1
|
Teixeira RT, Marchese D, Duckney PJ, Dias FV, Carapeto AP, Louro M, Silva MS, Cordeiro C, Rodrigues MS, Malhó R. Functional characterization reveals the importance of Arabidopsis ECA4 and EPSIN3 in clathrin mediated endocytosis and wall structure in apical growing cells. THE NEW PHYTOLOGIST 2025; 245:1056-1071. [PMID: 39555685 DOI: 10.1111/nph.20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Localized clathrin mediated endocytosis is vital for secretion and wall deposition in apical growing plant cells. Adaptor and signalling proteins, along with phosphoinositides, are known to play a regulatory, yet poorly defined role in this process. Here we investigated the function of Arabidopsis ECA4 and EPSIN3, putative mediators of the process, in pollen tubes and root hairs. Homozygous eca4 and epsin3 plants exhibited altered pollen tube morphology (in vitro) and self-pollination led to fewer seeds and shorter siliques. These effects were augmented in eca4/epsin3 double mutant and quantitative polymerase chain reaction data revealed changes in phosphoinositide metabolism and flowering genes suggestive of a synergistic action. No visible changes were observed in root morphology, but atomic force microscopy in mutant root hairs showed altered structural stiffness. Imaging and FRET-FLIM analysis of ECA4 and EPSIN3 X-FP constructs revealed that both proteins interact at the plasma membrane but exhibit slightly different intracellular localization. FT-ICR-MS metabolomic analysis of mutant cells showed changes in lipids, amino acids and carbohydrate composition consistent with a role in secretion and growth. Characterization of double mutants of eca4 and epsin3 with phospholipase C genes (plc5, plc7) indicates that phosphoinositides (e.g. PtdIns(4,5)P2) are fundamental for a combined and complementary role of ECA4-EPSIN3 in cell secretion.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | | | - Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana P Carapeto
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mariana Louro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marta Sousa Silva
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
2
|
Zhang L, Zhang M, Yong K, Zhang L, Wang S, Liang M, Yan B, Li H, Cao L, Lu M. SlECA4, an epsin-like clathrin adaptor protein, improves tomato heat tolerance via clathrin-mediated endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7031-7045. [PMID: 39269332 DOI: 10.1093/jxb/erae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Clathrin-mediated endocytosis (CME) is one of the main pathways for plant cells to internalize membrane proteins in response to changing environmental conditions. The Epsin-like Clathrin Adaptor (ECA) proteins play important roles in the assembly of the clathrin coat; however, their involvement in plant responses to heat stress remains unclear. Here we report that in tomato (Solanum lycopersicum), Epsin-like Clathrin Adaptor 4 (SlECA4) expression responded to heat stress. The silencing and knockout of SlECA4 increased tomato sensitivity to heat stress while the overexpression of SlECA4 enhanced tomato tolerance to heat stress. Treatment with a CME inhibitor, ES9-17, reduced tomato heat tolerance. SlECA4 localized to the plasma membrane, the trans-Golgi network/early endosomes, and the prevacuolar compartment/late endosomes. In a SlECA4 knockout line, both CME and recycling from the trans-Golgi network/early endosomes to the plasma membrane were inhibited. These data indicate that SlECA4 is involved in CME. After heat treatment, more punctate structures of SlECA4-green fluorescent protein accumulated in tobacco leaf epidermal cells by transient expression. Furthermore, compared with wild type, the rate of CME was inhibited under heat stress in the SlECA4 knockout line. Taken together, the ECA protein SlECA4 plays a positive role in tomato tolerance to heat stress via the CME pathway.
Collapse
Affiliation(s)
- Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sitian Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minmin Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bentao Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
4
|
Wallace NS, Gadbery JE, Cohen CI, Kendall AK, Jackson LP. Tepsin binds LC3B to promote ATG9A trafficking and delivery. Mol Biol Cell 2024; 35:ar56. [PMID: 38381558 PMCID: PMC11064669 DOI: 10.1091/mbc.e23-09-0359-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans-Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative LC3-Interacting Region (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B preferentially over other members of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Reintroduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, reintroducing tepsin with a mutated LIR motif or missing N-terminus drives diffuse ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; ensuring delivery of ATG9A-positive vesicles; and in overall maintenance of autophagosome structure.
Collapse
Affiliation(s)
- Natalie S. Wallace
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - John E. Gadbery
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
5
|
Mason K, LaMontagne-Mueller E, Sauer M, Heese A. Arabidopsis clathrin adaptor EPSIN1 but not MODIFIED TRANSPORT TO THE VACOULE1 contributes to effective plant immunity against pathogenic Pseudomonas bacteria. PLANT SIGNALING & BEHAVIOR 2023; 18:2163337. [PMID: 36603596 PMCID: PMC9828777 DOI: 10.1080/15592324.2022.2163337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In eukaryotes, EPSINs are Epsin N-terminal Homology (ENTH) domain-containing proteins that serve as monomeric clathrin adaptors at the plasma membrane (PM) or the trans-Golgi Network (TGN)/early endosomes (EE). The model plant Arabidopsis thaliana encodes for seven ENTH proteins, of which so far, only AtEPSIN1 (AtEPS1) and MODIFIED TRANSPORT TO THE VACUOLE1 (AtMTV1) localize to the TGN/EE and contribute to cargo trafficking to both the cell surface and the vacuole. However, relatively little is known about role(s) of any plant EPSIN in governing physiological responses. We have recently shown that AtEPS1 is a positive modulator of plant immune signaling and pattern-triggered immunity against flagellated Pseudomonas syringae pv. tomato (Pto) DC3000 bacteria. In eps1 mutants, impaired immune responses correlate with reduced accumulation of the receptor FLAGELLIN SENSING2 (AtFLS2) and the convergent immune co-receptor BRASSINOSTEROID INSENTIVE1-ASSOCIATED RECEPTOR KINASE1 (AtBAK1) in the PM. Here, we report that in contrast to AtEPS1, the TGN/EE-localized AtMTV1 did not contribute significantly to immunity against pathogenic Pto DC3000 bacteria. We also compared the amino acid sequences, peptide motif structures and in silico tertiary structures of the ENTH domains of AtEPS1 and AtMTV1 in more detail. We conclude that despite sharing the classical tertiary alpha helical ENTH-domain structure and clathrin-binding motifs, the overall low amino acid identity and differences in peptide motifs may explain their role(s) in trafficking of some of the same as well as distinct cargo components to their site of function, with the latter potentially contributing to differences in physiological responses.
Collapse
Affiliation(s)
- Kelly Mason
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Erica LaMontagne-Mueller
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Michael Sauer
- Department of Plant Physiology, University of Potsdam, Potsdam, Germany
| | - Antje Heese
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| |
Collapse
|
6
|
Minamino N, Fujii H, Murata H, Hachinoda S, Kondo Y, Hotta K, Ueda T. Analysis of Plant-Specific ANTH Domain-Containing Protein in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1331-1342. [PMID: 37804254 DOI: 10.1093/pcp/pcad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Haruki Fujii
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Haruhiko Murata
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Sho Hachinoda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yohei Kondo
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
7
|
Wallace NS, Gadbery JE, Cohen CI, Kendall AK, Jackson LP. Tepsin binds LC3B to promote ATG9A export and delivery at the cell periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549521. [PMID: 37502979 PMCID: PMC10370099 DOI: 10.1101/2023.07.18.549521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans -Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative L C3-Interacting R egion (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B, but not other members, of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Re-introduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, re-introducing tepsin with a mutated LIR motif or missing N-terminus does not fully rescue altered ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; delivery of ATG9A-positive vesicles at the cell periphery; and in overall maintenance of autophagosome structure.
Collapse
|
8
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
10
|
Wang P, Siao W, Zhao X, Arora D, Wang R, Eeckhout D, Van Leene J, Kumar R, Houbaert A, De Winne N, Mylle E, Vandorpe M, Korver RA, Testerink C, Gevaert K, Vanneste S, De Jaeger G, Van Damme D, Russinova E. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. NATURE PLANTS 2023; 9:355-371. [PMID: 36635451 PMCID: PMC7615410 DOI: 10.1038/s41477-022-01328-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ruud A Korver
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christa Testerink
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
11
|
Pembridge OG, Wallace NS, Clements TP, Jackson LP. AP-4 loss in CRISPR-edited zebrafish affects early embryo development. Adv Biol Regul 2023; 87:100945. [PMID: 36642642 PMCID: PMC9992121 DOI: 10.1016/j.jbior.2022.100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/β4/μ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (S. cerevisiae, C. elegans, D. melanogaster). However, zebrafish (Danio rerio) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, atg9a and map1lc3b. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.
Collapse
Affiliation(s)
- Olivia G Pembridge
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Natalie S Wallace
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Thomas P Clements
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Weng X, Wang H. Apical vesicles: Social networking at the pollen tube tip. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Zhou Y, Lu Q, Ma J, Wang D, Li X, Di H, Zhang L, Hu X, Dong L, Liu X, Zeng X, Zhou Z, Weng J, Wang Z. Using a high density bin map to analyze quantitative trait locis of germination ability of maize at low temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:978941. [PMID: 36072324 PMCID: PMC9441762 DOI: 10.3389/fpls.2022.978941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Low temperatures in the spring often lead to a decline in the emergence rate and uniformity of maize, which can affect yield in northern regions. This study used 365 recombinant inbred lines (RILs), which arose from crossing Qi319 and Ye478, to identify low-temperature resistance during the germination stage by measuring eight low-temperature-related traits. The quantitative trait locis (QTLs) were mapped using R/qtl software by combining phenotypic data, and the genotyping by sequencing (GBS) method to produce a high-density genetic linkage map. Twenty QTLs were detected during QTL mapping, of which seven QTLs simultaneously detected a consistent 197.10-202.30 Mb segment on chromosome 1. The primary segment was named cQTL1-2, with a phenotypic variation of 5.18-25.96% and a physical distance of 5.2 Mb. This combines the phenotype and genotype with the identification of seven chromosome segment substitution lines (CSSLs), which were derived from Ye478*Qi319 and related to cQTL1-2. The physical distance of cQTL1-2 was reduced to approximately 1.9 Mb. The consistent meta-QTL mQTL1 was located at 619.06 cM on chromosome 1, had a genetic distance of 7.27 cM, and overlapped with cQTL1-2. This was identified by combining the results of previous QTL studies assessing maize tolerance to low temperatures at the germination stage. An assessment of the results of the RIL population, CSSLs, and mQTL1 found the consistent QTL to be LtQTL1-1. It was identified in bin1.06-1.07 at a confidence interval of between 200,400,148 and 201,775,619 bp. In this interval, qRT-PCR found that relative expression of the candidate genes GRMZM2G082630 and GRMZM2G115730 were both up-regulated in low-temperature tolerant lines and down-regulated in sensitive lines (P < 0.01).
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qing Lu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jinxin Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dandan Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinge Hu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
15
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
16
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Feng Y, Hiwatashi T, Minamino N, Ebine K, Ueda T. Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. FEBS Lett 2022; 596:2256-2268. [PMID: 35505466 DOI: 10.1002/1873-3468.14368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Subcellular localization of proteins acting on the endomembrane system is primarily regulated via membrane trafficking. To obtain and maintain the correct protein composition of the plasma membrane and membrane-bound organelles, the loading of selected cargos into transport vesicles is critically regulated at donor compartments by adaptor proteins binding to the donor membrane, the cargo molecules, and the coat-protein complexes, including the clathrin coat. The ANTH/ENTH/VHS domain-containing protein superfamily generally comprises a structurally related ENTH, ANTH, or VHS domain in the N-terminal region and a variable C-terminal region, which is thought to act as an adaptor during transport vesicle formation. This protein family is involved in various plant processes, including pollen tube growth, abiotic stress response, and development. In this review, we provide an overview of the recent findings on ANTH/ENTH/VHS domain-containing proteins in plants.
Collapse
Affiliation(s)
- Yihong Feng
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuma Hiwatashi
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
18
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
20
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Yan X, Wang Y, Xu M, Dahhan DA, Liu C, Zhang Y, Lin J, Bednarek SY, Pan J. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. THE PLANT CELL 2021; 33:3057-3075. [PMID: 34240193 PMCID: PMC8462817 DOI: 10.1093/plcell/koab180] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 05/26/2023]
Abstract
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.
Collapse
Affiliation(s)
- Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dana A. Dahhan
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Lee SK, Hong WJ, Silva J, Kim EJ, Park SK, Jung KH, Kim YJ. Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3. FRONTIERS IN PLANT SCIENCE 2021; 12:609473. [PMID: 33927731 PMCID: PMC8076639 DOI: 10.3389/fpls.2021.609473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Pollen in angiosperms plays a critical role in double fertilization by germinating and elongating pollen tubes rapidly in one direction to deliver sperm. In this process, the secretory vesicles deliver cell wall and plasma membrane materials, and excessive materials are sequestered via endocytosis. However, endocytosis in plants is poorly understood. AP180 N-terminal homology (ANTH) domain-containing proteins function as adaptive regulators for clathrin-mediated endocytosis in eukaryotic systems. Here, we identified 17 ANTH domain-containing proteins from rice based on a genome-wide investigation. Motif and phylogenomic analyses revealed seven asparagine-proline-phenylalanine (NPF)-rich and 10 NPF-less subgroups of these proteins, as well as various clathrin-mediated endocytosis-related motifs in their C-terminals. To investigate their roles in pollen germination, we performed meta-expression analysis of all genes encoding ANTH domain-containing proteins in Oryza sativa (OsANTH genes) in anatomical samples, including pollen, and identified five mature pollen-preferred OsANTH genes. The subcellular localization of four OsANTH proteins that were preferentially expressed in mature pollen can be consistent with their role in endocytosis in the plasma membrane. Of them, OsANTH3 represented the highest expression in mature pollen. Functional characterization of OsANTH3 using T-DNA insertional knockout and gene-edited mutants revealed that a mutation in OsANTH3 decreased seed fertility by reducing the pollen germination percentage in rice. Thus, our study suggests OsANTH3-mediated endocytosis is important for rice pollen germination.
Collapse
Affiliation(s)
- Su Kyoung Lee
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
23
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25150-25158. [PMID: 32968023 PMCID: PMC7547277 DOI: 10.1073/pnas.2011152117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The plasma membrane (PM) acts as the interface between intra- and extracellular environments and is thus important for intercellular communication and extracellular signal perception. The composition and amounts of PM proteins are tightly regulated, by molecular mechanisms that remain largely unknown in plant cells. We identified a pair of ANTH domain-containing proteins functioning as adaptors for the retrieval of VAMP72 members, which are components of the membrane fusion machinery, during clathrin-mediated endocytosis. Our results further indicate that the recycling mechanisms of homologous VAMP7 proteins are different in plants and animals, suggesting a divergence of the endocytosis mechanism between these two kingdoms. The plasma membrane (PM) acts as the interface between intra- and extracellular environments and exhibits a tightly regulated molecular composition. The composition and amount of PM proteins are regulated by balancing endocytic and exocytic trafficking in a cargo-specific manner, according to the demands of specific cellular states and developmental processes. In plant cells, retrieval of membrane proteins from the PM depends largely on clathrin-mediated endocytosis (CME). However, the mechanisms for sorting PM proteins during CME remain ambiguous. In this study, we identified a homologous pair of ANTH domain-containing proteins, PICALM1a and PICALM1b, as adaptor proteins for CME of the secretory vesicle-associated longin-type R-SNARE VAMP72 group. PICALM1 interacted with the SNARE domain of VAMP72 and clathrin at the PM. The loss of function of PICALM1 resulted in faulty retrieval of VAMP72, whereas general endocytosis was not considerably affected by this mutation. The double mutant of PICALM1 exhibited impaired vegetative development, indicating the requirement of VAMP72 recycling for normal plant growth. In the mammalian system, VAMP7, which is homologous to plant VAMP72, is retrieved from the PM via the interaction with a clathrin adaptor HIV Rev-binding protein in the longin domain during CME, which is not functional in the plant system, whereas retrieval of brevin-type R-SNARE members is dependent on a PICALM1 homolog. These results indicate that ANTH domain-containing proteins have evolved to be recruited distinctly for recycling R-SNARE proteins and are critical to eukaryote physiology.
Collapse
|
25
|
EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25880-25889. [PMID: 32989160 DOI: 10.1073/pnas.2004822117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.
Collapse
|
26
|
Putta P, Creque E, Piontkivska H, Kooijman EE. Lipid-protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem Phys Lipids 2020; 231:104919. [PMID: 32416105 DOI: 10.1016/j.chemphyslip.2020.104919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
Epsin-like Clathrin Adaptor 1 (ECA1/ PICALM1A) is an A/ENTH domain protein that acts as an adaptor protein in clathrin-mediated endocytosis. ECA1 is recruited to the membrane during salt stress signaling in plants in a phosphatidic acid (PA)-dependent manner. PA is a lipid second messenger that rapidly and transiently increases in concentration under stress stimuli. Upon an increase in PA concentration another lipid, diacylglycerol pyrophosphate (DGPP), starts to accumulate. The accumulation of DGPP is suggested to be a cue for attenuating PA signaling during stress in plants. We showed in vitro that ECA1-PA binding is modulated as a function of membrane curvature stress and charge. In this work, we investigate ECA1 binding to DGPP in comparison with PA. We show that ECA1 has more affinity for the less charged PA, and this binding is pH dependent. Additionally, plant PA binding proteins SnRK2.10, TGD2C, and PDK1-PH2 were investigated for their interaction with DGPP, since no known DGPP binding proteins are available in the literature to date. Our results shed further light on DGPP and its interactions with membrane proteins which brings us closer toward understanding the complexity of protein interactions with anionic lipids, especially the enigmatic anionic lipid DGPP.
Collapse
Affiliation(s)
- Priya Putta
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Emily Creque
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Helen Piontkivska
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Edgar E Kooijman
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| |
Collapse
|
27
|
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck SC, Heese A. EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses. PLANT PHYSIOLOGY 2020; 182:1762-1775. [PMID: 32094305 PMCID: PMC7140936 DOI: 10.1104/pp.19.01172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined. The Arabidopsis (Arabidopsis thaliana) clathrin adaptor EPSIN1 (EPS1) is implicated in clathrin-coated vesicle formation at the trans-Golgi network (TGN), likely aiding the transport of cargo proteins from the TGN for proper location; but EPS1's impact on physiological responses remains elusive. Here, we identify EPS1 as a positive regulator of flg22 signaling and pattern-triggered immunity against Pseudomonas syringae pv tomato DC3000. We provide evidence that EPS1 contributes to modulating the PM abundance of defense proteins for effective immune signaling because in eps1, impaired flg22 signaling correlated with reduced PM accumulation of FLS2 and its coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1). The eps1 mutant also exhibited reduced responses to the pathogen/damage-associated molecular patterns elf26 and AtPep1, which are perceived by the coreceptor BAK1 and cognate PM receptors. Furthermore, quantitative proteomics of enriched PM fractions revealed that EPS1 was required for proper PM abundance of a discrete subset of proteins with different cellular functions. In conclusion, our study expands the limited understanding of the physiological roles of EPSIN family members in plants and provides novel insight into the TGN-associated clathrin-coated vesicle trafficking machinery that impacts plant PM-derived defense processes.
Collapse
Affiliation(s)
- Carina A Collins
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Erica D LaMontagne
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Gayani Ekanayake
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Alexander S Clarke
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Lauren N Bond
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Daniel J Salamango
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Peter V Cornish
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Scott C Peck
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Antje Heese
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| |
Collapse
|
28
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
29
|
In-Silico Evaluation of a New Gene From Wheat Reveals the Divergent Evolution of the CAP160 Homologous Genes Into Monocots. J Mol Evol 2019; 88:151-163. [PMID: 31820048 DOI: 10.1007/s00239-019-09920-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
This study reports the evolutionary history and in-silico functional characterization of a novel water-deficit and ABA-responsive gene in wheat. This gene has remote sequence similarity to known abiotic stress-related genes in different plants, including CAP160 in Spinacia oleracea, RD29B in Arabidopsis thaliana, and CDeT11-24 in Craterostigma plantagineum. The study investigated if these genes form a close homologous relationship or if they are a result of convergent evolutionary processes. The results indicated a closely shared homologous relationship between these genes. Bayesian phylogenetic analysis of the protein sequences of the remotely related CAP160 proteins from various plant species indicated the presence of three distinct clades. Further analyses indicated that CAP160 homologous genes have predominantly evolved through neutral processes, with multiple regions experiencing signatures of purifying selection, while others were indicated to be the result of episodic diversifying selection events. Functional predictions revealed that these genes might share at least two functions related to abiotic stress conditions: one similar to the cryoprotective function of LEA protein, and the other a signalling molecule with phosphatidic acid binding specificity. Studies focused on the identification of cold-responsive genes are essential for the development of cold-tolerant crop plants, if we are to increase agricultural productivity throughout temperate regions.
Collapse
|
30
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
31
|
Kaneda M, van Oostende-Triplet C, Chebli Y, Testerink C, Bednarek SY, Geitmann A. Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during Pollen Tube Growth in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1316-1330. [PMID: 30796435 DOI: 10.1093/pcp/pcz036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/18/2019] [Indexed: 05/05/2023]
Abstract
Polarized cell growth in plants is maintained under the strict control and exquisitely choreographed balance of exocytic and endocytic membrane trafficking. The pollen tube has become a model system for rapid polar growth in which delivery of cell wall material and membrane recycling are controlled by membrane trafficking. Endocytosis plays an important role that is poorly understood. The plant AP180 N-Terminal Homolog (ANTH) proteins are putative homologs of Epsin 1 that recruits clathrin to phosphatidylinositol 4, 5-bisphosphate (PIP2) containing membranes to facilitate vesicle budding during endocytosis. Two Arabidopsis ANTH encoded by the genes AtAP180 and AtECA2 are highly expressed in pollen tubes. Pollen tubes from T-DNA inserted knockout mutant lines display significant morphological defects and unique pectin deposition. Fluorescent tagging reveals organization into dynamic foci located at the lateral flanks of the pollen tube. This precisely defined subapical domain coincides which clathrin-mediated endocytosis (CME) and PIP2 localization. Using a liposome-protein binding test, we showed that AtECA2 protein and ANTH domain recombinant proteins have strong affinity to PIP2 and phosphatidic acid containing liposomes in vitro. Taken together these data suggest that Arabidopsis ANTH proteins may play an important role in CME, proper cell wall assembly and morphogenesis.
Collapse
Affiliation(s)
- Minako Kaneda
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
| | - Chloï van Oostende-Triplet
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Present address: Cell Biology and Image Acquisition Core Facility, Faculty of Medicine, University of Ottawa, RGN 3171, 451 Smyth Road, Ottawa, ON, Canada
| | - Youssef Chebli
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, PB Wageningen, The Netherlands
| | | | - Anja Geitmann
- Institut de recherche en biologie v�g�tale, Universit� de Montr�al, 4101 Rue Sherbrooke Est, Montr�al, QC, Canada
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Qu�bec, Canada
| |
Collapse
|
32
|
Muro K, Matsuura-Tokita K, Tsukamoto R, Kanaoka MM, Ebine K, Higashiyama T, Nakano A, Ueda T. ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun Biol 2018; 1:152. [PMID: 30272028 PMCID: PMC6158268 DOI: 10.1038/s42003-018-0158-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
During plant reproduction, sperm cells are delivered to ovules through growing pollen tubes. This process involves tip-localized receptor kinases regulating integrity and/or guidance of pollen tubes, whose localizations must be strictly regulated. However, the molecular basis for tip-localization of these molecules remains largely elusive. Here we show that a pair of AP180 N-terminal homology domain-containing proteins, PICALM5a and PICALM5b, is responsible for the tip-localization of ANXUR receptor kinases acting in an autocrine signaling pathway required for pollen tube integrity in Arabidopsis thaliana. The picalm5a picalm5b double mutant exhibits reduced fertility, and the double mutant pollen is defective in pollen tube integrity with premature bursts. The tip localization of ANXUR proteins is severely impaired in picalm5a picalm5b pollen tubes, whereas another receptor kinase PRK6 acting in pollen tube guidance is not affected. Based on these results, we propose that PICALM5 proteins serve as specific loading adaptors to recycle ANXUR proteins.
Collapse
Affiliation(s)
- Keita Muro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kumi Matsuura-Tokita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
33
|
Li H, Luo N, Wang W, Liu Z, Chen J, Zhao L, Tan L, Wang C, Qin Y, Li C, Xu T, Yang Z. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nat Commun 2018; 9:2573. [PMID: 29968705 PMCID: PMC6030205 DOI: 10.1038/s41467-018-04838-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 11/08/2022] Open
Abstract
The dynamic maintenance of polar domains in the plasma membrane (PM) is critical for many fundamental processes, e.g., polar cell growth and growth guidance but remains poorly characterized. Rapid tip growth of Arabidopsis pollen tubes requires dynamic distribution of active ROP1 GTPase to the apical domain. Here, we show that clathrin-mediated endocytosis (CME) coordinates lateral REN4 with apical ROP1 signaling. REN4 interacted with but antagonized active ROP1. REN4 also interacts and co-localizes with CME components, but exhibits an opposite role to CME, which removes both REN4 and active ROP1 from the PM. Mathematical modeling shows that REN4 restrains the spatial distribution of active ROP1 and is important for the robustness of polarity control. Hence our results indicate that REN4 acts as a spatiotemporal rheostat by interacting with ROP1 to initiate their removal from the PM by CME, thereby coordinating a dynamic demarcation between apical and lateral domains during rapid tip growth.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Nan Luo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Weidong Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
| | - Zengyu Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jisheng Chen
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liangtao Zhao
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Chunyan Wang
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Yuan Qin
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Chao Li
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Tongda Xu
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA.
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
34
|
Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:55-61. [PMID: 29807606 DOI: 10.1016/j.plantsci.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
35
|
Nguyen HH, Lee MH, Song K, Ahn G, Lee J, Hwang I. The A/ENTH Domain-Containing Protein AtECA4 Is an Adaptor Protein Involved in Cargo Recycling from the trans-Golgi Network/Early Endosome to the Plasma Membrane. MOLECULAR PLANT 2018; 11:568-583. [PMID: 29317286 DOI: 10.1016/j.molp.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane.
Collapse
Affiliation(s)
- Hong Hanh Nguyen
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Gyeongik Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jihyeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
36
|
Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis. THE PLANT CELL 2018; 30:700-716. [PMID: 29511054 PMCID: PMC5894831 DOI: 10.1105/tpc.17.00785] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/16/2018] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Urszula Kania
- IST Austria, 3400 Klosterneuburg, Austria
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matouš Glanc
- IST Austria, 3400 Klosterneuburg, Austria
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- IST Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
37
|
Di Sansebastiano GP, Barozzi F, Piro G, Denecke J, de Marcos Lousa C. Trafficking routes to the plant vacuole: connecting alternative and classical pathways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:79-90. [PMID: 29096031 DOI: 10.1093/jxb/erx376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/27/2017] [Indexed: 05/02/2023]
Abstract
Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole.
Collapse
Affiliation(s)
- Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Fabrizio Barozzi
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Gabriella Piro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | | | - Carine de Marcos Lousa
- Centre for Plant Sciences, Leeds University, UK
- Leeds Beckett University, School of Applied and Clinical Sciences, UK
| |
Collapse
|
38
|
Dubeaux G, Vert G. Zooming into plant ubiquitin-mediated endocytosis. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:56-62. [PMID: 28756333 DOI: 10.1016/j.pbi.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 05/21/2023]
Abstract
Endocytosis in plants plays an essential role, not only for basic cellular functions but also for growth, development, and environmental responses. Over the past few years, ubiquitin emerged as a major signal triggering the removal of plasma membrane proteins from the cell surface and promoting their vacuolar targeting. Detailed genetic, biochemical and imaging studies have provided initial insights into the precise mechanisms and roles of ubiquitin-mediated endocytosis in plants. Here, we summarize the present state of knowledge about the machinery involved in plant ubiquitin-mediated endocytosis and how this is coordinated in time and space to control the internalization and the endosomal sorting of endocytosed proteins.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
LaMontagne ED, Heese A. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:114-121. [PMID: 28915433 DOI: 10.1016/j.pbi.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses.
Collapse
Affiliation(s)
- Erica D LaMontagne
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Antje Heese
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.
| |
Collapse
|
40
|
Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 2017; 25:1-10. [PMID: 28985339 PMCID: PMC5824858 DOI: 10.1093/dnares/dsx033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022] Open
Abstract
The melon (Cucumis melo) genome and genetic maps with hundreds to thousands of single nucleotide polymorphism markers were recently released. However, a high-resolution genetic map was lacking. Gummy stem blight (Gsb) is a destructive disease responsible for considerable economic losses during melon production. We herein describe the development of an ultra-dense genetic map consisting of 12,932 recombination bin markers covering 1,818 cM, with an average distance of 0.17 cM between adjacent tags. A comparison of the genetic maps for melon, watermelon, and cucumber revealed chromosome-level syntenic relationships and recombination events among the three Cucurbitaceae species. Our genetic map was useful for re-anchoring the genome scaffolds of melon. More than 92% assembly was anchored to 12 pseudo-chromosomes and 90% of them were oriented. Furthermore, 1,135 recombination hotspots revealed an unbalanced recombination rate across the melon genome. Genetic analyses of the Gsb-resistant and -susceptible lines indicated the resistance phenotype is mediated by a single dominant gene. We identified Gsb-resistance gene candidates in a 108-kb region on pseudo-chromosome 4. Our findings verify the utility of an ultra-dense genetic map for mapping a gene of interest, and for identifying new disease resistant genes.
Collapse
Affiliation(s)
- Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Guancong Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Haipeng Mou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuhui Xu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Li Chen
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
41
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017. [PMID: 28422008 DOI: 10.7554/elife.24336.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017; 6. [PMID: 28422008 PMCID: PMC5397284 DOI: 10.7554/elife.24336] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. eLife 2017; 6. [PMID: 28422008 DOI: 10.7554/elife.24336.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/06/2017] [Indexed: 05/19/2023] Open
Abstract
Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which - epsilon - is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.
Collapse
Affiliation(s)
- Jutta Keicher
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Nina Jaspert
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Katrin Weckermann
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Möller
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Christian Throm
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Aaron Kintzi
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Claudia Oecking
- Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J. DRP1-Dependent Endocytosis is Essential for Polar Localization and Boron-Induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:1985-2000. [PMID: 27449211 DOI: 10.1093/pcp/pcw121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells.
Collapse
Affiliation(s)
- Akira Yoshinari
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Japan Japan Science and Technology Agency (JST), PRESTO, Honcho 4-1-8, Kawaguchi, 332-0012 Japan
| | - Noriko Inada
- Graduate School of Biological Sciences, Nara Institute of Sciences and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Kita-10, Nishi-7, Kita-ku, Sapporo, 060-0810 Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531 Japan
| |
Collapse
|
45
|
Wang C, Hu T, Yan X, Meng T, Wang Y, Wang Q, Zhang X, Gu Y, Sánchez-Rodríguez C, Gadeyne A, Lin J, Persson S, Van Damme D, Li C, Bednarek SY, Pan J. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. PLANT PHYSIOLOGY 2016; 171:215-29. [PMID: 26945051 PMCID: PMC4854679 DOI: 10.1104/pp.15.01716] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/03/2016] [Indexed: 05/18/2023]
Abstract
In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Tianwei Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Tingting Meng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Yutong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Qingmei Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Xiaoyue Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Ying Gu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Clara Sánchez-Rodríguez
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Astrid Gadeyne
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Jinxing Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Staffan Persson
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Daniël Van Damme
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Chuanyou Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Sebastian Y Bednarek
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (C.W., T.H., X.Y., T.M., Y.W., Q.W., J.P.);State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (X.Z., C.L.);Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.G.);Department of Biology, Institute of Agricultural Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (C.S.-R.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (A.G., D.V.D.);College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (J.L.);Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia (S.P.); andDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (S.Y.B.)
| |
Collapse
|
46
|
Paez Valencia J, Goodman K, Otegui MS. Endocytosis and Endosomal Trafficking in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:309-35. [PMID: 27128466 DOI: 10.1146/annurev-arplant-043015-112242] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Collapse
Affiliation(s)
- Julio Paez Valencia
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Kaija Goodman
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Marisa S Otegui
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706; , ,
| |
Collapse
|