1
|
Zhang Y, Yang Z, Zhang Z, Wang G, Li XD, Hong N. Citrus tristeza virus p20 suppresses antiviral RNA silencing by co-opting autophagy-related protein 8 to mediate the autophagic degradation of SGS3. PLoS Pathog 2025; 21:e1012960. [PMID: 39993018 PMCID: PMC11882097 DOI: 10.1371/journal.ppat.1012960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/05/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Viruses exploit autophagy to degrade host immune components for their successful infection. However, how viral factors sequester the autophagic substrates into autophagosomes remains largely unknown. In this study, we showed that p20 protein, a viral suppressor of RNA silencing (VSR) encoded by citrus tristeza virus (CTV), mediated autophagic degradation of SUPPRESSOR OF GENE SILENCING 3 (SGS3), a plant-specific RNA-binding protein that is pivotal in antiviral RNA silencing. CTV infection activated autophagy, and the overexpression of p20 was sufficient to induce autophagy. Silencing of autophagy-related genes NbATG5 and NbATG7 attenuated CTV infection in Nicotiana benthamiana plants. In contrast, knockdown of the autophagy negative-regulated genes NbGAPCs led to virus accumulation, indicating the proviral role of autophagy in CTV infection. Further investigation found that p20 interacted with autophagy-related protein ATG8 through two ATG8-interacting motifs (AIMs) and sequestered SGS3 into autophagosomes by forming the ATG8-p20-SGS3 ternary complex. The mutations of the two AIMs in p20 (p20mAIM1 and p20mAIM5) abolished the interaction of p20 with ATG8, resulting in the deficiency of autophagy induction, SGS3 degradation, and VSR activity. Consistently, N. benthamiana plants infected with mutated CTVmAIM1 and CTVmAIM5 showed milder symptoms and decreased viral accumulation. Taken together, this study uncovers the molecular mechanism underlying how a VSR mediates the interplay between RNA silencing and autophagy to enhance the infection of a closterovirus.
Collapse
Affiliation(s)
- Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3295-3311. [PMID: 39166471 PMCID: PMC11606427 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deshui Liu
- Beijing Life Science AcademyBeijingChina
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Genschik P, Schiaffini M, Lechner E. Proteolytic control of the RNA silencing machinery. THE PLANT CELL 2024; 36:2997-3008. [PMID: 38456220 PMCID: PMC11371168 DOI: 10.1093/plcell/koae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Studies in plants were often pioneering in the field of RNA silencing and revealed a broad range of small RNA (sRNA) categories. When associated with ARGONAUTE (AGO) proteins, sRNAs play important functions in development, genome integrity, stress responses, and antiviral immunity. Today, most of the protein factors required for the biogenesis of sRNA classes, their amplification through the production of double-stranded RNA, and their function in transcriptional and posttranscriptional regulation have been identified. Nevertheless, and despite the importance of RNA silencing, we still know very little about their posttranslational regulation. This is in stark contrast with studies in metazoans, where different modifications such as prolyl hydroxylation, phosphorylation, sumoylation, ubiquitylation, and others have been reported to alter the activity and stability of key factors, such as AGO proteins. Here, we review current knowledge of how key components of the RNA silencing machinery in plants are regulated during development and by microbial hijacking of endogenous proteases.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| |
Collapse
|
4
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
5
|
Nishikawa M, Katsu K, Koinuma H, Hashimoto M, Neriya Y, Matsuyama J, Yamamoto T, Suzuki M, Matsumoto O, Matsui H, Nakagami H, Maejima K, Namba S, Yamaji Y. Interaction of EXA1 and eIF4E Family Members Facilitates Potexvirus Infection in Arabidopsis thaliana. J Virol 2023; 97:e0022123. [PMID: 37199623 PMCID: PMC10308960 DOI: 10.1128/jvi.00221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Katsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Hashimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaro Neriya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toya Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
7
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Kitazawa Y, Iwabuchi N, Maejima K, Matsumoto O, Suzuki M, Matsuyama J, Koinuma H, Oshima K, Namba S, Yamaji Y. Random mutagenesis-based screening of the interface of phyllogen, a bacterial phyllody-inducing effector, for interaction with plant MADS-box proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1058059. [PMID: 37056494 PMCID: PMC10086140 DOI: 10.3389/fpls.2023.1058059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Liu L, Wang H, Fu Y, Tang W, Zhao P, Ren Y, Liu Z, Wu K, Zhang X. Turnip crinkle virus-encoded suppressor of RNA silencing interacts with Arabidopsis SGS3 to enhance virus infection. MOLECULAR PLANT PATHOLOGY 2023; 24:154-166. [PMID: 36433724 PMCID: PMC9831285 DOI: 10.1111/mpp.13282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well-characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant-encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two-hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co-localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N-terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP-interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3-overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans-acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA-binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing-mediated antiviral defence.
Collapse
Affiliation(s)
- Linyu Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
- School of Biological and Geographical SciencesYili Normal UniversityYiliChina
| | - Haiyan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Yan Fu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Wen Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Yanli Ren
- School of Biological and Geographical SciencesYili Normal UniversityYiliChina
| | - Zhixin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Kunxin Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| | - Xiuchun Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan ProvinceHainan Institute for Tropical Agriculture ResourcesHaikouChina
| |
Collapse
|
10
|
Phase separation of SGS3 drives siRNA body formation and promotes endogenous gene silencing. Cell Rep 2023; 42:111985. [PMID: 36640363 DOI: 10.1016/j.celrep.2022.111985] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The generation of small interfering RNA (siRNA) involves many RNA processing components, including SUPPRESSOR OF GENE SILENCING 3 (SGS3), RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), and DICER-LIKE proteins (DCLs). Nonetheless, how these components are coordinated to produce siRNAs is unclear. Here, we show that SGS3 forms condensates via phase separation in vivo and in vitro. SGS3 interacts with RDR6 and drives it to form siRNA bodies in cytoplasm, which is promoted by SGS3-targeted RNAs. Disrupting SGS3 phase separation abrogates siRNA body assembly and siRNA biogenesis, whereas coexpression of SGS3 and RDR6 induces siRNA body formation in tobacco and yeast cells. Dysfunction in translation and mRNA decay increases the number of siRNA bodies, whereas DCL2/4 mutations enhance their size. Purification of SGS3 condensates identifies numerous RNA-binding proteins and siRNA processing components. Together, our findings reveal that SGS3 phase separation-mediated formation of siRNA bodies is essential for siRNA production and gene silencing.
Collapse
|
11
|
Sehki H, Yu A, Elmayan T, Vaucheret H. TYMV and TRV infect Arabidopsis thaliana by expressing weak suppressors of RNA silencing and inducing host RNASE THREE LIKE1. PLoS Pathog 2023; 19:e1010482. [PMID: 36696453 PMCID: PMC9901757 DOI: 10.1371/journal.ppat.1010482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.
Collapse
Affiliation(s)
- Hayat Sehki
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
12
|
Zacharaki V, Meena SK, Kindgren P. The non-coding RNA SVALKA locus produces a cis-natural antisense transcript that negatively regulates the expression of CBF1 and biomass production at normal temperatures. PLANT COMMUNICATIONS 2023:100551. [PMID: 36681861 PMCID: PMC10363475 DOI: 10.1016/j.xplc.2023.100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Non-coding transcription is present in all eukaryotic genomes, but we lack fundamental knowledge about its importance for an organism's ability to develop properly. In plants, emerging evidence highlights the essential biological role of non-coding transcription in the regulation of coding transcription. However, we have few molecular insights into this regulation. Here, we show that a long isoform of the long non-coding RNA SVALKA-L (SVK-L) forms a natural antisense transcript to the host gene CBF1 and negatively regulates CBF1 mRNA levels at normal temperatures in the model plant Arabidopsis thaliana. Furthermore, we show detailed evidence for the specific mode of action of SVK-L. This pathway includes the formation of double-stranded RNA that is recognized by the DICER proteins and subsequent downregulation of CBF1 mRNA levels. Thus, the CBF1-SVK regulatory circuit is not only important for its previously known role in cold temperature acclimation but also for biomass production at normal temperatures. Our study characterizes the developmental role of SVK-L and offers mechanistic insight into how biologically important overlapping natural antisense transcripts can act on and fine-tune the steady-state levels of their host gene's mRNA.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Shiv Kumar Meena
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Peter Kindgren
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
13
|
Komatsu K, Hammond J. Plantago asiatica mosaic virus: An emerging plant virus causing necrosis in lilies and a new model RNA virus for molecular research. MOLECULAR PLANT PATHOLOGY 2022; 23:1401-1414. [PMID: 35856603 PMCID: PMC9452766 DOI: 10.1111/mpp.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/01/2023]
Abstract
TAXONOMY Plantago asiatica mosaic virus belongs to the genus Potexvirus in the family Alphaflexiviridae of the order Tymovirales. VIRION AND GENOME PROPERTIES Plantago asiatica mosaic virus (PlAMV) has flexuous virions of approximately 490-530 nm in length and 10-15 nm in width. The genome of PlAMV consists of a single-stranded, positive-sense RNA of approximately 6.13 kb. It contains five open reading frames (ORFs 1-5), encoding a putative viral polymerase (RdRp), movement proteins (triple gene block proteins, TGBp1-3), and coat protein (CP), respectively. HOST RANGE PlAMV has an exceptionally wide host range and has been isolated from various wild plants, including Plantago asiatica, Nandina domestica, Rehmannia glutinosa, and other weed plants. Experimentally PlAMV can infect many plant species including Nicotiana benthamiana and Arabidopsis thaliana. It also infects ornamental lilies and frequently causes severe necrotic symptoms. However, host range varies depending on isolates, which show significant biological diversity within the species. GENOME DIVERSITY PlAMV can be separated into five clades based on phylogenetic analyses; nucleotide identities are significantly low between isolates in the different clades. TRANSMISSION PlAMV is not reported to be transmitted by biological vectors. Virions of PlAMV are quite stable and it can be transmitted efficiently by mechanical contact. DISEASE SYMPTOMS PlAMV causes red-rusted systemic necrosis in ornamental lilies, but it shows much weaker, if any, symptoms in wild plants such as P. asiatica. CONTROL Control of the disease caused by PlAMV is based mainly on rapid diagnosis and elimination of the infected bulbs or plants.
Collapse
Affiliation(s)
- Ken Komatsu
- Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - John Hammond
- US Department of AgricultureAgricultural Research Service (USDA‐ARS)BeltsvilleMarylandUSA
| |
Collapse
|
14
|
Gong Q, Wang Y, Jin Z, Hong Y, Liu Y. Transcriptional and post-transcriptional regulation of RNAi-related gene expression during plant-virus interactions. STRESS BIOLOGY 2022; 2:33. [PMID: 37676459 PMCID: PMC10441928 DOI: 10.1007/s44154-022-00057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate RNAi machinery at the (post-) transcriptional level to respond to virus infection.
Collapse
Affiliation(s)
- Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Zhenhui Jin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
15
|
Chen J, Zheng L, Shi X, Zhang S, Tan X, Zhao X, Lu B, Ye Q, Miao S, Liu Y, Zhang D. The nonstructural protein NSs encoded by tomato zonate spot virus suppresses RNA silencing by interacting with NbSGS3. MOLECULAR PLANT PATHOLOGY 2022; 23:707-719. [PMID: 35184365 PMCID: PMC8995058 DOI: 10.1111/mpp.13192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/21/2023]
Abstract
Viral suppressors of RNA silencing (VSRs) are encoded by diverse viruses to counteract the RNA silencing-mediated defence mounted by the virus-infected host cells. In this study, we identified the NSs protein encoded by tomato zonate spot virus (TZSV) as a potent VSR, and used a potato virus X (PVX)-based heterologous expression system to demonstrate TZSV NSs as a viral pathogenicity factor that intensified PVX symptoms in Nicotiana benthamiana. We then used a yeast two-hybrid screen to identify the suppressor of gene silencing 3 protein of N. benthamiana (NbSGS3), a known component of the plant RNA silencing pathway, as an interaction partner of TZSV NSs. We verified this interaction in plant cells with bimolecular fluorescence complementation, subcellular colocalization, and co-immunoprecipitation. We further revealed that the NSs-NbSGS3 interaction correlated with the VSR activity of TZSV NSs. TZSV NSs reduced the concentration of NbSGS3 protein in plant cells, probably through the ubiquitination and autophagy pathways. Interestingly, TZSV infection, but not NSs overexpression, significantly up-regulated the NbSGS3 transcript levels. Our data indicate that TZSV NSs suppresses RNA silencing of the host plant and enhances TZSV pathogenicity through its interaction with NbSGS3. This study reveals a novel molecular mechanism of NSs-mediated suppression of plant host antiviral defence.
Collapse
Affiliation(s)
- Jianbin Chen
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Limin Zheng
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xiaobin Shi
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Songbai Zhang
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xinqiu Tan
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Xingyue Zhao
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Bingxin Lu
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Qian Ye
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Shuyue Miao
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Yong Liu
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| | - Deyong Zhang
- Longping BranchGraduate School of Hunan UniversityChangshaChina
- Hunan Plant Protection InstituteHunan Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
16
|
Kitazawa Y, Iwabuchi N, Maejima K, Sasano M, Matsumoto O, Koinuma H, Tokuda R, Suzuki M, Oshima K, Namba S, Yamaji Y. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. THE PLANT CELL 2022; 34:1709-1723. [PMID: 35234248 PMCID: PMC9048881 DOI: 10.1093/plcell/koac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Momoka Sasano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Short 5' Untranslated Region Enables Optimal Translation of Plant Virus Tricistronic RNA via Leaky Scanning. J Virol 2022; 96:e0214421. [PMID: 35262378 DOI: 10.1128/jvi.02144-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regardless of the general model of translation in eukaryotic cells, a number of studies suggested that many mRNAs encode multiple proteins. Leaky scanning, which supplies ribosomes to downstream open reading frames (ORFs) by readthrough of upstream ORFs, has great potential to translate polycistronic mRNAs. However, the mRNA elements controlling leaky scanning and their biological relevance have rarely been elucidated, with exceptions such as the Kozak sequence. Here, we have analyzed the strategy of a plant RNA virus to translate three movement proteins from a single RNA molecule through leaky scanning. The in planta and in vitro results indicate thatthe significantly shorter 5' untranslated region (UTR) of the most upstream ORF promotes leaky scanning, potentially fine-tuning the translation efficiency of the three proteins in a single RNA molecule to optimize viral propagation. Our results suggest that the remarkably short length of the leader sequence, like the Kozak sequence, is a translational regulatory element with a biologically important role, as previous studies have shown biochemically. IMPORTANCE Potexvirus, a group of plant viruses, infect a variety of crops, including cultivated crops. It has been thought that the three transition proteins that are essential for the cell-to-cell transfer of potexviruses are translated from two subgenomic RNAs, sgRNA1 and sgRNA2. However, sgRNA2 has not been clearly detected. In this study, we have shown that sgRNA1, but not sgRNA2, is the major translation template for the three movement proteins. In addition, we determined the transcription start site of sgRNA1 in flexiviruses and found that the efficiency of leaky scanning caused by the short 5' UTR of sgRNA1, a widely conserved feature, regulates the translation of the three movement proteins. When we tested the infection of viruses with mutations introduced into the length of the 5' UTR, we found that the movement efficiency of the virus was affected. Our results provide important additional information on the protein translation strategy of flexiviruses, including Potexvirus, and provide a basis for research on their control as well as the need to reevaluate the short 5' UTR as a translational regulatory element with an important role in vivo.
Collapse
|
18
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
19
|
Ghosh D, M M, Chakraborty S. Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Appl Microbiol Biotechnol 2021; 105:6301-6313. [PMID: 34423406 DOI: 10.1007/s00253-021-11483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Plant viruses are known for their devastating impact on global agriculture. These intracellular biotrophic pathogens can infect a wide variety of plant hosts all over the world. The synergistic association of plant viruses makes the situation more alarming. It usually promotes the replication, movement, and transmission of either or both the coexisting synergistic viral partners. Although plants elicit a robust antiviral immune reaction, including gene silencing, to limit these infamous invaders, viruses counter it by encoding viral suppressors of RNA silencing (VSRs). Growing evidence also suggests that VSRs play a driving role in mediating the plant viral synergism. This review briefly discusses the evil impacts of mixed infections, especially synergism, and then comprehensively describes the emerging roles of VSRs in mediating the synergistic association of plant viruses. KEY POINTS: • Synergistic associations of plant viruses have devastating impacts on global agriculture. • Viral suppressors of RNA silencing (VSRs) play key roles in driving plant viral synergism.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malavika M
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
21
|
Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Suzuki T, Nijo T, Oshima K, Namba S, Yamaji Y. Functional variation in phyllogen, a phyllody-inducing phytoplasma effector family, attributable to a single amino acid polymorphism. MOLECULAR PLANT PATHOLOGY 2020; 21:1322-1336. [PMID: 32813310 PMCID: PMC7488466 DOI: 10.1111/mpp.12981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.
Collapse
Affiliation(s)
- Nozomu Iwabuchi
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Akio Miyazaki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ouki Matsumoto
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Suzuki
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takamichi Nijo
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Shigetou Namba
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental BiologyGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
22
|
Verchot J, Herath V, Urrutia CD, Gayral M, Lyle K, Shires MK, Ong K, Byrne D. Development of a Reverse Genetic System for Studying Rose Rosette Virus in Whole Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1209-1221. [PMID: 32815767 DOI: 10.1094/mpmi-04-20-0094-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Venura Herath
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Cesar D Urrutia
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
| | - Kelsey Lyle
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, U.S.A
| | - Madalyn K Shires
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Kevin Ong
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - David Byrne
- Department of Horticulture Sciences, Texas A&M University, College Station, TX, U.S.A
| |
Collapse
|
23
|
Huang CH, Foo MH, Raja JAJ, Tan YR, Lin TT, Lin SS, Yeh SD. A Conserved Helix in the C-Terminal Region of Watermelon Silver Mottle Virus Nonstructural Protein S Is Imperative For Protein Stability Affecting Self-Interaction, RNA Silencing Suppression, and Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:637-652. [PMID: 31935338 DOI: 10.1094/mpmi-10-19-0279-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In orthotospovirus, the nonstructural protein S (NSs) is the RNA-silencing suppressor (RSS) and pathogenicity determinant. Here, we demonstrate that a putative α-helix, designated H8, spanning amino acids 338 to 369 of the C-terminal region of the NSs protein, is crucial for self-interaction of watermelon silver mottle virus NSs protein and that the H8 affects RSS function. Co-immunoprecipitation, yeast two-hybrid, and bimolecular fluorescence complementation analyses revealed that the triple point mutation (TPM) of H8 amino acids Y338A, H350A, and F353A resulted in NSs protein self-interaction dysfunction. Transient expression of H8-deleted (ΔH8) and TPM NSs proteins in Nicotiana benthamiana plants by agroinfitration indicated that these proteins have weaker RSS activity and are far less stable than wild-type (WT) NSs. However, an electrophoretic mobility assay revealed that small interfering RNA (siRNA) binding ability of TPM NSs protein is not compromised. The pathogenicity assay of WT NSs protein expressed by the attenuated turnip mosaic virus vector restored severe symptoms in recombinant-infected N. benthamiana plants but not for ΔH8 or TPM proteins. Taken together, we conclude that the H8 helix in the C-terminal region of NSs protein is crucial for stabilizing NSs protein through self-interaction to maintain normal functions of RSS and pathogenicity, but not for NSs-siRNA binding activity.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| | - Mung-Hsia Foo
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| | - Yue-Rong Tan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Shih-Shun Lin
- Advanced Plant Biotechnology Center, National Chung Hsing University
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Advanced Plant Biotechnology Center, National Chung Hsing University
| |
Collapse
|
24
|
Zhang C, Chen D, Yang G, Yu X, Wu J. Rice Stripe Mosaic Virus-Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:412-422. [PMID: 31841359 DOI: 10.1094/mpmi-08-19-0239-ia] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X-based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoyi Yang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiyuan Yu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Xu M, Mazur MJ, Tao X, Kormelink R. Cellular RNA Hubs: Friends and Foes of Plant Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:40-54. [PMID: 31415225 DOI: 10.1094/mpmi-06-19-0161-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA granules are dynamic cellular foci that are widely spread in eukaryotic cells and play essential roles in cell growth and development, and immune and stress responses. Different types of granules can be distinguished, each with a specific function and playing a role in, for example, RNA transcription, modification, processing, decay, translation, and arrest. By means of communication and exchange of (shared) components, they form a large regulatory network in cells. Viruses have been reported to interact with one or more of these either cytoplasmic or nuclear granules, and act either proviral, to enable and support viral infection and facilitate viral movement, or antiviral, protecting or clearing hosts from viral infection. This review describes an overview and recent progress on cytoplasmic and nuclear RNA granules and their interplay with virus infection, first in animal systems and as a prelude to the status and current developments on plant viruses, which have been less well studied on this thus far.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Magdalena J Mazur
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
26
|
Li F, Wang A. RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada; Department of Biology, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
27
|
Kalyandurg PB, Tahmasebi A, Vetukuri RR, Kushwaha SK, Lezzhov AA, Solovyev AG, Grenville-Briggs LJ, Savenkov EI. Efficient RNA silencing suppression activity of Potato Mop-Top Virus 8K protein is driven by variability and positive selection. Virology 2019; 535:111-121. [PMID: 31299487 DOI: 10.1016/j.virol.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022]
Abstract
Previously, we investigated the evolution of Potato mop-top virus (PMTV) ORFs. Results indicate that positive selection acts exclusively on an ORF encoding the 8K protein, a weak viral suppressor of RNA silencing (VSR). However, how the extraordinary variability contributes to 8K-mediated RNA silencing suppression remains unknown. Here, we characterized the RNA silencing suppression activity of the 8K protein from seven diverse isolates. We show that 8K encoded by isolate P1 exhibits stronger RNA silencing suppression activity than the 8K protein from six other isolates. Mutational analyses revealed that Ser-50 is critical for these differences. By comparing small RNA profiles we found a lower abundance of siRNAs with U residue at the 5'-terminus after expression of the P1 8K compared to expression of 8K from isolate P125, an isolate with weak VSR activity. These results provide new clues as to the role of positive selection in shaping activities of VSRs.
Collapse
Affiliation(s)
- Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Aminallah Tahmasebi
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden; Plant Virology Research Centre, College of Agriculture, Shiraz University, Iran
| | - Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; Department of Virology Biological Faculty, Moscow State University, Moscow, Russia
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
28
|
Yang X, Guo W, Li F, Sunter G, Zhou X. Geminivirus-Associated Betasatellites: Exploiting Chinks in the Antiviral Arsenal of Plants. TRENDS IN PLANT SCIENCE 2019; 24:519-529. [PMID: 31003895 DOI: 10.1016/j.tplants.2019.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Betasatellites are a diverse group of circular single-stranded DNA satellites frequently associated with begomoviruses belonging to the family Geminiviridae. Challenged with a geminivirus-betasatellite infection, plants have employed sophisticated defense mechanisms to protect themselves. Betasatellites, in turn, employ mechanisms to antagonize these plant antiviral pathways. In this review, we focus on the anti-geminiviral immune pathways present both in plants and whiteflies. We also outline the counter-defensive strategies deployed by betasatellites to overcome the host defenses and initiate a successful infection. Finally, we discuss the outcomes of the opposing forces of plant immunity and betasatellite-mediated antagonism in the context of an evolutionary arms race. Understanding of the molecular dialog between plants and betasatellites will likely allow for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Li Y, Sun Q, Zhao T, Xiang H, Zhang X, Wu Z, Zhou C, Zhang X, Wang Y, Zhang Y, Wang X, Li D, Yu J, Dinesh‐Kumar SP, Han C. Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. THE NEW PHYTOLOGIST 2019; 222:1458-1473. [PMID: 30664234 PMCID: PMC6593998 DOI: 10.1111/nph.15702] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
P0 protein of some polerovirus members can target ARGONAUTE1 (AGO1) to suppress RNA silencing. Although P0 harbors an F-box-like motif reported to be essential for interaction with S phase kinase-associated protein 1 (SKP1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO1 degradation. Therefore, the role of P0-SKP1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0Br ). We found that several residues within P0Br are required for local and systemic silencing suppression activities. Remarkably, the F-box-like motif mutant of P0Br , which failed to interact with SKP1, is destabilized in vivo. Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP1 ortholog leads to the destabilization of P0Br . Genetic analyses indicated that the P0Br -SKP1 interaction is not directly required for silencing suppression activity of P0Br , but it facilitates stability of P0Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of BrYV requires P0Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Qian Sun
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Tianyu Zhao
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Haiying Xiang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xiaoyan Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Zhanyu Wu
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Cuiji Zhou
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Ying Wang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Chenggui Han
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
30
|
Ur Rehman A, Li Z, Yang Z, Waqas M, Wang G, Xu W, Li F, Hong N. The Coat Protein of Citrus Yellow Vein Clearing Virus Interacts with Viral Movement Proteins and Serves as an RNA Silencing Suppressor. Viruses 2019; 11:E329. [PMID: 30959816 PMCID: PMC6520955 DOI: 10.3390/v11040329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/29/2023] Open
Abstract
Citrus yellow vein clearing virus is a newly accepted member of the genus Mandarivirus in the family Alphaflexiviridae. The triple gene block proteins (TGBp1, TGBp2 and TGBp3) encoded by plant viruses in this family function on facilitating virus movement. However, the protein function of citrus yellow vein clearing virus (CYVCV) have never been explored. Here, we showed in both yeast two-hybrid (Y2H) and bimolecular fluorescence (BiFC) assays that the coat protein (CP), TGBp1 and TGBp2 of CYVCV are self-interacting. Its CP also interacts with all three TGB proteins, and TGBp1 and TGBp2 interact with each other but not with TGBp3. Furthermore, the viral CP colocalizes with TGBp1 and TGBp3 at the plasmodesmata (PD) of epidermal cells of Nicotiana benthamiana leaves, and TGBp1 can translocate TGBp2 from granular-like structures embedded within ER networks to the PD. The results suggest that these proteins could coexist at the PD of epidermal cells of N. benthamiana. Using Agrobacterium infiltration-mediated RNA silencing assays, we show that CYVCV CP is a strong RNA silencing suppressor (RSS) triggered by positive-sense green fluorescent protein (GFP) RNA. The presented results provide insights for further revealing the mechanism of the viral movement and suppression of RNA silencing.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
- Plant Pathology Section, Central Cotton Research Institute, Sakrand, Sindh 67210, Pakistan.
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Muhammad Waqas
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
31
|
Wu X, Liu J, Chai M, Wang J, Li D, Wang A, Cheng X. The Potato Virus X TGBp2 Protein Plays Dual Functional Roles in Viral Replication and Movement. J Virol 2019; 93:e01635-18. [PMID: 30541845 PMCID: PMC6384063 DOI: 10.1128/jvi.01635-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Plant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novel in vivo double-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by "chain mail"-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCE Many plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming "chain mail"-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jiahui Liu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Dalong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agriculture University, Harbin, China
| |
Collapse
|
32
|
Aguilar E, del Toro FJ, Brosseau C, Moffett P, Canto T, Tenllado F. Cell death triggered by the P25 protein in Potato virus X-associated synergisms results from endoplasmic reticulum stress in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:194-210. [PMID: 30192053 PMCID: PMC6637867 DOI: 10.1111/mpp.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Chantal Brosseau
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Peter Moffett
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| |
Collapse
|
33
|
Mathioudakis MM, Khechmar S, Owen CA, Medina V, Ben Mansour K, Tomaszewska W, Spanos T, Sarris PF, Livieratos IC. A Thioredoxin Domain-Containing Protein Interacts with Pepino mosaic virus Triple Gene Block Protein 1. Int J Mol Sci 2018; 19:E3747. [PMID: 30477269 PMCID: PMC6320799 DOI: 10.3390/ijms19123747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27⁻35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.
Collapse
Affiliation(s)
- Matthaios M Mathioudakis
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Souheyla Khechmar
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Carolyn A Owen
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Vicente Medina
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, 25198 Lleida, Spain.
| | - Karima Ben Mansour
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Weronika Tomaszewska
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Theodore Spanos
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece.
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| | - Ioannis C Livieratos
- Mediterranean Agronomic Institute of Chania, Department of Sustainable Agriculture, Alsylio Agrokepio, GR-73100 Chania, Greece.
| |
Collapse
|
34
|
Li F, Wang Y, Zhou X. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana. Viruses 2017; 9:E247. [PMID: 28869553 PMCID: PMC5618013 DOI: 10.3390/v9090247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022] Open
Abstract
RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs) mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3), was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3) is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS) and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS) and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6) silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, Liu SS, Wang A, Zhou X. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog 2017; 13:e1006213. [PMID: 28212430 PMCID: PMC5333915 DOI: 10.1371/journal.ppat.1006213] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/02/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022] Open
Abstract
A recently characterized calmodulin-like protein is an endogenous RNA silencing suppressor that suppresses sense-RNA induced post-transcriptional gene silencing (S-PTGS) and enhances virus infection, but the mechanism underlying calmodulin-like protein-mediated S-PTGS suppression is obscure. Here, we show that a calmodulin-like protein from Nicotiana benthamiana (NbCaM) interacts with Suppressor of Gene Silencing 3 (NbSGS3). Deletion analyses showed that domains essential for the interaction between NbSGS3 and NbCaM are also required for the subcellular localization of NbSGS3 and NbCaM suppressor activity. Overexpression of NbCaM reduced the number of NbSGS3-associated granules by degrading NbSGS3 protein accumulation in the cytoplasm. This NbCaM-mediated NbSGS3 degradation was sensitive to the autophagy inhibitors 3-methyladenine and E64d, and was compromised when key autophagy genes of the phosphatidylinositol 3-kinase (PI3K) complex were knocked down. Meanwhile, silencing of key autophagy genes within the PI3K complex inhibited geminivirus infection. Taken together these data suggest that NbCaM acts as a suppressor of RNA silencing by degrading NbSGS3 through the autophagy pathway.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nan Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Deficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana. Sci Rep 2017; 7:39678. [PMID: 28059075 PMCID: PMC5216350 DOI: 10.1038/srep39678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessive resistance gene in Arabidopsis thaliana toward plant viruses in Alpha- and Betaflexiviridae. We found that infection by Plantago asiatica mosaic virus (PlAMV), a potexvirus, was delayed in ncbp mutants of A. thaliana. Virus replication efficiency did not differ between an ncbp mutant and a wild type plant in single cells, but viral cell-to-cell movement was significantly delayed in the ncbp mutant. Furthermore, the accumulation of triple-gene-block protein 2 (TGB2) and TGB3, the movement proteins of potexviruses, decreased in the ncbp mutant. Inoculation experiments with several viruses showed that the accumulation of viruses encoding TGBs in their genomes decreased in the ncbp mutant. These results indicate that nCBP is a novel member of the eIF4E family recessive resistance genes whose loss impairs viral cell-to-cell movement by inhibiting the efficient accumulation of TGB2 and TGB3.
Collapse
|
37
|
Mäkinen K, Lõhmus A, Pollari M. Plant RNA Regulatory Network and RNA Granules in Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:2093. [PMID: 29312371 PMCID: PMC5732267 DOI: 10.3389/fpls.2017.02093] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
Collapse
|
38
|
Cheng X, Wang A. The Potyvirus Silencing Suppressor Protein VPg Mediates Degradation of SGS3 via Ubiquitination and Autophagy Pathways. J Virol 2017; 91:e01478-16. [PMID: 27795417 PMCID: PMC5165207 DOI: 10.1128/jvi.01478-16] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
RNA silencing is an innate antiviral immunity response of plants and animals. To counteract this host immune response, viruses have evolved an effective strategy to protect themselves by the expression of viral suppressors of RNA silencing (VSRs). Most potyviruses encode two VSRs, helper component-proteinase (HC-Pro) and viral genome-linked protein (VPg). The molecular biology of the former has been well characterized, whereas how VPg exerts its function in the suppression of RNA silencing is yet to be understood. In this study, we show that infection by Turnip mosaic virus (TuMV) causes reduced levels of suppressor of gene silencing 3 (SGS3), a key component of the RNA silencing pathway that functions in double-stranded RNA synthesis for virus-derived small interfering RNA (vsiRNA) production. We also demonstrate that among 11 TuMV-encoded viral proteins, VPg is the only one that interacts with SGS3. We furthermore present evidence that the expression of VPg alone, independent of viral infection, is sufficient to induce the degradation of SGS3 and its intimate partner RNA-dependent RNA polymerase 6 (RDR6). Moreover, we discover that the VPg-mediated degradation of SGS3 occurs via both the 20S ubiquitin-proteasome and autophagy pathways. Taken together, our data suggest a role for VPg-mediated degradation of SGS3 in suppression of silencing by VPg. IMPORTANCE Potyviruses represent the largest group of known plant viruses and cause significant losses of many agriculturally important crops in the world. In order to establish infection, potyviruses must overcome the host antiviral silencing response. A viral protein called VPg has been shown to play a role in this process, but how it works is unclear. In this paper, we found that the VPg protein of Turnip mosaic virus (TuMV), which is a potyvirus, interacts with a host protein named SGS3, a key protein in the RNA silencing pathway. Moreover, this interaction leads to the degradation of SGS3 and its interacting and functional partner RDR6, which is another essential component of the RNA silencing pathway. We also identified the cellular pathways that are recruited for the VPg-mediated degradation of SGS3. Therefore, this work reveals a possible mechanism by which VPg sabotages host antiviral RNA silencing to promote virus infection.
Collapse
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
39
|
Brosseau C, El Oirdi M, Adurogbangba A, Ma X, Moffett P. Antiviral Defense Involves AGO4 in an Arabidopsis-Potexvirus Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:878-888. [PMID: 27762650 DOI: 10.1094/mpmi-09-16-0188-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Argonaute (AGO) proteins via micro RNAs and RNA-dependent DNA methylation (RdDM). In addition, RNA silencing functions as an antiviral defense mechanism by targeting virus-derived double-stranded RNA. Plants encode multiple AGO proteins with specialized functions, including AGO4-like proteins that affect RdDM and AGO2, AGO5, and AGO1, which have antiviral activities. Here, we show that AGO4 is also required for defense against the potexvirus Plantago asiatica mosaic virus (PlAMV), most likely independent of RdDM components such as DCL3, Pol IV, and Pol V. Transient assays showed that AGO4 has direct antiviral activity on PlAMV and, unlike RdDM, this activity does not require nuclear localization of AGO4. Furthermore, although PlAMV infection causes a decrease in AGO4 expression, PlAMV causes a change in AGO4 localization from a largely nuclear to a largely cytoplasmic distribution. These results indicate an important role for AGO4 in targeting plant RNA viruses as well as demonstrating novel mechanisms of regulation of and by AGO4, independent of its canonical role in regulating gene expression by RdDM.
Collapse
Affiliation(s)
- Chantal Brosseau
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Mohamed El Oirdi
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 2 Current address: Department of Biology, PYD, King Faisal University, Al Hasa, Kingdom of Saudi Arabia; and
| | - Ayooluwa Adurogbangba
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Xiaofang Ma
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Peter Moffett
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
40
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
41
|
Bejerman N, Mann KS, Dietzgen RG. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing. Virus Res 2016; 224:19-28. [PMID: 27543392 DOI: 10.1016/j.virusres.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 11/16/2022]
Abstract
Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
42
|
Weinheimer I, Haikonen T, Ala-Poikela M, Moser M, Streng J, Rajamäki ML, Valkonen JPT. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells. PLoS One 2016; 11:e0159080. [PMID: 27391019 PMCID: PMC4938523 DOI: 10.1371/journal.pone.0159080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/27/2016] [Indexed: 11/23/2022] Open
Abstract
Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae) encodes a Class 1 RNase III endoribonuclease (RNase3) that suppresses post-transcriptional RNA interference (RNAi) and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas). For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA) and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3) and RNA–dependent RNA polymerase 6 (RDR6). In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression.
Collapse
Affiliation(s)
- Isabel Weinheimer
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Tuuli Haikonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Marjo Ala-Poikela
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Janne Streng
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Mann KS, Johnson KN, Carroll BJ, Dietzgen RG. Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology 2016; 490:27-40. [PMID: 26808923 DOI: 10.1016/j.virol.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
Abstract
Plant viruses have evolved to undermine the RNA silencing pathway by expressing suppressor protein(s) that interfere with one or more key components of this antiviral defense. Here we show that the recently identified RNA silencing suppressor (RSS) of lettuce necrotic yellows virus (LNYV), phosphoprotein P, binds to RNA silencing machinery proteins AGO1, AGO2, AGO4, RDR6 and SGS3 in protein-protein interaction assays when transiently expressed. In planta, we demonstrate that LNYV P inhibits miRNA-guided AGO1 cleavage and translational repression, and RDR6/SGS3-dependent amplification of silencing. Analysis of LNYV P deletion mutants identified a C-terminal protein domain essential for both local RNA silencing suppression and interaction with AGO1, AGO2, AGO4, RDR6 and SGS3. In contrast to other viral RSS known to disrupt AGO activity, LNYV P sequence does not contain any recognizable GW/WG or F-box motifs. This suggests that LNYV P may represent a new class of AGO binding proteins.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
44
|
Aguilar E, Allende L, Del Toro FJ, Chung BN, Canto T, Tenllado F. Effects of Elevated CO₂and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1364-1373. [PMID: 26422405 DOI: 10.1094/mpmi-08-15-0178-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Infections of plants by multiple viruses are common in nature and may result in synergisms in pathologies. Several environmental factors influence plant-virus interactions and act on virulence and host defense responses. Mixed viral infections may be more frequent under environmental conditions associated with global warming. Here, we address how changes in the two main parameters behind global warming, carbon dioxide concentrations ([CO₂]) and temperature, may affect virulence of Potato virus X (PVX)/potyvirus-associated synergism compared with single infections in Nicotiana benthamiana. Elevated [CO₂] resulted in attenuated virulence of single infection by PVX, which correlated with a lower accumulation of virus. In contrast, virulence of PVX/potyvirus-associated synergism was maintained at elevated [CO₂]. On the other hand, elevated temperature decreased markedly both virulence and virus titers in the synergistic infection. We also show that the HR-like response elicited by transient coexpression of PVX P25 together with the potyviral helper component-proteinase protein was significantly enhanced by elevated temperature, whereas it was reduced by elevated [CO₂]. Both proteins are main pathogenicity determinants in PVX-associated synergisms. These findings indicate that, under environmental conditions associated with global warming, virulence of PVX/potyvirus-associated synergisms is expected to vary relative to single infections and, thus, may have pathological consequences in the future.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Lucía Allende
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco J Del Toro
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Bong-Nam Chung
- 2 National Institute of Horticultural & Herbal Science. Agricultural Research Center for Climate Change. 281, Ayeon-ro, Jeju, 690-150, Jeju Island, Republic of Korea
| | - Tomás Canto
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco Tenllado
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| |
Collapse
|
45
|
Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis. PLoS Pathog 2015; 11:e1005196. [PMID: 26431425 PMCID: PMC4592220 DOI: 10.1371/journal.ppat.1005196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/08/2015] [Indexed: 11/25/2022] Open
Abstract
Aberrant viral RNAs produced in infected plant cells serve as templates for the synthesis of dsRNAs. The derived virus-related small interfering RNAs (siRNA) mediate cleavage of viral RNAs by post-transcriptional gene silencing (PTGS), thus blocking virus multiplication. Here, we identified ASYMMETRIC LEAVES2 (AS2) as a new component of plant P body complex which mediates mRNA decapping and degradation. We found that AS2 promotes DCP2 decapping activity, accelerates mRNA turnover rate, inhibits siRNA accumulation and functions as an endogenous suppressor of PTGS. Consistent with these findings, as2 mutant plants are resistant to virus infection whereas AS2 over-expression plants are hypersensitive. The geminivirus nuclear shuttle protein BV1 protein, which shuttles between nuclei and cytoplasm, induces AS2 expression, causes nuclear exit of AS2 to activate DCP2 decapping activity and renders infected plants more sensitive to viruses. These principles of gene induction and shuttling of induced proteins to promote mRNA decapping in the cytosol may be used by viral pathogens to weaken antiviral defenses in host plants. In higher plants, aberrant RNAs generated during virus replication serve as templates to make small interfering RNAs. These small RNAs are used by host as a defense mechanism to cleave viral RNAs thereby blocking virus replication. The anti-virus defense is attenuated by the host cellular mRNA turnover machinery which clears aberrant RNAs. Viruses may use encoded component(s) to activate host cellular mRNA turnover for their own benefits. In this study, we identified ASYMMETRIC LEAVES2 (AS2) as an activator of mRNA decapping and degradation and an endogenous suppressor of virus silencing. We showed that the geminivirus BV1 protein induces AS2 expression, causes nuclear exit of AS2 to activate mRNA decapping activity and renders infected plants more sensitive to viruses. Similar mechanisms may be used by other viral pathogens to weaken antiviral defenses in host plants and also mammals.
Collapse
|
46
|
Carbonell A, Carrington JC. Antiviral roles of plant ARGONAUTES. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:111-7. [PMID: 26190744 PMCID: PMC4618181 DOI: 10.1016/j.pbi.2015.06.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 05/20/2023]
Abstract
ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.
Collapse
Affiliation(s)
- Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
47
|
Brosseau C, Moffett P. Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. THE PLANT CELL 2015; 27:1742-54. [PMID: 26023161 PMCID: PMC4498209 DOI: 10.1105/tpc.15.00264] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 05/05/2023]
Abstract
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.
Collapse
Affiliation(s)
- Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
48
|
Netsu O, Hiraguri A, Uehara-Ichiki T, Komatsu K, Sasaya T. Functional comparison of RNA silencing suppressor between the p5 protein of rice grassy stunt virus and the p3 protein of rice stripe virus. Virus Res 2015; 203:10-9. [PMID: 25836276 DOI: 10.1016/j.virusres.2015.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 01/28/2023]
Abstract
Rice grassy stunt virus (RGSV) is a member of the genus Tenuivirus, which includes rice stripe virus (RSV), as the type species. A viral suppressor of RNA silencing (VSR) of RGSV has not been identified, whereas the p3 protein of RSV (RSVp3) encoded by the viral-sense (v) strand of RNA3 has been reported to act as a VSR. In this study, we examined the VSR function of the p5 protein of RGSV (RGSVp5), encoded by vRNA5. Expecting it to correspond to the vRNA3 of RSV, we compared the VSR function of RGSVp5 with that of RSVp3. In an Agrobacterium-mediated transient expression assay using a transgenic line of Nicotiana benthamiana that expressed green fluorescent protein and the wild type, RGSVp5 suppressed sense transgene-mediated post-transcriptional gene silencing (S-PTGS), inverted-repeat (IR) transgene-induced PTGS (IR-PTGS), and the systemic spread of GFP silencing, as in the case with RSVp3. By contrast, a gel mobility shift assay revealed that RGSVp5 did not have any distinct binding activity with 21-, 22-, or 24-nucleotide small interfering RNA (siRNA) duplexes, whereas RSVp3 binds to all three sizes of siRNA duplexes. Furthermore, the transiently expressed p5 protein fused with GFP was dispersed mainly in the cytoplasm, whereas the GFP-fused p3 protein of RSV was localized both in the nucleus and in the cytoplasm. Our results suggest that RGSVp5 functions as a VSR but that the suppression mechanism of RNA silencing and the subcellular localization of RGSVp5 differ from those of the analogous VSR, RSVp3, even in the same genus.
Collapse
Affiliation(s)
- Osamu Netsu
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Hiraguri
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tamaki Uehara-Ichiki
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takahide Sasaya
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Agro-Environment Research Division, NARO Kyushu Okinawa Agricultural Research Center, Koshi, Kumamoto 861-1192, Japan.
| |
Collapse
|
49
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
50
|
Viral factors involved in plant pathogenesis. Curr Opin Virol 2015; 11:21-30. [DOI: 10.1016/j.coviro.2015.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
|