1
|
Göritzer K, Melnik S, Schwestka J, Arcalis E, Drapal M, Fraser P, Ma JK, Stoger E. Enhancing quality and yield of recombinant secretory IgA antibodies in Nicotiana benthamiana by endoplasmic reticulum engineering. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1178-1189. [PMID: 39822055 PMCID: PMC11933863 DOI: 10.1111/pbi.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N. benthamiana leaves by targeting the enzyme CTP:phosphocholine cytidylyltransferase (CCT), which catalyses the rate-limiting step in the synthesis of the key membrane component phosphatidylcholine (PC). We used CRISPR/Cas to perform site-directed mutagenesis of each of the three endogenous CCT genes in N. benthamiana by introducing frame-shifting indels to remove the auto-inhibitory C-terminal domains. We generated stable homozygous lines of N. benthamiana containing different combinations of the edited genes, including plants where all three isofunctional CCT homologues were modified. Changes in ER morphology in the mutant plants were confirmed by in vivo confocal imaging and substantially increased the yields of two fully assembled SIgAs by prolonging the ER residence time and boosting chaperone accumulation. Through a combination of ER engineering with chaperone overexpression, we increased the yields of fully assembled SIgA by an order of magnitude, reaching almost 1 g/kg fresh leaf weight. This strategy removes a major roadblock to producing SIgA and will likely facilitate the production of other complex multimeric biopharmaceutical proteins in plants.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | - Julian K‐C. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
2
|
Chen B, Li J, Yao S, Wang G, Wang X. Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:23. [PMID: 39994717 PMCID: PMC11849322 DOI: 10.1186/s13068-025-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored. RESULTS This study shows that seed-specific expression of AtPAH1/2 enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. PAH overexpression upregulated the expression of DAG acyltransferase (DGAT) but suppressed phospholipid: DAG acyltransferase (PDAT). In addition, seed-specific expression of AtPAH1/2 increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of GmPAHs on oil content and seed weight were selected during domestication. CONCLUSION These findings suggest that targeting PAHs represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
3
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
4
|
Shimojo M, Nakamura M, Kitaura G, Ihara Y, Shimizu S, Hori K, Iwai M, Ohta H, Ishizaki K, Shimojima M. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions. PLANTA 2023; 258:92. [PMID: 37792042 PMCID: PMC10550880 DOI: 10.1007/s00425-023-04247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
MAIN CONCLUSION The phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha. The lipid composition and fatty acid profile during Pi starvation in M. polymorpha revealed a decrease in phospholipids and an increase in both galactolipids and betaine lipids. In Arabidopsis thaliana, phosphatidic acid phosphohydrolase (PAH) is involved in phospholipid degradation and is crucial for tolerance to both Pi and nitrogen starvation. We produced two M. polymorpha PAH (MpPAH) knockout mutants (Mppah-1 and Mppah-2) and found that, unlike Arabidopsis mutants, Mppah impaired plant growth with shorter rhizoids compared with wild-type plants even under nutrient-replete conditions. Mutation of MpPAH did not significantly affect the mole percent of each glycerolipid among total membrane glycerolipids from whole plants under both Pi-replete and Pi-deficient conditions. However, the fatty acid composition of monogalactosyldiacylglycerol indicated that the amount of plastid glycolipids produced through the endoplasmic reticulum pathway was suppressed in Mppah mutants. Phospholipids accumulated in the mutants under N starvation. These results reveal that MpPAH modulates plastid glycolipid synthesis through the endoplasmic reticulum pathway more so than what has been observed for Arabidopsis PAH; moreover, unlike Arabidopsis, MpPAH is crucial for M. polymorpha growth regardless of nutrient availability.
Collapse
Affiliation(s)
- Misao Shimojo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masashi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ginga Kitaura
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
5
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
6
|
Yang X, Kwon H, Kim MY, Lee SH. RNA-seq profiling in leaf tissues of two soybean ( Glycine max [L.] Merr.) cultivars that show contrasting responses to drought stress during early developmental stages. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:42. [PMID: 37309390 PMCID: PMC10248644 DOI: 10.1007/s11032-023-01385-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/13/2023] [Indexed: 06/14/2023]
Abstract
Drought stress is the major environment constraint on soybean yield, and a variety of pathways underlie drought tolerance mechanisms. Transcriptomic profiling of two soybean cultivars, drought-tolerant SS2-2 and drought-sensitive Taekwang, was performed under normal and drought conditions to identify genes involved in drought tolerance. This revealed large differences in water loss during drought treatment. Genes involved in signaling, lipid metabolism, phosphorylation, and gene regulation were overrepresented among genes that were differentially expressed between cultivars and between treatments in each cultivar. The analysis revealed transcription factors from six families, including WRKYs and NACs, showed significant SS2-2-specific upregulation. Genes involved in stress defense pathways, including MAPK signaling, Ca2+ signaling, ROS scavenging, and NBS-LRR, were also identified. Expression of non-specific phospholipases, phospholipase D, and PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE (PIP5K), which act in the lipid-signaling pathway, was greatly increased in SS2-2. The roles of PIP5K in drought stress tolerance were confirmed in Arabidopsis thaliana. Arabidopsis pip5k mutants had significantly lower survival rates under drought stress than wild-type plants. This study identified additional elements in the mechanisms used by plants to protect themselves from drought stress and provides valuable information for the development of drought-tolerant soybean cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01385-1.
Collapse
Affiliation(s)
- Xuefei Yang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010030 China
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Crop Genomics Lab., Seoul National University, Rm. 4105 Bldg. 200 CALS, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
7
|
Nguyen VC, Nakamura Y. Distinctly localized lipid phosphate phosphatases mediate endoplasmic reticulum glycerolipid metabolism in Arabidopsis. THE PLANT CELL 2023; 35:1548-1571. [PMID: 36718530 PMCID: PMC10118277 DOI: 10.1093/plcell/koad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Inter-organelle communication is an integral subcellular process in cellular homeostasis. In plants, cellular membrane lipids are synthesized in the plastids and endoplasmic reticulum (ER). However, the crosstalk between these organelles in lipid biosynthesis remains largely unknown. Here, we show that a pair of lipid phosphate phosphatases (LPPs) with differential subcellular localizations is required for ER glycerolipid metabolism in Arabidopsis (Arabidopsis thaliana). LPPα2 and LPPε1, which function as phosphatidic acid phosphatases and thus catalyze the core reaction in glycerolipid metabolism, were differentially localized at ER and chloroplast outer envelopes despite their similar tissue expression pattern. No mutant phenotype was observed in single knockout mutants; however, genetic suppression of these LPPs affected pollen growth and ER phospholipid biosynthesis in mature siliques and seeds with compromised triacylglycerol biosynthesis. Although chloroplast-localized, LPPε1 was localized close to the ER and ER-localized LPPα2. This proximal localization is functionally relevant, because overexpression of chloroplastic LPPε1 enhanced ER phospholipid and triacylglycerol biosynthesis similar to the effect of LPPα2 overexpression in mature siliques and seeds. Thus, ER glycerolipid metabolism requires a chloroplast-localized enzyme in Arabidopsis, representing the importance of inter-organelle communication in membrane lipid homeostasis.
Collapse
Affiliation(s)
- Van C Nguyen
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
8
|
Zhao Y, Dong Q, Geng Y, Ma C, Shao Q. Dynamic Regulation of Lipid Droplet Biogenesis in Plant Cells and Proteins Involved in the Process. Int J Mol Sci 2023; 24:ijms24087476. [PMID: 37108639 PMCID: PMC10138601 DOI: 10.3390/ijms24087476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous, dynamic organelles found in almost all organisms, including animals, protists, plants and prokaryotes. The cell biology of LDs, especially biogenesis, has attracted increasing attention in recent decades because of their important role in cellular lipid metabolism and other newly identified processes. Emerging evidence suggests that LD biogenesis is a highly coordinated and stepwise process in animals and yeasts, occurring at specific sites of the endoplasmic reticulum (ER) that are defined by both evolutionarily conserved and organism- and cell type-specific LD lipids and proteins. In plants, understanding of the mechanistic details of LD formation is elusive as many questions remain. In some ways LD biogenesis differs between plants and animals. Several homologous proteins involved in the regulation of animal LD formation in plants have been identified. We try to describe how these proteins are synthesized, transported to the ER and specifically targeted to LD, and how these proteins participate in the regulation of LD biogenesis. Here, we review current work on the molecular processes that control LD formation in plant cells and highlight the proteins that govern this process, hoping to provide useful clues for future research.
Collapse
Affiliation(s)
- Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qingdi Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yuhu Geng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
9
|
He QY, Jin JF, Lou HQ, Dang FF, Xu JM, Zheng SJ, Yang JL. Abscisic acid-dependent PMT1 expression regulates salt tolerance by alleviating abscisic acid-mediated reactive oxygen species production in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1803-1820. [PMID: 35789105 DOI: 10.1111/jipb.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Phosphocholine (PCho) is an intermediate metabolite of nonplastid plant membranes that is essential for salt tolerance. However, how PCho metabolism modulates response to salt stress remains unknown. Here, we characterize the role of phosphoethanolamine N-methyltransferase 1 (PMT1) in salt stress tolerance in Arabidopsis thaliana using a T-DNA insertional mutant, gene-editing alleles, and complemented lines. The pmt1 mutants showed a severe inhibition of root elongation when exposed to salt stress, but exogenous ChoCl or lecithin rescued this defect. pmt1 also displayed altered glycerolipid metabolism under salt stress, suggesting that glycerolipids contribute to salt tolerance. Moreover, pmt1 mutants exhibited altered reactive oxygen species (ROS) accumulation and distribution, reduced cell division activity, and disturbed auxin distribution in the primary root compared with wild-type seedlings. We show that PMT1 expression is induced by salt stress and relies on the abscisic acid (ABA) signaling pathway, as this induction was abolished in the aba2-1 and pyl112458 mutants. However, ABA aggravated the salt sensitivity of the pmt1 mutants by perturbing ROS distribution in the root tip. Taken together, we propose that PMT1 is an important phosphoethanolamine N-methyltransferase participating in root development of primary root elongation under salt stress conditions by balancing ROS production and distribution through ABA signaling.
Collapse
Affiliation(s)
- Qi Yu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Qiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Feng Feng Dang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
11
|
Liu M, Sun C, Zheng X, Zhou Q, Liu B, Zhou Y, Xu P, Liu B. Comparative Proteomic Analysis Revealed the Mechanism of Tea Tree Oil Targeting Lipid Metabolism and Antioxidant System to Protect Hepatopancreatic Health in Macrobrachium rosenbergii. Front Immunol 2022; 13:906435. [PMID: 35711420 PMCID: PMC9195101 DOI: 10.3389/fimmu.2022.906435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Tea tree oil (TTO) is a pure natural plant essential oil. The studies evaluated the hepatopancreas lipid metabolism and antioxidant efficacy of Macrobrachium rosenbergii fed with 0 (CT group) and 100 mg/kg TTO (TT group) by label-free quantification proteomic analysis. Compared to the CT group, the TT group improved growth performance and increased the survival rate after stress. Dietary TTO also decreased hemolymph AST and ALT activities and decreased hepatopancreatic vacuolation. At the same time, hepatopancreas lipids droplets and hemolymph lipids (TG, TC, LDL-C) were decreased, and the peroxidation products content (MDA, LPO, 4-HNE) was also decreased. In addition, the levels of hepatopancreas antioxidant enzymes (T-AOC, CAT, and SOD) were increased in the TT group. With proteomic analysis, a total of 151 differentially expressed proteins (DEPs) (99 up-regulated and 52 down-regulated) were identified in the hepatopancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis showed that the 16 DEPs have interactions, which are mainly involved in the pathways related to lipid metabolism (fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism) and redox reaction (cytochrome P450 enzyme systems). Furthermore, the mRNA expression of 15 proteins followed the proteomic analysis with qRT-PCR validation. Pearson correlation analysis showed that fatty acids and glycerophospholipid metabolism-related proteins were highly correlated to peroxide content, glycerophospholipid metabolism, and cytochrome P450 system-related proteins (CYP1A1, GSTT1, GPX4) were highly correlated to AST and ALT. Additionally, GPX4 is closely related to peroxide content and antioxidant enzyme activity. Our results revealed that TTO plays a protective role in the hepatopancreas targeting the critical enzymes and antioxidant reactions in lipid metabolism. Provides a new perspective to elucidate the action path of TTO in protecting invertebrate hepatopancreas, highlights the influence of lipid metabolism on hepatopancreas health and the interaction between lipid metabolism and antioxidant system in the regulation of TTO.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yifan Zhou
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| |
Collapse
|
12
|
Araniti F, Prinsi B, Espen L. The Delay of Raphanus raphanistrum subsp. sativus (L.) Domin Seed Germination Induced by Coumarin Is Mediated by a Lower Ability to Sustain the Energetic Metabolism. PLANTS 2022; 11:plants11070843. [PMID: 35406823 PMCID: PMC9002777 DOI: 10.3390/plants11070843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023]
Abstract
In the present study, the mode of action of coumarin using the germination process as a target was investigated. A dose–response curve, built using a range of concentrations from 0 to 800 µM, allowed us to identify a key concentration (400 µM) inhibiting the germination process, reducing its speed without compromising seed development. Successively, short time-course (0–48 h) experiments were carried out to evaluate the biochemical and metabolic processes involved in coumarin-induced germination delay. The results pointed out that coumarin delayed K+, Ca2+, and Mg2+ reabsorption, suggesting a late membrane reorganisation. Similarly, seed respiration was inhibited during the first 24 h but recovered after 48 h. Those results agreed with ATP levels, which followed the same trend. In addition, the untargeted metabolomic analysis allowed to identify, among the pathways significantly impacted by the treatment, amino acids metabolism, the TCA cycle, and the glyoxylate pathway. The results highlighted that coumarin was able to interact with membranes reorganisation, delaying them and reducing the production of ATP, as also supported by pathway analysis and cell respiration. The in vivo 31P-NMR analysis supported the hypothesis that the concentration chosen was able to affect plant metabolism, maintaining, on the other hand, its viability, which is extremely important for studying natural compounds’ mode of action.
Collapse
|
13
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
14
|
Papagiannidis D, Bircham PW, Lüchtenborg C, Pajonk O, Ruffini G, Brügger B, Schuck S. Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex. EMBO J 2021; 40:e107958. [PMID: 34617598 PMCID: PMC8591542 DOI: 10.15252/embj.2021107958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis.
Collapse
Affiliation(s)
- Dimitrios Papagiannidis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Peter W Bircham
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany
| | | | - Oliver Pajonk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Giulia Ruffini
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
15
|
Liu S, Liu N, Lu H, Zhu L. Disturbed phospholipid metabolism by three polycyclic aromatic hydrocarbons in Oryza sativa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117073. [PMID: 33915499 DOI: 10.1016/j.envpol.2021.117073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in soils that can be readily absorbed by crops, affecting growth and development. Phospholipids (PLs) are essential components of cell membrane and can indicate cellular responses to various organic pollutants. However, the detailed molecular mechanism of phospholipid metabolism based regulation employed by crops in response to PAHs stresses remains elusive. This study characterized the accumulation patterns of representative PAHs, namely phenanthrene (PHEN), pyrene (PY), and benzo[a]pyrene (BaP) in rice (Oryza sativa). Crop's responses to PAHs via the regulation of phospholipid metabolism were also explored. PHEN exhibited the highest accumulation in both roots and shoots, followed by PY and BaP, despite PY exhibited much greater phytotoxicity than the other two PAHs. The exposure to 10-500 μg/L PY resulted in downregulations of the phospholipase A2 genes PLA2-3, PLA2-4, and PLA2-6 (to 19% of the control without exposure) and phospholipase C genes PLC-1, PLC-2, and PLC-4 (to 50% of the control), consistent with the changes in phospholipase activity. The contents of typical PLs, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidic acid also decreased to a greater extent than those in the PHEN- and BaP-exposed groups. These were the major reasons for the relatively high phytotoxicity of PY, in terms of growth inhibition and cell membrane damage. These findings provide a more comprehensive understanding of crop responses to PAHs and provide insights into risk assessment of soil PAH contamination, which hold potentials in improving food safety and quality worldwide.
Collapse
Affiliation(s)
- Shuang Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
16
|
Tannert M, Balcke GU, Tissier A, Köck M. At4g29530 is a phosphoethanolamine phosphatase homologous to PECP1 with a role in flowering time regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1072-1083. [PMID: 34098589 DOI: 10.1111/tpj.15367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Gerd Ulrich Balcke
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Margret Köck
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
17
|
Jacquemyn J, Foroozandeh J, Vints K, Swerts J, Verstreken P, Gounko NV, Gallego SF, Goodchild R. Torsin and NEP1R1-CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipid-dependent and lipid-independent mechanisms. EMBO J 2021; 40:e106914. [PMID: 34313336 PMCID: PMC8408595 DOI: 10.15252/embj.2020106914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The interphase nuclear envelope (NE) is extensively remodeled during nuclear pore complex (NPC) insertion. How this remodeling occurs and why it requires Torsin ATPases, which also regulate lipid metabolism, remains poorly understood. Here, we show that Drosophila Torsin (dTorsin) affects lipid metabolism via the NEP1R1‐CTDNEP1 phosphatase and the Lipin phosphatidic acid (PA) phosphatase. This includes that Torsins remove NEP1R1‐CTDNEP1 from the NE in fly and mouse cells, leading to subsequent Lipin exclusion from the nucleus. NEP1R1‐CTDNEP1 downregulation also restores nuclear pore membrane fusion in post‐mitotic dTorsinKO fat body cells. However, dTorsin‐associated nuclear pore defects do not correlate with lipidomic abnormalities and are not resolved by silencing of Lipin. Further testing confirmed that membrane fusion continues in cells with hyperactivated Lipin. It also led to the surprising finding that excessive PA metabolism inhibits recruitment of the inner ring complex Nup35 subunit, resulting in elongated channel‐like structures in place of mature nuclear pores. We conclude that the NEP1R1‐CTDNEP1 phosphatase affects interphase NPC biogenesis by lipid‐dependent and lipid‐independent mechanisms, explaining some of the pleiotropic effects of Torsins.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Nakamura Y. Headgroup biosynthesis of phosphatidylcholine and phosphatidylethanolamine in seed plants. Prog Lipid Res 2021; 82:101091. [PMID: 33503494 DOI: 10.1016/j.plipres.2021.101091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
19
|
Liu X, Giarola V, Quan W, Song X, Bartels D. Identification and characterization of CTP:phosphocholine cytidylyltransferase CpCCT1 in the resurrection plant Craterostigma plantagineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110698. [PMID: 33288011 DOI: 10.1016/j.plantsci.2020.110698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Phosphatidylcholine is a major phospholipid which is shown to be involved in stress adaptation. Phosphatidylcholine increased during dehydration in Craterostigma plantagineum, and therefore we characterized CTP:phosphocholine cytidylyltransferase (CpCCT1), a key regulatory enzyme for phosphatidylcholine synthesis in plants. The CpCCT1 gene from the resurrection plant C. plantagineum was cloned and the amino acid sequence was compared with homologs from other species including yeast and rat. CCT proteins have conserved catalytic and membrane-binding domains while the N-terminal and C-terminal domains have diverged. The tissue specific expression analysis indicated that CpCCT1 is expressed in all tested tissues and it is induced by dehydration and in response to 0.5 M NaCl solutions. In plants exposed to low temperature in the dark, the CpCCT1 transcript increased after 4 h at 4 °C. CpCCT1 expression also increased during mannitol and sorbitol treatments in a concentration dependent manner. Phytohormones such as abscisic acid and indole-3-acetic acid also trigged transcript accumulation. Comparisons of transcript and protein accumulations for different treatments (except for dehydration) suggest transcriptional and translational control mechanisms. Analysis of promoter activity and polysome occupancy suggest that CpCCT1 gene expression is mainly under translational regulation during dehydration.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Wenli Quan
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
20
|
Xu X, Zhang J, Yan B, Wei Y, Ge S, Li J, Han Y, Li Z, Zhao C, Xu J. The Adjustment of Membrane Lipid Metabolism Pathways in Maize Roots Under Saline-Alkaline Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:635327. [PMID: 33790924 PMCID: PMC8006331 DOI: 10.3389/fpls.2021.635327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 05/14/2023]
Abstract
Plants are frequently confronted by diverse environmental stress, and the membrane lipids remodeling and signaling are essential for modulating the stress responses. Saline-alkaline stress is a major osmotic stress affecting the growth and development of crops. In this study, an integrated transcriptomic and lipidomic analysis was performed, and the metabolic changes of membrane lipid metabolism in maize (Zea mays) roots under saline-alkaline stress were investigated. The results revealed that phospholipids were major membrane lipids in maize roots, and phosphatidylcholine (PC) accounts for approximately 40% of the total lipids. Under 100 mmol NaHCO3 treatment, the level of PC decreased significantly (11-16%) and the parallel transcriptomic analysis showed an increased expression of genes encoding phospholipase A and phospholipase D/non-specific phospholipase C, which suggested an activated PC turnover under saline-alkaline stress. The plastidic galactolipid synthesis was also activated, and an abnormal generation of C34:6 galactolipids in 18:3 plants maize implied a plausible contribution from the prokaryotic pathway, which could be partially supported by the up-regulated expression of three putative plastid-localized phosphatidic acid phosphatase/lipid phosphate phosphatase. A comprehensive gene-metabolite network was constructed, and the regulation of membrane lipid metabolism under saline-alkaline stress in maize was discussed.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Beijing Hortipolaris Co., Ltd., Beijing, China
| | - Jinjie Zhang
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yulei Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengnan Ge
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaxin Li
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Han
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zuotong Li
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changjiang Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Changjiang Zhao,
| | - Jingyu Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Jingyu Xu,
| |
Collapse
|
21
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
22
|
Kang H, Jia C, Liu N, Aboagla AAA, Chen W, Gong W, Tang S, Hong Y. Plastid Glycerol-3-phosphate Acyltransferase Enhanced Plant Growth and Prokaryotic Glycerolipid Synthesis in Brassica napus. Int J Mol Sci 2020; 21:ijms21155325. [PMID: 32727046 PMCID: PMC7432870 DOI: 10.3390/ijms21155325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Plastid-localized glycerol-3-phosphate acyltransferase (ATS1) catalyzes the first-step reaction in glycerolipid assembly through transferring an acyl moiety to glycerol-3-phosphate (G3P) to generate lysophosphatidic acid (LPA), an intermediate in lipid metabolism. The effect of ATS1 overexpression on glycerolipid metabolism and growth remained to be elucidated in plants, particularly oil crop plants. Here, we found that overexpression of BnATS1 from Brassica napus enhanced plant growth and prokaryotic glycerolipid biosynthesis. BnATS1 is localized in chloroplasts and an in vitro assay showed that BnATS1 had acylation activity toward glycerol 3-phosphate to produce LPA. Lipid profiling showed that overexpression of BnATS1 led to increases in multiple glycerolipids including phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylinositol (PI), with increased polyunsaturated fatty acids. Moreover, increased MGDG was attributed to the elevation of 34:6- and 34:5-MGDG, which were derived from the prokaryotic pathway. These results suggest that BnATS1 promotes accumulation of polyunsaturated fatty acids in cellular membranes, thus enhances plant growth under low-temperature conditions in Brassica napus.
Collapse
|
23
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
24
|
Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron 2019; 105:276-292.e5. [PMID: 31786011 PMCID: PMC6975164 DOI: 10.1016/j.neuron.2019.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration. Injury-elevated Lipin1 and DGAT in retinal ganglion cells suppress regeneration Neuronal lipin1 and DGATs increase triglyceride and decrease phospholipids Redirecting triacylglyceride to phospholipid synthesis promotes axon regeneration
Collapse
|
25
|
MacVicar T, Ohba Y, Nolte H, Mayer FC, Tatsuta T, Sprenger HG, Lindner B, Zhao Y, Li J, Bruns C, Krüger M, Habich M, Riemer J, Schwarzer R, Pasparakis M, Henschke S, Brüning JC, Zamboni N, Langer T. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 2019; 575:361-365. [PMID: 31695197 DOI: 10.1038/s41586-019-1738-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas MacVicar
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Yohsuke Ohba
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Hendrik Nolte
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Hans-Georg Sprenger
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Barbara Lindner
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jiahui Li
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Robin Schwarzer
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Sinika Henschke
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Max-Planck-Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Nicola Zamboni
- Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany. .,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Caldo KMP, Xu Y, Falarz L, Jayawardhane K, Acedo JZ, Chen G. Arabidopsis CTP:phosphocholine cytidylyltransferase 1 is phosphorylated and inhibited by sucrose nonfermenting 1-related protein kinase 1 (SnRK1). J Biol Chem 2019; 294:15862-15874. [PMID: 31439667 PMCID: PMC6816107 DOI: 10.1074/jbc.ra119.008047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/19/2019] [Indexed: 11/06/2022] Open
Abstract
De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yang Xu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lucas Falarz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jeella Z Acedo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
27
|
Zou Y, Zhang X, Tan Y, Huang JB, Zheng Z, Tao LZ. Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:258-273. [PMID: 31246280 DOI: 10.1111/nph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS-auxin regulation module.
Collapse
Affiliation(s)
- Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
28
|
Knowles DG, Lee J, Taneva SG, Cornell RB. Remodeling of the interdomain allosteric linker upon membrane binding of CCTα pulls its active site close to the membrane surface. J Biol Chem 2019; 294:15531-15543. [PMID: 31488548 DOI: 10.1074/jbc.ra119.009850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Indexed: 01/10/2023] Open
Abstract
The rate-limiting step in the biosynthesis of the major membrane phospholipid, phosphatidylcholine, is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT), which is regulated by reversible membrane binding of a long amphipathic helix (domain M). The M domain communicates with the catalytic domain via a conserved ∼20-residue linker, essential for lipid activation of CCT. Previous analysis of this region (denoted as the αEC/J) using MD simulations, cross-linking, mutagenesis, and solvent accessibility suggested that membrane binding of domain M promotes remodeling of the αEC/J into a more compact structure that is required for enzyme activation. Here, using tryptophan fluorescence quenching, we show that the allosteric linker lies superficially on the membrane surface. Analyses with truncated CCTs show that the αEC/J can interact with lipids independently of the M domain. We observed strong FRET between engineered tryptophans in the αEC/J and vesicles containing dansyl-phosphatidylethanolamine that depended on the native J sequence. These data are incompatible with the extended conformation of the αE helix observed in the previously determined crystal structure of inactive CCT but support a bent αE helix conformation stabilized by J segment interactions. Our results suggest that the membrane-adsorbed, folded allosteric linker may partially cover the active site cleft and pull it close to the membrane surface, where cytidyl transfer can occur efficiently in a relatively anhydrous environment.
Collapse
Affiliation(s)
- Daniel G Knowles
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
29
|
Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 Transactivates DELAY OF GERMINATION1 to Establish Primary Seed Dormancy in Arabidopsis. THE PLANT CELL 2019; 31:1276-1288. [PMID: 30962396 PMCID: PMC6588305 DOI: 10.1105/tpc.18.00892] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 05/18/2023]
Abstract
Seed dormancy governs the timing of germination, one of the most important developmental transitions in a plant's life cycle. The DELAY OF GERMINATION1 (DOG1) gene is a key regulator of seed dormancy and a major quantitative trait locus in Arabidopsis (Arabidopsis thaliana). DOG1 expression is under tight developmental and environmental regulation, but the transcription factors involved are not known. Here we show that basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 (bZIP67) acts downstream of the central regulator of seed development, LEAFY COTYLEDON1, to transactivate DOG1 during maturation and help to establish primary dormancy. We show that bZIP67 overexpression enhances dormancy and that bZIP67 protein (but not transcript) abundance is increased in seeds matured in cool conditions, providing a mechanism to explain how temperature regulates DOG1 expression. We also show that natural allelic variation in the DOG1 promoter affects bZIP67-dependent transactivation, providing a mechanism to explain ecotypic differences in seed dormancy that are controlled by the DOG1 locus.
Collapse
Affiliation(s)
- Fiona M Bryant
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - David Hughes
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Keywan Hassani-Pak
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Peter J Eastmond
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| |
Collapse
|
30
|
Abstract
Chloroplasts contain high amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and low levels of the anionic lipids sulfoquinovosyldiacylglycerol (SQDG), phosphatidylglycerol (PG), and glucuronosyldiacylglycerol (GlcADG). The mostly extraplastidial lipid phosphatidylcholine is found only in the outer envelope. Chloroplasts are the major site for fatty acid synthesis. In Arabidopsis, a certain proportion of glycerolipids is entirely synthesized in the chloroplast (prokaryotic lipids). Fatty acids are also exported to the endoplasmic reticulum and incorporated into lipids that are redistributed to the chloroplast (eukaryotic lipids). MGDG, DGDG, SQDG, and PG establish the thylakoid membranes and are integral constituents of the photosynthetic complexes. Phosphate deprivation induces phospholipid degradation accompanied by the increase in DGDG, SQDG, and GlcADG. During freezing and drought stress, envelope membranes are stabilized by the conversion of MGDG into oligogalactolipids. Senescence and chlorotic stress lead to lipid and chlorophyll degradation and the deposition of acyl and phytyl moieties as fatty acid phytyl esters.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| |
Collapse
|
31
|
Kim SC, Nusinow DA, Sorkin ML, Pruneda-Paz J, Wang X. Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators. THE PLANT CELL 2019; 31:399-416. [PMID: 30674693 PMCID: PMC6447011 DOI: 10.1105/tpc.18.00675] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/07/2018] [Accepted: 01/22/2019] [Indexed: 05/06/2023]
Abstract
Circadian clocks play important roles in regulating cellular metabolism, but the reciprocal effect that metabolism has on the clock is largely unknown in plants. Here, we show that the central glycerolipid metabolite and lipid mediator phosphatidic acid (PA) interacts with and modulates the function of the core clock regulators LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in Arabidopsis (Arabidopsis thaliana). PA reduced the ability of LHY and CCA1 to bind the promoter of their target gene TIMING OF CAB EXPRESSION1 Increased PA accumulation and inhibition of PA-producing enzymes had opposite effects on circadian clock outputs. Diurnal change in levels of several membrane phospholipid species, including PA, observed in wild type was lost in the LHY and CCA1 double knockout mutant. Storage lipid accumulation was also affected in the clock mutants. These results indicate that the interaction of PA with the clock regulator may function as a cellular conduit to integrate the circadian clock with lipid metabolism.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | - Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Jose Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
32
|
Zhang G, Bahn SC, Wang G, Zhang Y, Chen B, Zhang Y, Wang X, Zhao J. PLDα1-knockdown soybean seeds display higher unsaturated glycerolipid contents and seed vigor in high temperature and humidity environments. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:9. [PMID: 30622651 PMCID: PMC6319013 DOI: 10.1186/s13068-018-1340-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/13/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Soybean oil constitutes an important source of vegetable oil and biofuel. However, high temperature and humidity adversely impacts soybean seed development, yield, and quality during plant development and after harvest. Genetic improvement of soybean tolerance to stress environments is highly desirable. RESULTS Transgenic soybean lines with knockdown of phospholipase Dα1 (PLDα1KD) were generated to study PLDα1's effects on lipid metabolism and seed vigor under high temperature and humidity conditions. Under such stress, as compared with normal growth conditions, PLDα1KD lines showed an attenuated stress-induced deterioration during soybean seed development, which was associated with elevated expression of reactive oxygen species-scavenging genes when compared with wild-type control. The developing seeds of PLDα1KD had higher levels of unsaturation in triacylglycerol (TAG) and major membrane phospholipids, but lower levels of phosphatidic acid and lysophospholipids compared with control cultivar. Lipid metabolite and gene expression profiling indicates that the increased unsaturation on phosphatidylcholine (PC) and enhanced conversion between PC and diacylglycerol (DAG) by PC:DAG acyltransferase underlie a basis for increased TAG unsaturation in PLDα1KD seeds. Meanwhile, the turnover of PC and phosphatidylethanolamine (PE) into lysoPC and lysoPE was suppressed in PLDα1KD seeds under high temperature and humidity conditions. PLDα1KD developing seeds suffered lighter oxidative stresses than did wild-type developing seeds in the stressful environments. PLDα1KD seeds contain higher oil contents and maintained higher germination rates than the wild-type seeds. CONCLUSIONS The study provides insights into the roles of PLDα1 in developing soybean seeds under high temperature and humidity stress. PLDα1KD decreases pre-harvest deterioration and enhances acyl editing in phospholipids and TAGs. The results indicate a way towards improving production of quality soybean seeds as foods and biofuels under increasing environmental stress.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Sung-Chul Bahn
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Geliang Wang
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops. Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101 China
| | - Xuemin Wang
- University of Missouri at St Louis, Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
33
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A pair of phospho-base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1064-1075. [PMID: 30218542 DOI: 10.1111/tpj.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PtdCho) is a predominant membrane lipid class in eukaryotes. Phospho-base N-methyltransferase (PMT) catalyzes a critical step in PtdCho biosynthesis. However, in Arabidopsis thaliana, the discovery of involvement of the specific PMT isoform in PtdCho biosynthesis remains elusive. Here, we show that PMT1 and PMT3 redundantly play an essential role in phosphocholine (PCho) biosynthesis, a prerequisite for PtdCho production. A pmt1 pmt3 double mutant was devoid of PCho, which affected PtdCho biosynthesis in vivo, showing severe growth defects in post-embryonic development. PMT1 and PMT3 were both highly expressed in the vasculature. The pmt1 pmt3 mutants had specifically affected leaf vein development and showed pale-green seedlings that were rescued by exogenous supplementation of PCho. We suggest that PMT1 and PMT3 are the primary enzymes for PCho biosynthesis and are involved in PtdCho biosynthesis and vascular development in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
34
|
Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, Weselake RJ, Lemieux MJ. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:287-299. [PMID: 30003607 DOI: 10.1111/tpj.14029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-β-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
35
|
Chen W, Salari H, Taylor MC, Jost R, Berkowitz O, Barrow R, Qiu D, Branco R, Masle J. NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction. PLANT PHYSIOLOGY 2018; 177:1605-1628. [PMID: 29777000 PMCID: PMC6084668 DOI: 10.1104/pp.18.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 05/24/2023]
Abstract
Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hooman Salari
- Agronomy and Plant Breeding Department, Razi University, Kermanshah 67155, Iran
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | - Ricarda Jost
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Russell Barrow
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rémi Branco
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
36
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
37
|
Hanchi M, Thibaud MC, Légeret B, Kuwata K, Pochon N, Beisson F, Cao A, Cuyas L, David P, Doerner P, Ferjani A, Lai F, Li-Beisson Y, Mutterer J, Philibert M, Raghothama KG, Rivasseau C, Secco D, Whelan J, Nussaume L, Javot H. The Phosphate Fast-Responsive Genes PECP1 and PPsPase1 Affect Phosphocholine and Phosphoethanolamine Content. PLANT PHYSIOLOGY 2018; 176:2943-2962. [PMID: 29475899 PMCID: PMC5884592 DOI: 10.1104/pp.17.01246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/06/2018] [Indexed: 05/24/2023]
Abstract
Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.
Collapse
Affiliation(s)
- Mohamed Hanchi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Nathalie Pochon
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Aiqin Cao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Laura Cuyas
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Pascale David
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan 184-8501
| | - Fan Lai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Jérôme Mutterer
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique, University of Strasbourg, 67084 Strasbourg, France
| | - Michel Philibert
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Corinne Rivasseau
- CEA, CNRS, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, UMR5168, Grenoble, France
| | - David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth 6009 WA, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Australia
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| | - Hélène Javot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies, Cadarache, 13108 St Paul Lez Durance, France
| |
Collapse
|
38
|
Tannert M, May A, Ditfe D, Berger S, Balcke GU, Tissier A, Köck M. Pi starvation-dependent regulation of ethanolamine metabolism by phosphoethanolamine phosphatase PECP1 in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:467-481. [PMID: 29294054 PMCID: PMC5853852 DOI: 10.1093/jxb/erx408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/30/2017] [Indexed: 05/10/2023]
Abstract
A universal plant response to phosphorus deprivation is the up-regulation of a diverse array of phosphatases. As reported recently, the AtPECP1 gene encodes a phosphatase with in vitro substrate specificity for phosphoethanolamine and phosphocholine. The putative substrates suggested that AtPECP1 is related to phospholipid metabolism; however, the biological function of AtPECP1 is as yet not understood. In addition, whereas lipid remodelling processes as part of the phosphorus starvation response have been extensively studied, knowledge of the polar head group metabolism and its regulation is lacking. We found that AtPECP1 is expressed in the cytosol and exerts by far its strongest activity in roots of phosphate-starved plants. We established a novel LC-MS/MS-based method for the quantitative and simultaneous measurement of the head group metabolites. The analysis of Atpecp1 null mutants and overexpression lines revealed that phosphoethanolamine, but not phosphocholine is the substrate of AtPECP1 in vivo. The impact on head group metabolite levels is greatest in roots of both loss-of-function and gain-of-function transgenic lines, indicating that the biological role of AtPECP1 is mainly restricted to roots. We suggest that phosphoethanolamine hydrolysis by AtPECP1 during Pi starvation is required to down-regulate the energy-consuming biosynthesis of phosphocholine through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Anett May
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Daniela Ditfe
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Sigrid Berger
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Gerd Ulrich Balcke
- Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg, Halle (Saale), Germany
| | - Alain Tissier
- Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg, Halle (Saale), Germany
| | - Margret Köck
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
- Correspondence:
| |
Collapse
|
39
|
Jacquemyn J, Cascalho A, Goodchild RE. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep 2017; 18:1905-1921. [PMID: 29074503 DOI: 10.15252/embr.201643426] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER)-localized enzymes synthesize the vast majority of cellular lipids. The ER therefore has a major influence on cellular lipid biomass and balances the production of different lipid categories, classes, and species. Signals from outside and inside the cell are directed to ER-localized enzymes, and lipid enzyme activities are defined by the integration of internal, homeostatic, and external information. This allows ER-localized lipid synthesis to provide the cell with membrane lipids for growth, proliferation, and differentiation-based changes in morphology and structure, and to maintain membrane homeostasis across the cell. ER enzymes also respond to physiological signals to drive carbohydrates and nutritionally derived lipids into energy-storing triglycerides. In this review, we highlight some key regulatory mechanisms that control ER-localized enzyme activities in animal cells. We also discuss how they act in concert to maintain cellular lipid homeostasis, as well as how their dysregulation contributes to human disease.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ana Cascalho
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Yang W, Wang G, Li J, Bates PD, Wang X, Allen DK. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. PLANT PHYSIOLOGY 2017; 174:110-123. [PMID: 28325849 PMCID: PMC5411150 DOI: 10.1104/pp.17.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/20/2017] [Indexed: 05/18/2023]
Abstract
Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications. As TAG is produced from diacylglycerol (DAG), successful engineering strategies to enhance TAG levels have focused on the conversion of DAG to TAG. However, the production of TAG can be limited by flux through the enzymatic reactions that supply DAG. In this study, two Arabidopsis phospholipase Dζ genes (AtPLDζ1 and AtPLDζ2 ) were coexpressed in Camelina sativa to test whether the conversion of phosphatidylcholine to DAG impacts TAG levels in seeds. The resulting transgenic plants produced 2% to 3% more TAG as a component of total seed biomass and had increased 18:3 and 20:1 fatty acid levels relative to wild type. Increased DAG and decreased PC levels were examined through the kinetics of lipid assembly by [14C]acetate and [14C]glycerol incorporation into glycerolipids. [14C]acetate was rapidly incorporated into TAG in both wild-type and overexpression lines, indicating a significant flux of nascent and elongated acyl-CoAs into the sn-3 position of TAG. Stereochemical analysis revealed that newly synthesized fatty acids were preferentially incorporated into the sn-2 position of PC, but the sn-1 position of de novo DAG and indicated similar rates of nascent acyl groups into the Kennedy pathway and acyl editing. [14C]glycerol studies demonstrated PC-derived DAG is the major source of DAG for TAG synthesis in both tissues. The results emphasize that the interconversions of DAG and PC pools can impact oil production and composition.
Collapse
Affiliation(s)
- Wenyu Yang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| | - Geliang Wang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| | - Jia Li
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| | - Philip D Bates
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| | - Xuemin Wang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (W.Y., G.W., J.L., X.W., D.K.A.); USDA-ARS, Plant Genetics Research Unit, St. Louis, Missouri 63132 (W.Y., D.K.A.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (G.W., X.W.); and Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406 (P.D.B.)
| |
Collapse
|
41
|
Gu Y, He L, Zhao C, Wang F, Yan B, Gao Y, Li Z, Yang K, Xu J. Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. FRONTIERS IN PLANT SCIENCE 2017; 8:2053. [PMID: 29250095 PMCID: PMC5714865 DOI: 10.3389/fpls.2017.02053] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/16/2017] [Indexed: 05/03/2023]
Abstract
Membrane lipid modulation is one of the major strategies plants have developed for cold acclimation. In this study, a combined lipidomic and transcriptomic analysis was conducted, and the changes in glycerolipids contents and species, and transcriptional regulation of lipid metabolism in maize leaves under low temperature treatment (5°C) were investigated. The lipidomic analysis showed an increase in the phospholipid phosphatidic acid (PA) and a decrease in phosphatidylcholine (PC). And an increase in digalactosyldiacylglycerol and a decrease in monogalactosyldiacylglycerol of the galactolipid class. The results implied an enhanced turnover of PC to PA to serve as precursors for galactolipid synthesis under following low temperature treatment. The analysis of changes in abundance of various lipid molecular species suggested major alterations of different pathways of plastidic lipids synthesis in maize under cold treatment. The synchronous transcriptomic analysis revealed that genes involved in phospholipid and galactolipid synthesis pathways were significantly up-regulated, and a comprehensive gene-metabolite network was generated illustrating activated membrane lipids adjustment in maize leaves following cold treatment. This study will help to understand the regulation of glycerolipids metabolism at both biochemical and molecular biological levels in 18:3 plants and to decipher the roles played by lipid remodeling in cold response in major field crop maize.
Collapse
Affiliation(s)
- Yingnan Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Remote Sensing Technique Center of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changjiang Zhao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Wang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bowei Yan
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuqiao Gao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kejun Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Kejun Yang, Jingyu Xu,
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Kejun Yang, Jingyu Xu,
| |
Collapse
|
42
|
Craddock CP, Adams N, Kroon JT, Bryant FM, Hussey PJ, Kurup S, Eastmond PJ. Cyclin-dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:3-14. [PMID: 27595588 PMCID: PMC5299491 DOI: 10.1111/tpj.13321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/21/2023]
Abstract
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.
Collapse
Affiliation(s)
- Christian P. Craddock
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Center for Plant Cell BiologyDepartment of Botany and Plant SciencesUniversity of CaliforniaRiverside92521USA
| | - Nicolette Adams
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Centre for Proteomic and Genomic ResearchUpper LevelSt Peter's MallCorner Anzio and Main Road ObservatoryCape Town7925South Africa
| | - Johan T.M. Kroon
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Fiona M. Bryant
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
- Present address: School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Patrick J. Hussey
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Smita Kurup
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Peter J. Eastmond
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
43
|
Yoshitake Y, Sato R, Madoka Y, Ikeda K, Murakawa M, Suruga K, Sugiura D, Noguchi K, Ohta H, Shimojima M. Arabidopsis Phosphatidic Acid Phosphohydrolases Are Essential for Growth under Nitrogen-Depleted Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1847. [PMID: 29163579 PMCID: PMC5671605 DOI: 10.3389/fpls.2017.01847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 05/04/2023]
Abstract
The Arabidopsis homologs of mammalian lipin, PAH1 and PAH2, are cytosolic phosphatidic acid phosphohydrolases that are involved in phospholipid biosynthesis and are essential for growth under phosphate starvation. Here, pah1 pah2 double-knockout mutants were found to be hypersensitive to nitrogen (N) starvation, whereas transgenic plants overexpressing PAH1 or PAH2 in the pah1 pah2 mutant background showed a similar growth phenotype as compared with wild type (WT) under N starvation. The chlorophyll content of pah1 pah2 was significantly lower than that of WT, whereas the chlorophyll content and photosynthetic activity of the transgenic plants were significantly higher than those of WT under N-depleted conditions. Membrane glycerolipid composition of the pah1 pah2 mutants showed a significant decrease in the mole percent of chloroplast lipids to other phospholipids, whereas membrane lipid composition did not differ between transgenic plants and WT plants. Pulse-chase labeling experiments using plants grown under N-depleted conditions showed that, in pah1 pah2 plants, the labeling percent of chloroplast lipids such as phosphatidylglycerol and monogalactosyldiacylglycerol in the total glycerolipids was significantly lower than in WT. Moreover, N starvation-induced degradation of chloroplast structure was enhanced in pah1 pah2 mutants, and the membrane structure was recovered by complementation with PAH1. Thus, PAH is involved in maintaining chloroplast membrane structure and is required for growth under N-depleted conditions.
Collapse
Affiliation(s)
- Yushi Yoshitake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryoichi Sato
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Madoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Keiko Ikeda
- Biomaterial Analysis Center, Technical Department, Tokyo Institute of Technology, Yokohama, Japan
| | - Masato Murakawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ko Suruga
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Daisuke Sugiura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Mie Shimojima,
| |
Collapse
|
44
|
Botella C, Jouhet J, Block MA. Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 2017; 65:12-23. [DOI: 10.1016/j.plipres.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
|
45
|
Yang Z, Ji H, Liu D. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits. PLANT & CELL PHYSIOLOGY 2016; 57:2519-2540. [PMID: 27742886 DOI: 10.1093/pcp/pcw165] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/16/2016] [Indexed: 05/25/2023]
Abstract
Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production.
Collapse
Affiliation(s)
- Zhenle Yang
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Hongying Ji
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Dantong Liu
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
46
|
Grillet M, Dominguez Gonzalez B, Sicart A, Pöttler M, Cascalho A, Billion K, Hernandez Diaz S, Swerts J, Naismith TV, Gounko NV, Verstreken P, Hanson PI, Goodchild RE. Torsins Are Essential Regulators of Cellular Lipid Metabolism. Dev Cell 2016; 38:235-47. [PMID: 27453503 DOI: 10.1016/j.devcel.2016.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Accepted: 06/12/2016] [Indexed: 01/10/2023]
Abstract
Torsins are developmentally essential AAA+ proteins, and mutation of human torsinA causes the neurological disease DYT1 dystonia. They localize in the ER membranes, but their cellular function remains unclear. We now show that dTorsin is required in Drosophila adipose tissue, where it suppresses triglyceride levels, promotes cell growth, and elevates membrane lipid content. We also see that human torsinA at the inner nuclear membrane is associated with membrane expansion and elevated cellular lipid content. Furthermore, the key lipid metabolizing enzyme, lipin, is mislocalized in dTorsin-KO cells, and dTorsin increases levels of the lipin substrate, phosphatidate, and reduces the product, diacylglycerol. Finally, genetic suppression of dLipin rescues dTorsin-KO defects, including adipose cell size, animal growth, and survival. These findings identify that torsins are essential regulators of cellular lipid metabolism and implicate disturbed lipid biology in childhood-onset DYT1 dystonia.
Collapse
Affiliation(s)
- Micheline Grillet
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Adria Sicart
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Maria Pöttler
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Ana Cascalho
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sergio Hernandez Diaz
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Natalia V Gounko
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Electron Microscopy Platform, VIB Bio-Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rose E Goodchild
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium.
| |
Collapse
|
47
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
49
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
50
|
Bates PD. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1214-1225. [PMID: 27003249 DOI: 10.1016/j.bbalip.2016.03.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Philip D Bates
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Dr. #5043, Hattiesburg, MS 39406-0001, United States.
| |
Collapse
|