1
|
Yun M, Xiong Y, Wang Z, Xie L, Ye H, Yuan X, He W, Chen B, Lu Z, Chen W. Insect Oral Secretion Protein and Its Related Core Peptide Induce the Host Plant's Endogenous Abscisic Acid to Enhance Resistance against Insect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40270364 DOI: 10.1021/acs.jafc.4c12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Plants perceive proteins from insect-derived oral secretion (OS) and regulate the classical endogenous hormone jasmonic acid to resist insects, but the role of abscisic acid (ABA) in this process is poorly understood. In this study, we used the specialist herbivorous caterpillar Plutella xylostella and cruciferous plants as a model to investigate how the ABA hormone responds to the OS and its core peptide from the insect. Through proteomics and Western blotting analysis, glucosinolate sulfatase 1 (GSS1) was identified in OS. Yeast library screening revealed that GSS1 and its 28-amino-acid core peptide (GSS1-P1) interact with ABA biosynthetic enzyme ABA1. Arabidopsis overexpressing GSS1 and plants treated with synthetic GSS1-P1 showed elevated ABA levels. Transcriptome analysis and RT-qPCR confirmed that GSS1-P1 upregulates WRKY18 and ABA1 expression, modulating ABA production. Both GSS1-P1 application and optimal ABA concentrations enhanced plant resistance to herbivory. Our study shows that GSS1 and its peptide stimulate ABA production, boosting plant-insect resistance and highlighting ABA's potential role in pest-stress response.
Collapse
Affiliation(s)
- Mengjun Yun
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yu Xiong
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhuobing Wang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Lianjie Xie
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Hanwen Ye
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xiaofang Yuan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, Shanxi, China
| | - Zhanjun Lu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Wei Chen
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Dang TVT, Cho HS, Lee S, Hwang I. Salt stress-accelerated proteasomal degradation of LBD11 suppresses ROS-mediated meristem development and root growth in Arabidopsis. PLANT COMMUNICATIONS 2025; 6:101241. [PMID: 39789847 PMCID: PMC12010409 DOI: 10.1016/j.xplc.2025.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Particularly sensitive to soil salinity, a major abiotic stress, roots face significant challenges that threaten global agriculture. In response to salt stress, plants suppress root meristem size, thereby reducing root growth. However, the mechanisms underlying this growth restriction remain unclear. Here, we investigate the role of reactive oxygen species (ROS) in this process and reveal that LATERAL ORGAN BOUNDARIES DOMAIN 11 (LBD11) plays a central role in ROS-mediated regulation of meristem size and the salt stress-induced inhibition of root growth. Under normal conditions, LBD11 controls the expression of key ROS metabolic genes, maintaining ROS homeostasis within root developmental zones to control meristem size and overall root growth. Upon sensing salt stress, LBD11 undergoes rapid proteasome-mediated degradation, leading to decreased distribution of O2⋅-, which in turn curtails meristem size and limits root length. Our findings highlight an unexplored plant adaptation strategy, where the growth-promoting LBD11/ROS pathway is downregulated to finely regulate root growth under challenging conditions. We propose a strategy for developing crops with heightened resilience and increased yields in salt-affected environments.
Collapse
Affiliation(s)
- Tuong Vi T Dang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
3
|
Agarwal P, Chittora A, Verma A, Agarwal PK. Structural Dynamics, Evolutionary Significance, and Functions of Really Interesting New Gene Proteins in Ubiquitination and Plant Stress: A Review. DNA Cell Biol 2025. [PMID: 40208634 DOI: 10.1089/dna.2025.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Abiotic stress causes major crop losses worldwide. Plants have evolved complex intricate signaling network involving transcriptional regulators and posttranslational modifications (PTMs). Ubiquitination-a key PTM-regulates protein degradation through the ubiquitin-proteasome system (UPS). The UPS plays a pivotal role in detecting and modulating plant responses to environmental fluctuations. The E3 ligase family in plants is extensive, offering high substrate specificity and playing a vital role in signaling and protein turnover. Really Interesting New Gene (RING) proteins primarily function as E3 ubiquitin ligases, their functional diversity facilitates the transfer of ubiquitin molecules to specific target proteins. Plants possess abscisic acid (ABA)-dependent and ABA-independent stress-signaling pathways. RING-type E3 ligases regulate ABA signaling either negatively or positively in response to stress by regulating protein degradation, modulating transcription factors, ABA biosynthesis, and degradation. This dynamic interaction between ABA and E3 ligase proteins helps plants to adapt to environmental stress. Negative regulators, such as AIP2 and OsDSG1, target ABI3 for degradation. Keep on going (KEG) ubiquitinates ABI5, ABF1, and ABF3, though KEG itself is subject to feedback regulation by ABA levels, leading to its degradation. Positive regulators include SDIR1, OsSDIR1, AIRP1, RHA2b/RHA2a, and XERICO, along with its maize orthologs ZmXerico1 and ZmXerico2. Additionally, SINAT5 and BOI regulate auxin and gibberellin signaling, integrating hormonal responses to stress. The functional diversity of RING-type E3 ligases offers promising targets for genetic engineering to enhance crop resilience under adverse environmental conditions. Understanding these molecular mechanisms could lead to the development of climate-resilient crops, crucial for sustaining global food security.
Collapse
Affiliation(s)
- Parinita Agarwal
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Anjali Chittora
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ayushi Verma
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Pradeep K Agarwal
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Baek W, Oh D, Woo LC, Lee SC. The Pepper E3 Ligase CaGIR1 Acts as a Negative Regulator of Drought Response via Controlling CaGRAS1 Stability. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40195798 DOI: 10.1111/pce.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The ubiquitin-proteasome pathway modulates protein stability, which impacts plant responses to abiotic stresses, such as drought. Our previous study reported that the pepper GRAS-type transcription factor CaGRAS1 plays a positive role in drought resistance. However, the mechanism by which drought stress affects CaGRAS1 protein stability remains unknown. Here, we identified Capsicum annuum CaGRAS1-Interacting RING-type E3 ligase 1 (CaGIR1) through yeast two-hybrid analysis. The interaction between these two proteins was confirmed by both in vitro and in vivo assays, and interaction occurred in both the nucleus and cytoplasm, consistent with their subcellular localisation. In ubiquitination assays, CaGIR1 was shown to have ubiquitin E3 ligase activity, which is dependent on its RING domain. CaGIR1 also directly ubiquitinated CaGRAS1 in vitro and in vivo, and CaGRAS1 protein stability negatively correlated with CaGIR1 expression levels. In contrast to CaGRAS1, CaGIR1 was found to play a negative role in drought resistance. Phenotypic assays revealed that the silencing of CaGIR1 in pepper resulted in enhanced drought resistance through the modulation of stomatal responses and drought-responsive marker gene expression, whereas CaGIR1 overexpression led to the opposite results in Arabidopsis. Overall, our findings suggest that CaGIR1 negatively modulates ABA and drought responses by triggering CaGRAS1 protein degradation.
Collapse
Affiliation(s)
- Woonhee Baek
- Department of Life Science (BK21 Programme), Chung-Ang University, Seoul, South Korea
| | - Donghyuk Oh
- Department of Life Science (BK21 Programme), Chung-Ang University, Seoul, South Korea
| | - Lim Chae Woo
- Department of Life Science (BK21 Programme), Chung-Ang University, Seoul, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Programme), Chung-Ang University, Seoul, South Korea
| |
Collapse
|
5
|
Guo Y, Ren Q, Song M, Zhang X, Wan H, Liu F. Genome-wide analysis of CHYR gene family and BnA03.CHYR.1 functional verification under salt stress in Brassica napus L. BMC PLANT BIOLOGY 2025; 25:363. [PMID: 40114060 PMCID: PMC11924726 DOI: 10.1186/s12870-025-06343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Brassica napus, an allotetraploid used as an oilseed crop, vegetable, or feed crop, possesses significant economic and medicinal value. Although the CHYR gene family has been functionally characterised in various aspects of plant growth, development, and stress responses, its systematic investigation in B. napus is lacking. In contrast to the seven CHYR genes (AtCHYR1-AtCHYR7) identified in Arabidopsis thaliana, nine CHYR orthologues were detected in B. rapa and B. oleracea, while 24 were found in B. napus. This discrepancy is consistent with the established triplication events that occurred during the Brassicaceae family evolution. Phylogenetic analysis indicated that the 24 CHYRs identified in B. napus could be categorised into three distinct groups. Among these, 24 BnCHYRs contained conserved domains, including the CHY-zinc finger, C3H2C3-type RING finger and zinc ribbon domains. Group III members featured an additional one to three hemerythrin domains in their N-terminal regions. Each BnCHYR group shared similar patterns in the distribution of conserved domains. Our results revealed that the selected eight BnCHYRs were up-regulated following heat treatment, exhibiting varying expression patterns in response to salt, cold, and drought stress during the seedling stage. Expression analysis revealed that several BnCHYRs were significantly induced by one or more abiotic stressors. BnA03.CHYR.1 was significantly induced by salt and heat stress and repressed by polyethylene glycol treatment. BnA03.CHYR.1 was localised in the nucleus and cytoplasm, and its overexpression in A. thaliana enhanced tolerance to salt stress. Our results provide a comprehensive analysis of the CHYR family in B. napus, elucidating the biological role of BnA03.CHYR.1 in adaptive responses of plants to salt stress.
Collapse
Affiliation(s)
- Yanli Guo
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qingxiao Ren
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Manman Song
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiangxiang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Heping Wan
- Jianghan University/Hubei Engineering Research Center for Conservation Development and Utilization of Characteristic Biological Resources in Hanjiang River Basin, Wuhan, 430056, China.
| | - Fei Liu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Chen Z, Huang J, Li J, Menke FLH, Jones JDG, Guo H. Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity. Nat Commun 2025; 16:1984. [PMID: 40011440 DOI: 10.1038/s41467-025-57231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Plant intracellular NLR immune receptors can function individually or in pairs to detect pathogen effectors and activate immune responses. NLR homeostasis has to be tightly regulated to ensure proper defense without triggering autoimmunity. However, in contrast to singleton NLRs, the mechanisms controlling the paired NLRs complex homeostasis are less understood. The paired Arabidopsis RRS1/RPS4 immune receptor complex confers disease resistance through effector recognition mediated by the integrated WRKY domain of RRS1. Here, through proximity labeling, we reveal a ubiquitination-deubiquitination cycle that controls the homeostasis of the RRS1/RPS4 complex. E3 ligase RARE directly binds and ubiquitinates RRS1's WRKY domain to promote its proteasomal degradation, thereby destabilizing RPS4 indirectly and compromising the stability and function of the RRS1/RPS4 complex. Conversely, the deubiquitinating enzymes UBP12/UBP13 deubiquitinate RRS1's WRKY domain, counteracting RARE's effects. Interestingly, the abundance of WRKY transcription factors WRKY70 and WRKY41 is also regulated by RARE and UBP12/UBP13. Phylogenetic analysis suggests this regulation likely transferred from WRKY70/WRKY41 to RRS1 upon WRKY domain integration. Our findings improve our understanding of homeostatic regulation of paired NLR complex and uncover a paradigm whereby domain integration can co-opt preexisting post-translational modification to regulate novel protein functions.
Collapse
Affiliation(s)
- Zhiyi Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jianyu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hailong Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Ansari MM, Bisht N, Singh T, Mishra SK, Anshu A, Singh PC, Chauhan PS. Bacillus amyloliquefaciens modulate autophagy pathways to control Rhizoctonia solani infection in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109317. [PMID: 39603034 DOI: 10.1016/j.plaphy.2024.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The necrotrophic fungus Rhizoctonia solani significantly threatens rice harvests and agricultural productivity by causing sheath blight disease. This study investigates the potential of the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens (SN13) as a biocontrol agent in the sensitive rice variety Swarna against R. solani infection. Disease incidence analysis reveals untreated rice plants suffer from R. solani infection, while SN13 treatment effectively suppresses fungal growth. In detached leaf assays, SN13 mitigates R. solani-induced damage, and physio-biochemical analyses indicate improved growth in SN13-treated rice plants. Notably, treatment with chloroquine, an autophagy inhibitor, increases disease incidence, whereas SN13 treatment enhances the formation of autophagosomes stained with Mono Dansyl Cadaverine (MDC) dye, as observed through confocal microscopy, suggesting the involvement of autophagy in plant defense against R. solani. Gene expression analysis reveals alterations in ATG and defence-related genes (BZ1, 5H5, and 8A1), affirming that SN13 activates autophagy and bolsters plant resilience. Metabolite analysis using GC-MS indicates the accumulation of defence signalling molecules such as gluconic acid, arabitol, glucopyranoside, ribose, xylopyranose, and arabinofuranoside. Overall, this study demonstrates the role of SN13 in inducing the autophagy response and modulating crucial defense pathways to control R. solani infection in rice var Swarna.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shashank Kumar Mishra
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Anshu Anshu
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Poonam C Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Bovet L, Battey J, Lu J, Sierro N, Dewey RE, Goepfert S. Nitrate assimilation pathway is impacted in young tobacco plants overexpressing a constitutively active nitrate reductase or displaying a defective CLCNt2. BMC PLANT BIOLOGY 2024; 24:1132. [PMID: 39592946 PMCID: PMC11600588 DOI: 10.1186/s12870-024-05834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). The expression of a deregulated nitrate reductase enzyme (DNR) that is no longer responsive to light regulation is believed to diminish free nitrate pools by immediately channeling incoming nitrate into the nitrate assimilation pathway. The reduction in nitrate observed when the two tobacco gene copies encoding the vacuolar nitrate transporter CLCNt2 were down-regulated by RNAi-mediated suppression or knocked out using the CRISPR-Cas technology was mechanistically distinct; likely attributable to the inability of the tobacco cell to efficiently sequester nitrate into the vacuole where this metabolite is protected from further assimilation. In this study, we used transcriptomic and metabolomic analyses to compare the nitrate assimilation response in tobacco plants either expressing DNR or lacking CLCNt2 function. RESULTS When grown in a controlled environment, both DNR and CLCNt2-KO (CLCKO) plants exhibited (1) reduced nitrate content in the leaf; (2) increased N-assimilation into the amino acids Gln and Asn; and (3) a similar pattern of differential regulation of several genes controlling stress responses, including water stress, and cell wall metabolism in comparison to wild-type plants. Differences in gene regulation were also observed between DNR and CLCKO plants, including genes encoding nitrite reductase and asparagine synthetase. CONCLUSIONS Our data suggest that even though both DNR and CLCKO plants display common characteristics with respect to nitrate assimilation, cellular responses, water stress, and cell wall remodeling, notable differences in gene regulatory patterns between the two low nitrate plants are also observed. These findings open new avenues in using plants fixing more nitrogen into amino acids for plant improvement or nutrition perspectives.
Collapse
Affiliation(s)
- L Bovet
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland.
| | - J Battey
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - J Lu
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - N Sierro
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - R E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - S Goepfert
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| |
Collapse
|
9
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 PMCID: PMC11536463 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Institute of Fisheries Sciences, University of DoualaDoualaCameroon
| | - Kaili Wang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yuchun Lu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Esa Abiso Godana
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Michael Ackah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Qiya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Hongyin Zhang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
10
|
Manjarrez LF, de María N, Vélez MD, Cabezas JA, Mancha JA, Ramos P, Pizarro A, Blanco-Urdillo E, López-Hinojosa M, Cobo-Simón I, Guevara MÁ, Díaz-Sala MC, Cervera MT. Comparative Stem Transcriptome Analysis Reveals Pathways Associated with Drought Tolerance in Maritime Pine Grafts. Int J Mol Sci 2024; 25:9926. [PMID: 39337414 PMCID: PMC11432578 DOI: 10.3390/ijms25189926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The maritime pine (Pinus pinaster Ait.) is a highly valuable Mediterranean conifer. However, recurrent drought events threaten its propagation and conservation. P. pinaster populations exhibit remarkable differences in drought tolerance. To explore these differences, we analyzed stem transcriptional profiles of grafts combining genotypes with contrasting drought responses under well-watered and water-stress regimes. Our analysis underscored that P. pinaster drought tolerance is mainly associated with constitutively expressed genes, which vary based on genotype provenance. However, we identified key genes encoding proteins involved in water stress response, abscisic acid signaling, and growth control including a PHD chromatin regulator, a histone deubiquitinase, the ABI5-binding protein 3, and transcription factors from Myb-related, DOF NAC and LHY families. Additionally, we identified that drought-tolerant rootstock could enhance the drought tolerance of sensitive scions by regulating the accumulation of transcripts involved in carbon mobilization, osmolyte biosynthesis, flavonoid and terpenoid metabolism, and reactive oxygen species scavenging. These included genes encoding galactinol synthase, CBL-interacting serine/threonine protein kinase 5, BEL1-like homeodomain protein, dihydroflavonol 4-reductase, and 1-deoxy-D-xylulose-5-phosphate. Our results revealed several hub genes that could help us to understand the molecular and physiological response to drought of conifers. Based on all the above, grafting with selected drought-tolerant rootstocks is a promising method for propagating elite recalcitrant conifer species, such as P. pinaster.
Collapse
Affiliation(s)
- Lorenzo Federico Manjarrez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - José Antonio Mancha
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Paula Ramos
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Endika Blanco-Urdillo
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Miriam López-Hinojosa
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| |
Collapse
|
11
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Lan J, Lian C, Shao Y, Chen S, Lu Y, Zhu L, Mu D, Tang Q. Genome-Wide Identification of Seven in Absentia E3 Ubiquitin Ligase Gene Family and Expression Profiles in Response to Different Hormones in Uncaria rhynchophylla. Int J Mol Sci 2024; 25:7636. [PMID: 39062882 PMCID: PMC11277444 DOI: 10.3390/ijms25147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
SINA (Seven in absentia) E3 ubiquitin ligases are a family of RING (really interesting new gene) E3 ubiquitin ligases, and they play a crucial role in regulating plant growth and development, hormone response, and abiotic and biotic stress. However, there is little research on the SINA gene family in U. rhynchophylla. In this study, a total of 10 UrSINA genes were identified from the U. rhynchophylla genome. The results of multiple sequence alignments and chromosomal locations show that 10 UrSINA genes were unevenly located on 22 chromosomes, and each UrSINA protein contained a SINA domain at the N-terminal and RING domains at the C-terminal. Synteny analysis showed that there are no tandem duplication gene pairs and there are four segmental gene pairs in U. rhynchophylla, contributing to the expansion of the gene family. Furthermore, almost all UrSINA genes contained the same gene structure, with three exons and two introns, and there were many cis-acting elements relating to plant hormones, light responses, and biotic and abiotic stress. The results of qRT-PCR show that most UrSINA genes were expressed in stems, with the least expression in roots; meanwhile, most UrSINA genes and key enzyme genes were responsive to ABA and MeJA hormones with overlapping but different expression patterns. Co-expression analysis showed that UrSINA1 might participate in the TIA pathway under ABA treatment, and UrSINA5 and UrSINA6 might participate in the TIA pathway under MeJA treatment. The mining of UrSINA genes in the U. rhynchophylla provided novel information for understanding the SINA gene and its function in plant secondary metabolites, growth, and development.
Collapse
Affiliation(s)
- Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| |
Collapse
|
13
|
Kou H, Zhang X, Jia J, Xin M, Wang J, Mao L, Baltaevich AM, Song X. Research Progress in the Regulation of the ABA Signaling Pathway by E3 Ubiquitin Ligases in Plants. Int J Mol Sci 2024; 25:7120. [PMID: 39000226 PMCID: PMC11241352 DOI: 10.3390/ijms25137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
14
|
Li Y, Qiu J, Yang J, Li Y, Zhang H, Zhao F, Tan H. Molecular Mechanism of GmSNE3 Ubiquitin Ligase-Mediated Inhibition of Soybean Nodulation by Halosulfuron Methyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14114-14125. [PMID: 38867659 DOI: 10.1021/acs.jafc.4c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingxia Yang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yihan Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hui Zhang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
15
|
Xu J, Liu H, Zhou C, Wang J, Wang J, Han Y, Zheng N, Zhang M, Li X. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112035. [PMID: 38367822 DOI: 10.1016/j.plantsci.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The post-translational modification (PTM) of proteins by ubiquitination modulates many physiological processes in plants. As the major protein degradation pathway in plants, the ubiquitin-proteasome system (UPS) is considered a promising target for improving crop tolerance drought, high salinity, extreme temperatures, and other abiotic stressors. The UPS also participates in abiotic stress-related abscisic acid (ABA) signaling. E3 ligases are core components of the UPS-mediated modification process due to their substrate specificity. In this review, we focus on the abiotic stress-associated regulatory mechanisms and functions of different UPS components, emphasizing the participation of E3 ubiquitin ligases. We also summarize and discuss UPS-mediated modulation of ABA signaling. In particular, we focus our review on recent research into the UPS-mediated modulation of the abiotic stress response in major crop plants. We propose that altering the ubiquitination site of the substrate or the substrate-specificity of E3 ligase using genome editing technology such as CRISPR/Cas9 may improve the resistance of crop plants to adverse environmental conditions. Such a strategy will require continued research into the role of the UPS in mediating the abiotic stress response in plants.
Collapse
Affiliation(s)
- Jian Xu
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongjie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhou
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jinxing Wang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Junqiang Wang
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yehui Han
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Nan Zheng
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Zhang
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoming Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Meng Y, Lv Q, Li L, Wang B, Chen L, Yang W, Lei Y, Xie Y, Li X. E3 ubiquitin ligase TaSDIR1-4A activates membrane-bound transcription factor TaWRKY29 to positively regulate drought resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:987-1000. [PMID: 38018512 PMCID: PMC10955488 DOI: 10.1111/pbi.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Collapse
Affiliation(s)
- Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
17
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
18
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
19
|
Koh H, Joo H, Lim CW, Lee SC. Roles of the pepper JAZ protein CaJAZ1-03 and its interacting partner RING-type E3 ligase CaASRF1 in regulating ABA signaling and drought responses. PLANT, CELL & ENVIRONMENT 2023; 46:3242-3257. [PMID: 37563998 DOI: 10.1111/pce.14692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Plants have developed various defense mechanisms against environmental stresses by regulating hormone signaling. Jasmonic acid (JA) is a major phytohormone associated with plant defense responses. JASMONATE ZIM-DOMAIN (JAZ) proteins play a regulatory role in repressing JA signaling, impacting plant responses to both biotic and abiotic stresses. Here, we isolated 7 JAZ genes in pepper and selected CA03g31030, a Capsicum annuum JAZ1-03 (CaJAZ1-03) gene, for further study based on its expression level in response to abiotic stresses. Through virus-induced gene silencing (VIGS) in pepper and overexpression in transgenic Arabidopsis plants, we established the functional role of CaJAZ1-03. Functional studies revealed that CaJAZ1-03 dampens abscisic acid (ABA) signaling and drought stress responses. The cell-free degradation assay showed faster degradation of CaJAZ1-03 in drought- or ABA-treated pepper leaves compared to healthy leaves. Conversely, CaJAZ1-03 was completely preserved under MG132 treatment, indicating that CaJAZ1-03 stability is modulated via the ubiquitin-26s proteasome pathway. We also found that the pepper RING-type E3 ligase CaASRF1 interacts with and ubiquitinates CaJAZ1-03. Additional cell-free degradation assays revealed a negative correlation between CaJAZ1-03 and CaASRF1 expression levels. Collectively, these findings suggest that CaJAZ1-03 negatively regulates ABA signaling and drought responses and that its protein stability is modulated by CaASRF1.
Collapse
Affiliation(s)
- Haeji Koh
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
20
|
Lu K, Wang F, Chen L, Zhang W. Overexpression of S-R enhances the accumulation of biomass, fatty acids, and β-carotene in Schizochytrium. BIORESOURCE TECHNOLOGY 2023; 385:129452. [PMID: 37406830 DOI: 10.1016/j.biortech.2023.129452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Strategies for enhancing biomass accumulation and increasing the production of fatty acids and β-carotene in Schizochytrium are hindered by the lack of suitable targets. In this study, S-R, a RING (really interesting new gene) finger domain-containing protein, was identified in Schizochytrium, with homologs found in the family Thraustochytriaceae. Transgenic strains overexpressing S-R showed a minor improvement in cell growth but a significant increase in total fatty acids content by 1.29- to 1.36-fold. Almost all individual saturated fatty acids exhibited significant increases, with the greatest increase observed in the C14:0 content, by 1.52- to 1.78-fold. Additionally, the β-carotene content of S-R strains was significantly upregulated. Overexpression of s-r conferred hypersaline tolerance in Schizochytrium, with a significant increase in dry cell weight, total fatty acids and β-carotene, likely due to the upregulation of glycerol and proline. This study provides a feasible strategy to engineer Thraustochytriaceae for efficient biomass and biochemical production.
Collapse
Affiliation(s)
- Kongyong Lu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontier Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
21
|
Li P, Zhang Y, Zhao C, Jiang M. Evolution of the Tóxicos en Levadura 63 (TL63) gene family in plants and functional characterization of Arabidopsis thaliana TL63 under oxidative stress. PLANTA 2023; 258:87. [PMID: 37750983 DOI: 10.1007/s00425-023-04243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
MAIN CONCLUSION TL63 orthologs were angiosperm specific and had undergone motifs loss and gain, and increased purifying selection. AtTL63 was involved in the response of yeast and Arabidopsis plants to oxidative stress. The Tóxicos en Levadura (TL) family, a class of E3 ubiquitin ligases with typical RING-H2 type zinc finger structure, plays a pivotal role in mediating physiological processes and responding to stress in plants. However, the evolution and function of TL63 remain unclear. In this study, TL63 homologs were dated roughly back to the origin of land plants and confirmed to have subjected to the gain and loss of motifs and increased purifying selection. Phylogenetic analysis displayed that 279 TL63s could be divided into four main clades (Clade A-D). Notably, the ancestral tandem TL40/41 cluster contributed to the expansion of modern Brassicaceae TL40/41. The substitution rate tests revealed that the TL63 lineage was evidently different from other lineages. The codon usage index exhibited that monocotyledons preferred to use not A3s and T3s, but C3s, G3s, CAI, CBI and Fop. Sequence analysis showed that the TL63 homologs had conserved TM and GLD motifs and RING-H2 domain whose key amino acid residues accounted for the high average abundance. Particularly, Arabidopsis thaliana TL63 (AtTL63) was located in the nuclei, cell membranes and peroxisomes and expressed universally and significantly throughout A. thaliana development. Under H2O2 treatment, low or moderate expression of the AtTL63 held beneficial effects on the growth and viability of yeast cells and the mutation or overexpression of the AtTL63 positively affected the growth of A. thaliana plants. In brief, this study could supply useful insight into the evolution of the plant TL63s and the AtTL63 functions under oxidative stress.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Changling Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
22
|
Zhang J, Li C, Li L, Xi Y, Wang J, Mao X, Jing R. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5014-5025. [PMID: 37310852 DOI: 10.1093/jxb/erad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/11/2023] [Indexed: 06/15/2023]
Abstract
E3 ubiquitin ligase genes play important roles in the regulation of plant development. They have been well studied in plants, but have not been sufficiently investigated in wheat. Here, we identified a highly expressed RING finger E3 ubiquitin ligase gene TaAIRP2-1B (ABA-insensitive RING protein 2) in wheat spike. Sequence polymorphism and association analysis showed that TaAIRP2-1B is significantly associated with spike length under various conditions. The genotype with haplotype Hap-1B-1 of TaAIRP2-1B has a longer spike than that of Hap-1B-2, and was positively selected in the process of wheat breeding in China. Moreover, the TaAIRP2-1B-overexpressing rice lines have longer panicles compared with wild-type plants. The expression levels of TaAIRP2-1B in Hap-1B-1 accessions were higher than in Hap-1B-2 accessions. Further study revealed that the expression of TaAIRP2-1B was negatively regulated by TaERF3 (ethylene-responsive factor 3) via binding to the Hap-1B-2 promoter, but not via binding of Hap-1B-1. Additionally, several candidate genes interacting with TaAIRP2-1B were obtained by screening the cDNA library of wheat in yeast cells. It was found that TaAIRP2-1B interacted with TaHIPP3 (heavy metal-associated isoprenylated protein 3) and promoted TaHIPP3 degradation. Our study demonstrates that TaAIRP2-1B controls spike length, and the haplotype Hap-1B-1 of TaAIRP2-1B is a favorable natural variation for spike length enhancement in wheat. This work also provides genetic resources and functional markers for wheat molecular breeding.
Collapse
Affiliation(s)
- Jialing Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. TRENDS IN PLANT SCIENCE 2023; 28:698-714. [PMID: 36801193 DOI: 10.1016/j.tplants.2023.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Shanshuo Zhu
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Manuel González-Fuente
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Suayib Üstün
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
24
|
Chen L, Meng Y, Yang W, Lv Q, Zhou L, Liu S, Tang C, Xie Y, Li X. Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat. Int J Biol Macromol 2023:125162. [PMID: 37263334 DOI: 10.1016/j.ijbiomac.2023.125162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Salt stress is an abiotic stress factor that limits high yields, and thus identifying salt tolerance genes is very important for improving the tolerance of salt in wheat. In this study we identified 274 TaRING-H2 family members and analyzed their gene positions, gene structures, conserved structural domains, promoter cis-acting elements and covariance relationships. And we investigated TaRING-H2-120 (TaSDIR1) in salt stress. Transgenic lines exhibited higher salt tolerance in the germination and seedling stages. Compared with the wild type, overexpression of TaSDIR1 upregulated the expression of genes encoding enzymes related to the control of reactive oxygen species (ROS), thereby reducing the accumulation of ROS, as well as increased the expression of ion transport-related genes to limit the inward flow of Na+ in vivo and maintain a higher K+/Na+ ratio. The expression levels of these genes were opposite in lines where TaSDIR1 was silenced by BSMV-VIGS, and the silenced wheat exhibited higher salt sensitivity. Arabidopsis mutants and heterologous TaSDIR1 overexpressing lines had similar salt stress tolerance phenotypes. We also demonstrated that TaSDIR1 interacted with TaSDIR1P2 in vivo and in vitro. A sequence of 80-100 amino acids in TaSDIR1P2 encoded a coiled coil domain that was important for the activity of E3 ubiquitin ligase, and it was also the core region for the interaction between TaSDIR1 and TaSDIR1P2. Overall, our results suggest that TaSDIR1 positively regulates salt stress tolerance in wheat.
Collapse
Affiliation(s)
- Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqing Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghan Tang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, Yao N, Liu X, Li H. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1277-1296. [PMID: 36598461 DOI: 10.1111/jipb.13444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
The regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size. Yeast-two-hybrid, functional, and genetic assays demonstrated that the safflower E3 ligase CtBB1 (BIG BROTHER 1) can ubiquitinate CtbHLH41, marking it for degradation through the 26S proteasome and negatively regulating flavonoid accumulation. CtMYB63/CtWD40-6 enhanced the transcriptional activity of CtbHLH41 on the CtDFR (dihydroflavonol 4-reductase) promoter. We propose that the MBW-CtBB1 regulatory module may play an important role in coordinating HYSA accumulation with other response mechanisms.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghaijiaotong University, Shanghai, 200240, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| |
Collapse
|
26
|
Song P, Wei L, Chen Z, Cai Z, Lu Q, Wang C, Tian E, Jia G. m 6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biol 2023; 24:103. [PMID: 37122016 PMCID: PMC10150487 DOI: 10.1186/s13059-023-02947-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) modification is critical for plant growth and crop yield. m6A reader proteins can recognize m6A modifications to facilitate the functions of m6A in gene regulation. ECT2, ECT3, and ECT4 are m6A readers that are known to redundantly regulate trichome branching and leaf growth, but their molecular functions remain unclear. RESULTS Here, we show that ECT2, ECT3, and ECT4 directly interact with each other in the cytoplasm and perform genetically redundant functions in abscisic acid (ABA) response regulation during seed germination and post-germination growth. We reveal that ECT2/ECT3/ECT4 promote the stabilization of their targeted m6A-modified mRNAs, but have no function in alternative polyadenylation and translation. We find that ECT2 directly interacts with the poly(A) binding proteins, PAB2 and PAB4, and maintains the stabilization of m6A-modified mRNAs. Disruption of ECT2/ECT3/ECT4 destabilizes mRNAs of ABA signaling-related genes, thereby promoting the accumulation of ABI5 and leading to ABA hypersensitivity. CONCLUSION Our study reveals a unified functional model of m6A mediated by m6A readers in plants. In this model, ECT2/ECT3/ECT4 promote stabilization of their target mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Lianhuan Wei
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
27
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
28
|
Canales J, Arenas-M A, Medina J, Vidal EA. A Revised View of the LSU Gene Family: New Functions in Plant Stress Responses and Phytohormone Signaling. Int J Mol Sci 2023; 24:ijms24032819. [PMID: 36769138 PMCID: PMC9917515 DOI: 10.3390/ijms24032819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
LSUs (RESPONSE TO LOW SULFUR) are plant-specific proteins of unknown function that were initially identified during transcriptomic studies of the sulfur deficiency response in Arabidopsis. Recent functional studies have shown that LSUs are important hubs of protein interaction networks with potential roles in plant stress responses. In particular, LSU proteins have been reported to interact with members of the brassinosteroid, jasmonate signaling, and ethylene biosynthetic pathways, suggesting that LSUs may be involved in response to plant stress through modulation of phytohormones. Furthermore, in silico analysis of the promoter regions of LSU genes in Arabidopsis has revealed the presence of cis-regulatory elements that are potentially responsive to phytohormones such as ABA, auxin, and jasmonic acid, suggesting crosstalk between LSU proteins and phytohormones. In this review, we summarize current knowledge about the LSU gene family in plants and its potential role in phytohormone responses.
Collapse
Affiliation(s)
- Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Correspondence: (J.C.); (E.A.V.)
| | - Anita Arenas-M
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, INIA-CSIC-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Correspondence: (J.C.); (E.A.V.)
| |
Collapse
|
29
|
Gulisano A, Lippolis A, van Loo EN, Paulo MJ, Trindade LM. A genome wide association study to dissect the genetic architecture of agronomic traits in Andean lupin ( Lupinus mutabilis). FRONTIERS IN PLANT SCIENCE 2023; 13:1099293. [PMID: 36684793 PMCID: PMC9846495 DOI: 10.3389/fpls.2022.1099293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Establishing Lupinus mutabilis as a protein and oil crop requires improved varieties adapted to EU climates. The genetic regulation of strategic breeding traits, including plant architecture, growing cycle length and yield, is unknown. This study aimed to identify associations between 16 669 single nucleotide polymorphisms (SNPs) and 9 agronomic traits on a panel of 223 L. mutabilis accessions, grown in four environments, by applying a genome wide association study (GWAS). Seven environment-specific QTLs linked to vegetative yield, plant height, pods number and flowering time, were identified as major effect QTLs, being able to capture 6 to 20% of the phenotypic variation observed in these traits. Furthermore, two QTLs across environments were identified for flowering time on chromosome 8. The genes FAF, GAMYB and LNK, regulating major pathways involved in flowering and growth habit, as well as GA30X1, BIM1, Dr1, HDA15, HAT3, interacting with these pathways in response to hormonal and environmental cues, were prosed as candidate genes. These results are pivotal to accelerate the development of L. mutabilis varieties adapted to European cropping conditions by using marker-assisted selection (MAS), as well as to provide a framework for further functional studies on plant development and phenology in this species.
Collapse
Affiliation(s)
- Agata Gulisano
- Wageningen University and Research Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Antonio Lippolis
- Wageningen University and Research Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Eibertus N. van Loo
- Wageningen University and Research Plant Breeding, Wageningen University, Wageningen, Netherlands
| | - Maria-João Paulo
- Wageningen University and Research Biometris, Wageningen Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Wageningen University and Research Plant Breeding, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
30
|
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:25-44. [PMID: 36107155 DOI: 10.1111/jipb.13365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
NAC (NAM/ATAF1/2/CUC2) transcription factors are central switches of growth and stress responses in plants. However, unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC orthologs inapt for pulse engineering. The knowledge of suitable NAC candidates in hardy pulses like cowpea (Vigna unguiculata (L.) Walp.) is still in infancy, hence warrants immediate biotechnological intervention. Here, we showed that overexpression of two native NAC genes (VuNAC1 and VuNAC2) promoted germinative, vegetative, and reproductive growth and conferred multiple abiotic stress tolerance in a commercial cowpea variety. The transgenic lines displayed increased leaf area, thicker stem, nodule-rich denser root system, early flowering, higher pod production (∼3.2-fold and ∼2.1-fold), and greater seed weight (10.3% and 6.0%). In contrast, transient suppression of VuNAC1/2 caused severe growth retardation and flower inhibition. The overexpressor lines showed remarkable tolerance to major yield-declining terminal stresses, such as drought, salinity, heat, and cold, and recovered growth and seed production by boosting photosynthetic activity, water use efficiency, membrane integrity, Na+ /K+ homeostasis, and antioxidant activity. The comparative transcriptome study indicated consolidated activation of genes involved in chloroplast development, photosynthetic complexes, cell division and expansion, cell wall biogenesis, nutrient uptake and metabolism, stress response, abscisic acid, and auxin signaling. Unlike their orthologs, VuNAC1/2 direct synergistic transcriptional tuning of stress and developmental signaling to avoid unwanted trade-offs. Their overexpression governs the favorable interplay of photosynthesis and reactive oxygen species regulation to improve stress recovery, nutritional sufficiency, biomass, and production. This unconventional balance of strong stress tolerance and agronomic quality is useful for translational crop research and molecular breeding of pulses.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193,, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
31
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
32
|
Cho NH, Woo OG, Kim EY, Park K, Seo DH, Yu SG, Choi YA, Lee JH, Lee JH, Kim WT. E3 ligase AtAIRP5/GARU regulates drought stress response by stimulating SERINE CARBOXYPEPTIDASE-LIKE1 turnover. PLANT PHYSIOLOGY 2022; 190:898-919. [PMID: 35699505 PMCID: PMC9434184 DOI: 10.1093/plphys/kiac289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is a major mechanism of eukaryotic posttranslational protein turnover that has been implicated in abscisic acid (ABA)-mediated drought stress response. Here, we isolated T-DNA insertion mutant lines in which ABA-insensitive RING protein 5 (AtAIRP5) was suppressed, resulting in hyposensitive ABA-mediated germination compared to wild-type Arabidopsis (Arabidopsis thaliana) plants. A homology search revealed that AtAIRP5 is identical to gibberellin (GA) receptor RING E3 ubiquitin (Ub) ligase (GARU), which downregulates GA signaling by degrading the GA receptor GID1, and thus AtAIRP5 was renamed AtAIRP5/GARU. The atairp5/garu knockout progeny were impaired in ABA-dependent stomatal closure and were markedly more susceptible to drought stress than wild-type plants, indicating a positive role for AtAIRP5/GARU in the ABA-mediated drought stress response. Yeast two-hybrid, pull-down, target ubiquitination, and in vitro and in planta degradation assays identified serine carboxypeptidase-like1 (AtSCPL1), which belongs to the clade 1A AtSCPL family, as a ubiquitinated target protein of AtAIRP5/GARU. atscpl1 single and atairp5/garu-1 atscpl1-2 double mutant plants were more tolerant to drought stress than wild-type plants in an ABA-dependent manner, suggesting that AtSCPL1 is genetically downstream of AtAIRP5/GARU. After drought treatment, the endogenous ABA levels in atscpl1 and atairp5/garu-1 atscpl1-2 mutant leaves were higher than those in wild-type and atairp5/garu leaves. Overall, our results suggest that AtAIRP5/GARU RING E3 Ub ligase functions as a positive regulator of the ABA-mediated drought response by promoting the degradation of AtSCPL1.
Collapse
Affiliation(s)
| | | | | | | | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seong Gwan Yu
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | - Ji Hee Lee
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | | |
Collapse
|
33
|
Xiao L, Shi Y, Wang R, Feng Y, Wang L, Zhang H, Shi X, Jing G, Deng P, Song T, Jing W, Zhang W. The transcription factor OsMYBc and an E3 ligase regulate expression of a K+ transporter during salt stress. PLANT PHYSIOLOGY 2022; 190:843-859. [PMID: 35695778 PMCID: PMC9434319 DOI: 10.1093/plphys/kiac283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 05/27/2023]
Abstract
Sodium (Na+) and potassium (K+) homeostasis is essential for plant survival in saline soils. A member of the High-Affinity K+ Transporter (HKT) family in rice (Oryza sativa), OsHKT1;1, is a vital regulator of Na+ exclusion from shoots and is bound by a MYB transcription factor (OsMYBc). Here, we generated transgenic rice lines in the oshkt1;1 mutant background for genetic complementation using genomic OsHKT1;1 containing a native (Com) or mutated (mCom) promoter that cannot be bound by OsMYBc. In contrast to wild-type (WT) or Com lines, the mCom lines were not able to recover the salt-sensitive phenotype of oshkt1;1. The OsMYBc-overexpressing plants were more tolerant to salt stress than WT plants. A yeast two-hybrid screen using the OsMYBc N-terminus as bait identified a rice MYBc stress-related RING finger protein (OsMSRFP). OsMSRFP is an active E3 ligase that ubiquitinated OsMYBc in vitro and mediated 26S proteasome-mediated degradation of OsMYBc under semi-in vitro and in vivo conditions. OsMSRFP attenuated OsMYBc-mediated OsHKT1;1 expression, and knockout of OsMSRFP led to rice salt tolerance. These findings uncover a regulatory mechanism of salt response that fine-tunes OsHKT1;1 transcription by ubiquitination of OsMYBc.
Collapse
Affiliation(s)
- Longyun Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yiyuan Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lesheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingyu Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangqin Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengzhao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- Authors for correspondence: (W.Z.); (W.J.)
| | | |
Collapse
|
34
|
Wu Q, Liu Y, Xie Z, Yu B, Sun Y, Huang J. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. PLANT PHYSIOLOGY 2022; 189:1296-1313. [PMID: 35333328 PMCID: PMC9237679 DOI: 10.1093/plphys/kiac146] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
Ideal plant architecture and drought tolerance are important determinants of yield potential in rice (Oryza sativa). Here, we found that OsNAC016, a rice NAC (NAM, ATAF, and CUC) transcription factor, functions as a regulator in the crosslink between brassinosteroid (BR)-mediated plant architecture and abscisic acid (ABA)-regulated drought responses. The loss-of-function mutant osnac016 exhibited erect leaves and shortened internodes, but OsNAC016-overexpressing plants had opposite phenotypes. Further investigation revealed that OsNAC016 regulated the expression of the BR biosynthesis gene D2 by binding to its promoter. Moreover, OsNAC016 interacted with and was phosphorylated by GSK3/SHAGGY-LIKE KINASE2 (GSK2), a negative regulator in the BR pathway. Meanwhile, the mutant osnac016 had improved drought stress tolerance, supported by a decreased water loss rate and enhanced stomatal closure in response to exogenous ABA, but OsNAC016-overexpressing plants showed attenuated drought tolerance and reduced ABA sensitivity. Further, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE8 (SAPK8) phosphorylated OsNAC016 and reduced its stability. The ubiquitin/26S proteasome system is an important degradation pathway of OsNAC016 via the interaction with PLANT U-BOX PROTEIN43 (OsPUB43) that mediates the ubiquitination of OsNAC016. Notably, RNA-sequencing analysis revealed global roles of OsNAC016 in promoting BR-mediated gene expression and repressing ABA-dependent drought-responsive gene expression, which was confirmed by chromatin immunoprecipitation quantitative PCR analysis. Our findings establish that OsNAC016 is positively involved in BR-regulated rice architecture, negatively modulates ABA-mediated drought tolerance, and is regulated by GSK2, SAPK8, and OsPUB43 through posttranslational modification. Our data provide insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and response under abiotic stresses.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
35
|
Liao CY, Wang P, Yin Y, Bassham DC. Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Lett 2022; 596:2198-2214. [PMID: 35460261 PMCID: PMC9543649 DOI: 10.1002/1873-3468.14355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022]
Abstract
Autophagy is a conserved recycling process with important functions in plant growth, development, and stress responses. Phytohormones also play key roles in the regulation of some of the same processes. Increasing evidence indicates that a close relationship exists between autophagy and phytohormone signaling pathways, and the mechanisms of interaction between these pathways have begun to be revealed. Here, we review recent advances in our understanding of how autophagy regulates hormone signaling and, conversely, how hormones regulate the activity of autophagy, both in plant growth and development and in environmental stress responses. We highlight in particular recent mechanistic insights into the coordination between autophagy and signaling events controlled by the stress hormone abscisic acid and by the growth hormones brassinosteroid and cytokinin and briefly discuss potential connections between autophagy and other phytohormones.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
36
|
Zhang Y, Zhou J, Zhang Y, Zhang D. The ABI3 Transcription Factor Interaction and Antagonism with Ubiquitin E3 Ligase ScPRT1 in Syntrichia caninervis. Genes (Basel) 2022; 13:genes13050718. [PMID: 35627103 PMCID: PMC9141515 DOI: 10.3390/genes13050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The ubiquitination pathway has been found to regulate plant responses to environmental stress. However, the role of E3 ubiquitin ligase in desiccation tolerant moss has not yet been elucidated. Previous research has shown that the abscisic acid (ABA) signaling factor ScABI3 can significantly increase desiccation tolerance and reduce ABA sensitivity in the desert moss Syntrichia caninervis. In this study, we identified a RING-type E3 ubiquitin ligase, ScPRT1, and showed that ScABI3 can directly interact with ScPRT1 in vitro and in vivo. Furthermore, we found that the high expression of ScPRT1 can interfere with the transcription of ScABI3 under ABA treatment. Therefore, we speculate that ScPRT1 may degrade ScABI3 through the ubiquitin-26S proteasome system and participate in ABA-dependent signaling in response to ABA-insensitivity or desiccation tolerance in S. caninervis. The findings from our study may enrich our knowledge of the role of E3 ubiquitin ligase in desiccation tolerance and lay a theoretical foundation for an in-depth study of the relationship between ubiquitination modification and ABA signal transduction under environmental stress.
Collapse
Affiliation(s)
- Yigong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (J.Z.); (Y.Z.)
| | - Jiyang Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (J.Z.); (Y.Z.)
| | - Yi Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (J.Z.); (Y.Z.)
| | - Daoyuan Zhang
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838099, China
- Correspondence:
| |
Collapse
|
37
|
Wang X, Wang L, Huang Y, Deng Z, Li C, Zhang J, Zheng M, Yan S. A plant-specific module for homologous recombination repair. Proc Natl Acad Sci U S A 2022; 119:e2202970119. [PMID: 35412914 PMCID: PMC9169791 DOI: 10.1073/pnas.2202970119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination repair (HR) is an error-free DNA damage repair pathway to maintain genome stability and a basis of gene targeting using genome-editing tools. However, the mechanisms of HR in plants are still poorly understood. Through genetic screens for DNA damage response mutants (DDRM) in Arabidopsis, we find that a plant-specific ubiquitin E3 ligase DDRM1 is required for HR. DDRM1 contains an N-terminal BRCT (BRCA1 C-terminal) domain and a C-terminal RING (really interesting new gene) domain and is highly conserved in plants including mosses. The ddrm1 mutant is defective in HR and thus is hypersensitive to DNA-damaging reagents. Biochemical studies reveal that DDRM1 interacts with and ubiquitinates the transcription factor SOG1, a plant-specific master regulator of DNA damage responses. Interestingly, DDRM1-mediated ubiquitination promotes the stability of SOG1. Consistently, genetic data support that SOG1 functions downstream of DDRM1. Our study reveals that DDRM1-SOG1 is a plant-specific module for HR and highlights the importance of ubiquitination in HR.
Collapse
Affiliation(s)
- Xuanpeng Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cunliang Li
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Zhang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxi Zheng
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B. RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:877011. [PMID: 35498666 PMCID: PMC9047180 DOI: 10.3389/fpls.2022.877011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Liu G, Liang J, Lou L, Tian M, Zhang X, Liu L, Zhao Q, Xia R, Wu Y, Xie Q, Yu F. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. SCIENCE ADVANCES 2022; 8:eabl5765. [PMID: 35385312 PMCID: PMC8986106 DOI: 10.1126/sciadv.abl5765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 06/01/2023]
Abstract
Ubiquitination-mediated protein degradation in both the 26S proteasome and vacuole is an important process in abscisic acid (ABA) signaling. However, the role of deubiquitination in this process remains elusive. Here, we demonstrate that two deubiquitinating enzymes (DUBs), ubiquitin-specific protease 12 (UBP12) and UBP13, modulate ABA signaling and drought tolerance by deubiquitinating and stabilizing the endosomal sorting complex required for transport-I (ESCRT-I) component vacuolar protein sorting 23A (VPS23A) and thereby affect the stability of ABA receptors in Arabidopsis thaliana. Genetic analysis showed that VPS23A overexpression could rescue the ABA hypersensitive and drought tolerance phenotypes of ubp12-2w or ubp13-1. In addition to the direct regulation of VPS23A, we found that UBP12 and UBP13 also stabilized the E3 ligase XB3 ortholog 5 in A. thaliana (XBAT35.2) in response to ABA treatment. Hence, we demonstrated that UBP12 and UBP13 are previously unidentified rheostatic regulators of ABA signaling and revealed a mechanism by which deubiquitination precisely monitors the XBAT35/VPS23A ubiquitination module in the ABA response.
Collapse
Affiliation(s)
- Guangchao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jiaxuan Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206 Beijing, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangyun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000 Shandong, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
40
|
Li X, Guo D, Xue M, Li G, Yan Q, Jiang H, Liu H, Chen J, Gao Y, Duan L, Xie L. Genome-Wide Association Study of Salt Tolerance at the Seed Germination Stage in Flax (Linum usitatissimum L.). Genes (Basel) 2022; 13:genes13030486. [PMID: 35328040 PMCID: PMC8949523 DOI: 10.3390/genes13030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Soil salinization seriously affects the growth and distribution of flax. However, there is little information about the salt tolerance of flax. In this study, the salt tolerance of 200 diverse flax accessions during the germination stage was evaluated, and then the Genome-wide Association Study (GWAS) was carried out based on the relative germination rate (RGR), relative shoot length (RSL) and relative root length (RRL), whereby quantitative trait loci (QTLs) related to salt tolerance were identified. The results showed that oil flax had a better salt tolerance than fiber flax. A total of 902 single nucleotide polymorphisms (SNPs) were identified on 15 chromosomes. These SNPs were integrated into 64 QTLs, explaining 14.48 to 29.38% (R2) of the phenotypic variation. In addition, 268 candidate genes were screened by combining previous transcriptome data and homologous gene annotation. Among them, Lus10033213 is a single-point SNP repeat mapping gene, which encodes a Glutathione S-transferase (GST). This study is the first to use GWAS to excavate genes related to salt tolerance during the germination stage of flax. The results of this study provide important information for studying the genetic mechanism of salt tolerance of flax, and also provide the possibility to improve the salt tolerance of flax.
Collapse
|
41
|
Thayale Purayil F, Sudalaimuthuasari N, Li L, Aljneibi R, Al Shamsi AMK, David N, Kottackal M, AlZaabi M, Balan J, Kurup SS, Hazzouri KM, Amiri KMA. Transcriptome Profiling and Functional Validation of RING-Type E3 Ligases in Halophyte Sesuvium verrucosum under Salinity Stress. Int J Mol Sci 2022; 23:ijms23052821. [PMID: 35269961 PMCID: PMC8911510 DOI: 10.3390/ijms23052821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Owing to their sessile nature, plants have developed a tapestry of molecular and physiological mechanisms to overcome diverse environmental challenges, including abiotic stresses. Adaptive radiation in certain lineages, such as Aizoaceae, enable their success in colonizing arid regions and is driven by evolutionary selection. Sesuvium verrucosum (commonly known as Western sea-purslane) is a highly salt-tolerant succulent halophyte belonging to the Aizoaceae family; thus, it provides us with the model-platform for studying plant adaptation to salt stress. Various transcriptional and translational mechanisms are employed by plants to cope with salt stress. One of the systems, namely, ubiquitin-mediated post-translational modification, plays a vital role in plant tolerance to abiotic stress and other biological process. E3 ligase plays a central role in target recognition and protein specificity in ubiquitin-mediated protein degradation. Here, we characterize E3 ligases in Sesuvium verrucosum from transcriptome analysis of roots in response to salinity stress. Our de novo transcriptome assembly results in 131,454 transcripts, and the completeness of transcriptome was confirmed by BUSCO analysis (99.3% of predicted plant-specific ortholog genes). Positive selection analysis shows 101 gene families under selection; these families are enriched for abiotic stress (e.g., osmotic and salt) responses and proteasomal ubiquitin-dependent protein catabolic processes. In total, 433 E3 ligase transcripts were identified in S. verrucosum; among these transcripts, single RING-type classes were more abundant compared to multi-subunit RING-type E3 ligases. Additionally, we compared the number of single RING-finger E3 ligases with ten different plant species, which confirmed the abundance of single RING-type E3 ligases in different plant species. In addition, differential expression analysis showed significant changes in 13 single RING-type E3 ligases (p-value < 0.05) under salinity stress. Furthermore, the functions of the selected E3 ligases genes (12 genes) were confirmed by yeast assay. Among them, nine genes conferred salt tolerance in transgenic yeast. This functional assay supports the possible involvement of these E3 ligase in salinity stress. Our results lay a foundation for translational research in glycophytes to develop stress tolerant crops.
Collapse
Affiliation(s)
- Fayas Thayale Purayil
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Ling Li
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Ruwan Aljneibi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Aysha Mohammed Khamis Al Shamsi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Nelson David
- Center for Genomics and Systems Biology, New York University, Abu-Dhabi P.O. Box 129188, United Arab Emirates;
| | - Martin Kottackal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Mariam AlZaabi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Jithin Balan
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Correspondence: (K.M.H.); (K.M.A.A.); Tel.: +971-37135624 (K.M.A.A.)
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (F.T.P.); (N.S.); (L.L.); (R.A.); (A.M.K.A.S.); (M.K.); (M.A.); (J.B.)
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.); Tel.: +971-37135624 (K.M.A.A.)
| |
Collapse
|
42
|
Liu CX, Yang T, Zhou H, Ahammed GJ, Qi ZY, Zhou J. The E3 Ubiquitin Ligase Gene Sl1 Is Critical for Cadmium Tolerance in Solanum lycopersicum L. Antioxidants (Basel) 2022; 11:antiox11030456. [PMID: 35326106 PMCID: PMC8944816 DOI: 10.3390/antiox11030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Heavy metal cadmium (Cd) at high concentrations severely disturbs plant growth and development. The E3 ubiquitin ligase involved in protein degradation is critical for plant tolerance to abiotic stress, but the role of E3 ubiquitin ligases in Cd tolerance is largely unknown in tomato. Here, we characterized an E3 ubiquitin ligase gene Sl1, which was highly expressed in roots under Cd stress in our previous study. The subcellular localization of Sl1 revealed that it was located in plasma membranes. In vitro ubiquitination assays confirmed that Sl1 had E3 ubiquitin ligase activity. Knockout of the Sl1 gene by CRISPR/Cas9 genome editing technology reduced while its overexpression increased Cd tolerance as reflected by the changes in the actual quantum efficiency of PSII photochemistry (ΦPSII) and hydrogen peroxide (H2O2) accumulation. Cd-induced increased activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were compromised in sl1 mutants but were enhanced in Sl1 overexpressing lines. Furthermore, the content of Cd in both shoots and roots increased in sl1 mutants while reduced in Sl1 overexpressing plants. Gene expression assays revealed that Sl1 regulated the transcript levels of heavy metal transport-related genes to inhibit Cd accumulation. These findings demonstrate that Sl1 plays a critical role in regulating Cd tolerance by relieving oxidative stress and resisting heavy metal transportation in tomato. The study provides a new understanding of the mechanism of plant tolerance to heavy metal stress.
Collapse
Affiliation(s)
- Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Ting Yang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Hui Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: (G.J.A.); (J.Z.)
| | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China;
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: (G.J.A.); (J.Z.)
| |
Collapse
|
43
|
Chang S, Huang G, Wang D, Zhu W, Shi J, Yang L, Liang W, Xie Q, Zhang D. Rice SIAH E3 Ligases Interact with RMD Formin and Affect Plant Morphology. RICE (NEW YORK, N.Y.) 2022; 15:6. [PMID: 35075530 PMCID: PMC8786996 DOI: 10.1186/s12284-022-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Formins are actin-binding proteins that are key to maintaining the actin cytoskeleton in cells. However, molecular mechanisms controlling the stability of formin proteins in plants remain unknown. Here, we have identified six rice SIAH-type E3 ligases, named RIP1-6 (RMD Interacting Protein 1-6) respectively, with ubiquitination enzyme activity in vitro. All six proteins can form homo- and hetero-dimers with themselves, and hetero-dimers with type II formin RMD/OsFH5. In vivo assays showed that RIP1-6 proteins localize in the cytoplasm with a punctate distribution, and all of them interact with RMD to change its native diffuse cytoplasmic localization to match that of RIP1-6. To our surprise, degradation experiments revealed that RIP1, RIP5, and RIP6 decrease rather than increase the degradation rate of RMD. Genetic analyses revealed redundancy between these six genes; either single or double mutants did not show any obvious phenotypes. However, the sextuple rip1-6 mutant displayed dwarf height, wrinkled seeds and wider leaves that were similar to the previously reported rmd mutant, and defective microfilaments and increased flag leaf angles that were not reported in rmd mutant. Collectively, our study provides insights into the mechanisms determining formin protein stability in plants.
Collapse
Affiliation(s)
- Shuwei Chang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Duoxiang Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanwan Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Litao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
44
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
45
|
Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. CURRENT PLANT BIOLOGY 2022; 29:100239. [DOI: 10.1016/j.cpb.2022.100239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
46
|
Kosová K, Vítámvás P, Prášil IT, Klíma M, Renaut J. Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene. FRONTIERS IN PLANT SCIENCE 2021; 12:793113. [PMID: 34970290 PMCID: PMC8712444 DOI: 10.3389/fpls.2021.793113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 05/30/2023]
Abstract
Proteins are directly involved in plant phenotypic response to ever changing environmental conditions. The ability to produce multiple mature functional proteins, i.e., proteoforms, from a single gene sequence represents an efficient tool ensuring the diversification of protein biological functions underlying the diversity of plant phenotypic responses to environmental stresses. Basically, two major kinds of proteoforms can be distinguished: protein isoforms, i.e., alterations at protein sequence level arising from posttranscriptional modifications of a single pre-mRNA by alternative splicing or editing, and protein posttranslational modifications (PTMs), i.e., enzymatically catalyzed or spontaneous modifications of certain amino acid residues resulting in altered biological functions (or loss of biological functions, such as in non-functional proteins that raised as a product of spontaneous protein modification by reactive molecular species, RMS). Modulation of protein final sequences resulting in different protein isoforms as well as modulation of chemical properties of key amino acid residues by different PTMs (such as phosphorylation, N- and O-glycosylation, methylation, acylation, S-glutathionylation, ubiquitinylation, sumoylation, and modifications by RMS), thus, represents an efficient means to ensure the flexible modulation of protein biological functions in response to ever changing environmental conditions. The aim of this review is to provide a basic overview of the structural and functional diversity of proteoforms derived from a single gene in the context of plant evolutional adaptations underlying plant responses to the variability of environmental stresses, i.e., adverse cues mobilizing plant adaptive mechanisms to diminish their harmful effects.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Ilja Tom Prášil
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Miroslav Klíma
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
47
|
Ramu VS, Pal G, Oh S, Mysore KS. Proteasomal Degradation of JAZ9 by Salt- and Drought-Induced Ring Finger 1 During Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1358-1364. [PMID: 34615361 DOI: 10.1094/mpmi-07-21-0192-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
E3 ubiquitin ligase salt- and drought-induced ring finger 1 (SDIR1) plays a novel role in modulating plant immunity against pathogens. The molecular interactors of SDIR1 during pathogen infection are not known. SDIR1-interacting jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins were identified through a yeast two-hybrid (Y2H) screen. Full-length JAZ9 interacts with SDIR1 only in the presence of coronatine (a bacteria-secreted toxin) or jasmonic acid (JA) in a Y2H assay. The bimolecular fluorescence complementation and pull-down assays confirm the in planta interaction of these proteins. JAZ9 proteins, negative regulators of JA-mediated plant defense, were degraded during the pathogen infection by SDIR1 through a proteasomal pathway causing disease susceptibility against hemibiotrophic pathogens.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Garima Pal
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, U.S.A
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
48
|
Min JH, Park CR, Chung JS, Kim CS. Arabidopsis thaliana Ubiquitin-Associated Protein 1 (AtUAP1) Interacts with redundant RING Zinc Finger 1 (AtRZF1) to Negatively Regulate Dehydration Response. PLANT & CELL PHYSIOLOGY 2021; 62:1044-1057. [PMID: 34086919 DOI: 10.1093/pcp/pcab082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Ubiquitination, one of the most frequently occurring post-translational modifications, is essential for regulating diverse cellular processes in plants during abiotic stress. The E3 ubiquitin (Ub) ligase Arabidopsis thaliana really interesting new gene (RING) zinc finger 1 (AtRZF1) mutation is known to enhance drought tolerance in A. thaliana seedlings. To further investigate the function of AtRZF1 in osmotic stress, we isolated Ub-associated protein 1 (AtUAP1) which interacts with AtRZF1 using a yeast two-hybrid system. AtUAP1, a Ub-associated motif containing protein, increased the amount of Ub-conjugated AtRZF1. Moreover, AtUAP1 RNA interference lines were more tolerant to osmotic stress than wild type, whereas AtUAP1-overexpressing (OX) transgenic lines showed sensitive responses, including cotyledon greening, water loss, proline accumulation and changes in stress-related genes expression, indicating that AtUAP1 could negatively regulate dehydration-mediated signaling. In addition, AtUAP1-green fluorescent protein fusion protein was observed in the nuclei of root cells of transgenic seedlings. Genetic studies showed that the AtRZF1 mutation could rescue the sensitive phenotype of AtUAP1-OX lines in response to osmotic stress, suggesting that AtRZF1 was epistatic to AtUAP1 in dehydration signaling. Taken together, our findings describe a new component in the AtRZF1 ubiquitination pathway which controls the dehydration response in A. thaliana.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843-2128, USA
| | - Cho-Rong Park
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung-Sung Chung
- Department of Agricultural Plant Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
49
|
Yang W, Wu K, Wang B, Liu H, Guo S, Guo X, Luo W, Sun S, Ouyang Y, Fu X, Chong K, Zhang Q, Xu Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. MOLECULAR PLANT 2021; 14:1699-1713. [PMID: 34216830 DOI: 10.1016/j.molp.2021.06.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 05/02/2023]
Abstract
G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.
Collapse
Affiliation(s)
- Wensi Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China.
| |
Collapse
|
50
|
Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC PLANT BIOLOGY 2021; 21:422. [PMID: 34535070 PMCID: PMC8447581 DOI: 10.1186/s12870-021-03162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. RESULTS A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. CONCLUSIONS This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Shengdi Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Lu Bian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Keke Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Xiangxuan Meng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Guohai Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Weirong Xu
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Wenkong Yao
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| |
Collapse
|