1
|
Qin Y, Liu Z, Gao S, Martínez-Vasallo C, Long Y, Zhu X, Liu B, Gao Y, Xu X, Nohales MA, Xie Q, Zhai J. 48-Hour and 24-Hour Time-lapse Single-nucleus Transcriptomics Reveal Cell-type specific Circadian Rhythms in Arabidopsis. Nat Commun 2025; 16:4171. [PMID: 40324996 DOI: 10.1038/s41467-025-59424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Functional circadian clock is critical to the adaptation and survival of organisms. In land plants, the comprehensive profiling of circadian gene expression at the single-cell level is largely unknown partly due to the challenges in obtaining precisely-timed single cells embedded within cell walls. To bridge this gap, we employ time-lapse single-nucleus RNA sequencing (snRNA-seq) on Arabidopsis seedlings collected over a 48-hour window at 4-hour intervals, as well as over a 24-hour day at 2-hour intervals, yielding a total of over 77,142 and 130,000 nuclei. Here, we find that four cell clusters in the shoot share a coherent rhythm, while around 3000 genes display cell-type specific rhythmic expression. Our analysis indicates that genes encoding circadian regulators oscillate in multiple cell types, and the majority of them are well-documented core clock genes, suggesting the snRNA-seq circadian data could be used to identify more clock components oscillating in a cell-autonomous way. We identify ABF1 as a circadian regulator, whose overexpression and shortens the circadian period. Our data provides a comprehensive resource for plant circadian rhythmicity at the single-cell level (hosted at https://zhailab.bio.sustech.edu.cn/sc_circadian ).
Collapse
Affiliation(s)
- Yuwei Qin
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shiqi Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Carlos Martínez-Vasallo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Yanping Long
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xinlong Zhu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Maria A Nohales
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Jixian Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Fung-Uceda J, Gómez MS, Rodríguez-Casillas L, González-Gil A, Gutierrez C. Diurnal control of H3K27me1 deposition shapes expression of a subset of cell cycle and DNA damage response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2325-2336. [PMID: 39487594 DOI: 10.1111/tpj.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Rhythmic oscillation of biological processes helps organisms adapt their physiological responses to the most appropriate time of the day. Chromatin remodeling has been described as one of the molecular mechanisms controlling these oscillations. The importance of these changes in transcriptional activation as well as in the maintenance of heterochromatic regions has been widely demonstrated. However, little is still known on how diurnal changes can impact the global status of chromatin modifications and, hence, control gene expression. In plants, the repressive mark H3K27me1, deposited by ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 and 6 (ATXR5 and 6) methyltransferases, is largely associated with transposable elements but also covers lowly expressed genes. Here we show that this histone modification is preferentially deposited during the night. In euchromatic regions, it is found along the bodies of DNA damage response genes (DDR), where it is needed for their proper expression. The absence of H3K27me1 translates into an enhanced expression of DDR genes that follows a rhythmic oscillation pattern. This evidences a link between chromatin modifications and their synchronization with the diurnal cycle in order to accurately modulate the activation of biological processes to the most appropriate time of the day.
Collapse
Affiliation(s)
- Jorge Fung-Uceda
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - María Sol Gómez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Laura Rodríguez-Casillas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Anna González-Gil
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
3
|
Zhang C, Kong J, Wang Z, Tu C, Li Y, Wu D, Song H, Zhao W, Feng S, Guan Z, Ding B, Chen F. Origami-inspired highly stretchable and breathable 3D wearable sensors for in-situ and online monitoring of plant growth and microclimate. Biosens Bioelectron 2024; 259:116379. [PMID: 38749288 DOI: 10.1016/j.bios.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
The emerging wearable plant sensors demonstrate the capability of in-situ measurement of physiological and micro-environmental information of plants. However, the stretchability and breathability of current wearable plant sensors are restricted mainly due to their 2D planar structures, which interfere with plant growth and development. Here, origami-inspired 3D wearable sensors have been developed for plant growth and microclimate monitoring. Unlike 2D counterparts, the 3D sensors demonstrate theoretically infinitely high stretchability and breathability derived from the structure rather than the material. They are adjusted to 100% and 111.55 mg cm-2·h-1 in the optimized design. In addition to stretchability and breathability, the structural parameters are also used to control the strain distribution of the 3D sensors to enhance sensitivity and minimize interference. After integrating with corresponding sensing materials, electrodes, data acquisition and transmission circuits, and a mobile App, a miniaturized sensing system is produced with the capability of in-situ and online monitoring of plant elongation and microclimate. As a demonstration, the 3D sensors are worn on pumpkin leaves, which can accurately monitor the leaf elongation and microclimate with negligible hindrance to plant growth. Finally, the effects of the microclimate on the plant growth is resolved by analyzing the monitored data. This study would significantly promote the development of wearable plant sensors and their applications in the fields of plant phenomics, plant-environment interface, and smart agriculture.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| | - Jingjing Kong
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziru Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengjin Tu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yecheng Li
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daosheng Wu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongbo Song
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenfei Zhao
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shichao Feng
- College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| |
Collapse
|
4
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
5
|
Ladux FJ, González CV, Trentacoste ER, Searles PS, Rousseaux MC. Morphological and Pigment Responses to Far-Red and Photosynthetically Active Radiation in an Olive Cultivar Suitable for Super-High-Density Orchards. PLANTS (BASEL, SWITZERLAND) 2024; 13:1822. [PMID: 38999661 PMCID: PMC11244323 DOI: 10.3390/plants13131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Plant density is increasing in modern olive orchards to improve yields and facilitate mechanical harvesting. However, greater density can reduce light quantity and modify its quality. The objective was to evaluate plant morphology, biomass, and photosynthetic pigments under different red/far-red ratios and photosynthetically active radiation (PAR) combinations in an olive cultivar common to super-high-density orchards. In a greenhouse, young olive trees (cv. Arbequina) were exposed to low (L) or high (H) PAR with or without lateral FR supplementation (L+FR, L-FR, H+FR, H-FR) using neutral-density shade cloth and FR light-emitting diode (LED) modules. Total plant and individual organ biomass were much lower in plants under low PAR than under high PAR, with no response to +FR supplementation. In contrast, several plant morphological traits, such as main stem elongation, individual leaf area, and leaf angle, did respond to both low PAR and +FR. Total chlorophyll content decreased with +FR when PAR was low, but not when PAR was high (i.e., a significant FR*PAR interaction). When evaluating numerous plant traits together, a greater response to +FR under low PAR than under high PAR appeared to occur. These findings suggest that consideration of light quality in addition to quantity facilitates a fuller understanding of olive tree responses to a light environment. The +FR responses found here could lead to changes in hedgerow architecture and light distribution within the hedgerow.
Collapse
Affiliation(s)
- Federico J Ladux
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales (DACEF y N), Universidad Nacional de La Rioja, Av. Luis M. De la Fuente s/n, Ciudad Universitaria de la Ciencia y de la Técnica, La Rioja 5300, La Rioja, Argentina
| | - Carina V González
- Instituto de Biología Agrícola de Mendoza (IBAM), FCA UNCuyo-CONICET, Almirante Brown 500, Chacras de Coria, Luján de Cuyo 5505, Mendoza, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almirante Brown 500, Chacras de Coria, Luján de Cuyo 5505, Mendoza, Argentina
| | - Eduardo R Trentacoste
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria La Consulta, Mendoza 5567, Argentina
| | - Peter S Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
| | - M Cecilia Rousseaux
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-Provincia de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, La Rioja, Argentina
- Departamento de Ciencias Exactas, Físicas y Naturales (DACEF y N), Universidad Nacional de La Rioja, Av. Luis M. De la Fuente s/n, Ciudad Universitaria de la Ciencia y de la Técnica, La Rioja 5300, La Rioja, Argentina
| |
Collapse
|
6
|
Oskam L, Snoek BL, Pantazopoulou CK, van Veen H, Matton SEA, Dijkhuizen R, Pierik R. A low-cost open-source imaging platform reveals spatiotemporal insight into leaf elongation and movement. PLANT PHYSIOLOGY 2024; 195:1866-1879. [PMID: 38401532 PMCID: PMC11213255 DOI: 10.1093/plphys/kiae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.
Collapse
Affiliation(s)
- Lisa Oskam
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Hans van Veen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| | - Rens Dijkhuizen
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
7
|
Calderan-Rodrigues MJ, Caldana C. Impact of the TOR pathway on plant growth via cell wall remodeling. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154202. [PMID: 38422631 DOI: 10.1016/j.jplph.2024.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900, Piracicaba, SP, Brazil.
| | - Camila Caldana
- Max-Planck Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| |
Collapse
|
8
|
Heuermann MC, Meyer RC, Knoch D, Tschiersch H, Altmann T. Strong prevalence of light regime-specific QTL in Arabidopsis detected using automated high-throughput phenotyping in fluctuating or constant light. PHYSIOLOGIA PLANTARUM 2024; 176:e14255. [PMID: 38528708 DOI: 10.1111/ppl.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.
Collapse
Affiliation(s)
- Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
9
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
10
|
Harandi N, Vandenberghe B, Vankerschaver J, Depuydt S, Van Messem A. How to make sense of 3D representations for plant phenotyping: a compendium of processing and analysis techniques. PLANT METHODS 2023; 19:60. [PMID: 37353846 DOI: 10.1186/s13007-023-01031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
Computer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant phenotyping applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the field.
Collapse
Affiliation(s)
- Negin Harandi
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | | | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Applied University of Sciences and Arts, Campus Kaai, Nijverheidskaai 170, Anderlecht, Belgium
| | - Arnout Van Messem
- Department of Mathematics, Université de Liège, Allée de la Découverte 12, Liège, Belgium.
| |
Collapse
|
11
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
12
|
Urrea-Castellanos R, Caldana C, Henriques R. Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7006-7015. [PMID: 35738873 PMCID: PMC9664226 DOI: 10.1093/jxb/erac279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants can adjust their growth to specific times of the day and season. Different photoperiods result in distinct growth patterns, which correlate with specific carbon-partitioning strategies in source (leaves) and sink (roots) organs. Therefore, external cues such as light, day length, and temperature need to be integrated with intracellular processes controlling overall carbon availability and anabolism. The target of rapamycin (TOR) pathway is a signalling hub where environmental signals, circadian information, and metabolic processes converge to regulate plant growth. TOR complex mutants display altered patterns of root growth and starch levels. Moreover, depletion of TOR or reduction in cellular energy levels affect the pace of the clock by extending the period length, suggesting that this pathway could participate in circadian metabolic entrainment. However, this seems to be a mutual interaction, since the TOR pathway components are also under circadian regulation. These results strengthen the role of this signalling pathway as a master sensor of metabolic status, integrating day length and circadian cues to control anabolic processes in the cell, thus promoting plant growth and development. Expanding this knowledge from Arabidopsis thaliana to crops will improve our understanding of the molecular links connecting environmental perception and growth regulation under field conditions.
Collapse
Affiliation(s)
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
13
|
Masuda K, Yamada T, Kagawa Y, Fukuda H. Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:994555. [PMID: 36589103 PMCID: PMC9802636 DOI: 10.3389/fpls.2022.994555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recent study demonstrated that the effect of time lags between light and temperature cycles on plant growth could be predicted by the entrainment properties of the circadian clock in Arabidopsis thaliana. Based on this prediction, it was possible to control plant growth by adjusting the time lag. However, for application in plant factories, it is necessary to verify the effectiveness of this method using commercial vegetables, such as leaf lettuce. In this study, we investigated the entrainment properties of the circadian clock and the effect of the time lag between light and temperature cycles on circadian rhythms and plant growth in Lactuca sativa L. seedlings. For evaluation of circadian rhythms, we used transgenic L. sativa L. with a luciferase reporter in the experiment and a phase oscillator model in the simulation. We found that the entrainment properties for the light and temperature stimuli and the effects of time lags on circadian rhythm and growth were similar to those of A. thaliana. Moreover, we demonstrated that changes in growth under different time lags could be predicted by simulation based on the entrainment properties of the circadian clock. These results showed the importance of designing a cultivation environment that considers the circadian clock and demonstrated a series of methods to achieve this.
Collapse
Affiliation(s)
- Kosaku Masuda
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Tatsuya Yamada
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Yuya Kagawa
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Hirokazu Fukuda
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
14
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
15
|
Fiorucci AS, Michaud O, Schmid-Siegert E, Trevisan M, Allenbach Petrolati L, Çaka Ince Y, Fankhauser C. Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes. PLoS Genet 2022; 18:e1010213. [PMID: 35622862 PMCID: PMC9197076 DOI: 10.1371/journal.pgen.1010213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/14/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning. Plants face different types of stressful situations without the ability to relocate to favorable environments. For example, increasing plant density reduces access to sunlight as plants start to shade each other. Foliar shading represents a stress that many plants cope with by changing their morphology. This includes elongation of stem-like structures and repositioning of leaves to favor access to unfiltered sunlight. Plants also defend themselves against various pathogens including herbivores. Defense mechanisms include the production of deterrent chemical and morphological adaptations such as stunted growth and downwards leaf repositioning. Here we studied the morphological response of plants when simultaneously facing shade and herbivore stress. When facing both stresses petiole growth was intermediate between the shade-enhanced and wound-repressed response. In contrast, the shade cue overrides the wounding cue leading to a similar upwards leaf repositioning in the combined treatments or in the response to shade alone. Using gene expression analyses and genetics we identified two members of the Phytochrome Kinase Substrate family as playing a signal integration role when plants simultaneously faced both stresses. This contributes to our understanding of the mechanisms underlying plant morphological adaptations when facing multiple stresses.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Michaud
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Backiyarani S, Anuradha C, Thangavelu R, Chandrasekar A, Renganathan B, Subeshkumar P, Giribabu P, Muthusamy M, Uma S. Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech 2022; 12:101. [PMID: 35463044 PMCID: PMC8960517 DOI: 10.1007/s13205-021-03106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Expansin, a cell wall-modifying gene family, has been well characterized and its role in biotic and abiotic stress resistance has been proven in many monocots, but not yet studied in banana, a unique model crop. Banana is one of the staple food crops in developing countries and its production is highly influenced by various biotic and abiotic factors. Characterizing the expansin genes of the ancestor genome (M. acuminata and M. balbisiana) of present day cultivated banana will enlighten their role in growth and development, and stress responses. In the present study, 58 (MaEXPs) and 55 (MbaEXPs) putative expansin genes were identified in A and B genome, respectively, and were grouped in four subfamilies based on phylogenetic analysis. Gene structure and its duplications revealed that EXPA genes are highly conserved and are under negative selection whereas the presence of more number of introns in other subfamilies revealed that they are diversifying. Expression profiling of expansin genes showed a distinct expression pattern for biotic and abiotic stress conditions. This study revealed that among the expansin subfamilies, EXPAs contributed significantly towards stress-resistant mechanism. The differential expression of MaEXPA18 and MaEXPA26 under drought stress conditions in the contrasting cultivar suggested their role in drought-tolerant mechanism. Most of the MaEXPA genes are differentially expressed in the root lesion nematode contrasting cultivars which speculated that this expansin subfamily might be the susceptible factor. The downregulation of MaEXPLA6 in resistant cultivar during Sigatoka leaf spot infection suggested that by suppressing this gene, resistance may be enhanced in susceptible cultivar. Further, in-depth studies of these genes will lead to gain insight into their role in various stress conditions in banana. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-021-03106-x.
Collapse
Affiliation(s)
- Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Raman Thangavelu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Baratvaj Renganathan
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Parasuraman Subeshkumar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Palaniappan Giribabu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| | - Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju, 54874 Korea
| | - Subbaraya Uma
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
17
|
Kong Y, Zhang Y, Liu X, Meng Z, Yu X, Zhou C, Han L. The Conserved and Specific Roles of the LUX ARRHYTHMO in Circadian Clock and Nodulation. Int J Mol Sci 2022; 23:ijms23073473. [PMID: 35408833 PMCID: PMC8998424 DOI: 10.3390/ijms23073473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
LUX ARRHYTHMO (LUX) plays a key role in circadian rhythms and flowering. Here, we identified the MtLUX gene which is the putative ortholog of LUX in Medicago truncatula. The roles of MtLUX, in both the nodulation belowground and leaf movement aboveground, were investigated by characterizing a loss-of-function mtlux mutant. MtLUX was required for the control of flowering time under both long-day and short-day conditions. Further investigations showed that the early flowering in the mtlux mutant was correlated with the elevated expression level of the MtFTa1 gene but in a CO-like independent manner. MtLUX played a conserved role in the regulatory interactions with MtLHY, MtTOC1, and MtPRR genes, which is similar to those in other species. Meanwhile, the unexpected functions of MtLUX were revealed in nodule formation and nyctinastic leaf movement, probably through the indirect regulation in MtLHY. Its participation in nodulation is of interest in the context of functional conservation and the neo-functionalization of the products of LUX orthologs.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Yuxue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Correspondence:
| |
Collapse
|
18
|
Agrobacterium-Mediated Seedling Transformation to Measure Circadian Rhythms in Arabidopsis. Methods Mol Biol 2022; 2398:57-64. [PMID: 34674167 DOI: 10.1007/978-1-0716-1912-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian clocks are endogenous timing mechanisms that allow an organism to adapt cellular processes in anticipation of predictable changes in the environment. Luciferase reporters are well utilized as an effective, nondestructive method to measure circadian rhythms of promoter activity in Arabidopsis. Obtaining stable transgenic reporter lines can be laborious. Here, we report a protocol for Agrobacterium-mediated seedling transformation tailored for plant circadian studies. We show that period estimates generated from wild-type and clock-mutant seedlings transformed with circadian luciferase reporters are similar to rhythms obtained from equivalent stable transgenic seedlings. These experiments demonstrate the versatility and robustness of the protocol for testing new constructs or quickly assessing circadian effects in any genotype of interest.
Collapse
|
19
|
Geldhof B, Pattyn J, Eyland D, Carpentier S, Van de Poel B. A digital sensor to measure real-time leaf movements and detect abiotic stress in plants. PLANT PHYSIOLOGY 2021; 187:1131-1148. [PMID: 34618089 PMCID: PMC8566216 DOI: 10.1093/plphys/kiab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 05/31/2023]
Abstract
Plant and plant organ movements are the result of a complex integration of endogenous growth and developmental responses, partially controlled by the circadian clock, and external environmental cues. Monitoring of plant motion is typically done by image-based phenotyping techniques with the aid of computer vision algorithms. Here we present a method to measure leaf movements using a digital inertial measurement unit (IMU) sensor. The lightweight sensor is easily attachable to a leaf or plant organ and records angular traits in real-time for two dimensions (pitch and roll) with high resolution (measured sensor oscillations of 0.36 ± 0.53° for pitch and 0.50 ± 0.65° for roll). We were able to record simple movements such as petiole bending, as well as complex lamina motions, in several crops, ranging from tomato to banana. We also assessed growth responses in terms of lettuce rosette expansion and maize seedling stem movements. The IMU sensors are capable of detecting small changes of nutations (i.e. bending movements) in leaves of different ages and in different plant species. In addition, the sensor system can also monitor stress-induced leaf movements. We observed that unfavorable environmental conditions evoke certain leaf movements, such as drastic epinastic responses, as well as subtle fading of the amplitude of nutations. In summary, the presented digital sensor system enables continuous detection of a variety of leaf motions with high precision, and is a low-cost tool in the field of plant phenotyping, with potential applications in early stress detection.
Collapse
Affiliation(s)
- Batist Geldhof
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - Jolien Pattyn
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| | - David Eyland
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
| | - Sebastien Carpentier
- Department of Biosystems, Division of Crop Biotechnics, Tropical Crop Improvement Laboratory, University of Leuven, Leuven 3001, Belgium
- Bioversity International, Leuven, 3001, Belgium
| | - Bram Van de Poel
- Department of Biosystems, Division of Crop Biotechnics, Molecular Plant Hormone Physiology Lab, University of Leuven, Leuven 3001, Belgium
| |
Collapse
|
20
|
Muroya M, Oshima H, Kobayashi S, Miura A, Miyamura Y, Shiota H, Onai K, Ishiura M, Manabe K, Kutsuna S. Circadian Clock in Arabidopsis thaliana Determines Flower Opening Time Early in the Morning and Dominantly Closes Early in the Afternoon. PLANT & CELL PHYSIOLOGY 2021; 62:883-893. [PMID: 33822207 DOI: 10.1093/pcp/pcab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Many plant species exhibit diurnal flower opening and closing, which is an adaptation influenced by the lifestyle of pollinators and herbivores. However, it remains unclear how these temporal floral movements are modulated. To clarify the role of the circadian clock in flower movement, we examined temporal floral movements in Arabidopsis thaliana. Wild-type (accessions; Col-0, Ler-0 and Ws-4) flowers opened between 0.7 and 1.4 h in a 16-h light period and closed between 7.5 and 8.3 h in a diurnal light period. In the arrhythmic mutants pcl1-1 and prr975, the former flowers closed slowly and imperfectly and the latter ones never closed. Under continuous light conditions, new flowers emerged and opened within a 23-26 h window in the wild-type, but the flowers in pcl1-1 and prr975 developed straight petals, whose curvatures were extremely small. Anti-phasic circadian gene expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYLE (LHY) and TIMING OF CAB EXPRESSION 1 (TOC1) occurred in wild-type flowers, but non-rhythmic expression was observed in pcl1-1 and prr975 mutants. Focusing on excised petals, bioluminescence monitoring revealed rhythmic promoter activities of genes expressed (CCA1, LHY and PHYTOCLOCK 1/LUX ARRHYTHMO, PCL1/LUX) in the morning and evening. These results suggest that the clock induces flower opening redundantly with unknown light-sensing pathways. By contrast, flower closing is completely dependent on clock control. These findings will lead to further exploration of the molecular mechanisms and evolutionary diversity of timing in flower opening and closing.
Collapse
Affiliation(s)
- Mitsuhiko Muroya
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Haruka Oshima
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shoko Kobayashi
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Aya Miura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Yohei Miyamura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Hajime Shiota
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Kiyoshi Onai
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-kuKyoto 606-8502Japan
| | - Masahiro Ishiura
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Katsushi Manabe
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shinsuke Kutsuna
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| |
Collapse
|
21
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. PLANT PHYSIOLOGY 2021; 186:1220-1239. [PMID: 33693822 PMCID: PMC8195529 DOI: 10.1093/plphys/kiab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.
Collapse
Affiliation(s)
- Andrés Romanowski
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Comparative Genomics of Plant Development, Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - James J Furniss
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Ejaz Hussain
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Author for communication:
| |
Collapse
|
22
|
Prasetyaningrum P, Mariotti L, Valeri MC, Novi G, Dhondt S, Inzé D, Perata P, van Veen H. Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. PLANT PHYSIOLOGY 2021; 185:228-239. [PMID: 33631808 PMCID: PMC8133661 DOI: 10.1093/plphys/kiaa019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.
Collapse
Affiliation(s)
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | | | - Giacomo Novi
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Stijn Dhondt
- Center for Plant Systems Biology, Ghent University, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, Ghent University, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Pierdomenico Perata
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Hans van Veen
- PLANTLAB, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
- Department of Plantecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, Netherlands
- Author for communication:
| |
Collapse
|
23
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
24
|
Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, Sun P, Schuurink RC, Takeuchi J, Todoroki Y, Weig AR, Sasidharan R, Mustroph A. Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). THE NEW PHYTOLOGIST 2021; 229:140-155. [PMID: 31792981 DOI: 10.1111/nph.16350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.
Collapse
Affiliation(s)
- Jana T Müller
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Malte M Bartylla
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Melis Akman
- Plant and Microbial Biology, University of California, Berkeley, 361 Koshland Hall, Berkeley, CA, 94720, USA
- Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
25
|
Kong Y, Han L, Liu X, Wang H, Wen L, Yu X, Xu X, Kong F, Fu C, Mysore KS, Wen J, Zhou C. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1880-1895. [PMID: 33405366 DOI: 10.1111/jipb.12999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen-fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24-h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lizhu Wen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
26
|
Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, Li M, Schrick K, Shah J, Wang X, Wang H, Welti R. Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. PLANTS 2020; 9:plants9070845. [PMID: 32635518 PMCID: PMC7412450 DOI: 10.3390/plants9070845] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.
Collapse
Affiliation(s)
- Sunitha Shiva
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| | - Thilani Samarakoon
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Kaleb A. Lowe
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Charles Roach
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hieu Sy Vu
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Madeline Colter
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hollie Porras
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Caroline Hwang
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Mary R. Roth
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Pamela Tamura
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Maoyin Li
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Jyoti Shah
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Xuemin Wang
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, KS 66506-0802, USA;
| | - Ruth Welti
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| |
Collapse
|
27
|
Cortés Llorca L, Li R, Yon F, Schäfer M, Halitschke R, Robert CAM, Kim SG, Baldwin IT. ZEITLUPE facilitates the rhythmic movements of Nicotiana attenuata flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:308-322. [PMID: 32130751 DOI: 10.1111/tpj.14732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re-straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin-dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19-like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement.
Collapse
Affiliation(s)
- Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Christelle A M Robert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| |
Collapse
|
28
|
Lagercrantz U, Billhardt A, Rousku SN, Ljung K, Eklund DM. Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Sci Rep 2020; 10:8658. [PMID: 32457350 PMCID: PMC7251115 DOI: 10.1038/s41598-020-65372-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
The circadian clock coordinates an organism's growth, development and physiology with environmental factors. One illuminating example is the rhythmic growth of hypocotyls and cotyledons in Arabidopsis thaliana. Such daily oscillations in leaf position are often referred to as sleep movements or nyctinasty. Here, we report that plantlets of the liverwort Marchantia polymorpha show analogous rhythmic movements of thallus lobes, and that the circadian clock controls this rhythm, with auxin a likely output pathway affecting these movements. The mechanisms of this circadian clock are partly conserved as compared to angiosperms, with homologs to the core clock genes PRR, RVE and TOC1 forming a core transcriptional feedback loop also in M. polymorpha.
Collapse
Affiliation(s)
- Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Anja Billhardt
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Sabine N Rousku
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - D Magnus Eklund
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden.
| |
Collapse
|
29
|
Monte E. Plant Biology: AHL Transcription Factors Inhibit Growth-Promoting PIFs. Curr Biol 2020; 30:R354-R356. [PMID: 32315635 DOI: 10.1016/j.cub.2020.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
How do plants respond to abiotic stresses such as drought, salt or cold? A new study in Arabidopsis reveals that the stress-responsive AHLs antagonize the function of the PIF transcription factors to restrict rosette growth and allow resource reallocation for stress-adaptive responses.
Collapse
Affiliation(s)
- Elena Monte
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain; Consejo Superior de Investigaciones Cientí́ficas (CSIC), Barcelona, Spain.
| |
Collapse
|
30
|
AT-Hook Transcription Factors Restrict Petiole Growth by Antagonizing PIFs. Curr Biol 2020; 30:1454-1466.e6. [DOI: 10.1016/j.cub.2020.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 10/26/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
|
31
|
Olas JJ, Fichtner F, Apelt F. All roads lead to growth: imaging-based and biochemical methods to measure plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:11-21. [PMID: 31613967 PMCID: PMC6913701 DOI: 10.1093/jxb/erz406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/28/2019] [Indexed: 05/31/2023]
Abstract
Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.
Collapse
Affiliation(s)
- Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
| | - Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
32
|
Kurenda A, Nguyen CT, Chételat A, Stolz S, Farmer EE. Insect-damaged Arabidopsis moves like wounded Mimosa pudica. Proc Natl Acad Sci U S A 2019; 116:26066-26071. [PMID: 31792188 PMCID: PMC6926025 DOI: 10.1073/pnas.1912386116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Slow wave potentials (SWPs) are damage-induced electrical signals which, based on experiments in which organs are burned, have been linked to rapid increases in leaf or stem thickness. The possibility that pressure surges in injured xylem underlie these events has been evoked frequently. We sought evidence for insect feeding-induced positive pressure changes in the petioles of Arabidopsis thaliana Instead, we found that petiole surfaces of leaves distal to insect-feeding sites subsided. We also found that insect damage induced longer-duration downward leaf movements in undamaged leaves. The transient petiole deformations were contemporary with and dependent on the SWP. We then investigated if mutants that affect the xylem, which has been implicated in SWP transmission, might modify SWP architecture. irregular xylem mutants strongly affected SWP velocity and kinetics and, in parallel, restructured insect damage-induced petiole deformations. Together, with force change measurements on the primary vein, the results suggest that extravascular water fluxes accompany the SWP. Moreover, petiole deformations in Arabidopsis mimic parts of the spectacular distal leaf collapse phase seen in wounded Mimosa pudica We genetically link electrical signals to organ movement and deformation and suggest an evolutionary origin of the large leaf movements seen in wounded Mimosa.
Collapse
Affiliation(s)
- Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Dakhiya Y, Green RM. Thermal imaging as a noninvasive technique for analyzing circadian rhythms in plants. THE NEW PHYTOLOGIST 2019; 224:1685-1696. [PMID: 31411748 DOI: 10.1111/nph.16124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Endogenous (˜24 circadian) rhythms control an enormously diverse range of processes in plants and are, increasingly, the target of studies aimed at understanding plant performance. Although in the previous few decades most plant circadian research has focused on Arabidopsis, there is a pressing need for low-cost, high-throughput tools for analyzing rhythms in a wider variety of species. The present contribution investigates using circadian temperature oscillations as a novel marker for assaying plant circadian rhythms. A thermal imaging platform was set up to measure diel and circadian rhythms in different plant species, in wild-type and circadian mutant plants, and in leaves and flowers. Results from the thermal imaging technique were compared with those from other established circadian assay techniques. All of the dicot and monocot species examined showed robust circadian rhythms of leaf surface temperature; the effects of circadian mutations on thermocycles were similar to those reported using other techniques. In Petunia × atkinsiana plants circadian oscillations were observed in both leaves and flowers. Thermal imaging is an extremely useful technique for analyzing circadian rhythms in plants. It is predicted that the ability to make very high temporal resolution measurements may facilitate the discovery of novel aspects of circadian control.
Collapse
Affiliation(s)
- Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem, 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
34
|
A Proposed Methodology to Analyze Plant Growth and Movement from Phenomics Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11232839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Image analysis of developmental processes in plants reveals both growth and organ movement. This study proposes a methodology to study growth and movement. It includes the standard acquisition of internal and external reference points and coordinates, coordinates transformation, curve fitting and the corresponding statistical analysis. Several species with different growth habits were used including Antirrhinum majus, A. linkianum, Petunia x hybrida and Fragaria x ananassa. Complex growth patterns, including gated growth, could be identified using a generalized additive model. Movement, and in some cases, growth, could not be adjusted to curves due to drastic changes in position. The area under the curve was useful in order to identify the initial stage of growth of an organ, and its growth rate. Organs displayed either continuous movements during the day with gated day/night periods of maxima, or sharp changes in position coinciding with day/night shifts. The movement was dependent on light in petunia and independent in F. ananassa. Petunia showed organ movement in both growing and fully-grown organs, while A. majus and F. ananassa showed both leaf and flower movement patterns linked to growth. The results indicate that different mathematical fits may help quantify growth rate, growth duration and gating. While organ movement may complicate image and data analysis, it may be a surrogate method to determine organ growth potential.
Collapse
|
35
|
Woodley Of Menie MA, Pawlik P, Webb MT, Bruce KD, Devlin PF. Circadian leaf movements facilitate overtopping of neighbors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:104-111. [PMID: 30597150 DOI: 10.1016/j.pbiomolbio.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Many plants exhibit circadian clock-driven leaf movements whereby the leaves are raised during the day to achieve a relatively high angle during the evening, before lowering late in the night. Such leaf movements were first recorded over 2000 years ago but there is still much debate as to their purpose. We investigated whether such leaf movements within Arabidopsis, a ruderal rosette plant, can aid in overtopping leaves of neighboring plants. Wild type and circadian clock mutant plants were grown in an alternating grid system so that their leaves would meet as the plants grew. Experiments were performed using day lengths that matched the endogenous rhythm of either wild type or mutant. Plants grown in a day length shorter than their endogenous rhythm were consistently overtopped by plants which were in synchrony with the day night cycle, demonstrating a clear overtopping advantage resulting from circadian leaf movement rhythms. Furthermore, we found that this leaf overtopping as a result of correctly synchronized circadian leaf movements is additive to leaf overtopping due to shade avoidance. Curiously, this did not apply to plants grown in a day length longer than their endogenous period. Plants grown in a day length longer than their endogenous period were able to adapt their leaf rhythms and suffered no overtopping disadvantage. Crucially, our results show that, in a context-dependent manner, circadian clock-driven leaf movements in resonance with the external light/dark cycle can facilitate overtopping of the leaves of neighboring plants.
Collapse
Affiliation(s)
| | - Piotr Pawlik
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Matthew T Webb
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK.
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
36
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
37
|
Bernotas G, Scorza LCT, Hansen MF, Hales IJ, Halliday KJ, Smith LN, Smith ML, McCormick AJ. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth. Gigascience 2019; 8:giz056. [PMID: 31127811 PMCID: PMC6534809 DOI: 10.1093/gigascience/giz056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tracking and predicting the growth performance of plants in different environments is critical for predicting the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging technique novel to plant phenotyping called photometric stereo (PS). RESULTS We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes 221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full protocol is provided, including all software components and an additional test data set. CONCLUSIONS PS-Plant is a powerful new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.
Collapse
Affiliation(s)
- Gytis Bernotas
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Livia C T Scorza
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Mark F Hansen
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Ian J Hales
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Karen J Halliday
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Lyndon N Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Melvyn L Smith
- Centre for Machine Vision, Bristol Robotics Laboratory, University of the West of England, T block, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
38
|
Puttonen E, Lehtomäki M, Litkey P, Näsi R, Feng Z, Liang X, Wittke S, Pandžić M, Hakala T, Karjalainen M, Pfeifer N. A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning Time Series. FRONTIERS IN PLANT SCIENCE 2019; 10:486. [PMID: 31110511 PMCID: PMC6499199 DOI: 10.3389/fpls.2019.00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 05/28/2023]
Abstract
Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset.
Collapse
Affiliation(s)
- Eetu Puttonen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
- Department of Remote Sensing and Photogrammetry, Centre of Excellence in Laser Scanning Research, National Land Survey of Finland, Helsinki, Finland
| | - Matti Lehtomäki
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
| | - Paula Litkey
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
| | - Roope Näsi
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
| | - Ziyi Feng
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
| | - Xinlian Liang
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
| | - Samantha Wittke
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
- Department of Built Environment, Aalto University, Espoo, Finland
| | - Miloš Pandžić
- University of Novi Sad, BioSense Institute, Novi Sad, Serbia
| | - Teemu Hakala
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
- Department of Remote Sensing and Photogrammetry, Centre of Excellence in Laser Scanning Research, National Land Survey of Finland, Helsinki, Finland
| | - Mika Karjalainen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Helsinki, Finland
- Department of Remote Sensing and Photogrammetry, Centre of Excellence in Laser Scanning Research, National Land Survey of Finland, Helsinki, Finland
| | - Norbert Pfeifer
- Department of Geodesy and Geoinformation, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
39
|
Nagano S, Moriyuki S, Wakamori K, Mineno H, Fukuda H. Leaf-Movement-Based Growth Prediction Model Using Optical Flow Analysis and Machine Learning in Plant Factory. FRONTIERS IN PLANT SCIENCE 2019; 10:227. [PMID: 30967880 PMCID: PMC6439531 DOI: 10.3389/fpls.2019.00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 05/10/2023]
Abstract
Productivity stabilization is a critical issue facing plant factories. As such, researchers have been investigating growth prediction with the overall goal of improving productivity. The projected area of a plant (PA) is usually used for growth prediction, by which the growth of a plant is estimated by observing the overall approximate movement of the plant. To overcome this problem, this study focused on the time-series movement of plant leaves, using optical flow (OF) analysis to acquire this information for a lettuce. OF analysis is an image processing method that extracts the difference between two consecutive frames caused by the movement of the subject. Experiments were carried out at a commercial large-scale plant factory. By using a microcomputer with a camera module placed above the lettuce seedlings, images of 338 seedlings were taken every 20 min over 9 days (from the 6th to the 15th day after sowing). Then, the features of the leaf movement were extracted from the image by calculating the normal-vector in the OF analysis, and these features were applied to machine learning to predict the fresh weight of the lettuce at harvest time (38 days after sowing). The growth prediction model using the features extracted from the OF analysis was found to perform well with a correlation ratio of 0.743. Furthermore, this study also considered a phenotyping system that was capable of automatically analyzing a plant image, which would allow this growth prediction model to be widely used in commercial plant factories.
Collapse
Affiliation(s)
- Shogo Nagano
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shogo Moriyuki
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Kazumasa Wakamori
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hiroshi Mineno
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hirokazu Fukuda
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
40
|
Flis A, Mengin V, Ivakov AA, Mugford ST, Hubberten HM, Encke B, Krohn N, Höhne M, Feil R, Hoefgen R, Lunn JE, Millar AJ, Smith AM, Sulpice R, Stitt M. Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. PLANT, CELL & ENVIRONMENT 2019; 42:549-573. [PMID: 30184255 DOI: 10.1111/pce.13440] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism. (a) Starch accumulation was slower in elf3 and prr7 prr9. It is proposed that ELF3 positively regulates starch accumulation. (b) Reducing sugars were high early in the T-cycle in elf3, revealing that ELF3 negatively regulates sucrose recycling. (c) The pattern of starch mobilization was modified in all five mutants. A model is proposed in which dawn and dusk/evening components interact to pace degradation to anticipated dawn. (d) An endogenous oscillation of glucose 6-phosphate revealed that the clock buffers metabolism against the large influx of carbon from photosynthesis. (e) Low levels of organic and amino acids in lhy cca1 and high levels in prr7 prr9 provide evidence that the dawn components positively regulate the accumulation of amino acid reserves.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, UK
| | | | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
41
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
42
|
|
43
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 DOI: 10.1016/j.tplants.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/27/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium. https://twitter.com/@InzeDirk
| |
Collapse
|
44
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 PMCID: PMC5890734 DOI: 10.1016/j.tplants.2018.01.003] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence: @InzeDirk
| |
Collapse
|
45
|
Muchapirei CI, Valentine SL, Roden LC. Plant circadian networks and responses to the environment. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:393-399. [PMID: 32290979 DOI: 10.1071/fp17150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/26/2017] [Indexed: 06/11/2023]
Abstract
There are regular, and therefore predictable, environmental changes on Earth due to the rotation of the planet on its axis and its orbit around the sun. Thus organisms have adapted their metabolism, physiology and behaviour to minimise stresses caused by unfavourable conditions and maximise efficiency of growth. Additionally, most organisms are able to anticipate these changes and accordingly maximise metabolic efficiency and growth, because they have a complex biological time-keeping system commonly referred to as the circadian clock. Multiple pathways in plants are organised in a temporal manner through circadian clock-regulation of gene transcription and post-translational modifications. What is becoming more apparent is the bidirectional nature of interactions between the clock and stress response pathways. Until recently, the focus of many studies had been on the unidirectional, hierarchical control of biological processes by the circadian clock, and impacts on the clock in response to environmental stress had been largely ignored. Studies of interactions of the circadian clock with the environment have primarily been to understand mechanisms of entrainment. We review the evidence and implications of the reciprocal interactions between the clock and the environment.
Collapse
Affiliation(s)
- Chenjerai I Muchapirei
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Shannon-Leigh Valentine
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
46
|
Herrero-Huerta M, Lindenbergh R, Gard W. Leaf Movements of Indoor Plants Monitored by Terrestrial LiDAR. FRONTIERS IN PLANT SCIENCE 2018; 9:189. [PMID: 29527217 PMCID: PMC5829619 DOI: 10.3389/fpls.2018.00189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/31/2018] [Indexed: 05/28/2023]
Abstract
Plant leaf movement is induced by some combination of different external and internal stimuli. Detailed geometric characterization of such movement is expected to improve understanding of these mechanisms. A metric high-quality, non-invasive and innovative sensor system to analyze plant movement is Terrestrial LiDAR (TLiDAR). This technique has an active sensor and is, therefore, independent of light conditions, able to obtain accurate high spatial and temporal resolution point clouds. In this study, a movement parameterization approach of leaf plants based on TLiDAR is introduced. For this purpose, two Calathea roseopicta plants were scanned in an indoor environment during 2 full-days, 1 day in natural light conditions and the other in darkness. The methodology to estimate leaf movement is based on segmenting individual leaves using an octree-based 3D-grid and monitoring the changes in their orientation by Principal Component Analysis. Additionally, canopy variations of the plant as a whole were characterized by a convex-hull approach. As a result, 9 leaves in plant 1 and 11 leaves in plant 2 were automatically detected with a global accuracy of 93.57 and 87.34%, respectively, compared to a manual detection. Regarding plant 1, in natural light conditions, the displacement average of the leaves between 7.00 a.m. and 12.30 p.m. was 3.67 cm as estimated using so-called deviation maps. The maximum displacement was 7.92 cm. In addition, the orientation changes of each leaf within a day were analyzed. The maximum variation in the vertical angle was 69.6° from 12.30 to 6.00 p.m. In darkness, the displacements were smaller and showed a different orientation pattern. The canopy volume of plant 1 changed more in the morning (4.42 dm3) than in the afternoon (2.57 dm3). The results of plant 2 largely confirmed the results of the first plant and were added to check the robustness of the methodology. The results show how to quantify leaf orientation variation and leaf movements along a day at mm accuracy in different light conditions. This confirms the feasibility of the proposed methodology to robustly analyse leaf movements.
Collapse
Affiliation(s)
- Mónica Herrero-Huerta
- Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
- TIDOP Research Group, Higher Polytechnic School of Avila, University of Salamanca, Avila, Spain
- Agronomy Department, Purdue University, West Lafayette, IN, United States
| | - Roderik Lindenbergh
- Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
| | - Wolfgang Gard
- Department of Structural and Building Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
47
|
Santiago TR, Pereira VM, de Souza WR, Steindorff AS, Cunha BADB, Gaspar M, Fávaro LCL, Formighieri EF, Kobayashi AK, C. Molinari HB. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.). PLoS One 2018; 13:e0191081. [PMID: 29324804 PMCID: PMC5764346 DOI: 10.1371/journal.pone.0191081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023] Open
Abstract
Expansins refer to a family of closely related non-enzymatic proteins found in the plant cell wall that are involved in the cell wall loosening. In addition, expansins appear to be involved in different physiological and environmental responses in plants such as leaf and stem initiation and growth, stomata opening and closing, reproduction, ripening and stress tolerance. Sugarcane (Saccharum spp.) is one of the main crops grown worldwide. Lignocellulosic biomass from sugarcane is one of the most promising raw materials for the ethanol industry. However, the efficient use of lignocellulosic biomass requires the optimization of several steps, including the access of some enzymes to the hemicellulosic matrix. The addition of expansins in an enzymatic cocktail or their genetic manipulation could drastically improve the saccharification process of feedstock biomass by weakening the hydrogen bonds between polysaccharides present in plant cell walls. In this study, the expansin gene family in sugarcane was identified and characterized by in silico analysis. Ninety two putative expansins in sugarcane (SacEXPs) were categorized in three subfamilies after phylogenetic analysis. The expression profile of some expansin genes in leaves of sugarcane in different developmental stages was also investigated. This study intended to provide suitable expansin targets for genetic manipulation of sugarcane aiming at biomass and yield improvement.
Collapse
Affiliation(s)
- Thaís R. Santiago
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Valquiria M. Pereira
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Wagner R. de Souza
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Andrei S. Steindorff
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Bárbara A. D. B. Cunha
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Marília Gaspar
- Instituto de Botânica, Núcleo de Pesquisa em Fisiologia e Bioquímica, São Paulo, SP, Brazil
| | - Léia C. L. Fávaro
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Eduardo F. Formighieri
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Adilson K. Kobayashi
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Hugo B. C. Molinari
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
48
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
49
|
Pfeifer J, Mielewczik M, Friedli M, Kirchgessner N, Walter A. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension. JOURNAL OF PLANT RESEARCH 2018; 131:111-124. [PMID: 28770485 DOI: 10.1007/s10265-017-0967-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These differences could be due to both intrinsic control mechanisms and different sensitivities to environmental factors.
Collapse
Affiliation(s)
- Johannes Pfeifer
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zurich), Universitätstrasse 2, 8092, Zurich, Switzerland.
| | - Michael Mielewczik
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, ICTEM building, 3rd floor, London, UK
| | - Michael Friedli
- FiBL, Research Institute of Organic Agriculture, Ackerstrasse 113, 5070, Frick, Switzerland
| | - Norbert Kirchgessner
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zurich), Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Achim Walter
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zurich), Universitätstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
50
|
Inoue K, Araki T, Endo M. Circadian clock during plant development. JOURNAL OF PLANT RESEARCH 2018; 131:59-66. [PMID: 29134443 PMCID: PMC5897470 DOI: 10.1007/s10265-017-0991-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 05/14/2023]
Abstract
Plants have endogenous biological clocks that allow organisms to anticipate and prepare for daily and seasonal environmental changes and increase their fitness in changing environments. The circadian clock in plants, as in animals and insects, mainly consists of multiple interlocking transcriptional/translational feedback loops. The circadian clock can be entrained by environmental cues such as light, temperature and nutrient status to synchronize internal biological rhythms with surrounding environments. Output pathways link the circadian oscillator to various physiological, developmental, and reproductive processes for adjusting the timing of these biological processes to an appropriate time of day or a suitable season. Recent genomic studies have demonstrated that polymorphism in circadian clock genes may contribute to local adaptations over a wide range of latitudes in many plant species. In the present review, we summarize the circadian regulation of biological processes throughout the life cycle of plants, and describe the contribution of the circadian clock to local adaptation.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|