1
|
Liang M, Ji T, Li S, Wang X, Cui L, Gao L, Wan H, Ma S, Tian Y. Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109356. [PMID: 39637709 DOI: 10.1016/j.plaphy.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi. GUS expression analysis further confirmed the induction of CsMAP65-2 and CsMAP65-3 in both roots and nematode-induced galls. Silencing CsMAP65-2 or CsMAP65-3 using VIGS technology led to a reduction in gall size and number, as well as a decrease in GCs number (24.98% for CsMAP65-2; 19.48% for CsMAP65-3) and area (6% for CsMAP65-2; 4% for CsMAP65-3), compared to control plants. Furthermore, qRT-PCR analysis revealed upregulation of CsMYC2、CsPR1、CsPAD4, and CsPDF1 in CsMAP65-2 silenced lines and upregulation of CsFRK1 in CsMAP65-3 silenced lines, while CsJAZ1 was downregulated in both silenced lines. These findings suggest that CsMAP65-2 and CsMAP65-3 are critical for GCs development during RKN infection and provide a foundation for breeding nematode-resistant cucumber varieties. This research also offers insights for developing sustainable nematode management strategies in gourd crop cultivation.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
González-Cardona C, López WR, Jovel J, Soto-Suárez M, Ceballos-Aguirre N. Paraburkholderia tropica Primes a Multilayered Transcriptional Defense Response to the Nematode Meloidogyne spp. in Tomato. Int J Mol Sci 2024; 25:12584. [PMID: 39684296 DOI: 10.3390/ijms252312584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, Paraburkholderia tropica has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by P. tropica (TB group (tomato-bacteria group)), Meloidogyne spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of P. tropica.
Collapse
Affiliation(s)
- Carolina González-Cardona
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| | - Walter Ricardo López
- Departamento de Física y Química, Facultad de Ciencias Naturales, Universidad Nacional de Colombia Sede Manizales, km 9 vía Aeropuerto la Nubia, Manizales 170003, Caldas, Colombia
| | - Juan Jovel
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Mauricio Soto-Suárez
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, km 14 vía Mosquera-Bogotá, Mosquera 250047, Cundinamarca, Colombia
| | - Nelson Ceballos-Aguirre
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| |
Collapse
|
3
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
4
|
Ozdemir S, Piya S, Lopes-Caitar VS, Coffey N, Rice JH, Hewezi T. Local and systemic transcriptome and spliceome reprogramming induced by the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2024; 11:uhae206. [PMID: 39286358 PMCID: PMC11403207 DOI: 10.1093/hr/uhae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
Root-knot nematodes (Meloidogyne spp.) are widely spread root parasites that infect thousands of vascular plant species. These highly polyphagous nematodes engage in sophisticated interactions with host plants that results in the formation of knot-like structures known as galls whose ontogeny remains largely unknown. Here, we determined transcriptome changes and alternative splicing variants induced by Megalaima incognita in galls and neighboring root cells at two distinct infective stages. M. incognita induced substantial transcriptome changes in tomato roots both locally in galls and systemically in neighboring cells. A considerable parallel regulation of gene expression in galls and neighboring cells were detected, indicative of effective intercellular communications exemplified by suppression of basal defense responses particularly during the early stage of infection. The transcriptome analysis also revealed that M. incognita exerts a tight control over the cell cycle process as a whole that results in an increase of ploidy levels in the feeding sites and accelerated mitotic activity of the gall cells. Alternative splicing analysis indicated that M. incognita significantly modulates pre-mRNA splicing as a total of 9064 differentially spliced events from 2898 genes were identified where intron retention and exon skipping events were largely suppressed. Furthermore, a number of differentially spliced events were functionally validated using transgenic hairy root system and found to impact gall formation and nematode egg mass production. Together, our data provide unprecedented insights into the transcriptome and spliceome reprogramming induced by M. incognita in tomato with respect to gall ontogeny and nematode parasitism.
Collapse
|
5
|
Dutta TK, Ray S, Phani V. The status of the CRISPR/Cas9 research in plant-nematode interactions. PLANTA 2023; 258:103. [PMID: 37874380 DOI: 10.1007/s00425-023-04259-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
MAIN CONCLUSION As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, 733133, India
| |
Collapse
|
6
|
Vilela RMIF, Kuster VC, Magalhães TA, Martini VC, Oliveira RM, de Oliveira DC. Galls induced by a root-knot nematode in Petroselinum crispum (Mill.): impacts on host development, histology, and cell wall dynamics. PROTOPLASMA 2023; 260:1287-1302. [PMID: 36892633 DOI: 10.1007/s00709-023-01849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Infection by the root-knot nematode (RKN), Meloidogyne incognita, impacts crop productivity worldwide, including parsley cultures (Petroselinum crispum). Meloidogyne infection involves a complex relationship between the pathogen and the host plant tissues, leading to the formation of galls and feeding sites that disorganize the vascular system, affecting the development of cultures. Herein, we sought to evaluate the impact of RKN on the agronomic traits, histology, and cell wall components of parsley, with emphasis on giant cell formation. The study consisted of two treatments: (i) control, where 50 individuals of parsley grew without M. incognita inoculation; and (ii) inoculated plants, where 50 individuals were exposed to juveniles (J2) of M. incognita. Meloidogyne incognita infection affected the development of parsley, reducing the growth of some agronomical characteristics such as root weight and shoot weight and height. Giant cell formation was noticed at 18 days after inoculation, promoting disorganization of the vascular system. Epitopes of HGs detected in giant cells reveal the continuous capacity of giant cells to elongate under the stimulus of RKN, essential processes for feeding site establishment. In addition, the detection of epitopes of HGs with low and high methyl-esterified groups indicates the PMEs activity despite biotic stress.
Collapse
Affiliation(s)
| | - Vinícius Coelho Kuster
- Campus Cidade Universitária, Universidade Federal de Jataí (UFJ), Jataí, Goiás, CEP 75801-615, Brazil
| | - Thiago Alves Magalhães
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - Vitor Campana Martini
- Campus Umuarama, Universidade Federal de Uberlândia (UFU), Instituto de Biologia, Uberlândia, Minas Gerais, CEP 38402-020, Brazil
| | | | - Denis Coelho de Oliveira
- Campus Umuarama, Universidade Federal de Uberlândia (UFU), Instituto de Biologia, Uberlândia, Minas Gerais, CEP 38402-020, Brazil.
| |
Collapse
|
7
|
Zhou D, Godinez-Vidal D, He J, Teixeira M, Guo J, Wei L, Van Norman JM, Kaloshian I. A G-type lectin receptor kinase negatively regulates Arabidopsis immunity against root-knot nematodes. PLANT PHYSIOLOGY 2023; 193:721-735. [PMID: 37103588 PMCID: PMC10469371 DOI: 10.1093/plphys/kiad253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/19/2023]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Damaris Godinez-Vidal
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jiangman He
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Guo B, Chen L, Dong L, Yang C, Zhang J, Geng X, Zhou L, Song L. Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development. FRONTIERS IN PLANT SCIENCE 2023; 14:1096467. [PMID: 36778678 PMCID: PMC9911667 DOI: 10.3389/fpls.2023.1096467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Kip-related proteins (KRPs), as inhibitory proteins of cyclin-dependent kinases, are involved in the growth and development of plants by regulating the activity of the CYC-CDK complex to control cell cycle progression. The KRP gene family has been identified in several plants, and several KRP proteins from Arabidopsis thaliana have been functionally characterized. However, there is little research on KRP genes in soybean, which is an economically important crop. In this study, we identified nine GmKRP genes in the Glycine max genome using HMM modeling and BLASTP searches. Protein subcellular localization and conserved motif analysis showed soybean KRP proteins located in the nucleus, and the C-terminal protein sequence was highly conserved. By investigating the expression patterns in various tissues, we found that all GmKRPs exhibited transcript abundance, while several showed tissue-specific expression patterns. By analyzing the promoter region, we found that light, low temperature, an anaerobic environment, and hormones-related cis-elements were abundant. In addition, we performed a co-expression analysis of the GmKRP gene family, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) set enrichment analysis. The co-expressing genes were mainly involved in RNA synthesis and modification and energy metabolism. Furthermore, the GmKRP2a gene, a member of the soybean KRP family, was cloned for further functional analysis. GmKRP2a is located in the nucleus and participates in root development by regulating cell cycle progression. RNA-seq results indicated that GmKRP2a is involved in cell cycle regulation through ribosome regulation, cell expansion, hormone response, stress response, and plant pathogen response pathways. To our knowledge, this is the first study to identify and characterize the KRP gene family in soybean.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Basic Experimental Teaching Center of Life Science, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaoyan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institute of Agricultural Science and Technology Development, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Silva AC, Ruiz‐Ferrer V, Müller SY, Pellegrin C, Abril‐Urías P, Martínez‐Gómez Á, Gómez‐Rojas A, Berenguer E, Testillano PS, Andrés MF, Fenoll C, Eves‐van den Akker S, Escobar C. The DNA methylation landscape of the root-knot nematode-induced pseudo-organ, the gall, in Arabidopsis, is dynamic, contrasting over time, and critically important for successful parasitism. THE NEW PHYTOLOGIST 2022; 236:1888-1907. [PMID: 35872574 PMCID: PMC9825882 DOI: 10.1111/nph.18395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.
Collapse
Affiliation(s)
- Ana Cláudia Silva
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Virginia Ruiz‐Ferrer
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Clement Pellegrin
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Patricia Abril‐Urías
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Ángela Martínez‐Gómez
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Almudena Gómez‐Rojas
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | - Eduardo Berenguer
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Pilar S. Testillano
- Centro de Investigaciones Biológicas Margarita SalasCIB‐CSIC, Pollen Biotechnology of Crop PlantsRamiro de Maeztu 928040MadridSpain
| | - Maria Fe Andrés
- Instituto de Ciencias Agrarias (ICA, CSIC)Protección Vegetal, Calle de Serrano 11528006MadridSpain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
| | | | - Carolina Escobar
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La ManchaÁrea de Fisiología Vegetal, Avda. Carlos III, s/n45071ToledoSpain
- International Research Organization for Advanced Science and Technology (IROAST)Kumamoto UniversityKumamoto860‐8555Japan
| |
Collapse
|
10
|
Fitoussi N, de Almeida Engler J, Sichov N, Bucki P, Sela N, Harel A, Belausuv E, Kumar A, Brown Miyara S. The Minichromosome Maintenance Complex Component 2 (MjMCM2) of Meloidogyne javanica is a potential effector regulating the cell cycle in nematode-induced galls. Sci Rep 2022; 12:9196. [PMID: 35654810 PMCID: PMC9163083 DOI: 10.1038/s41598-022-13020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Root-knot nematodes Meloidogyne spp. induce enlarged multinucleate feeding cells—galls—in host plant roots. Although core cell-cycle components in galls follow a conserved track, they can also be usurped and manipulated by nematodes. We identified a candidate effector in Meloidogyne javanica that is directly involved in cell-cycle manipulation—Minichromosome Maintenance Complex Component 2 (MCM2), part of MCM complex licensing factor involved in DNA replication. MjMCM2, which is induced by plant oxilipin 9-HOT, was expressed in nematode esophageal glands, upregulated during parasitic stages, and was localized to plant cell nucleus and plasma membrane. Infected tomato hairy roots overexpressing MjMCM2 showed significantly more galls and egg-mass-producing females than wild-type roots, and feeding cells showed more nuclei. Phylogenetic analysis suggested seven homologues of MjMCM2 with unknown association to parasitism. Sequence mining revealed two RxLR-like motifs followed by SEED domains in all Meloidogyne spp. MCM2 protein sequences. The unique second RxLR-like motif was absent in other Tylenchida species. Molecular homology modeling of MjMCM2 suggested that second RxLR2-like domain is positioned on a surface loop structure, supporting its function in polar interactions. Our findings reveal a first candidate cell-cycle gene effector in M. javanica—MjMCM2—that is likely secreted into plant host to mimic function of endogenous MCM2.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.,Department of Plant Pathology and Microbiology, The Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | | | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Noa Sela
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Arye Harel
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
11
|
Niu Y, Xiao L, de Almeida-Engler J, Gheysen G, Peng D, Xiao X, Huang W, Wang G, Xiao Y. Morphological characterization reveals new insights into giant cell development of Meloidogyne graminicola on rice. PLANTA 2022; 255:70. [PMID: 35184234 PMCID: PMC8858295 DOI: 10.1007/s00425-022-03852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three types of nematode-feeding sites (NFSs) caused by M. graminicola on rice were suggested, and the NFS polarized expansion stops before the full NFS maturation that occurs at adult female stage. Root-knot nematodes, Meloidogyne spp., secrete effectors and recruit host genes to establish their feeding sites giant cells, ensuring their nutrient acquisition. There is still a limited understanding of the mechanism underlying giant cell development. Here, the three-dimensional structures of M. graminicola-caused nematode-feeding sites (NFSs) on rice as well as changes in morphological features and cytoplasm density of the giant cells (GCs) during nematode parasitism were reconstructed and characterized by confocal microscopy and the Fiji software. Characterization of morphological features showed that three types of M. graminicola-caused NFSs, type I-III, were detected during parasitism at the second juvenile (J2), the third juvenile (J3), the fourth juvenile (J4) and adult female stages. Type I is the majority at all stages and type II develops into type I at J3 stage marked by its longitudinal growth. Meanwhile, NFSs underwent polarized expansion, where the lateral and longitudinal expansion ceased at later parasitic J2 stage and the non-feeding J4 stage, respectively. The investigation of giant cell cytoplasm density indicates that it reaches a peak at the midpoint of early parasitic J2 and adult female stages. Our data suggest the formation of three types of NFSs caused by M. graminicola on rice and the NFS polarized expansion stopping before full NFS maturation, which provides unprecedented spatio-temporal characterization of development of giant cells caused by a root-knot nematode.
Collapse
Affiliation(s)
- Yongrui Niu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liying Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xueqiong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Gaofeng Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Qu L, Wei Z, Chen HH, Liu T, Liao K, Xue HW. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. PLANT PHYSIOLOGY 2021; 187:917-930. [PMID: 34608955 PMCID: PMC8491028 DOI: 10.1093/plphys/kiab284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.
Collapse
Affiliation(s)
- Li Qu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuang Wei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hu-Hui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Suzuki R, Ueda T, Wada T, Ito M, Ishida T, Sawa S. Identification of genes involved in Meloidogyne incognita-induced gall formation processes in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:1-8. [PMID: 34177318 PMCID: PMC8215457 DOI: 10.5511/plantbiotechnology.20.0716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 06/13/2023]
Abstract
Root-knot nematodes (RKN; Meloidogyne incognita) are phytoparasitic nematodes that cause significant damage to crop plants worldwide. Recent studies have revealed that RKNs disrupt various physiological processes in host plant cells to induce gall formation. However, little is known about the molecular mechanisms of gall formation induced by nematodes. We have previously found that RNA expression levels of some of genes related to micro-RNA, cell division, membrane traffic, vascular formation, and meristem maintenance system were modified by nematode infection. Here we evaluated these genes importance during nematode infection by using Arabidopsis mutants and/or β-glucronidase (GUS) marker genes, particularly after inoculation with nematodes, to identify the genes involved in successful nematode infection. Our results provide new insights not only for the basic biology of plant-nematode interactions but also to improve nematode control in an agricultural setting.
Collapse
Affiliation(s)
- Reira Suzuki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Kumamoto 860-8555, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takuji Wada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering Kanazawa University, Kakumamachi, Kanazawa, Kanazawa 920-1192, Japan
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Kumamoto 860-8555, Japan
| |
Collapse
|
14
|
Paľová M, Ručová D, Goga M, Kolarčik V. Spatial and Temporal Patterns of Endopolyploidy in Mosses. Genes (Basel) 2020; 12:E27. [PMID: 33375487 PMCID: PMC7824635 DOI: 10.3390/genes12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Somatic polyploidy or endopolyploidy is common in the plant kingdom; it ensures growth and allows adaptation to the environment. It is present in the majority of plant groups, including mosses. Endopolyploidy had only been previously studied in about 65 moss species, which represents less than 1% of known mosses. We analyzed 11 selected moss species to determine the spatial and temporal distribution of endopolyploidy using flow cytometry to identify patterns in ploidy levels among gametophytes and sporophytes. All of the studied mosses possessed cells with various ploidy levels in gametophytes, and four of six species investigated in sporophytic stage had endopolyploid sporophytes. The proportion of endopolyploid cells varied among organs, parts of gametophytes and sporophytes, and ontogenetic stages. Higher ploidy levels were seen in basal parts of gametophytes and sporophytes than in apical parts. Slight changes in ploidy levels were observed during ontogenesis in cultivated mosses; the youngest (apical) parts of thalli tend to have lower levels of endopolyploidy. Differences between parts of cauloid and phylloids of Plagiomnium ellipticum and Polytrichum formosum were also documented; proximal parts had higher levels of endopolyploidy than distal parts. Endopolyploidy is spatially and temporally differentiated in the gametophytes of endopolyploid mosses and follows a pattern similar to that seen in angiosperms.
Collapse
Affiliation(s)
| | | | | | - Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia; (M.P.); (D.R.); (M.G.)
| |
Collapse
|
15
|
Xiao K, Chen W, Chen X, Zhu X, Guan P, Hu J. CCS52 and DEL1 function in root-knot nematode giant cell development in Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz). PROTOPLASMA 2020; 257:1333-1344. [PMID: 32367262 DOI: 10.1007/s00709-020-01505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs) are highly invasive plant parasites that establish permanent feeding sites within the roots of the host plant. Successful establishment of the feeding site is essential for the survival of RKN. The formation and development of the feeding cell, also called giant cell, involve both cell division and endoreduplication. Here, we examined giant cell development and endoreduplication in Prunus sogdiana infected with the RKN. We found that feeding sites were established 3-5 days post inoculation (dpi) and matured at 21-28 dpi. The giant cells began to form 5 dpi and continued to increase in size from 7 to 21 dpi. The large numbers of dividing nuclei were observed in giant cells from 7 to 14 dpi. However, nuclear division was rarely observed after 28 days. RT-PCR and in situ hybridization analyses revealed that PsoCCS52A was abundantly expressed at 7-21 dpi and the PsoCCS52A signal observed in giant cell nucleus at 7-14 dpi. The PsoCCS52B is highly expressed at 14 dpi, and the hybridization signal was mainly in the cytoplasm of giant cells. The PsoDEL1 expression was lowest 7-21 dip, with negligible transcript detected in the giant cells. This indicates that the PsoCCS52A plays a role in the process of cell division, while the CCS52B plays a role in the development of giant cells. The PsoDEL1 plays a negative regulatory role in megakaryocyte nuclear replication. These data suggest that an increased expression of PsoCCS52A promotes nuclear division and produces a large number of polyploid nuclei, the area of giant cells and feeding sites increase, ultimately leading to the formation of galls in Prunus sogdiana.
Collapse
Affiliation(s)
- Kun Xiao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weiyang Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Chen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, 550025, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Cabral D, Banora MY, Antonino JD, Rodiuc N, Vieira P, Coelho RR, Chevalier C, Eekhout T, Engler G, De Veylder L, Grossi-de-Sa MF, de Almeida Engler J. The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. THE NEW PHYTOLOGIST 2020; 225:430-447. [PMID: 31505035 DOI: 10.1111/nph.16185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Galls induced by plant-parasitic nematodes involve a hyperactivation of the plant mitotic and endocycle machinery for their profit. Dedifferentiation of host root cells includes drastic cellular and molecular readjustments. In such a background, potential DNA damage in the genome of gall cells is evident. We investigated whether DNA damage checkpoint activation followed by DNA repair occurred, or was eventually circumvented, in nematode-induced galls. Galls display transcriptional activation of the DNA damage checkpoint kinase WEE1, correlated with its protein localization in the nuclei. The promoter of the stress marker gene SMR7 was evaluated under the WEE1-knockout background. Drugs inducing DNA damage and a marker for DNA repair, PARP1, were used to understand the mechanisms for coping with DNA damage in galls. Our functional study revealed that gall cells lacking WEE1 conceivably entered mitosis prematurely, disturbing the cell cycle despite the loss of genome integrity. The disrupted nuclei phenotype in giant cells hinted at the accumulation of mitotic defects. In addition, WEE1-knockout in Arabidopsis and downregulation in tomato repressed infection and reproduction of root-knot nematodes. Together with data on DNA-damaging drugs, we suggest a conserved function for WEE1 in controlling G1/S cell cycle arrest in response to a replication defect in galls.
Collapse
Affiliation(s)
- Danila Cabral
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Mohamed Youssef Banora
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, 11241, Cairo, Egypt
- Department of Biology, Faculty of Science and Art-Khulais, University of Jeddah, Saudi Arabia
| | - José Dijair Antonino
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
- Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos,, Recife, PE, 521171-900, Brazil
| | - Natalia Rodiuc
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Paulo Vieira
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Roberta R Coelho
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Christian Chevalier
- UMR1332 BFP, INRA, University of Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Gilbert Engler
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Lieven De Veylder
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | | |
Collapse
|
17
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 156:265-273. [PMID: 31054574 DOI: 10.1046/j.1469-8137.2002.00508.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
18
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 19:180. [PMID: 31054574 PMCID: PMC6500585 DOI: 10.1186/s12870-019-1791-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
19
|
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:686-702. [PMID: 29277939 DOI: 10.1111/tpj.13811] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Parallel adaptations enabling the use of plant cells as the primary food source have occurred multiple times in distinct nematode clades. The hallmark of all extant obligate and facultative plant-feeding nematodes is the presence of an oral stylet, which is required for penetration of plant cell walls, delivery of pharyngeal gland secretions into host cells and selective uptake of plant assimilates. Plant parasites from different clades, and even within a single clade, display a large diversity in feeding behaviours ranging from short feeding cycles on single cells to prolonged feeding on highly sophisticated host cell complexes. Despite these differences, feeding of nematodes frequently (but certainly not always) induces common responses in host cells (e.g. endopolyploidization and cellular hypertrophy). It is thought that these host cell responses are brought about by the interplay of effectors and other biological active compounds in stylet secretions of feeding nematodes, but this has only been studied for the most advanced sedentary plant parasites. In fact, these responses are thought to be fundamental for prolonged feeding of sedentary plant parasites on host cells. However, as we discuss in this review, some of these common plant responses to independent lineages of plant parasitic nematodes might also be generic reactions to cell stress and as such their onset may not require specific inputs from plant parasitic nematodes. Sedentary plant parasitic nematodes may utilize effectors and their ability to synthesize other biologically active compounds to tailor these common responses for prolonged feeding on host cells.
Collapse
Affiliation(s)
- Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
20
|
Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Fu T, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R. Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. PLANTA 2018; 247:113-125. [PMID: 28879514 DOI: 10.1007/s00425-017-2772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/02/2017] [Indexed: 05/18/2023]
Abstract
We found a new in vivo route to produce maternal doubled haploid of Brassica napus . The pollen donor, an allooctaploid rapeseed, acts as a DH inducer. Inbred line has a powerful advantage in cultivar breeding and genetic analysis. Compared to the traditional breeding methods, doubled haploid production can save years off the breeding process. Though genotype-dependent tissue culture methods are widely used in the Brassica crops, seed-based in vivo doubled haploid developing systems are rare in nature and in the laboratory. As interspecific cross and interploid hybridization play an important role in genome evolution and plant speciation, we created a new Brassica artificial hybrid, a Brassica allooctaploid (AAAACCCC, 2n = 8× = 76), by interspecific crossing and genome doubling. A homozygous line was observed at the third self-generation of a synthesized Brassica allohexaploid (AAAACC, 2n = 6× = 58). Crosses between B. napus as female and Brassica allooctaploid as pollen donor were conducted, which yielded maternal doubled haploid B. napus that were identified based on phenotype, ploidy, and molecular analysis. The Brassica octaploid acted as a maternal doubled haploid inducer and had a relatively high induction rate. Our research provides a new insight for generation of homozygous lines in vivo using a single-step approach, as well as promotes the understanding in breeding programs and genetic studies involving the Brassicas.
Collapse
Affiliation(s)
- Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingchao Xu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Leshan Academy of Agricultural Science, Leshan, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China.
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| |
Collapse
|
21
|
Wildermuth MC, Steinwand MA, McRae AG, Jaenisch J, Chandran D. Adapted Biotroph Manipulation of Plant Cell Ploidy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:537-564. [PMID: 28617655 DOI: 10.1146/annurev-phyto-080516-035458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.
Collapse
Affiliation(s)
- Mary C Wildermuth
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Michael A Steinwand
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Amanda G McRae
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Johan Jaenisch
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India 121001
| |
Collapse
|
22
|
Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:982-996. [PMID: 28064470 PMCID: PMC5506648 DOI: 10.1111/pbi.12693] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/02/2016] [Accepted: 01/05/2017] [Indexed: 05/18/2023]
Abstract
Genetic improvement of fibre quality is one of the main breeding goals for the upland cotton, Gossypium hirsutum, but there are difficulties with precise selection of traits. Therefore, it is important to improve the understanding of the genetic basis of phenotypic variation. In this study, we conducted phenotyping and genetic variation analyses of 719 diverse accessions of upland cotton based on multiple environment tests and a recently developed Cotton 63K Illumina Infinium SNP array and performed a genome-wide association study (GWAS) of fibre quality traits. A total of 10 511 polymorphic SNPs distributed in 26 chromosomes were screened across the cotton germplasms, and forty-six significant SNPs associated with five fibre quality traits were detected. These significant SNPs were scattered over 15 chromosomes and were involved in 612 unique candidate genes, many related to polysaccharide biosynthesis, signal transduction and protein translocation. Two major haplotypes for fibre length and strength were identified on chromosomes Dt11 and At07. Furthermore, by combining GWAS and transcriptome analysis, we identified 163 and 120 fibre developmental genes related to length and strength, respectively, of which a number of novel genes and 19 promising genes were screened. These results provide new insight into the genetic basis of fibre quality in G. hirsutum and provide candidate SNPs and genes to accelerate the improvement of upland cotton.
Collapse
Affiliation(s)
- Zhengwen Sun
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Qishen Gu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Jinhua Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Caiying Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei ProvinceHebei Agricultural UniversityBaodingChina
| |
Collapse
|
23
|
Coelho RR, Vieira P, Antonino de Souza Júnior JD, Martin-Jimenez C, De Veylder L, Cazareth J, Engler G, Grossi-de-Sa MF, de Almeida Engler J. Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants. PLANT, CELL & ENVIRONMENT 2017; 40:1174-1188. [PMID: 28103637 DOI: 10.1111/pce.12912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/06/2017] [Indexed: 05/17/2023]
Abstract
Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes - from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.
Collapse
Affiliation(s)
- Roberta Ramos Coelho
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Paulo Vieira
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Núcleo da Mitra, Ap., 94,7002-554, Évora, Portugal
| | - José Dijair Antonino de Souza Júnior
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Cristina Martin-Jimenez
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Julie Cazareth
- Université de Nice Sophia Antipolis, 06103, Nice, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560, Valbonne, France
| | - Gilbert Engler
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB - Av. W5 Norte, Caixa Postal 02372, CEP 70770-917, Brasília, DF, Brazil
| | - Janice de Almeida Engler
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| |
Collapse
|
24
|
Kumar N, Larkin JC. Why do plants need so many cyclin-dependent kinase inhibitors? PLANT SIGNALING & BEHAVIOR 2017; 12:e1282021. [PMID: 28165885 PMCID: PMC5351735 DOI: 10.1080/15592324.2017.1282021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell cycle regulation is fundamental to growth and development, and Cyclin-Dependent Kinase Inhibitors (CKIs) are major negative regulators of the cell cycle. Plant genomes encode substantially more CKIs than metazoan or fungal genomes. Plant CKIs fall into 2 distinct families, KIP-RELATED PROTEINS (KRPs) and SIAMESE-RELATED proteins (SMRs). SMRs can inhibit both S-phase and M-phase CDK complexes in vitro and are transcribed throughout the cell cycle, yet SMRs do not inhibit DNA replication in vivo. This suggests that SMRs must be activated post transcriptionally after the start of S-phase, but the mechanism of this hypothesized activation is unknown. Recent work indicates that even distantly related SMRs have the same biochemical function, and that differential transcriptional regulation likely maintains their distinct roles in integrating various environmental and developmental signals with the cell cycle.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- CONTACT John C. Larkin Department of Biological Sciences, Louisiana State University, 202 Life Sciences, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Vieira P, de Almeida Engler J. Plant Cyclin-Dependent Kinase Inhibitors of the KRP Family: Potent Inhibitors of Root-Knot Nematode Feeding Sites in Plant Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1514. [PMID: 28943880 PMCID: PMC5596062 DOI: 10.3389/fpls.2017.01514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 05/14/2023]
Abstract
Root-knot nematodes (RKN), Meloidogyne spp., are distributed worldwide and impose severe economic damage to many agronomically important crops. The plant cell cycle machinery is considered one of the pivotal components for the formation of nematode feeding sites (NFSs) or galls. These feeding sites contain five to nine hypertrophied giant cells (GC) resulting from developmental reprogramming of host root cells by this pathogen. GC undergo synchronous waves of mitotic activity uncoupled from cytokinesis giving rise to large multinucleate cells. As development of the NFS progresses, multiple rounds of DNA synthesis occur in the nuclei of GC, coupled with nuclear and cellular expansion. These cells are highly metabolically active and provide the nematode with nutrients necessary for its development and completion of its life cycle. In Arabidopsis seven cyclin dependent kinase inhibitors (CKIs) belonging to the interactors/inhibitors of the cyclin dependent kinases (ICK) family, also referred as Kip-Related Proteins (KRPs) have been identified. Interactions of KRPs with CDK/Cyclin complexes decrease CDK activity, affecting both cell cycle progression and DNA content in a concentration-dependent manner. We performed the functional analysis of all Arabidopsis KRP gene members during RKN interaction in Arabidopsis to obtain more insight into their role during gall development. We demonstrated that three members of this family (KRP2, KRP5, and KRP6) were highly expressed in galls and were important for cell cycle regulation during NFS development as shown by their different modes of action. We also pointed out that cell cycle inhibition through overexpression of all members of the KRP family can affect NFS development and consequently compromise the nematode's life cycle. In this review we summarized our recent understanding of the KRP family of genes, and their role in controlling cell cycle progression at the RKN feeding site.
Collapse
Affiliation(s)
- Paulo Vieira
- Laboratório de Nematologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’AzurNice, France
- *Correspondence: Janice de Almeida Engler,
| |
Collapse
|
27
|
Antonino de Souza Junior JD, Pierre O, Coelho RR, Grossi-de-Sa MF, Engler G, de Almeida Engler J. Application of Nuclear Volume Measurements to Comprehend the Cell Cycle in Root-Knot Nematode-Induced Giant Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:961. [PMID: 28659939 PMCID: PMC5466992 DOI: 10.3389/fpls.2017.00961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 05/12/2023]
Abstract
Root-knot nematodes induce galls that contain giant-feeding cells harboring multiple enlarged nuclei within the roots of host plants. It is recognized that the cell cycle plays an essential role in the set-up of a peculiar nuclear organization that seemingly steers nematode feeding site induction and development. Functional studies of a large set of cell cycle genes in transgenic lines of the model host Arabidopsis thaliana have contributed to better understand the role of the cell cycle components and their implication in the establishment of functional galls. Mitotic activity mainly occurs during the initial stages of gall development and is followed by an intense endoreduplication phase imperative to produce giant-feeding cells, essential to form vigorous galls. Transgenic lines overexpressing particular cell cycle genes can provoke severe nuclei phenotype changes mainly at later stages of feeding site development. This can result in chaotic nuclear phenotypes affecting their volume. These aberrant nuclear organizations are hampering gall development and nematode maturation. Herein we report on two nuclear volume assessment methods which provide information on the complex changes occurring in nuclei during giant cell development. Although we observed that the data obtained with AMIRA tend to be more detailed than Volumest (Image J), both approaches proved to be highly versatile, allowing to access 3D morphological changes in nuclei of complex tissues and organs. The protocol presented here is based on standard confocal optical sectioning and 3-D image analysis and can be applied to study any volume and shape of cellular organelles in various complex biological specimens. Our results suggest that an increase in giant cell nuclear volume is not solely linked to increasing ploidy levels, but might result from the accumulation of mitotic defects.
Collapse
Affiliation(s)
- José Dijair Antonino de Souza Junior
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Olivier Pierre
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
| | - Roberta R. Coelho
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Maria F. Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e BiotecnologiaBrasília, Brazil
| | - Gilbert Engler
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut Sophia AgrobiotechSophia-Antipolis, France
- *Correspondence: Janice de Almeida Engler,
| |
Collapse
|
28
|
Feng J, Chen D, Berr A, Shen WH. ZRF1 Chromatin Regulators Have Polycomb Silencing and Independent Roles in Development. PLANT PHYSIOLOGY 2016; 172:1746-1759. [PMID: 27630184 PMCID: PMC5100768 DOI: 10.1104/pp.16.00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 05/05/2023]
Abstract
Histone H2A monoubiquitination (H2Aub1), catalyzed by Polycomb-Repressive Complex1 (PRC1), is a key epigenetic mark in Polycomb silencing. However, little is known about how H2Aub1 is read to exert downstream physiological functions. The animal ZUOTIN-RELATED FACTOR1 (ZRF1) has been reported to bind H2Aub1 to promote or repress the expression of varied target genes. Here, we show that the Arabidopsis (Arabidopsis thaliana) ZRF1 homologs, AtZRF1a and AtZRF1b, are key regulators of multiple processes during plant growth and development. Loss of function of both AtZRF1a and AtZRF1b in atzrf1a atzrf1b mutants causes seed germination delay, small plant size, abnormal meristem activity, abnormal flower development, as well as gametophyte transmission and embryogenesis defects. Some of these defects overlap with those described previously in the PRC1-defective mutants atbmi1a atbmi1b and atring1a atring1b, but others are specific to atzrf1a atzrf1b In line with this, 4,519 genes (representing more than 14% of all genes) within the Arabidopsis genome are found differentially expressed in atzrf1a atzrf1b seedlings, and among them, 114 genes are commonly up-regulated in atring1a atring1b and atbmi1a atbmi1b Finally, we show that in both atzrf1a atzrf1b and atbmi1a atbmi1b seedlings, the seed developmental genes ABSCISIC ACID INSENSITIVE3, CRUCIFERIN3, and CHOTTO1 are derepressed, in association with the reduced levels of H2Aub1 and histone H3 lysine-27 trimethylation (H3K27me3). Collectively, our results indicate that AtZRF1a/b play both PRC1-related and PRC1-unrelated functions in regulating plant growth and development and that AtZRF1a/b promote H2Aub1 and H3K27me3 deposition in gene suppression. Our work provides novel insight into the mechanisms of function of this family of evolutionarily conserved chromatin regulators.
Collapse
Affiliation(s)
- Jing Feng
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (J.F., D.C., A.B., W.-H.S.); and
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China (D.C.)
| | - Donghong Chen
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (J.F., D.C., A.B., W.-H.S.); and
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China (D.C.)
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (J.F., D.C., A.B., W.-H.S.); and
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China (D.C.)
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (J.F., D.C., A.B., W.-H.S.); and
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China (D.C.)
| |
Collapse
|
29
|
Nieuwland J, Stamm P, Wen B, Randall RS, Murray JAH, Bassel GW. Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6. Sci Rep 2016; 6:23586. [PMID: 27021201 PMCID: PMC4810365 DOI: 10.1038/srep23586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Seeding establishment following seed germination requires activation of the root meristem for primary root growth. We investigated the hormonal and genetic regulation of root meristem activation during Arabidopsis seed germination. In optimal conditions, radicle cell divisions occur only after the completion of germination and require de novo GA synthesis. When the completion of germination is blocked by ABA, radicle elongation and cell divisions occurred in these non-germinating seeds. Conversely under GA-limiting conditions, ABA-insensitive mutants complete germination in the absence of radicle meristem activation and growth. Radicle meristem activation and extension can therefore occur independently of completion of the developmental transition of germination. The cell cycle regulator KRP6 partially represses GA-dependent activation of the cell cycle. Germination of krp6 mutant seeds occurs more rapidly, is slightly insensitive to ABA in dose-response assays, but also hypersensitive to the GA synthesis inhibitor PAC. These conflicting phenotypes suggest the cell cycle uncouples GA and ABA responses in germinating Arabidopsis seeds, and that KRP6 acts downstream of GA to inhibit mitotic cell cycle activation during germination.
Collapse
Affiliation(s)
- Jeroen Nieuwland
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.,School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT, United Kingdom
| | - Petra Stamm
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bo Wen
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Ricardo S Randall
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - James A H Murray
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
30
|
Chandran D, Wildermuth M. Modulation of Host Endocycle During Plant–Biotroph Interactions. DEVELOPMENTAL SIGNALING IN PLANTS 2016; 40:65-103. [DOI: 10.1016/bs.enz.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Favery B, Quentin M, Jaubert-Possamai S, Abad P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26211599 DOI: 10.1016/j.jinsphys.2015.07.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.
Collapse
Affiliation(s)
- Bruno Favery
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Stéphanie Jaubert-Possamai
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; Univ. Nice Sophia Antipolis, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France; CNRS, UMR 7254 Institut Sophia Agrobiotech, 06900 Sophia-Antipolis, France.
| |
Collapse
|
32
|
A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc Natl Acad Sci U S A 2015; 112:12669-74. [PMID: 26417108 DOI: 10.1073/pnas.1503657112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.
Collapse
|
33
|
Vieira P, Engler JDA. The plant cell inhibitor KRP6 is involved in multinucleation and cytokinesis disruption in giant-feeding cells induced by root-knot nematodes. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010924. [PMID: 25915833 PMCID: PMC4622652 DOI: 10.1080/15592324.2015.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
The plant cell cycle inhibitor gene KRP6 has been investigated in roots infected by plant-parasitic root-knot nematodes (Meloidogyne spp.). Unexpectedly, KRP6 overexpressing lines revealed a distinct role for this specific KRP as an activator of the mitotic cell cycle. This function was confirmed in Arabidopsis thaliana suspension cultures ectopically expressing KRP6. A blockage in the mitotic exit was observed in cell suspensions and in giant cells resulted in the appearance of multi-nucleated cells. KRP6 expression during nematode infection and the similarity in phenotypes among KRP6 overexpressing cell cultures and giant-cell morphology strongly suggest that KRP6 is involved in multinucleation and acytokinesis occurring in giant-cells. Once again nematodes have been shown to manipulate the plant cell cycle machinery in order to promote gall establishment.
Collapse
Affiliation(s)
- Paulo Vieira
- Lab. Nematologia/ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Núcleo da Mitra; Évora, Portugal
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique; UMR 1355 ISA/Center National de la Recherche Scientifique; UMR 7254 ISA/ Université de Nice-Sophia Antipolis; UMR ISA; Sophia-Antipolis, France
| |
Collapse
|