1
|
Zhou Y, Liu F, Yuan M, Liu X, Li Q, Zhao H. Herbicide prometryn aggravates the detrimental effects of heat stress on the potential for mutualism of Symbiodiniaceae. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137389. [PMID: 39893977 DOI: 10.1016/j.jhazmat.2025.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Ocean warming threatens the health of corals globally, and superimposed coastal environmental pollution can result in severe and irreversible coral bleaching. However, the responses of the coral symbiont Symbiodiniaceae to multiple stresses remain largely unknown. This study investigated the response of the coral symbiotic algae Cladocopium sp. to short-term exposure (4 days) to an environmentally relevant concentration (1 μg L-1) of the photosystem II (PSII) herbicide prometryn under heat stress (32 ℃) through physiological and omic analyses. These results showed that co-stress affected the photosynthetic efficiency of Cladocopium sp. negatively. Overproduction of reactive oxygen species and subsequent oxidative stress under co-stress activated distinct regulatory pathways in Cladocopium sp. Transcriptomic and proteomic analyses revealed that prometryn exacerbated heat stress-induced photosystem damage and reduced the regulatory capacity of Cladocopium sp. Moreover, co-stress disrupted energy metabolism, and further impaired nitrogen assimilation and nutrient transfer processes, potentially compromising the symbiotic potential between corals and Symbiodiniaceae. In summary, this study offers a valuable insight into understanding the molecular responses of Symbiodiniaceae to thermal and prometryn co-stress. It helps uncover the potential toxicity mechanisms induced by herbicide on coral symbionts in the context of climate change.
Collapse
Affiliation(s)
- Yanyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Fucun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Meile Yuan
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Yaguan Road, Tianjin 300350, China
| | - Qipei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Han X, Jiang J, Lu Z, Bai J, Qin X, Dong S. Crystal structure of cyclophilin 37 from Arabidopsis thaliana. Acta Crystallogr F Struct Biol Commun 2025; 81:171-176. [PMID: 40091855 PMCID: PMC11970123 DOI: 10.1107/s2053230x25001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Photosynthesis is the largest-scale energy and material conversion process on Earth. The cytchrome (Cyt) b6f complex plays a crucial role in photosynthesis. Under high-light conditions, cyclophilin 37 (CYP37) in Arabidopsis thaliana (AtCYP37) can interact with the PetA subunit of Cyt b6f, thereby helping plants initiate photoprotection. Here, we purified, crystallized and determined a 1.95 Å resolution structure of AtCYP37. Overall, AtCYP37 consists of an N-terminal domain dominated by α-helices and a C-terminal domain mainly composed of β-strands and random coils. The structure shows significant similarity to those of Anabaena sp. CYPA and A. thaliana CYP38. Understanding the structure of AtCYP37 is significant as it may help to decipher how plants regulate photosynthesis and protect against high light damage, contributing to a broader understanding of plant photobiology and potentially guiding future research in improving plant stress tolerance.
Collapse
Affiliation(s)
- Xing Han
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022People’s Republic of China
| | - Jiasheng Jiang
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022People’s Republic of China
| | - Zuokun Lu
- Food and Pharmacy CollegeXuchang UniversityXuchangHenan461000People’s Republic of China
| | - Jiayi Bai
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022People’s Republic of China
| | - Xiaochun Qin
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022People’s Republic of China
| | - Shishang Dong
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022People’s Republic of China
| |
Collapse
|
3
|
Hdedeh O, Mercier C, Poitout A, Martinière A, Zelazny E. Membrane nanodomains to shape plant cellular functions and signaling. THE NEW PHYTOLOGIST 2025; 245:1369-1385. [PMID: 39722237 PMCID: PMC11754938 DOI: 10.1111/nph.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Plasma membrane (PM) nanodomains have emerged as pivotal elements in the regulation of plant cellular functions and signal transduction. These nanoscale membrane regions, enriched in specific lipids and proteins, behave as regulatory/signaling hubs spatially and temporally coordinating critical cellular functions. In this review, we first examine the mechanisms underlying the formation and maintenance of PM nanodomains in plant cells, highlighting the roles of PM lipid composition, protein oligomerization and interactions with cytoskeletal and cell wall components. Then, we discuss how nanodomains act as organizing centers by mediating protein-protein interactions that orchestrate essential processes such as symbiosis, defense against pathogens, ion transport or hormonal and reactive oxygen species (ROS) signaling. Finally, we introduce the concept of nanoenvironments, where localized physicochemical variations are generated in the very close proximity of PM nanodomains, in response to stimuli. After decoding by a dedicated machinery likely localized in the vicinity of nanodomains, this enrichment of secondary messengers, such as ROS or Ca2+, would allow specific downstream cellular responses. This review provides insights into the dynamic nature of nanodomains and proposes future research to better understand their contribution to the intricate signaling networks that govern plant development and stress responses.
Collapse
Affiliation(s)
- Omar Hdedeh
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | - Caroline Mercier
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | - Arthur Poitout
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| | | | - Enric Zelazny
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut AgroMontpellier34000France
| |
Collapse
|
4
|
Trotta A, Gunell S, Bajwa AA, Paakkarinen V, Fujii H, Aro E. Defining the heterogeneous composition of Arabidopsis thylakoid membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17259. [PMID: 39930594 PMCID: PMC11811488 DOI: 10.1111/tpj.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 02/14/2025]
Abstract
Thylakoid membrane (TM) of land plants is organized into an appressed domain (grana), enriched in photosystem (PS) II and a non-appressed domain (stroma lamellae) enriched in PSI. This ultrastructure controls the exciton spillover from PSII to PSI. The bulky machinery required for the biogenesis and repair of TM protein complexes is located in the non-appressed membranes. Thus, the connecting domain (CD) between grana and stroma lamellae is the key player in both the structural and functional integrity of the photosynthetic machinery. In addition, both the grana domain and the stroma lamellae are highly curved at their edges due to the action of the CURVATURE1 (CURT1) proteins, forming a domain distinct from the CD, called the curvature. Here we elucidate the biochemical properties and proteome composition of different thylakoid domains. To this end, the TM of Arabidopsis thaliana (Arabidopsis), isolated both in the natural stacked configuration and in an artificially unstacked configuration to induce a homogeneous protein composition, was solubilized and fractionated, using the mild detergent digitonin (DIG). Using mass spectrometry-based proteomics, we characterize composition, distribution and interaction of proteins involved in TM function in grana, CD and stroma lamellae domains. We find that a subset of thylakoid protein complexes are readily solubilized into small vesicles by DIG and accumulate in a loose pellet (LP) together with CURT1. By combining an extensive biochemical and proteome characterization of the TM fractions we provide an optimized protocol and proteome maps that can be used as a basis for experimental design in photosynthesis research.
Collapse
Affiliation(s)
- Andrea Trotta
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR)via Madonna del Piano, 10Sesto FiorentinoFirenze50019Italy
| | - Sanna Gunell
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
| | - Azfar Ali Bajwa
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
| | - Hiroaki Fujii
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFIN‐20014Finland
| |
Collapse
|
5
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
6
|
Vasilev C, Nguyen J, Bowie AGM, Mayneord GE, Martin EC, Hitchcock A, Pogorelov TV, Singharoy A, Hunter CN, Johnson MP. Single-Molecule Detection of the Encounter and Productive Electron Transfer Complexes of a Photosynthetic Reaction Center. J Am Chem Soc 2024; 146:20019-20032. [PMID: 38991108 PMCID: PMC11273609 DOI: 10.1021/jacs.4c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Jon Nguyen
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Adam G. M. Bowie
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Guy E. Mayneord
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Elizabeth C. Martin
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Taras V. Pogorelov
- Department
of Chemistry, Center for Biophysics and Quantitative Biology, Beckman
Institute for Advanced Science and Technology, National Center for
Supercomputing Applications, School of Chemical Sciences, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
| |
Collapse
|
7
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
8
|
Bos PR, Berentsen J, Wientjes E. Expansion microscopy resolves the thylakoid structure of spinach. PLANT PHYSIOLOGY 2023; 194:347-358. [PMID: 37792700 PMCID: PMC10756755 DOI: 10.1093/plphys/kiad526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
The light-harvesting reactions of photosynthesis take place on the thylakoid membrane inside chloroplasts. The thylakoid membrane is folded into appressed membranes, the grana, and nonappressed membranes that interconnect the grana, the stroma lamellae. This folding is essential for the correct functioning of photosynthesis. Electron microscopy and atomic force microscopy are commonly used to study the thylakoid membrane, but these techniques have limitations in visualizing a complete chloroplast and its organization. To overcome this limitation, we applied expansion microscopy (ExM) on isolated chloroplasts. ExM is a technique that involves physically expanding a sample in a swellable hydrogel to enhance the spatial resolution of fluorescence microscopy. Using all-protein staining, we visualized the 3D structure of spinach (Spinacia oleracea) thylakoids in detail. We were able to resolve stroma lamellae that were 60 nm apart and observe their helical wrapping around the grana. Furthermore, we accurately measured the dimensions of grana from top views of chloroplasts, which allow for precise determination of the granum diameter. Our results demonstrate that ExM is a fast and reliable technique for studying thylakoid organization in great detail.
Collapse
Affiliation(s)
- Peter R Bos
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| | - Jarne Berentsen
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| |
Collapse
|
9
|
Lan Y, Chen Q, Mi H. NdhS interacts with cytochrome b 6 f to form a complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:706-716. [PMID: 37493543 DOI: 10.1111/tpj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.
Collapse
Affiliation(s)
- Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
10
|
Mishima K, Kano N. Contribution Factors of the First Kind Calculated for the Marcus Electron-Transfer Rate and Their Applications. J Phys Chem B 2023; 127:8509-8524. [PMID: 37782079 DOI: 10.1021/acs.jpcb.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this study, we applied the concept of the "contribution factor of the first kind (CFFK)" to the original electron-transfer (ET) rate theory proposed by Marcus. Mathematical derivations provided simple and convenient formulas for estimating the relative contributions of ten physical and chemical parameters involved in the Marcus ET rate formula: (1) the maximum strength of the electronic coupling energy between two molecules, (2) the exponential decay rate of the electronic coupling energy versus the distance between both molecules, (3) the distance between both molecules, (4) the equilibrium distance between both molecules, (5) the Gibbs free energy, (6) reorganization free energy in the prefactor of the Marcus ET rate equation, (7) reorganization free energy in the denominator of the exponential term, (8) reorganization free energy in the argument of the exponential term, (9) Boltzmann constant times absolute temperature in the prefactor of the rate equation, and (10) Boltzmann constant times absolute temperature in the denominator of the exponential term. We applied our theories to (i) ET reactions at bacterial photosynthesis reaction centers, PSI and PSII, and soluble ferredoxins (Fd); (ii) intraprotein ET reactions for designed azurin mutants; and (iii) ET reactions in flavodoxin (Fld). The formulas and calculations suggest that the theory behind the CFFK is useful for quantitatively identifying major and minor physical and chemical factors and corresponding trade-offs, all of which affect the magnitude of the Marcus ET rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Independent Researcher, Bunkyo-ku, Tokyo 113-0024, Japan
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
11
|
Svoboda V, Oung HMO, Koochak H, Yarbrough R, Mckenzie SD, Puthiyaveetil S, Kirchhoff H. Quantification of energy-converting protein complexes in plant thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148945. [PMID: 36442511 DOI: 10.1016/j.bbabio.2022.148945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Knowledge about the exact abundance and ratio of photosynthetic protein complexes in thylakoid membranes is central to understanding structure-function relationships in energy conversion. Recent modeling approaches for studying light harvesting and electron transport reactions rely on quantitative information on the constituent complexes in thylakoid membranes. Over the last decades several quantitative methods have been established and refined, enabling precise stoichiometric information on the five main energy-converting building blocks in the thylakoid membrane: Light-harvesting complex II (LHCII), Photosystem II (PSII), Photosystem I (PSI), cytochrome b6f complex (cyt b6f complex), and ATPase. This paper summarizes a few quantitative spectroscopic and biochemical methods that are currently available for quantification of plant thylakoid protein complexes. Two new methods are presented for quantification of LHCII and the cyt b6f complex, which agree well with established methods. In addition, recent improvements in mass spectrometry (MS) allow deeper compositional information on thylakoid membranes. The comparison between mass spectrometric and more classical protein quantification methods shows similar quantities of complexes, confirming the potential of thylakoid protein complex quantification by MS. The quantitative information on PSII, PSI, and LHCII reveal that about one third of LHCII must be associated with PSI for a balanced light energy absorption by the two photosystems.
Collapse
Affiliation(s)
- Vaclav Svoboda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Hui Min Olivia Oung
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Haniyeh Koochak
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Robert Yarbrough
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Steven D Mckenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
12
|
Maroudas‐Sklare N, Kolodny Y, Yochelis S, Keren N, Paltiel Y. Controlling photosynthetic energy conversion by small conformational changes. PHYSIOLOGIA PLANTARUM 2022; 174:e13802. [PMID: 36259916 PMCID: PMC9828261 DOI: 10.1111/ppl.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Control phenomena in biology usually refer to changes in gene expression and protein translation and modification. In this paper, another mode of regulation is highlighted; we propose that photosynthetic organisms can harness the interplay between localization and delocalization of energy transfer by utilizing small conformational changes in the structure of light-harvesting complexes. We examine the mechanism of energy transfer in photosynthetic pigment-protein complexes, first through the scope of theoretical work and then by in vitro studies of these complexes. Next, the biological relevance to evolutionary fitness of this localization-delocalization switch is explored by in vivo experiments on desert crust and marine cyanobacteria, which are both exposed to rapidly changing environmental conditions. These examples demonstrate the flexibility and low energy cost of this mechanism, making it a competitive survival strategy.
Collapse
Affiliation(s)
- Naama Maroudas‐Sklare
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yuval Kolodny
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Shira Yochelis
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yossi Paltiel
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
13
|
Zhao Z, Yang H, Feng Z, Huo Y, Fu L, Zhou D. Role of naphthaleneacetic acid in the degradation of bisphenol A and wastewater treatment by microalgae: Enhancement and signaling. CHEMOSPHERE 2022; 307:135829. [PMID: 35948092 DOI: 10.1016/j.chemosphere.2022.135829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Coupling microalgae cultivation with wastewater treatment is a promising environmentally sustainable development strategy. However, toxics such as Bisphenol A (BPA) in wastewater damage microalgae cells and reduces bioresources production. Phytohormone regulation has the potential to solve this issue. However, phytohormone research is still in its infancy. In this work, 0.2 μM naphthyl acetic acid (NAA) significantly enhanced Chlorella vulgaris BPA detoxification by 127.3% and Chlorella biomass production by 46.4%. NAA helps Chlorella convert bisphenol A into small non-toxic intermediates by enhancing the expression of associated enzymes. Simultaneously, NAA promoted carbon fixation and photosynthetic metabolism. Activation of the mitogen-activated protein kinase (MAPK) pathway strengthened the downstream antioxidant system while improving photosynthesis and intracellular starch and lipid synthesis. Carbohydrates, pigment, and lipid production was significantly enhanced by 20.0%, 46.9%, and 21.8%, respectively. A new insight is provided into how phytohormones may increase microalgae in wastewater's bioresource transformation and toxicity resistance.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhixuan Feng
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- College of Physics, Northeast Normal University, Changchun, 130117, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
14
|
Zhao LS, Li CY, Chen XL, Wang Q, Zhang YZ, Liu LN. Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. PLANT PHYSIOLOGY 2022; 190:1883-1895. [PMID: 35947692 PMCID: PMC9614513 DOI: 10.1093/plphys/kiac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient solar energy conversion is ensured by the organization, physical association, and physiological coordination of various protein complexes in photosynthetic membranes. Here, we visualize the native architecture and interactions of photosynthetic complexes within the thylakoid membranes from a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) using high-resolution atomic force microscopy. In the Syn2973 thylakoid membranes, both photosystem I (PSI)-enriched domains and crystalline photosystem II (PSII) dimer arrays were observed, providing favorable membrane environments for photosynthetic electron transport. The high light (HL)-adapted thylakoid membranes accommodated a large amount of PSI complexes, without the incorporation of iron-stress-induced protein A (IsiA) assemblies and formation of IsiA-PSI supercomplexes. In the iron deficiency (Fe-)-treated thylakoid membranes, in contrast, IsiA proteins densely associated with PSI, forming the IsiA-PSI supercomplexes with varying assembly structures. Moreover, type-I NADH dehydrogenase-like complexes (NDH-1) were upregulated under the HL and Fe- conditions and established close association with PSI complexes to facilitate cyclic electron transport. Our study provides insight into the structural heterogeneity and plasticity of the photosynthetic apparatus in the context of their native membranes in Syn2973 under environmental stress. Advanced understanding of the photosynthetic membrane organization and adaptation will provide a framework for uncovering the molecular mechanisms of efficient light harvesting and energy conversion.
Collapse
Affiliation(s)
| | - Chun-Yang Li
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, 475004 Kaifeng, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu-Ning Liu
- Author of correspondence: (L.-N.L.), (L.-S.Z.)
| |
Collapse
|
15
|
Zamora RA, López-Ortiz M, Sales-Mateo M, Hu C, Croce R, Maniyara RA, Pruneri V, Giannotti MI, Gorostiza P. Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer. ACS NANO 2022; 16:15155-15164. [PMID: 36067071 DOI: 10.1021/acsnano.2c06454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
Collapse
Affiliation(s)
- Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Montserrat Sales-Mateo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Chen Hu
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rinu Abraham Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
16
|
Huang X, Qin B, Xia S, Su Y, Ku W, Chen R, Peng K. A comparative study on the effects of strong light stress on the photosynthetic characteristics of the shade plant Camellia petelotii (Merr.) Sealy. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ksas B, Alric J, Caffarri S, Havaux M. Plastoquinone homeostasis in plant acclimation to light intensity. PHOTOSYNTHESIS RESEARCH 2022; 152:43-54. [PMID: 35000138 DOI: 10.1007/s11120-021-00889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m-2 s-1. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg-1 leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to ca. 400 pmol mg-1 in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.
Collapse
Affiliation(s)
- Brigitte Ksas
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, City of Energies, CEA Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Jean Alric
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, City of Energies, CEA Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Stefano Caffarri
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, 13009, Marseille, France
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, City of Energies, CEA Cadarache, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
18
|
Sattari Vayghan H, Nawrocki WJ, Schiphorst C, Tolleter D, Hu C, Douet V, Glauser G, Finazzi G, Croce R, Wientjes E, Longoni F. Photosynthetic Light Harvesting and Thylakoid Organization in a CRISPR/Cas9 Arabidopsis Thaliana LHCB1 Knockout Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:833032. [PMID: 35330875 PMCID: PMC8940271 DOI: 10.3389/fpls.2022.833032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Light absorbed by chlorophylls of Photosystems II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of LHCII. In absence of LHCB1, the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss, leading to a pale green phenotype and growth delay. The Photosystem II absorption cross-section was smaller, while the Photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring Photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by lower Photosystem I over Photosystem II reaction center ratio and by the dephosphorylation of LHCII and Photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knockout lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.
Collapse
Affiliation(s)
- Hamed Sattari Vayghan
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Wojciech J. Nawrocki
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christo Schiphorst
- Laboratory of Biophysics, Wageningen University, Wageningen, Netherlands
| | - Dimitri Tolleter
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Chen Hu
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Véronique Douet
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, Netherlands
| | - Fiamma Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
19
|
Vasilev C, Swainsbury DJK, Cartron ML, Martin EC, Kumar S, Hobbs JK, Johnson MP, Hitchcock A, Hunter CN. FRET measurement of cytochrome bc 1 and reaction centre complex proximity in live Rhodobacter sphaeroides cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148508. [PMID: 34793767 DOI: 10.1016/j.bbabio.2021.148508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Michael L Cartron
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Elizabeth C Martin
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Sandip Kumar
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom
| | - Matthew P Johnson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
20
|
Ostermeier M, Heinz S, Hamm J, Zabret J, Rast A, Klingl A, Nowaczyk MM, Nickelsen J. Thylakoid attachment to the plasma membrane in Synechocystis sp. PCC 6803 requires the AncM protein. THE PLANT CELL 2022; 34:655-678. [PMID: 34665262 PMCID: PMC8846179 DOI: 10.1093/plcell/koab253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Thylakoids are the highly specialized internal membrane systems that harbor the photosynthetic electron transport machinery in cyanobacteria and in chloroplasts. In Synechocystis sp. PCC 6803, thylakoid membranes (TMs) are arranged in peripheral sheets that occasionally converge on the plasma membrane (PM) to form thylakoid convergence membranes (TCMs). TCMs connect several thylakoid sheets and form local contact sites called thylapses between the two membrane systems, at which the early steps of photosystem II (PSII) assembly occur. The protein CurT is one of the main drivers of TCM formation known so far. Here, we identify, by whole-genome sequencing of a curT- suppressor strain, the protein anchor of convergence membranes (AncM) as a factor required for the attachment of thylakoids to the PM at thylapses. An ancM- mutant is shown to have a photosynthetic phenotype characterized by reductions in oxygen-evolution rate, PSII accumulation, and PS assembly. Moreover, the ancM- strain exhibits an altered thylakoid ultrastructure with additional sheets and TCMs detached from the PM. By combining biochemical studies with fluorescence and correlative light-electron microscopy-based approaches, we show that AncM is an integral membrane protein located in biogenic TCMs that form thylapses. These data suggest an antagonistic function of AncM and CurT in shaping TM ultrastructure.
Collapse
Affiliation(s)
- Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Steffen Heinz
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Julia Hamm
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Jure Zabret
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anna Rast
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Department of Plant Development, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
21
|
Qiu S, Wu Z, Chen Z, Abbew AW, Li J, Ge S. Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:585-594. [PMID: 34933554 DOI: 10.1021/acs.est.1c05503] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH4+-N and PO43--P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| |
Collapse
|
22
|
Meredith SA, Yoneda T, Hancock AM, Connell SD, Evans SD, Morigaki K, Adams PG. Model Lipid Membranes Assembled from Natural Plant Thylakoids into 2D Microarray Patterns as a Platform to Assess the Organization and Photophysics of Light-Harvesting Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006608. [PMID: 33690933 PMCID: PMC11476343 DOI: 10.1002/smll.202006608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Natural photosynthetic "thylakoid" membranes found in green plants contain a large network of light-harvesting (LH) protein complexes. Rearrangement of this photosynthetic machinery, laterally within stacked membranes called "grana", alters protein-protein interactions leading to changes in the energy balance within the system. Preparation of an experimentally accessible model system that allows the detailed investigation of these complex interactions can be achieved by interfacing thylakoid membranes and synthetic lipids into a template comprised of polymerized lipids in a 2D microarray pattern on glass surfaces. This paper uses this system to interrogate the behavior of LH proteins at the micro- and nanoscale and assesses the efficacy of this model. A combination of fluorescence lifetime imaging and atomic force microscopy reveals the differences in photophysical state and lateral organization between native thylakoid and hybrid membranes, the mechanism of LH protein incorporation into the developing hybrid membranes, and the nanoscale structure of the system. The resulting model system within each corral is a high-quality supported lipid bilayer that incorporates laterally mobile LH proteins. Photosynthetic activity is assessed in the hybrid membranes versus proteoliposomes, revealing that commonly used photochemical assays to test the electron transfer activity of photosystem II may actually produce false-positive results.
Collapse
Affiliation(s)
- Sophie A. Meredith
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Takuro Yoneda
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Ashley M. Hancock
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Simon D. Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Stephen D. Evans
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research CenterKobe UniversityRokkodaicho 1‐1, NadaKobe657‐8501Japan
| | - Peter G. Adams
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
23
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
25
|
Hepworth C, Wood WHJ, Emrich-Mills TZ, Proctor MS, Casson S, Johnson MP. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. NATURE PLANTS 2021. [PMID: 33432159 DOI: 10.1038/s41477-020-00828-823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
TAP38/STN7-dependent (de)phosphorylation of light-harvesting complex II (LHCII) regulates the relative excitation rates of photosystems I and II (PSI, PSII) (state transitions) and the size of the thylakoid grana stacks (dynamic thylakoid stacking). Yet, it remains unclear how changing grana size benefits photosynthesis and whether these two regulatory mechanisms function independently. Here, by comparing Arabidopsis wild-type, stn7 and tap38 plants with the psal mutant, which undergoes dynamic thylakoid stacking but lacks state transitions, we explain their distinct roles. Under low light, smaller grana increase the rate of PSI reduction and photosynthesis by reducing the diffusion distance for plastoquinol; however, this beneficial effect is only apparent when PSI/PSII excitation balance is maintained by state transitions or far-red light. Under high light, the larger grana slow plastoquinol diffusion and lower the equilibrium constant between plastocyanin and PSI, maximizing photosynthesis by avoiding PSI photoinhibition. Loss of state transitions in low light or maintenance of smaller grana in high light also both bring about a decrease in cyclic electron transfer and over-reduction of the PSI acceptor side. These results demonstrate that state transitions and dynamic thylakoid stacking work synergistically to regulate photosynthesis in variable light.
Collapse
Affiliation(s)
- Christopher Hepworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Tom Z Emrich-Mills
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
26
|
Hepworth C, Wood WHJ, Emrich-Mills TZ, Proctor MS, Casson S, Johnson MP. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. NATURE PLANTS 2021; 7:87-98. [PMID: 33432159 DOI: 10.1038/s41477-020-00828-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/04/2020] [Indexed: 05/11/2023]
Abstract
TAP38/STN7-dependent (de)phosphorylation of light-harvesting complex II (LHCII) regulates the relative excitation rates of photosystems I and II (PSI, PSII) (state transitions) and the size of the thylakoid grana stacks (dynamic thylakoid stacking). Yet, it remains unclear how changing grana size benefits photosynthesis and whether these two regulatory mechanisms function independently. Here, by comparing Arabidopsis wild-type, stn7 and tap38 plants with the psal mutant, which undergoes dynamic thylakoid stacking but lacks state transitions, we explain their distinct roles. Under low light, smaller grana increase the rate of PSI reduction and photosynthesis by reducing the diffusion distance for plastoquinol; however, this beneficial effect is only apparent when PSI/PSII excitation balance is maintained by state transitions or far-red light. Under high light, the larger grana slow plastoquinol diffusion and lower the equilibrium constant between plastocyanin and PSI, maximizing photosynthesis by avoiding PSI photoinhibition. Loss of state transitions in low light or maintenance of smaller grana in high light also both bring about a decrease in cyclic electron transfer and over-reduction of the PSI acceptor side. These results demonstrate that state transitions and dynamic thylakoid stacking work synergistically to regulate photosynthesis in variable light.
Collapse
Affiliation(s)
- Christopher Hepworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Tom Z Emrich-Mills
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
27
|
Havaux M. Plastoquinone In and Beyond Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:1252-1265. [PMID: 32713776 DOI: 10.1016/j.tplants.2020.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 05/13/2023]
Abstract
Plastoquinone-9 (PQ-9) is an essential component of photosynthesis that carries electrons in the linear and alternative electron transport chains, and is also a redox sensor that regulates state transitions and gene expression. However, a large fraction of the PQ pool is located outside the thylakoid membranes, in the plastoglobules and the chloroplast envelopes, reflecting a wider range of functions beyond electron transport. This review describes new functions of PQ in photoprotection, as a potent antioxidant, and in chloroplast metabolism as a cofactor in the biosynthesis of chloroplast metabolites. It also focuses on the essential need for tight environmental control of PQ biosynthesis and for active exchange of this compound between the thylakoid membranes and the plastoglobules. Through its multiple functions, PQ connects photosynthesis with metabolism, light acclimation, and stress tolerance.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7265, Biosciences and Biotechnologies Institute of Aix-Marseille, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
28
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
29
|
Staehelin LA, Paolillo DJ. A brief history of how microscopic studies led to the elucidation of the 3D architecture and macromolecular organization of higher plant thylakoids. PHOTOSYNTHESIS RESEARCH 2020; 145:237-258. [PMID: 33017036 PMCID: PMC7541383 DOI: 10.1007/s11120-020-00782-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 05/30/2023]
Abstract
Microscopic studies of chloroplasts can be traced back to the year 1678 when Antonie van Leeuwenhoek reported to the Royal Society in London that he saw green globules in grass leaf cells with his single-lens microscope. Since then, microscopic studies have continued to contribute critical insights into the complex architecture of chloroplast membranes and how their structure relates to function. This review is organized into three chronological sections: During the classic light microscope period (1678-1940), the development of improved microscopes led to the identification of green grana, a colorless stroma, and a membrane envelope. More recent (1990-2020) chloroplast dynamic studies have benefited from laser confocal and 3D-structured illumination microscopy. The development of the transmission electron microscope (1940-2000) and thin sectioning techniques demonstrated that grana consist of stacks of closely appressed grana thylakoids interconnected by non-appressed stroma thylakoids. When the stroma thylakoids were shown to spiral around the grana stacks as multiple right-handed helices, it was confirmed that the membranes of a chloroplast are all interconnected. Freeze-fracture and freeze-etch methods verified the helical nature of the stroma thylakoids, while also providing precise information on how the electron transport chain and ATP synthase complexes are non-randomly distributed between grana and stroma membrane regions. The last section (2000-2020) focuses on the most recent discoveries made possible by atomic force microscopy of hydrated membranes, and electron tomography and cryo-electron tomography of cryofixed thylakoids. These investigations have provided novel insights into thylakoid architecture and plastoglobules (summarized in a new thylakoid model), while also producing molecular-scale views of grana and stroma thylakoids in which individual functional complexes can be identified.
Collapse
Affiliation(s)
- L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, UCB 347, University of Colorado, Boulder, CO, 80309-0347, USA.
| | - Dominick J Paolillo
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
30
|
Bhaduri S, Singh SK, Cohn W, Hasan SS, Whitelegge JP, Cramer WA. A novel chloroplast super-complex consisting of the ATP synthase and photosystem I reaction center. PLoS One 2020; 15:e0237569. [PMID: 32817667 PMCID: PMC7444523 DOI: 10.1371/journal.pone.0237569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/29/2020] [Indexed: 11/18/2022] Open
Abstract
Several 'super-complexes' of individual hetero-oligomeric membrane protein complexes, whose function is to facilitate intra-membrane electron and proton transfer and harvesting of light energy, have been previously characterized in the mitochondrial cristae and chloroplast thylakoid membranes. We report the presence of an intra-membrane super-complex dominated by the ATP-synthase, photosystem I (PSI) reaction-center complex and the ferredoxin-NADP+ Reductase (FNR) in the thylakoid membrane. The presence of the super-complex has been documented by mass spectrometry, clear-native PAGE and Western Blot analyses. This is the first documented presence of ATP synthase in a super-complex with the PSI reaction-center located in the non-appressed stromal domain of the thylakoid membrane.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Sandeep K Singh
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California/Los Angeles, Los Angeles, California, United States of America
| | - S. Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California/Los Angeles, Los Angeles, California, United States of America
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
31
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T. Structural Dynamics of a Protein Domain Relevant to the Water-Oxidizing Complex in Photosystem II as Visualized by High-Speed Atomic Force Microscopy. J Phys Chem B 2020; 124:5847-5857. [PMID: 32551630 DOI: 10.1021/acs.jpcb.0c03892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosystem II (PSII) is a multiprotein complex that has a function of light-driven water oxidation. The catalytic site of water oxidation is the Mn4CaO5 cluster, which is bound to the lumenal side of PSII through amino acid residues from the D1 and CP43 proteins and is further surrounded by the extrinsic proteins. In this study, we have for the first time visualized the structural dynamics of the lumenal region of a PSII core complex using high-speed atomic force microscopy (HS-AFM). The HS-AFM images of a PSII membrane fragment showed stepwise dissociation of the PsbP and PsbO extrinsic proteins. Upon subsequent destruction of the Mn4CaO5 cluster, the lumenal domain of CP43 was found to undergo a conformational fluctuation. The observed structural flexibility and conformational fluctuation of the CP43 lumenal domain are suggested to play important roles in the biogenesis of PSII and the photoassembly of the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shogo Sugiyama
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Wood WHJ, Johnson MP. Modeling the Role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII Interactions in State Transitions. Biophys J 2020; 119:287-299. [PMID: 32621865 DOI: 10.1016/j.bpj.2020.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
The light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition that regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting complex II (LHCII), which cause a decrease in grana diameter and stacking, a decrease in energetic connectivity between photosystem II (PSII) reaction centers, and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intramembrane lateral PSII-LHCII and LHCII-LHCII interactions and the intermembrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.
Collapse
Affiliation(s)
- William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
34
|
Yoneda T, Tanimoto Y, Takagi D, Morigaki K. Photosynthetic Model Membranes of Natural Plant Thylakoid Embedded in a Patterned Polymeric Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5863-5871. [PMID: 32390435 DOI: 10.1021/acs.langmuir.0c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thylakoid membranes in the chloroplast of plants, algae, and cyanobacteria are the powerhouse of photosynthesis, capturing solar energy and converting it into chemical energy. Although their structures and functions have been extensively studied, the intrinsically heterogeneous and dynamic nature of the membrane structures is still not fully understood. Investigating native thylakoid membranes in vivo is difficult due to their small size and limited external access to the chloroplast interior, while the bottom-up approaches based on model systems have been hampered by the sheer complexity of the native membrane. Here, we try to fill the gap by reconstituting the whole thylakoid membrane into a patterned substrate-supported planer bilayer. A mixture of thylakoid membrane purified from spinach leaves and synthetic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles spontaneously formed a laterally continuous and fluid two-dimensional (2D) membrane in the scaffold of the patterned polymeric bilayer. Chlorophyll fluorescence arising from photosystem II (PSII) recovered after photobleaching, suggesting that the membrane components are laterally mobile. The reversible changes of chlorophyll fluorescence in the presence of the electron acceptors and/or inhibitors indicated that the electron transfer activity of PSII was retained. Furthermore, we confirmed the electron transfer activity of photosystem I (PSI) by observing the generation of nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of water-soluble ferredoxin and ferredoxin-NADP+ reductase. The lateral mobility of membrane-bound molecules and the functional reconstitution of major photosystems provide evidence that our hybrid thylakoid membranes could be an excellent experimental platform to study the 2D molecular organization and machinery of photosynthesis.
Collapse
Affiliation(s)
- Takuro Yoneda
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aranaki, Aoba, Sendai 980-0845, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi KK. Atomic Force Microscopy Visualizes Mobility of Photosynthetic Proteins in Grana Thylakoid Membranes. Biophys J 2020; 118:1876-1886. [PMID: 32224302 PMCID: PMC7175462 DOI: 10.1016/j.bpj.2020.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Thylakoid membranes in chloroplasts contain photosynthetic protein complexes that convert light energy into chemical energy. Photosynthetic protein complexes are considered to undergo structural reorganization to maintain the efficiency of photochemical reactions. A detailed description of the mobility of photosynthetic complexes in real time is necessary to understand how macromolecular organization of the membrane is altered by environmental fluctuations. Here, we used high-speed atomic force microscopy to visualize and characterize the in situ mobility of individual protein complexes in grana thylakoid membranes isolated from Spinacia oleracea. Our observations reveal that these membranes can harbor complexes with at least two distinctive classes of mobility. A large fraction of grana membranes contained proteins with quasistatic mobility exhibiting molecular displacements smaller than 10 nm2. In the remaining fraction, the protein mobility is variable with molecular displacements of up to 100 nm2. This visualization at high spatiotemporal resolution enabled us to estimate an average diffusion coefficient of ∼1 nm2 s-1. Interestingly, both confined and Brownian diffusion models could describe the protein mobility of the second group of membranes. We also provide the first direct evidence, to our knowledge, of rotational diffusion of photosynthetic complexes. The rotational diffusion of photosynthetic complexes could be an adaptive response to the high protein density in the membrane to guarantee the efficiency of electron transfer reactions. This characterization of the mobility of individual photosynthetic complexes in grana membranes establishes a foundation that could be adapted to study the dynamics of the complexes inside intact and photosynthetically functional thylakoid membranes to be able to understand its structural responses to diverse environmental fluctuations.
Collapse
Affiliation(s)
- Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, California.
| | - Shingo Fukuda
- Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Carlos Bustamante
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, California; Department of Physics, University of California, Berkeley, California; Kavli Energy NanoScience Institute, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California.
| |
Collapse
|
36
|
Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A, Plitzko JM, Baumeister W, Engel BD. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 2020; 9:53740. [PMID: 32297859 PMCID: PMC7164959 DOI: 10.7554/elife.53740] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Thylakoid membranes scaffold an assortment of large protein complexes that work together to harness the energy of light. It has been a longstanding challenge to visualize how the intricate thylakoid network organizes these protein complexes to finely tune the photosynthetic reactions. Previously, we used in situ cryo-electron tomography to reveal the native architecture of thylakoid membranes (Engel et al., 2015). Here, we leverage technical advances to resolve the individual protein complexes within these membranes. Combined with a new method to visualize membrane surface topology, we map the molecular landscapes of thylakoid membranes inside green algae cells. Our tomograms provide insights into the molecular forces that drive thylakoid stacking and reveal that photosystems I and II are strictly segregated at the borders between appressed and non-appressed membrane domains. This new approach to charting thylakoid topology lays the foundation for dissecting photosynthetic regulation at the level of single protein complexes within the cell.
Collapse
Affiliation(s)
- Wojciech Wietrzynski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Benjamin D Engel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
37
|
McKenzie SD, Ibrahim IM, Aryal UK, Puthiyaveetil S. Stoichiometry of protein complexes in plant photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148141. [DOI: 10.1016/j.bbabio.2019.148141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
38
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
39
|
MacGregor-Chatwin C, Jackson PJ, Sener M, Chidgey JW, Hitchcock A, Qian P, Mayneord GE, Johnson MP, Luthey-Schulten Z, Dickman MJ, Scanlan DJ, Hunter CN. Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. NATURE PLANTS 2019; 5:879-889. [PMID: 31332310 PMCID: PMC6699766 DOI: 10.1038/s41477-019-0475-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/13/2019] [Indexed: 05/20/2023]
Abstract
Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light, low-light and nutrient-poor ecological niches. We used atomic force microscopy to image the different photosystem I (PSI) membrane architectures of the MED4 (high-light) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (low-light) and SS120 (low-light) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome b6f complexes and the various Pcb proteins in the thylakoid membrane. Atomic force microscopy topographs and structural modelling revealed a series of specialized PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the low-light MIT9313 is organized into a tightly packed pseudo-hexagonal lattice that maximizes harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly twofold more PSII than PSI in SS120, which also has a lower content of cytochrome b6f complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb-PSI supercomplexes that economize on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels.
Collapse
Affiliation(s)
- C MacGregor-Chatwin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - P J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - M Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J W Chidgey
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - A Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - P Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - G E Mayneord
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - M P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Z Luthey-Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - D J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - C N Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
40
|
Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome bf electron transfer complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:591-599. [DOI: 10.1016/j.bbabio.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
|
41
|
Kirchhoff H. Chloroplast ultrastructure in plants. THE NEW PHYTOLOGIST 2019; 223:565-574. [PMID: 30721547 DOI: 10.1111/nph.15730] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/25/2019] [Indexed: 05/23/2023]
Abstract
The chloroplast organelle in mesophyll cells of higher plants represents a sunlight-driven metabolic factory that eventually fuels life on our planet. Knowledge of the ultrastructure and the dynamics of this unique organelle is essential to understanding its function in an ever-changing and challenging environment. Recent technological developments promise unprecedented insights into chloroplast architecture and its functionality. The review highlights these new methodical approaches and provides structural models based on recent findings about the plasticity of the thylakoid membrane system in response to different light regimes. Furthermore, the potential role of the lipid droplets plastoglobuli is discussed. It is emphasized that detailed structural insights are necessary on different levels ranging from molecules to entire membrane systems for a holistic understanding of chloroplast function.
Collapse
Affiliation(s)
- Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| |
Collapse
|
42
|
Johnson MP, Wientjes E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148039. [PMID: 31228404 DOI: 10.1016/j.bbabio.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
The higher plant chloroplast thylakoid membrane system performs the light-dependent reactions of photosynthesis. These provide the ATP and NADPH required for the fixation of CO2 into biomass by the Calvin-Benson cycle and a range of other metabolic reactions in the stroma. Land plants are frequently challenged by fluctuations in their environment, such as light, nutrient and water availability, which can create a mismatch between the amounts of ATP and NADPH produced and the amounts required by the downstream metabolism. Left unchecked, such imbalances can lead to the production of reactive oxygen species that damage the plant and harm productivity. Fortunately, plants have evolved a complex range of regulatory processes to avoid or minimize such deleterious effects by controlling the efficiency of light harvesting and electron transfer in the thylakoid membrane. Generally the regulation of the light reactions has been studied and conceptualised at the microscopic level of protein-protein and protein-ligand interactions, however in recent years dynamic changes in the thylakoid macrostructure itself have been recognised to play a significant role in regulating light harvesting and electron transfer. Here we review the evidence for the involvement of macrostructural changes in photosynthetic regulation and review the techniques that brought this evidence to light.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
43
|
Cramer WA. Structure-function of the cytochrome b 6f lipoprotein complex: a scientific odyssey and personal perspective. PHOTOSYNTHESIS RESEARCH 2019; 139:53-65. [PMID: 30311133 PMCID: PMC6510485 DOI: 10.1007/s11120-018-0585-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/15/2018] [Indexed: 05/04/2023]
Abstract
Structure-function studies of the cytochrome b6f complex, the central hetero-oligomeric membrane protein complex in the electron transport chain of oxygenic photosynthesis, which formed the basis for a high-resolution (2.5 Å) crystallographic solution of the complex, are described. Structure-function differences between the structure of subunits of the bc complexes, b6f, and bc1 from mitochondria and photosynthetic bacteria, which are often assumed to function identically, are discussed. Major differences which suggest that quinone-dependent electron transport pathways can vary in b6f and bc1 complexes are as follows: (a) an additional c-type heme, cn, and bound single copies of chlorophyll a and β-carotene in the b6f complex; and (b) a cyclic electron transport pathway that encompasses the b6f and PSI reaction center complexes. The importance of including lipid in crystallization of the cytochrome complex, or with any hetero-oligomeric membrane protein complex, is emphasized, and consequences to structure-function of b6f being a lipoprotein complex discussed, including intra-protein dielectric heterogeneity and resultant pathways of trans-membrane electron transport. The role of the b6f complex in trans-membrane signal transduction from reductant generated on the p-side of the electron transport chain to the regulation of light energy to the two photosystems by trans-side phosphorylation of the light-harvesting chlorophyll protein is presented. Regarding structure aspects relevant to plastoquinol-quinone entrance-egress: (i) modification of the p-side channel for plastoquinone access to the iron-sulfur protein would change the rate-limiting step in electron transport; (ii) the narrow niche for entry of plastoquinol into b6f from the PSII reaction center complex would seem to require close proximity between the complexes.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, Hockmeyer Building for Structural Biology, West Lafayette, IN, 47907, USA.
| |
Collapse
|
44
|
Nawrocki WJ, Buchert F, Joliot P, Rappaport F, Bailleul B, Wollman FA. Chlororespiration Controls Growth Under Intermittent Light. PLANT PHYSIOLOGY 2019; 179:630-639. [PMID: 30498023 PMCID: PMC6426412 DOI: 10.1104/pp.18.01213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 05/25/2023]
Abstract
Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.
Collapse
Affiliation(s)
- Wojciech J Nawrocki
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Felix Buchert
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique-Sorbonne Université, 75005 Paris, France
| |
Collapse
|
45
|
Koochak H, Puthiyaveetil S, Mullendore DL, Li M, Kirchhoff H. The structural and functional domains of plant thylakoid membranes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:412-429. [PMID: 30312499 DOI: 10.1111/tpj.14127] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 05/07/2023]
Abstract
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6 f complex, and ATPase while depleted in photosystems and light-harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Sujith Puthiyaveetil
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Daniel L Mullendore
- Franceschi Microscopy and Imaging Center, Washington State University, Pullman, WA, 99164, USA
| | - Meng Li
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| |
Collapse
|
46
|
Adams PG, Vasilev C, Hunter CN, Johnson MP. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1075-1085. [PMID: 29928860 PMCID: PMC6135645 DOI: 10.1016/j.bbabio.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25-150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2-3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6-0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.
Collapse
Affiliation(s)
- Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
47
|
Ksas B, Légeret B, Ferretti U, Chevalier A, Pospíšil P, Alric J, Havaux M. The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers. PLANT, CELL & ENVIRONMENT 2018; 41:2277-2287. [PMID: 29601642 DOI: 10.1111/pce.13202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 05/05/2023]
Abstract
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC-8). When exposed to excess light energy, vte1 produced more singlet oxygen (1 O2 ) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ-9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ-9 can replace tocopherol and PC-8 in photoprotection. High total PQ-9 levels were associated with a noticeable decrease in 1 O2 production and higher levels of Hydroxyplastoquinone (PQ-C), a 1 O2 -specific PQ-9 oxidation product. The extra PQ-9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ-C was found almost exclusively in the thylakoid membranes. Upon exposure of wild-type plants to high light, the thylakoid PQ-9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ-9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ-C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ-9 pool acts as a 1 O2 scavenger and is replenished from the extrathylakoid stock.
Collapse
Affiliation(s)
- Brigitte Ksas
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108, Saint-Paul-lez-Durance, France
| | - Ursula Ferretti
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Anne Chevalier
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jean Alric
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265 Biologie Végétale et Microbiologie Environnementales, Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
48
|
Wood WHJ, MacGregor-Chatwin C, Barnett SFH, Mayneord GE, Huang X, Hobbs JK, Hunter CN, Johnson MP. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. NATURE PLANTS 2018; 4:116-127. [PMID: 29379151 DOI: 10.1038/s41477-017-0092-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/13/2017] [Indexed: 05/05/2023]
Abstract
Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching.
Collapse
Affiliation(s)
- William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Samuel F H Barnett
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Guy E Mayneord
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Xia Huang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
49
|
Rantala S, Tikkanen M. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. PLANT DIRECT 2018; 2:e00039. [PMID: 31245706 PMCID: PMC6508491 DOI: 10.1002/pld3.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/22/2023]
Abstract
Understanding the mechanistic basis of balanced excitation energy distribution between photosystem II and photosystem I (PSII and PSI) requires detailed investigation of the thylakoid light-harvesting system composed of energetically connected LHCII trimers. The exact mechanisms controlling the excitation energy distribution remain elusive, but reversible phosphorylation is known to be one important component. Here, we addressed the role of grana margins in regulation of excitation energy distribution, as these thylakoid domains host all the complexes of photosynthetic light reactions with dynamic response to environmental cues. First, the effect of detergents for the thylakoid membrane connectivity is explained. We show that a specific interaction between the separate LHCII trimers as well as between the LHCII trimers and the PSII and PSI-LHCI complexes is a prerequisite for energetically connected and functional thylakoid membrane. Second, we demonstrate that the optimization of light reactions under changing light conditions takes place in energetically connected LHCII lake and is attained by lateral rearrangements of the PSII-LHCII and PSI-LHCI-LHCII complexes depending especially on the phosphorylation status of the LHCII protein isoform LHCB2.
Collapse
Affiliation(s)
- Sanna Rantala
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
50
|
Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Hunter CN. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc 1 and Synechocystis sp. PCC 6803 cytochrome b 6f complexes with styrene maleic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:215-225. [PMID: 29291373 PMCID: PMC5805856 DOI: 10.1016/j.bbabio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites. SMA preferentially solubilises cytbc1 from chromatophore membranes. Solubilised cytbc1 SMALPs contain dimeric complexes co-purified with 56 lipids. SMA-resistant fractions contain RC-LH1-PufX and LH2 rich membrane patches. The Rba. sphaeroides cytbc1 complex is likely to reside in a lipid-rich environment. Similar results for Synechocystis suggest cytbc1/b6f may be universally lipid-rich.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|