the roles of OsLPR3 in these processes were investigated, and some functions were found to differ between OsLPR3 and OsLPR5. OsLPR3 was found to be induced in the leaf blades, leaf sheaths, and roots under Pi deprivation. OsLPR3 overexpression strongly inhibited the growth and development of the rice but did not affect the Pi homeostasis of the plant. However, oslpr3 mutants improved RSA and Pi utilization, and they exhibited a higher tolerance to low Pi stress in rice. The agronomic traits of the oslpr3 mutants, such as 1000-grain weight and seed length, were stimulated under Pi-sufficient conditions, indicating that OsLPR3 plays roles different from those of OsLPR5 during plant growth and development, as well as in the maintenance of the Pi status of rice.
Collapse
Affiliation(s)
- Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nannan Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feiyan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Fax: +86-25-84396238
| |
Collapse
|
38
|
Wang R, Chen Y, Kaur G, Wu X, Nguyen HT, Shen R, Pandey AK, Lan P. Differentially reset transcriptomes and genome bias response orchestrate wheat response to phosphate deficiency. PHYSIOLOGIA PLANTARUM 2022; 174:e13767. [PMID: 36281840 DOI: 10.1111/ppl.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all organisms. Phosphate (Pi) deficiency reduces grain yield and quality in wheat. Understanding how wheat responds to Pi deficiency at the global transcriptional level remains limited. We revisited the available RNA-seq transcriptome from Pi-starved wheat roots and shoots subjected to Pi starvation. Genome-wide transcriptome resetting was observed under Pi starvation, with a total of 917 and 2338 genes being differentially expressed in roots and shoots, respectively. Chromosomal distribution analysis of the gene triplets and differentially expressed genes (DEGs) revealed that the D genome displayed genome induction bias and, specifically, the chromosome 2D might be a key contributor to Pi-limiting triggered gene expression response. Alterations in multiple metabolic pathways pertaining to secondary metabolites, transcription factors and Pi uptake-related genes were evidenced. This study provides genomic insight and the dynamic landscape of the transcriptional changes contributing to the hexaploid wheat during Pi starvation. The outcomes of this study and the follow-up experiments have the potential to assist the development of Pi-efficient wheat cultivars.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinglong Chen
- UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Henry T Nguyen
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Guo M, Zhang Y, Jia X, Wang X, Zhang Y, Liu J, Yang Q, Ruan W, Yi K. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. THE PLANT CELL 2022; 34:3319-3338. [PMID: 35640569 PMCID: PMC9421462 DOI: 10.1093/plcell/koac161] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 06/01/2023]
Abstract
Phosphate (Pi) limitation represents a primary constraint on crop production. To better cope with Pi deficiency stress, plants have evolved multiple adaptive mechanisms for phosphorus acquisition and utilization, including the alteration of growth and the activation of Pi starvation signaling. However, how these strategies are coordinated remains largely unknown. Here, we found that the alternative splicing (AS) of REGULATOR OF LEAF INCLINATION 1 (RLI1) in rice (Oryza sativa) produces two protein isoforms: RLI1a, containing MYB DNA binding domain and RLI1b, containing both MYB and coiled-coil (CC) domains. The absence of a CC domain in RLI1a enables it to activate broader target genes than RLI1b. RLI1a, but not RLI1b, regulates both brassinolide (BL) biosynthesis and signaling by directly activating BL-biosynthesis and signaling genes. Both RLI1a and RLI1b modulate Pi starvation signaling. RLI1 and PHOSPHATE STARVATION RESPONSE 2 function redundantly to regulate Pi starvation signaling and growth in response to Pi deficiency. Furthermore, the AS of RLI1-related genes to produce two isoforms for growth and Pi signaling is widely present in both dicots and monocots. Together, these findings indicate that the AS of RLI1 is an important and functionally conserved strategy to orchestrate Pi starvation signaling and growth to help plants adapt to Pi-limitation stress.
Collapse
Affiliation(s)
| | | | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yibo Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Jifeng Liu
- Hebei Wotu Seed Co. Ltd., Handan 057550, China
| | | | | | - Keke Yi
- Author for correspondence: (K.Y.), (W.R.)
| |
Collapse
|
40
|
Wang J, Li C, Yao L, Ma Z, Ren P, Si E, Li B, Meng Y, Ma X, Yang K, Shang X, Wang H. Global proteome analyses of phosphorylation and succinylation of barley root proteins in response to phosphate starvation and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:917652. [PMID: 36061799 PMCID: PMC9433975 DOI: 10.3389/fpls.2022.917652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Phosphate (Pi) stress is an important environmental factor that limits plant growth and development. Of various posttranslational modifications (PTMs), protein phosphorylation and succinylation are the two most important PTMs that regulate multiple biological processes in response to Pi stress. However, these PTMs have been investigated individually but their interactions with proteins in response to Pi stress remain poorly understood. In this study, to elucidate the underlying mechanisms of protein phosphorylation and succinylation in response to Pi stress, we performed a global analysis of the barley root phosphorylome and succinylome in Pi starvation and recovery stages, respectively. A total of 3,634 and 884 unique phosphorylated and succinylated proteins, respectively, corresponding to 11,538 and 2,840 phospho- and succinyl-sites, were identified; of these, 275 proteins were found to be simultaneously phosphorylated and succinylated. Gene Set Enrichment Analysis was performed with a Kyoto Encyclopedia of Genes and Genomes pathway database revealing pathways that significantly enriched in the phosphorylome and succinylome. Such pathways, were dynamically regulated by Pi starvation and recovery treatments, and could be partitioned into distinct metabolic processes. In particular, phosphorylated proteins related to purine, the mitogen-activated protein kinase (MAPK) signaling pathway, pyrimidine, and ATP-binding cassette (ABC) transporters were upregulated in both Pi deprivation and recovery stages. Succinylated proteins, significantly upregulated by both Pi starvation and recovery, were enriched in nitrogen metabolism and phenylpropanoid biosynthesis. Meanwhile, succinylated proteins that were significantly downregulated by both Pi starvation and recovery were enriched in lysine degradation and tryptophan metabolism. This highlighted the importance of these metabolic pathways in regulating Pi homeostasis. Furthermore, protein-protein interaction network analyses showed that the response of central metabolic pathways to Pi starvation and recovery was significantly modulated by phosphorylation or succinylation, both individually and together. In addition, we discovered relevant proteins involved in MAPK signaling and phenylpropanoid biosynthetic pathways existing in interactions between phosphorylated and succinylated proteins in response to Pi recovery. The current study not only provides a comprehensive analysis of phosphorylated and succinylated proteins in plant responses to Pi starvation and recovery, but also reveals detailed interactions between phosphorylated and succinylated proteins in barley roots.
Collapse
Affiliation(s)
- Juncheng Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Lirong Yao
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zengke Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panrong Ren
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
41
|
Verma L, Bhadouria J, Bhunia RK, Singh S, Panchal P, Bhatia C, Eastmond PJ, Giri J. Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5033-5051. [PMID: 35526193 DOI: 10.1093/jxb/erac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Galactolipids are essential to compensate for the loss of phospholipids by 'membrane lipid remodelling' in plants under phosphorus (P) deficiency conditions. Monogalactosyl diacylglycerol (MGDG) synthases catalyse the synthesis of MGDG which is further converted into digalactosyl diacylglycerol (DGDG), later replacing phospholipids in the extraplastidial membranes. However, the roles of these enzymes are not well explored in rice. In this study, the rice MGDG synthase 3 gene (OsMGD3) was identified and functionally characterized. We showed that the plant phosphate (Pi) status and the transcription factor PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) are involved in the transcriptional regulation of OsMGD3. CRISPR/Cas9 knockout and overexpression lines of OsMGD3 were generated to explore its potential role in rice adaptation to Pi deficiency. Compared with the wild type, OsMGD3 knockout lines displayed a reduced Pi acquisition and utilization while overexpression lines showed an enhancement of the same. Further, OsMGD3 showed a predominant role in roots, altering lateral root growth. Our comprehensive lipidomic analysis revealed a role of OsMGD3 in membrane lipid remodelling, in addition to a role in regulating diacylglycerol and phosphatidic acid contents that affected the expression of Pi transporters. Our study highlights the role of OsMGD3 in affecting both internal P utilization and P acquisition in rice.
Collapse
Affiliation(s)
- Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Shweta Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Chitra Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Peter J Eastmond
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
42
|
Comparative Transcriptome Profiling Reveals Potential Candidate Genes, Transcription Factors, and Biosynthetic Pathways for Phosphite Response in Potato (Solanum tuberosum L.). Genes (Basel) 2022; 13:genes13081379. [PMID: 36011289 PMCID: PMC9407107 DOI: 10.3390/genes13081379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The study was conducted with C31 and C80 genotypes of the potato (Solanum tuberosum L.), which are tolerant and susceptible to phosphite (Phi, H2PO3), respectively. To decipher the molecular mechanisms underlying tolerance and susceptibility to Phi in the potato, RNA sequencing was used to study the global transcriptional patterns of the two genotypes. Media were prepared with 0.25 and 0.50 mM Phi, No-phosphorus (P), and 1.25 mM (phosphate, Pi as control). The values of fragments per kilobase of exon per million mapped fragments of the samples were also subjected to a principal component analysis, grouping the biological replicates of each sample. Using stringent criteria, a minimum of 819 differential (DEGs) were detected in both C80-Phi-0.25_vs_C80-Phi-0.50 (comprising 517 upregulated and 302 downregulated) and C80-Phi-0.50_vs_C80-Phi-0.25 (comprising 302 upregulated and 517 downregulated) and a maximum of 5214 DEGs in both C31-Con_vs_C31-Phi-0.25 (comprising 1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con (comprising 3267 upregulated and 1947 downregulated). DEGs related to the ribosome, plant hormone signal transduction, photosynthesis, and plant–pathogen interaction performed important functions under Phi stress, as shown by the Kyoto Encyclopedia of Genes and Genomes annotation. The expressions of transcription factors increased significantly in C31 compared with C80. For example, the expressions of Soltu.DM.01G047240, Soltu.DM.08G015900, Soltu.DM.06G012130, and Soltu.DM.08G012710 increased under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) relative to the control (P sufficiency) in C31. This study adds to the growing body of transcriptome data on Phi stress and provides important clues to the Phi tolerance response of the C31 genotype.
Collapse
|
43
|
Cheah BH, Liao PC, Lo JC, Wang YT, Tang IC, Yeh KC, Lee DY, Lin YF. Insight into the mechanism of indium toxicity in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128265. [PMID: 35077975 DOI: 10.1016/j.jhazmat.2022.128265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Indium is widely used in the technology industry and is an emerging form of environmental pollution. The presence of indium in soil and groundwater inhibits shoot and root growth in crops, thus reducing yields. However, the underlying mechanisms are unknown, making it difficult to design effective countermeasures. We explored the spatiotemporal effects of excess indium on the morphological, physiological and biochemical properties of rice (Oryza sativa L.). Indium accumulated mainly in the roots, severely restricting their growth and causing the acute perturbation of phosphorus, magnesium and iron homeostasis. Other effects included leaf necrosis and anatomical changes in the roots (thinned sclerenchyma and enlarged epidermal and exodermal layers). Whole-transcriptome sequencing revealed that rice immediately responded to indium stress by activating genes involved in heavy metal tolerance and phosphate starvation responses, including the expression of genes encoding phosphate-regulated transcription factors and transporters in the roots. Direct indium toxicity rather than phosphate deficiency was identified as the major factor affecting the growth of rice plants, resulting in the profound phenotypic changes we observed. The application of exogenous phosphate alleviated indium toxicity by reducing indium uptake. Our results suggest that indium immobilization could be used to prevent indium toxicity in the field.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Chu Liao
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Jing-Chi Lo
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Tsen Wang
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chien Tang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Dar-Yuan Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
44
|
Takehisa H, Ando F, Takara Y, Ikehata A, Sato Y. Transcriptome and hyperspectral profiling allows assessment of phosphorus nutrient status in rice under field conditions. PLANT, CELL & ENVIRONMENT 2022; 45:1507-1519. [PMID: 35128701 DOI: 10.1111/pce.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is one of the macronutrients indispensable for crop production, and therefore it is important to understand the potential of plants to adapt to low P conditions. We compared growth and leaf genome-wide transcriptome of four rice cultivars during growth between two fields with different amount of available phosphate and further analysed the acceptable range of P levels for normal growth from the view of both appearance traits and internal P nutrient status, which was measured by profiling the expression of the P indicator gene. This demonstrated that rice plants have a robustness to moderate P-deficient conditions expressing a system for P acquisition and usage without any effects on yield potential and that P indicator gene expression could be a useful index for early diagnosis of P status in plants. To develop a simple method for assessment of P status, we tried to predict the expression level using reflectance spectroscopy and hyperspectral imaging, thereby providing models with good performance. Our findings suggest that rice plants have the potential to adapt to moderate low P conditions in the field and showed that the hyperspectral technique is one of the useful tools for simple measurement of molecular-level dynamics reflecting internal nutrient conditions.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | - Akifumi Ikehata
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
45
|
Kumar S, Agrawal A, Seem K, Kumar S, Vinod KK, Mohapatra T. Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. PLANT MOLECULAR BIOLOGY 2022; 109:29-50. [PMID: 35275352 DOI: 10.1007/s11103-022-01254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/15/2022] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is essential for cellular processes like respiration, photosynthesis, biosynthesis of membrane phospholipids, etc. To cope with P deficiency stress, plants adopt reprograming of the expression of genes involved in different metabolic/signaling pathways for survival, growth, and development. Plants use transcriptional, post-transcriptional, and/or post-translational machinery to achieve P homeostasis. Several transcription factors (TFs), miRNAs, and P transporters play important roles in P deficiency tolerance; however, the underlying mechanisms responsible for P deficiency tolerance remain poorly understood. Studies on P starvation/deficiency responses in plants at early (seedling) stage of growth have been reported but only a few of them focused on molecular responses of the plant at advanced (tillering or reproductive) stage of growth. To decipher the strategies adopted by rice at tillering stage under P deficiency stress, a pair of contrasting genotypes [Pusa-44 (a high-yielding, P deficiency sensitive cultivar) and its near-isogenic line (NIL-23, P deficiency tolerant) for Pup1 QTL] was used for morphophysiological, biochemical, and molecular analyses. Comparative analyses of shoot and root tissues from 45-day-old plants grown hydroponically under P sufficient (16 ppm) or P deficient (4 ppm) medium confirmed some of the known morphophysiological responses. Moreover, RNA-seq analysis revealed the important roles of phosphate transporters, TFs, auxin-responsive proteins, modulation in the cell wall, fatty acid metabolism, and chromatin architecture/epigenetic modifications in providing P deficiency tolerance to NIL-23, which were brought in due to the introgression of the Pup1 QTL in Pusa-44. This study provides insights into the molecular functions of Pup1 for P deficiency tolerance, which might be utilized to improve P-use efficiency of rice for better productivity in P deficient soils. KEY MESSAGE: Introgression of Pup1 QTL in high-yielding rice cultivar modulates mainly phosphate transporters, TFs, auxin-responsive proteins, cell wall structure, fatty acid metabolism, and chromatin architecture/epigenetic modifications at tillering stage of growth under phosphorus deficiency stress.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anuradha Agrawal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - K K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
46
|
Mo X, Liu G, Zhang Z, Lu X, Liang C, Tian J. Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis. Int J Mol Sci 2022; 23:4592. [PMID: 35562981 PMCID: PMC9105353 DOI: 10.3390/ijms23094592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| |
Collapse
|
47
|
Pinit S, Ruengchaijatuporn N, Sriswasdi S, Buaboocha T, Chadchawan S, Chaiwanon J. Hyperspectral and genome-wide association analyses of leaf phosphorus status in local Thai indica rice. PLoS One 2022; 17:e0267304. [PMID: 35443012 PMCID: PMC9020724 DOI: 10.1371/journal.pone.0267304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Phosphorus (P) is an essential mineral nutrient and one of the key factors determining crop productivity. P-deficient plants exhibit visual leaf symptoms, including chlorosis, and alter spectral reflectance properties. In this study, we evaluated leaf inorganic phosphate (Pi) contents, plant growth and reflectance spectra (420–790 nm) of 172 Thai rice landrace varieties grown hydroponically under three different P supplies (overly sufficient, mildly deficient and severely deficient conditions). We reported correlations between Pi contents and reflectance ratios computed from two wavebands in the range of near infrared (720–790 nm) and visible energy (green-yellow and red edge) (r > 0.69) in Pi-deficient leaves. Artificial neural network models were also developed which could classify P deficiency levels with 85.60% accuracy and predict Pi content with R2 of 0.53, as well as highlight important waveband sections. Using 217 reflectance ratio indices to perform genome-wide association study (GWAS) with 113,114 SNPs, we identified 11 loci associated with the spectral reflectance traits, some of which were also associated with the leaf Pi content trait. Hyperspectral measurement offers a promising non-destructive approach to predict plant P status and screen large germplasm for varieties with high P use efficiency.
Collapse
Affiliation(s)
- Sompop Pinit
- Faculty of Science, Department of Botany, Center of Excellence in Environment and Plant Physiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Program in Biotechnology, Chulalongkorn University, Bangkok, Thailand
| | | | - Sira Sriswasdi
- Faculty of Medicine, Computational Molecular Biology Group, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Research Affairs, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Faculty of Science, Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Biochemistry, Molecular Crop Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Faculty of Science, Department of Botany, Center of Excellence in Environment and Plant Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Juthamas Chaiwanon
- Faculty of Science, Department of Botany, Center of Excellence in Environment and Plant Physiology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
48
|
Tao Y, Huang J, Jing HK, Shen RF, Zhu XF. Jasmonic acid is involved in root cell wall phosphorus remobilization through the nitric oxide dependent pathway in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2618-2630. [PMID: 35084463 DOI: 10.1093/jxb/erac023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Jasmonic acid (JA) is involved in phosphorus (P) stress in plants, but its underlying molecular mechanisms are still elusive. In this study, we found root endogenous JA content in rice increased under P deficiency (-P), suggesting that JA might participate in P homeostasis in plants. This hypothesis was further confirmed through the addition of exogenous JA (+JA), as this could increase both the root and shoot soluble P content through regulating root cell wall P reutilization. In addition, -P+JA treatment significantly induced the expression of P transporter gene OsPT2, together with increased xylem P content, implying that JA is also important for P translocation from the root to the shoot in P-deficient rice. Furthermore, the accumulation of the molecular signal nitric oxide (NO) was enhanced under -P+JA treatment when compared with -P treatment alone, while the addition of c-PTIO, a scavenger of NO, could reverse the P-deficient phenotype alleviated by JA. Taken together, our results reveal a JA-NO-cell wall P reutilization pathway under P deficiency in rice.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Kang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Satheesh V, Zhang J, Li J, You Q, Zhao P, Wang P, Lei M. High transcriptome plasticity drives phosphate starvation responses in tomato. STRESS BIOLOGY 2022; 2:18. [PMID: 37676521 PMCID: PMC10441952 DOI: 10.1007/s44154-022-00035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 09/08/2023]
Abstract
Tomato is an important vegetable crop and fluctuating available soil phosphate (Pi) level elicits several morpho-physiological responses driven by underlying molecular responses. Therefore, understanding these molecular responses at the gene and isoform levels has become critical in the quest for developing crops with improved Pi use efficiency. A quantitative time-series RNA-seq analysis was performed to decipher the global transcriptomic changes that accompany Pi starvation in tomato. Apart from changes in the expression levels of genes, there were also alterations in the expression of alternatively-spliced transcripts. Physiological responses such as anthocyanin accumulation, reactive oxygen species generation and cell death are obvious 7 days after Pi deprivation accompanied with the maximum amount of transcriptional change in the genome making it an important stage for in-depth study while studying Pi stress responses (PSR). Our study demonstrates that transcriptomic changes under Pi deficiency are dynamic and complex in tomato. Overall, our study dwells on the dynamism of the transcriptome in eliciting a response to adapt to low Pi stress and lays it bare. Findings from this study will prove to be an invaluable resource for researchers using tomato as a model for understanding nutrient deficiency.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Panfeng Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Peng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
50
|
Al-Zahrani HS, Moussa TAA, Alsamadany H, Hafez RM, Fuller MP. Phylogenetic and Expression Studies of Small GTP-Binding Proteins in Solanum lycopersicum Super Strain B. PLANTS 2022; 11:plants11050641. [PMID: 35270112 PMCID: PMC8912273 DOI: 10.3390/plants11050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was performed with the MEGA7 package. Protein alignments were applied for all studied species. Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected in aerial tissues vs. roots. Significant divergences were found in the number of members and groups comprising each subfamily of the small GTPases and Glycine max had the highest count. High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria. The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency of substitutions in their domains. GTPases superfamily members have definite functions during infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their function among S. lycopersicum super strain B, and other species.
Collapse
Affiliation(s)
- Hassan S. Al-Zahrani
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
| | - Tarek A. A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: ; Tel.: +20-1001531738
| | - Hameed Alsamadany
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
| | - Rehab M. Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Michael P. Fuller
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
| |
Collapse
|