1
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2025; 52:615-627. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Li G, Wei N, Hou H. Uncovering the Secrets of How Plants Adapt to Water Stress. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255131 DOI: 10.1111/pce.15571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
The frequency of flooding and other naturally occurring stresses caused by global climate change is increasing rapidly worldwide. Recent research has uncovered the morphological, physiological, and molecular mechanisms underlying water stress adaptation in model plants. This review synthesizes recent advances in understanding water adaptation, not only in model terrestrial plants but also in amphibious and aquatic plants. Plants respond to flooding stress through various adaptive strategies, including (1) the low-oxygen quiescence strategy (LOQS), which conserves energy by pausing metabolism and growth during flooding, and (2) the low-oxygen escape strategy (LOES), where plants elongate organs rapidly to reach the water surface and access more oxygen. In amphibious plants, heterophylly enables the production of dramatically different leaf forms to adapt to terrestrial versus submerged environments, representing a third strategy- the "variation" strategy for water stress adaptation. Unlike terrestrial crops, which must "wait" or "escape" during flooding, amphibious plants can naturally thrive in both aquatic and terrestrial habitats. In addition to heterophylly, other mechanisms of water stress adaptation in amphibious and aquatic plants are also discussed. Understanding these mechanisms can advance our knowledge for developing future flood-resilient crops, which are essential for sustainable agriculture under changing climates.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Wei
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Bhardwaj D, Sharma S, Sharma A, Gill R, Gill SS, Verma R, Kaul T, Tuteja N. Decoding the Signaling Triad: Molecular Interactions of G-Proteins, MAP Kinases, and Helicases in Environmental Stress Responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112514. [PMID: 40228609 DOI: 10.1016/j.plantsci.2025.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Plant signaling and stress response systems depend heavily on the essential functions of heterotrimeric G-proteins, mitogen-activated protein kinases (MAPKs), and helicases. Researchers have thoroughly investigated each molecular component separately but still lack comprehensive knowledge about how they work together functionally. This review investigates the interactions between G-proteins, MAPKs, and helicases as fundamental components of plant stress signaling networks. G-proteins function as molecular switches that perceive stress signals to initiate downstream cascades which activate MAPK pathways. MAPKs trigger phosphorylation of vital target proteins such as transcription factors and helicases which in turn regulate gene expression and RNA metabolism. Helicases, crucial for plant stress response mechanisms, unwind nucleic acid structures. Recent research shows that MAPKs and helicases together manage ribosome loading along with mRNA stability and protein production when plants face environmental stress. The review examines molecular interactions that provide new insights into plant stress physiology, while highlighting the need for further investigation into plant adaptive mechanisms involving G-proteins, MAPKs, and helicases.
Collapse
Affiliation(s)
- Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, 181143, India.
| | - Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, 181143, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, 181143, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak - 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak - 124 001, Haryana, India
| | - Rachana Verma
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Tanushri Kaul
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Narendra Tuteja
- Nutritional Improvement of Crop, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
4
|
Bhagat PK, Verma N, Pandey S, Verma D, Sinha AK. MPK3 mediated phosphorylation inhibits the dimerization of ABI5 to fine-tune the ABA signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109690. [PMID: 40010200 DOI: 10.1016/j.plaphy.2025.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Seed germination is, a critical physiological process, is tightly regulated by the phytohormone abscisic acid (ABA). However, the cross talk between multiple regulatory pathways involved in seed germination remains poorly understood. Here, we show that ABA activates two MAP kinases, AtMPK3/AtMPK6, which interact with and phosphorylate AtABI5, a master regulator of ABA signaling. MAP kinase-mediated AtABI5 phosphorylation at the serine-314 position regulates its nuclear localization and dimerization. Interestingly, AtABI5 provides feedback regulation by directly binding to the promoter of AtMPK3 to modulate its transcription. Further, functional analyses revealed that overexpression of a phospho-null AtABI5S314A variant in the abi5-8 mutant background conferred increased ABA sensitivity during seed germination, heightened drought sensitivity, and delayed flowering compared to wild-type plants. Conversely, overexpression of phospho-mimic AtABI5S314D in abi5-8 mutant showed ABA insensitivity during seed germination, drought tolerance, and early floral transition similar to abi5-8 mutant. Collectively, our findings highlight that MAP kinase-mediated phosphorylation of AtABI5 fine-tunes ABA signaling by regulating its dimerization, providing new insights into the dynamic regulation of plant responses to environmental and developmental cues.
Collapse
Affiliation(s)
- Prakash Kumar Bhagat
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Shubhangi Pandey
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, ArunaAsaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Deng Y, Zhu Z, Chen J, Kuang L, Yan T, Li L, Wu D, Gao F. Comparative transcriptomics of indica and japonica rice roots under heat stress reveals the crucial role of OsMAPK3 in heat response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109668. [PMID: 39983604 DOI: 10.1016/j.plaphy.2025.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Heat stress is one of the most critical environmental factors impacting rice cultivation, driven by the rising global temperatures. Therefore, understanding the differences in molecular mechanisms of heat stress tolerance between rice cultivars, particularly indica and japonica, is crucial for developing heat-tolerant varieties. In this study, high throughput RNA-sequencing technology was utilized to explore the transcriptomic changes in the root tissues of two rice varieties, 93-11 (indica) and ZH11 (japonica) under heat stress and during recovery. Differentially Expressed Genes (DEGs) analysis revealed that ZH11 had 14,719 DEGs after the two-day heat treatment, and 10,178 DEGs during the recovery process. In contrast, 93-11 had a lower number of DEGs than ZH11 in both the heat treatment and recovery phases, with 12,433 DEGs and 5986 DEGs, respectively. The GO and KEGG analyses showed that the two rice varieties shared several enriched pathways in response to heat stress. However, each cultivar also had its own uniquely enriched pathways, reflecting distinct responses to heat stress in ZH11 and 93-11. In addition, WGCNA analysis highlighted that the OsMAPK3 is novel hub gene in response to heat stress in rice. Knockout of OsMAPK3 compromises rice heat stress tolerance. These results provide new insights into the differences in molecular mechanisms of heat stress response in roots between indica and japonica rice cultivars, offering valuable targets for genetic improvement and breeding programs aimed at developing heat-tolerant rice varieties.
Collapse
Affiliation(s)
- Yaqin Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Zhikai Zhu
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, China; Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
6
|
Ashikari M, Nagai K, Bailey-Serres J. Surviving floods: Escape and quiescence strategies of rice coping with submergence. PLANT PHYSIOLOGY 2025; 197:kiaf029. [PMID: 39880379 DOI: 10.1093/plphys/kiaf029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 01/31/2025]
Abstract
Historical and recent insights into the molecular mechanisms of escape and quiescence strategies employed by rice to survive flooding.
Collapse
Affiliation(s)
- Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Zhu J, Yin H, Cao C, Sun C, Zhang M, Hong Y, Zhang Y, Lv C, Guo B, Wang F, Xu R. Comparative Transcriptome Analyses Reveal the Mechanisms Underlying Waterlogging Tolerance in Barley. PLANTS (BASEL, SWITZERLAND) 2024; 14:28. [PMID: 39795288 PMCID: PMC11722848 DOI: 10.3390/plants14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Waterlogging is becoming a global issue, affecting crop growth and yield in low-lying rainfed areas. A DH line, TamF169, showing superior waterlogging tolerance, and its waterlogging-sensitive parent, Franklin, were used to conduct transcriptome analyses. The results showed that 2209 and 2578 differentially expressed genes (DEGs) in Franklin and 1997 and 1709 DEGs in TamF169 were detected by comparing gene expression levels under control and waterlogging after 4 and 8 days, respectively, with 392 and 257 DEGs being specific to TamF169 after 4 and 8 days under waterlogging, respectively. KEGG analysis showed that glycolysis/gluconeogenesis, the MAPK signaling pathway, plant hormone signaling, and galactose metabolism pathways were significantly enriched in the waterlogging-tolerant genotype TamF169 four days after waterlogging. The qPCR results were consistent with the transcriptome data, suggesting the reliability of the transcriptome sequencing. A total of 13 genes in the mapping region of a QTL for root cortical aerenchyma (RCA) showed different expression levels in Franklin or TamF169, and the potential candidate genes for RCA-QTL are discussed. This study offers valuable information on the mechanism of tolerance to waterlogging stress in the DH line TamF169 and provides the candidate genes for RCA-QTL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safetyof Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (H.Y.); (C.C.); (C.S.); (M.Z.); (Y.H.); (Y.Z.); (C.L.); (B.G.); (F.W.)
| |
Collapse
|
8
|
Gibbs DJ, Theodoulou FL, Bailey-Serres J. Primed to persevere: Hypoxia regulation from epigenome to protein accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae584. [PMID: 39479777 DOI: 10.1093/plphys/kiae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 12/24/2024]
Abstract
Plant cells regularly encounter hypoxia (low-oxygen conditions) as part of normal growth and development, or in response to environmental stresses such as flooding. In recent years, our understanding of the multi-layered control of hypoxia-responsive gene expression has greatly increased. In this Update, we take a broad look at the epigenetic, transcriptional, translational, and post-translational mechanisms that regulate responses to low-oxygen levels. We highlight how a network of post-translational modifications (including phosphorylation), secondary messengers, transcriptional cascades, and retrograde signals from the mitochondria and endoplasmic reticulum (ER) feed into the control of transcription factor activity and hypoxia-responsive gene transcription. We discuss epigenetic mechanisms regulating the response to reduced oxygen availability, through focussing on active and repressive chromatin modifications and DNA methylation. We also describe current knowledge of the co- and post-transcriptional mechanisms that tightly regulate mRNA translation to coordinate effective gene expression under hypoxia. Finally, we present a series of outstanding questions in the field and consider how new insights into the molecular workings of the hypoxia-triggered regulatory hierarchy could pave the way for developing flood-resilient crops.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, the Netherlands
| |
Collapse
|
9
|
Holdsworth MJ, Liu H, Castellana S, Abbas M, Liu J, Perata P. Geography, altitude, agriculture, and hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae535. [PMID: 39365016 DOI: 10.1093/plphys/kiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
Collapse
Affiliation(s)
| | - Huanhuan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Simone Castellana
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Mohamad Abbas
- Plant Stress Resilience group, Institute of Environmental Biology, Utrecht University, Utrecht 3541 TR, The Netherlands
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Pierdomenico Perata
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| |
Collapse
|
10
|
Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, Chen J, Wang Z, Xie H, Zhang J, Xu H, Chen S. The OsMAPK5-OsWRKY72 module negatively regulates grain length and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2648-2663. [PMID: 39474750 PMCID: PMC11622537 DOI: 10.1111/jipb.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5-OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Fuxiang Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiexin Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Fan Yang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Yiyi Liu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Lingnan Yan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Jing Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Huaan Xie
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Jianfu Zhang
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| |
Collapse
|
11
|
Singh D, Verma N, Rengasamy B, Banerjee G, Sinha AK. The small RNA biogenesis in rice is regulated by MAP kinase-mediated OsCDKD phosphorylation. THE NEW PHYTOLOGIST 2024; 244:1482-1497. [PMID: 39285527 DOI: 10.1111/nph.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/18/2024]
Abstract
CDKs are the master regulator of cell division and their activity is controlled by the regulatory subunit cyclins and phosphorylation by the CAKs. However, the role of MAP kinases in regulating plant cell cycle or CDKs have not been explored. Here, we report that the MAP kinases OsMPK3, OsMPK4, and OsMPK6 physically interact and phosphorylate OsCDKD and its regulatory subunit OsCYCH in rice. MAP kinases phosphorylate CDKD at Ser-168 and Thr-235 residues in OsCDKD. The MAP kinase-mediated phosphorylation of OsCDKD is required for its activation to control the small RNA biogenesis. The phosphodead version of OsCDKD fails to activate the C-terminal domain of RNA Polymerase II, thereby negatively impacting small RNA transcription. Further, the overexpression lines of wild-type (WT) OsCDKD and phosphomimic OsCDKD show increased root growth, plant height, tiller number, panicle number, and seed number in comparison to WT, phosphodead OsCDKD-OE, and kinase-dead OsCDKD-OE plants. In a nutshell, our study establishes a novel regulation of OsCDKD by MAPK-mediated phosphorylation in rice. The phosphorylation of OsCDKD by MAPKs imparts a positive effect on rice growth and development by regulating miRNAs transcription.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| |
Collapse
|
12
|
Pucciariello C, Perata P. Plant quiescence strategy and seed dormancy under hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6047-6055. [PMID: 38622943 DOI: 10.1093/jxb/erae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, leading to metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene-responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.
Collapse
Affiliation(s)
- Chiara Pucciariello
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- NanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
13
|
Verma N, Singh D, Mittal L, Banerjee G, Noryang S, Sinha AK. MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition. THE PLANT CELL 2024; 36:4535-4556. [PMID: 39102893 PMCID: PMC11449107 DOI: 10.1093/plcell/koae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 08/07/2024]
Abstract
Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.
Collapse
Affiliation(s)
- Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lavanya Mittal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
14
|
Lu L, Zhang J, Zheng X, Xia N, Diao Z, Wang X, Chen Z, Tang D, Li S. OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated transcriptional regulation of immune-related genes. PLANT, CELL & ENVIRONMENT 2024; 47:3712-3731. [PMID: 38770581 DOI: 10.1111/pce.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling cascades are functionally important signalling modules in eukaryotes. Transcriptome reprogramming of immune-related genes is a key process in plant immunity. Emerging evidence shows that plant MAPK cascade is associated with processing (P)-body components and contributes to transcriptome reprogramming of immune-related genes. However, it remains largely unknown how this process is regulated. Here, we show that OsMPK12, which is induced by Magnaporthe oryzae infection, positively regulates rice blast resistance. Further analysis revealed that OsMPK12 directly interacts with enhancer of mRNA decapping protein 4 (OsEDC4), a P-body-located protein, and recruits OsEDC4 to where OsMPK12 is enriched. Importantly, OsEDC4 directly interacts with two decapping complex members OsDCP1 and OsDCP2, indicating that OsEDC4 is a subunit of the mRNA decapping complex. Additionally, we found that OsEDC4 positively regulates rice blast resistance by regulating expression of immune-related genes and maintaining proper mRNA levels of some negatively-regulated genes. And OsMPK12 and OsEDC4 are also involved in rice growth and development regulation. Taken together, our data demonstrate that OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated mRNA decay of immune-related genes, providing new insight into not only the new role of the MAPK signalling cascade, but also posttranscriptional regulation of immune-related genes.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingxing Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Zhao Z, Xie Y, Tian M, Liu J, Chen C, Zhou J, Guo T, Xiao W. Enhancing Coleoptile Length of Rice Seeds under Submergence through NAL11 Knockout. PLANTS (BASEL, SWITZERLAND) 2024; 13:2593. [PMID: 39339568 PMCID: PMC11434697 DOI: 10.3390/plants13182593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Submergence stress challenges direct seeding in rice cultivation. In this study, we identified a heat shock protein, NAL11, with a DnaJ domain, which can regulate the length of rice coleoptiles under flooded conditions. Through bioinformatics analyses, we identified cis-regulatory elements in its promoter, making it responsive to abiotic stresses, such as hypoxia or anoxia. Expression of NAL11 was higher in the basal regions of shoots and coleoptiles during flooding. NAL11 knockout triggered the rapid accumulation of abscisic acid (ABA) and reduction of Gibberellin (GA), stimulating rice coleoptile elongation and contributes to flooding stress management. In addition, NAL11 mutants were found to be more sensitive to ABA treatments. Such knockout lines exhibited enhanced cell elongation for coleoptile extension. Quantitative RT-PCR analysis revealed that NAL11 mediated the gluconeogenic pathway, essential for the energy needed in cell expansion. Furthermore, NAL11 mutants reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde under submerged stress, attributed to an improved antioxidant enzyme system compared to the wild-type. In conclusion, our findings underscore the pivotal role of NAL11 knockout in enhancing the tolerance of rice to submergence stress by elucidating its mechanisms. This insight offers a new strategy for improving resilience against flooding in rice cultivation.
Collapse
Affiliation(s)
- Zhe Zhao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuelan Xie
- Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, China
| | - Mengqing Tian
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiyong Zhou
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
17
|
García P, Singh S, Graciet E. New Insights into the Connections between Flooding/Hypoxia Response and Plant Defenses against Pathogens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2176. [PMID: 39204612 PMCID: PMC11358971 DOI: 10.3390/plants13162176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The impact of global climate change has highlighted the need for a better understanding of how plants respond to multiple simultaneous or sequential stresses, not only to gain fundamental knowledge of how plants integrate signals and mount a coordinated response to stresses but also for applications to improve crop resilience to environmental stresses. In recent years, there has been a stronger emphasis on understanding how plants integrate stresses and the molecular mechanisms underlying the crosstalk between the signaling pathways and transcriptional programs that underpin plant responses to multiple stresses. The combination of flooding (or resulting hypoxic stress) with pathogen infection is particularly relevant due to the frequent co-occurrence of both stresses in nature. This review focuses on (i) experimental approaches and challenges associated with the study of combined and sequential flooding/hypoxia and pathogen infection, (ii) how flooding (or resulting hypoxic stress) influences plant immunity and defense responses to pathogens, and (iii) how flooding contributes to shaping the soil microbiome and is linked to plants' ability to fight pathogen infection.
Collapse
Affiliation(s)
- Pablo García
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Shreenivas Singh
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland; (P.G.); (S.S.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 X021 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Hu Y, Ma M, Zhao W, Niu P, Li R, Luo J. Identification of hub genes involved in gibberellin-regulated elongation of coleoptiles of rice seeds germinating under submerged conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3862-3876. [PMID: 38571323 DOI: 10.1093/jxb/erae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Rapid elongation of coleoptiles from rice seeds to reach the water surface enables plants to survive submergence stress and therefore plays a crucial role in allowing direct seeding in rice cultivation. Gibberellin (GA) positively influences growth in rice, but the molecular mechanisms underlying its regulation of coleoptile elongation under submerged conditions remain unclear. In this study, we performed a weighted gene co-expression network analysis to conduct a preliminarily examination of the mechanisms. Four key modules were identified with high correlations to the GA regulation of submergence tolerance. The genes within these modules were mainly involved in the Golgi apparatus and carbohydrate metabolic pathways, suggesting their involvement in enhancing submergence tolerance. Further analysis of natural variation revealed that the specific hub genes Os03g0337900, Os03g0355600, and Os07g0638400 exhibited strong correlations with subspecies divergence of the coleoptile elongation phenotype. Consistent with this analysis, mutation of Os07g0638400 resulted in a lower germination potential and a stronger inhibition of coleoptile elongation under submerged conditions. The hub genes identified in this study provide new insights into the molecular mechanisms underlying GA-dependent tolerance to submergence stress in rice, and a potential basis for future modification of rice germplasm to allow for direct seeding.
Collapse
Affiliation(s)
- Yunfei Hu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Mingqing Ma
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Wenlong Zhao
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Pengwei Niu
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
19
|
Wang J, Han M, Huang Y, Zhao J, Liu C, Ma Y. Flooding Tolerance of Rice: Regulatory Pathways and Adaptive Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1178. [PMID: 38732393 PMCID: PMC11085783 DOI: 10.3390/plants13091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Rice is a major food crop for more than half of the world's population, while its production is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to oxygen deficiency, which is a major problem for submerged plants. Over the past three decades, significant progress has been made in understanding rice adaptation and molecular regulatory mechanisms in response to flooding. At the seed germination and seedling establishment stages, the CIPK15-SnRK1A-MYBS1 signaling cascade plays a central role in determining rice submergence tolerance. However, from seedlings to mature plants for harvesting, SUB1A- and SK1/SK2-regulated pathways represent two principal and opposite regulatory mechanisms in rice. In addition, phytohormones, especially gibberellins, induce adaptive responses to flooding throughout the rice growth period. This review summarizes the significant adaptive traits observed in flooded rice varieties and updates the molecular genetics and mechanisms of submergence tolerance in rice.
Collapse
Affiliation(s)
- Jing Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Mingzhen Han
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.W.); (Y.H.)
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.H.); (J.Z.); (C.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
20
|
Panthri M, Saini H, Banerjee G, Bhatia P, Verma N, Sinha AK, Gupta M. Deciphering the regulation of transporters and mitogen-activated protein kinase in arsenic and iron exposed rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133687. [PMID: 38325101 DOI: 10.1016/j.jhazmat.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
This study investigates the influence of arsenic (As) and iron (Fe) on the molecular aspects of rice plants. The mRNA-abundance of As (OsLsi, OsPHT, OsNRAMP1, OsABCC1) and Fe (OsIRT, OsNRAMP1, OsYSL, OsFRDL1, OsVIT2, OsSAMS1, OsNAS, OsNAAT1, OsDMAS1, OsTOM1, OsFER) related genes has been observed in 12-d old As and Fe impacted rice varieties. Analyses of phytosiderophores synthesis and Fe-uptake genes affirm the existence of specialized Fe-uptake strategies in rice with varieties PB-1 and Varsha favouring strategy I and II, respectively. Expression of OsNAS3, OsVIT2, OsFER and OsABCC1 indicated PB-1's tolerance towards Fe and As. Analysis of mitogen-activated protein kinase cascade members (OsMKK3, OsMKK4, OsMKK6, OsMPK3, OsMPK4, OsMPK7, and OsMPK14) revealed their importance in the fine adjustment of As/Fe in the rice system. A conditional network map was generated based on the gene expression pattern that unfolded the differential dynamics of both rice varieties. The mating based split ubiquitin system determined the interaction of OsIRT1 with OsMPK3, and OsLsi1 with both OsMPK3 and OsMPK4. In-silico tools also confirmed the binding affinities of OsARM1 with OsLsi1, OsMPK3 and OsMPK4, and of OsIDEF1/OsIRO2 with OsIRT1 and OsMPK3, supporting our hypothesis that OsARM1, OsIDEF1, OsIRO2 were active in the connections discovered by mbSUS.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
21
|
Aloryi KD, Okpala NE, Guo H, Karikari B, Amo A, Bello SF, Saini DK, Akaba S, Tian X. Integrated meta-analysis and transcriptomics pinpoint genomic loci and novel candidate genes associated with submergence tolerance in rice. BMC Genomics 2024; 25:338. [PMID: 38575927 PMCID: PMC10993490 DOI: 10.1186/s12864-024-10219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Due to rising costs, water shortages, and labour shortages, farmers across the globe now prefer a direct seeding approach. However, submergence stress remains a major bottleneck limiting the success of this approach in rice cultivation. The merger of accumulated rice genetic resources provides an opportunity to detect key genomic loci and candidate genes that influence the flooding tolerance of rice. RESULTS In the present study, a whole-genome meta-analysis was conducted on 120 quantitative trait loci (QTL) obtained from 16 independent QTL studies reported from 2004 to 2023. These QTL were confined to 18 meta-QTL (MQTL), and ten MQTL were successfully validated by independent genome-wide association studies from diverse natural populations. The mean confidence interval (CI) of the identified MQTL was 3.44 times narrower than the mean CI of the initial QTL. Moreover, four core MQTL loci with genetic distance less than 2 cM were obtained. By combining differentially expressed genes (DEG) from two transcriptome datasets with 858 candidate genes identified in the core MQTL regions, we found 38 common differentially expressed candidate genes (DECGs). In silico expression analysis of these DECGs led to the identification of 21 genes with high expression in embryo and coleoptile under submerged conditions. These DECGs encode proteins with known functions involved in submergence tolerance including WRKY, F-box, zinc fingers, glycosyltransferase, protein kinase, cytochrome P450, PP2C, hypoxia-responsive family, and DUF domain. By haplotype analysis, the 21 DECGs demonstrated distinct genetic differentiation and substantial genetic distance mainly between indica and japonica subspecies. Further, the MQTL7.1 was successfully validated using flanked marker S2329 on a set of genotypes with phenotypic variation. CONCLUSION This study provides a new perspective on understanding the genetic basis of submergence tolerance in rice. The identified MQTL and novel candidate genes lay the foundation for marker-assisted breeding/engineering of flooding-tolerant cultivars conducive to direct seeding.
Collapse
Grants
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- Key R&D Project in Hubei Province, China
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Hong Guo
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, Québec, QC, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China.
| |
Collapse
|
22
|
Liu B, Zheng Y, Lou S, Liu M, Wang W, Feng X, Zhang H, Song Y, Liu H. Coordination between two cis-elements of WRKY33, bound by the same transcription factor, confers humid adaption in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:30. [PMID: 38503847 DOI: 10.1007/s11103-024-01428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
To cope with flooding-induced hypoxia, plants have evolved different strategies. Molecular strategies, such as the N-degron pathway and transcriptional regulation, are known to be crucial for Arabidopsis thaliana's hypoxia response. Our study uncovered a novel molecular strategy that involves a single transcription factor interacting with two identical cis-elements, one located in the promoter region and the other within the intron. This unique double-element adjustment mechanism has seldom been reported in previous studies. In humid areas, WRKY70 plays a crucial role in A. thaliana's adaptation to submergence-induced hypoxia by binding to identical cis-elements in both the promoter and intron regions of WRKY33. This dual binding enhances WRKY33 expression and the activation of hypoxia-related genes. Conversely, in arid regions lacking the promoter cis-element, WRKY70 only binds to the intron cis-element, resulting in limited WRKY33 expression during submergence stress. The presence of a critical promoter cis-element in humid accessions, but not in dry accessions, indicates a coordinated regulation enabling A. thaliana to adapt and thrive in humid habitats.
Collapse
Affiliation(s)
- Bao Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yudan Zheng
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Han Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Song
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Singh K, Sharma D, Bhagat PK, Tayyeba S, Noryang S, Sinha AK. Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111967. [PMID: 38154578 DOI: 10.1016/j.plantsci.2023.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Bacterial leaf blight is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which causes severe crop loss in rice. The molecular mechanism that initiates defense against such pathogens remains unexplored. Reports have suggested crucial role of several miRNAs in regulating immune responses in plants. Argonaute (AGO) proteins have been implicated in imparting immunity against pathogens by using small RNAs as guide molecules. Here, we show that phosphorylation of rice AGO1a by MAP kinases is required for miRNA expression regulation during Xoo infection. AGO1a is induced in response to pathogen infection and is under the control of SA signaling pathway. The pathogen responsive MAP kinases MPK3, MPK4 and MPK6, interact with AGO1a in planta and can phosphorylate the protein in vitro. Overexpression of AGO1a extends disease resistance against Xoo in rice and leads to a higher accumulation of miRNAs. Conversely, overexpression of a non phosphorylatable mutant protein aggravates disease susceptibility and remarkably suppresses the miRNA expression levels. At a molecular level, phosphorylation of AGO1a by MAP kinase is required for increased accumulation of miRNAs during pathogen challenge. Taken together, the data suggests that OsAGO1a is a direct phosphorylation target of MAP kinases and this phosphorylation is crucial for its role in imparting disease resistance.
Collapse
Affiliation(s)
- Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Biochemistry Department, Elizer Joldan Memorial College, UT Ladakh 194101, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
25
|
Lin C, Zhang Z, Shen X, Liu D, Pedersen O. Flooding-adaptive root and shoot traits in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23226. [PMID: 38167593 DOI: 10.1071/fp23226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising floodwater, several rice varieties, including deepwater rice, elongate their stems to keep their leaves above the water surface so that photosynthesis can occur unhindered during partial submergence. In stark contrast, some other varieties hardly elongate even if they become completely submerged. Instead, their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling fast regrowth once the floodwater recedes. This review focuses on the fascinating functional adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide a general analysis of these traits focusing on molecular, anatomical and morphological, physiological and ecological levels. Some of these key traits have already been introgressed into modern high-yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in Asia. However, with the ongoing changes in climate, we propose that even more emphasis should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer periods of complete submergence or stagnant flooding. Such tolerance could be achieved via additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves with higher underwater photosynthesis caused by a longer gas film retention time.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; and Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany
| | - Zhao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dan Liu
- Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany; and Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark; and School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
26
|
Singh D, Banerjee G, Verma N, Sinha AK. MAP kinases may mediate regulation of the cell cycle in rice by E2F2 phosphorylation. FEBS Lett 2023; 597:2993-3009. [PMID: 37843487 DOI: 10.1002/1873-3468.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
E2F is the key transcription factor that determines the proliferative status of cells by regulating the G1/S phase of the cell cycle. In this study, we show that in rice (Oryza sativa), OsE2F2 is a phosphorylation target of MAP kinases. The MAP kinases OsMPK3, OsMPK4, and OsMPK6 interact with and phosphorylate OsE2F2. Next, we determined the serine and threonine residues that could play a role in the phosphorylation of OsE2F2. Subsequently, our study suggests a possible link between MAP kinase-mediated OsE2F2 phosphorylation and its impact on DNA proliferation in the roots of rice seedlings. Finally, we found positive feedback regulation of OsMPK4 by OsE2F2. Therefore, our study hints at the potential impact of MAP kinase signaling on the cell cycle of rice plants.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | | |
Collapse
|
27
|
Phukan UJ, Jindal S, Laldinsangi C, Singh PK, Longchar B. A microscopic scenario on recovery mechanisms under waterlogging and submergence stress in rice. PLANTA 2023; 259:9. [PMID: 38030751 DOI: 10.1007/s00425-023-04285-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
MAIN CONCLUSION Adaptive traits in rice responding to flooding, a compound stress, are associated with morpho-anatomical and physiological changes which are regulated at the genetic level. Therefore, understanding submergence stress tolerance in rice will help development of adapted cultivars that can help mitigate agricultural losses. Rice is an important dietary component of daily human consumption and is cultivated as a staple crop worldwide. Flooding is a compound stress which imposes significant financial losses to farmers. Flood-affected rainfed rice ecosystems led to the development of various adaptive traits in different cultivars for their optimal growth and survival. Some cultivars can tolerate hypoxia by temporarily arresting elongation and conserving their energy sources, which they utilize to regrow after the stress conditions subside. However, few other cultivars rapidly elongate to escape hypoxia using carbohydrate resources. These contrasting characters are regulated at the genetic level through different quantitative trait loci that contain ERF transcription factors (TFs), Submergence and Snorkels. TFs can simultaneously activate the transcription of various genes involved in stress and development responses. These TFs are of prime importance because the introgressed and near-isogenic lines showed promising results with increased submergence tolerance without affecting yield or quality. However, the entire landscape of submergence tolerance is not entirely depicted, and further exploration in the field is necessary to understand the mechanism in rice completely. Therefore, this review will highlight the significant adaptive traits observed in flooded rice varieties and how they are regulated mechanistically.
Collapse
Affiliation(s)
- Ujjal J Phukan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721-0036, USA
| | - Sunita Jindal
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - C Laldinsangi
- Department of Life Sciences, Pachhunga University College, Mizoram University, Aizawl, 796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, 796001, Mizoram, India
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMacabim Road, 7505101, Rishon Lezion, Israel
| | - Bendangchuchang Longchar
- Department of Life Sciences, Pachhunga University College, Mizoram University, Aizawl, 796001, Mizoram, India.
| |
Collapse
|
28
|
Xu H, Wang H, Zhang Y, Yang X, Lv S, Hou D, Mo C, Wassie M, Yu B, Hu T. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. PLANT COMMUNICATIONS 2023; 4:100641. [PMID: 37349987 PMCID: PMC10721467 DOI: 10.1016/j.xplc.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.
Collapse
Affiliation(s)
- Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China.
| | - Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanwen Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Changru Mo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
29
|
Chandan RK, Kumar R, Kabyashree K, Yadav SK, Roy M, Swain DM, Jha G. A prophage tail-like protein facilitates the endophytic growth of Burkholderia gladioli and mounting immunity in tomato. THE NEW PHYTOLOGIST 2023; 240:1202-1218. [PMID: 37559429 DOI: 10.1111/nph.19184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
A prophage tail-like protein (Bg_9562) of Burkholderia gladioli strain NGJ1 possesses broad-spectrum antifungal activity, and it is required for the bacterial ability to forage over fungi. Here, we analyzed whether heterologous overexpression of Bg_9562 or exogenous treatment with purified protein can impart disease tolerance in tomato. The physiological relevance of Bg_9562 during endophytic growth of NGJ1 was also investigated. Bg_9562 overexpressing lines demonstrate fungal and bacterial disease tolerance. They exhibit enhanced expression of defense genes and activation of mitogen-activated protein kinases. Treatment with Bg_9562 protein induces defense responses and imparts immunity in wild-type tomato. The defense-inducing ability lies within 18-51 aa region of Bg_9562 and is due to sequence homology with the bacterial flagellin epitope. Interaction studies suggest that Bg_9562 is perceived by FLAGELLIN-SENSING 2 homologs in tomato. The silencing of SlSERK3s (BAK1 homologs) prevents Bg_9562-triggered immunity. Moreover, type III secretion system-dependent translocation of Bg_9562 into host apoplast is important for elicitation of immune responses during colonization of NGJ1. Our study emphasizes that Bg_9562 is important for the endophytic growth of B. gladioli, while the plant perceives it as an indirect indicator of the presence of bacteria to mount immune responses. The findings have practical implications for controlling plant diseases.
Collapse
Affiliation(s)
- Ravindra Kumar Chandan
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kristi Kabyashree
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mandira Roy
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Durga Madhab Swain
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant-Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
30
|
Mirza Z, Jonwal S, Saini H, Sinha AK, Gupta M. Unraveling the molecular aspects of iron-mediated OsWRKY76 signaling under arsenic stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108136. [PMID: 37897891 DOI: 10.1016/j.plaphy.2023.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Arsenic (As) is a significant environmental element that restricts the growth and production of rice plants. Although the role of iron (Fe) to sequester As in rice is widely known, the molecular mechanism regarding As-Fe interaction remains opaque. Here, we show the differential response of two rice varieties (Ratna and Lalat) in terms of their morphological and biochemical changes in the presence of As and Fe. These results together with in-silico screening, gene expression analysis, and protein-protein interaction studies suggest the role of OsWRKY76 in Fe-mediated As stress alleviation. When OsWRKY76 is activated by MAPK signaling, it inhibits the gene expression of Fe transporters OsIRT1 and OsYSL2, which reduces the amount of Fe accumulated. However, MAPK signaling and OsWRKY76 remain down-regulated during Fe supplementation with As, which subsequently encourages the up-regulation of OsIRT1 and OsYSL2. This results in greater Fe content and decreased As accumulation and toxicity. The lower H2O2 and SOD, CAT, and APX activities were likewise seen under the As + Fe condition. Overall, results revealed the molecular aspects of Fe-mediated control of OsWRKY76 signaling and showed that Ratna is a more As tolerant variety than Lalat. Lalat, however, performs better in As stress due to the presence of Fe.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
31
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
32
|
Jonwal S, Rengasamy B, Sinha AK. Regulation of photosynthesis by mitogen-activated protein kinase in rice: antagonistic adjustment by OsMPK3 and OsMPK6. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1247-1259. [PMID: 38024949 PMCID: PMC10678870 DOI: 10.1007/s12298-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01383-9.
Collapse
Affiliation(s)
- Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
33
|
Loreti E, Perata P. ERFVII transcription factors and their role in the adaptation to hypoxia in Arabidopsis and crops. Front Genet 2023; 14:1213839. [PMID: 37662843 PMCID: PMC10469677 DOI: 10.3389/fgene.2023.1213839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
In this review, we focus on ethylene transcription factors (ERFs), which are a crucial family of transcription factors that regulate plant development and stress responses. ERFVII transcription factors have been identified and studied in several crop species, including rice, wheat, maize, barley, and soybean. These transcription factors are known to be involved in regulating the plant's response to low oxygen stress-hypoxia and could thus improve crop yields under suboptimal growing conditions. In rice (Oryza sativa) several ERFVII genes have been identified and characterized, including SUBMERGENCE 1A (SUB1A), which enables rice to tolerate submergence. The SUB1A gene was used in the development of SUB1 rice varieties, which are now widely grown in flood-prone areas and have been shown to improve yields and farmer livelihoods. The oxygen sensor in plants was discovered using the model plant Arabidopsis. The mechanism is based on the destabilization of ERFVII protein via the N-degron pathway under aerobic conditions. During hypoxia, the stabilized ERFVIIs translocate to the nucleus where they activate the transcription of hypoxia-responsive genes (HRGs). In summary, the identification and characterization of ERFVII transcription factors and their mechanism of action could lead to the development of new crop varieties with improved tolerance to low oxygen stress, which could have important implications for global food security.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
34
|
Lin CC, Lee WJ, Zeng CY, Chou MY, Lin TJ, Lin CS, Ho MC, Shih MC. SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice. PNAS NEXUS 2023; 2:pgad229. [PMID: 37492276 PMCID: PMC10364326 DOI: 10.1093/pnasnexus/pgad229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Most rice (Oryza sativa) cultivars cannot survive under prolonged submergence. However, some O. sativa ssp. indica cultivars, such as FR13A, are highly tolerant owing to the SUBMERGENCE 1A-1 (SUB1A-1) allele, which encodes a Group VII ethylene-responsive factor (ERFVII) protein; other submergence-intolerant cultivars contain a SUB1A-2 allele. The two alleles differ only by a single substitution at the 186th amino acid position from serine in SUB1A-1 to proline in SUB1A-2 resulting in only SUB1A-1 being able to be phosphorylated. Two other ERFVIIs, ERF66 and ERF67, function downstream of SUB1A-1 to form a regulatory cascade in response to submergence stress. Here, we show that SUB1A-1, but not SUB1A-2, interacts with ADA2b of the ADA2b-GCN5 acetyltransferase complex, in which GCN5 functions as a histone acetyltransferase. Phosphorylation of SUB1A-1 at serine 186 enhances the interaction of SUB1A-1 with ADA2b. ADA2b and GCN5 expression was induced under submergence, suggesting that these two genes might play roles in response to submergence stress. In transient assays, binding of SUB1A-1 to the ERF67 promoter and ERF67 transcription were highly induced when SUB1A-1 was expressed together with the ADA2b-GCN5 acetyltransferase complex. Taken together, these results suggest that phospho-SUB1A-1 recruits the ADA2-GCN5 acetyltransferase complex to modify the chromatin structure of the ERF66/ERF67 promoter regions and activate gene expression, which in turn enhances rice submergence tolerance.
Collapse
Affiliation(s)
| | | | - Cyong-Yu Zeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jhen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chiao Ho
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| | - Ming-Che Shih
- To whom correspondence should be addressed: (M.C.S.); (M.C.H.)
| |
Collapse
|
35
|
Wang S, Han S, Zhou X, Zhao C, Guo L, Zhang J, Liu F, Huo Q, Zhao W, Guo Z, Chen X. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. THE PLANT CELL 2023; 35:2391-2412. [PMID: 36869655 DOI: 10.1093/plcell/koad064] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xiangui Zhou
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changjiang Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Lina Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junqi Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fei Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qixin Huo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
36
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
37
|
Manna M, Rengasamy B, Sinha AK. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37157977 DOI: 10.1111/pce.14606] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
38
|
Chandan RK, Kumar R, Swain DM, Ghosh S, Bhagat PK, Patel S, Bagler G, Sinha AK, Jha G. RAV1 family members function as transcriptional regulators and play a positive role in plant disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:39-54. [PMID: 36703574 DOI: 10.1111/tpj.16114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Phytopathogens pose a severe threat to agriculture and strengthening the plant defense response is an important strategy for disease control. Here, we report that AtRAV1, an AP2 and B3 domain-containing transcription factor, is required for basal plant defense in Arabidopsis thaliana. The atrav1 mutant lines demonstrate hyper-susceptibility against fungal pathogens (Rhizoctonia solani and Botrytis cinerea), whereas AtRAV1 overexpressing lines exhibit disease resistance against them. Enhanced expression of various defense genes and activation of mitogen-activated protein kinases (AtMPK3 and AtMPK6) are observed in the R. solani infected overexpressing lines, but not in the atrav1 mutant plants. An in vitro phosphorylation assay suggests AtRAV1 to be a novel phosphorylation target of AtMPK3. Bimolecular fluorescence complementation and yeast two-hybrid assays support physical interactions between AtRAV1 and AtMPK3. Overexpression of the native as well as phospho-mimic but not the phospho-defective variant of AtRAV1 imparts disease resistance in the atrav1 mutant A. thaliana lines. On the other hand, overexpression of AtRAV1 fails to impart disease resistance in the atmpk3 mutant. These analyses emphasize that AtMPK3-mediated phosphorylation of AtRAV1 is important for the elaboration of the defense response in A. thaliana. Considering that RAV1 homologs are conserved in diverse plant species, we propose that they can be gainfully deployed to impart disease resistance in agriculturally important crop plants. Indeed, overexpression of SlRAV1 (a member of the RAV1 family) imparts disease tolerance against not only fungal (R. solani and B. cinerea), but also against bacterial (Ralstonia solanacearum) pathogens in tomato, whereas silencing of the gene enhances disease susceptibility.
Collapse
Affiliation(s)
- Ravindra Kumar Chandan
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - Rahul Kumar
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Durga Madhab Swain
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar, 382030, India
| | - Ganesh Bagler
- Centre for Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi), New Delhi, 110020, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
39
|
Li H, Zhang Y, Wu C, Bi J, Chen Y, Jiang C, Cui M, Chen Y, Hou X, Yuan M, Xiong L, Yang Y, Xie K. Fine-tuning OsCPK18/OsCPK4 activity via genome editing of phosphorylation motif improves rice yield and immunity. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2258-2271. [PMID: 35984919 PMCID: PMC9674324 DOI: 10.1111/pbi.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved complex signalling networks to regulate growth and defence responses under an ever-changing environment. However, the molecular mechanisms underlying the growth-defence tradeoff are largely unclear. We previously reported that rice CALCIUM-DEPENDENT PROTEIN KINASE 18 (OsCPK18) and MITOGEN-ACTIVATED PROTEIN KINASE 5 (OsMPK5) mutually phosphorylate each other and that OsCPK18 phosphorylates and positively regulates OsMPK5 to suppress rice immunity. In this study, we found that OsCPK18 and its paralog OsCPK4 positively regulate plant height and yield-related traits. Further analysis reveals that OsCPK18 and OsMPK5 synergistically regulate defence-related genes but differentially regulate development-related genes. In vitro and in vivo kinase assays demonstrated that OsMPK5 phosphorylates C-terminal threonine (T505) and serine (S512) residues of OsCPK18 and OsCPK4, respectively. The kinase activity of OsCPK18T505D , in which T505 was replaced by aspartic acid to mimic T505 phosphorylation, displayed less calcium sensitivity than that of wild-type OsCPK18. Interestingly, editing the MAPK phosphorylation motif in OsCPK18 and its paralog OsCPK4, which deprives OsMPK5-mediated phosphorylation but retains calcium-dependent activation of kinase activity, simultaneously increases rice yields and immunity. This editing event also changed the last seven amino acid residues of OsCPK18 and attenuated its binding with OsMPK5. This study presents a new regulatory circuit that fine tunes the growth-defence tradeoff by modulating OsCPK18/4 activity and suggests that CRISPR/Cas9-mediated engineering phosphorylation pathways could simultaneously improve crop yield and immunity.
Collapse
Affiliation(s)
- Hong Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yun Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Jinpeng Bi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yache Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Changjin Jiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Miaomiao Cui
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yuedan Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Xin Hou
- State Key Laboratory of Hybrid RiceWuhan UniversityWuhanChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, The Huck Institutes of Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
40
|
Bhagat PK, Sharma D, Verma D, Singh K, Sinha AK. Arabidopsis MPK3 and MPK6 regulates D-glucose signaling and interacts with G-protein, RGS1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111484. [PMID: 36195119 DOI: 10.1016/j.plantsci.2022.111484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Sugar as a signaling molecule has attracted lots of attention. Even though several kinases have been shown to play a crucial role in the sugar signaling and response to exogenous D-glucose (Glc), the information on the involvement of MAP kinase cascade in sugar signaling has remain largely unexplored. In this report we demonstrate that MAP kinase signaling is essential for sensitivity to higher concentrations of D-Glc in Arabidopsis. We found that D-Glc activates MAP kinases, MPK3 and MPK6 in a concentration and time-dependent manner. The mutants of mpk3 and mpk6 display hyposensitivity to 6% D-Glc during seed germination, cotyledon greening and root growth. Interestingly, the altered sensitivity to increased D-Glc is severely enhanced by addition of 1% Sucrose in the media. Our study also deciphered the role of one of the Glc sensor proteins, RGS1 that interacts and gets phosphorylated at its C-terminal domain by MPK3 and MPK6. Overall our study provides a new insight on the involvement of MAP kinases in association with G-proteins that might regulate sugar signaling and sugar responsive growth and development in Arabidopsis.
Collapse
Affiliation(s)
| | - Deepika Sharma
- National Institute of Plant Genome Research, New Delhi, Delhi 110067, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, New Delhi, Delhi 110067, India
| | - Kirti Singh
- National Institute of Plant Genome Research, New Delhi, Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, New Delhi, Delhi 110067, India.
| |
Collapse
|
41
|
Wang X, Zhao Y, Jiang C, Wang L, Chen L, Li F, Zhang Y, Pan Y, Zhang T. Evolution of different rice ecotypes and genetic basis of flooding adaptability in Deepwater rice by GWAS. BMC PLANT BIOLOGY 2022; 22:526. [PMID: 36376791 PMCID: PMC9661789 DOI: 10.1186/s12870-022-03924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is the world's second largest food crop and accelerated global climate change due to the intensification of human activities has a huge impact on rice. Research on the evolution of different rice ecotypes is essential for enhancing the adaptation of rice to the unpredictable environments. RESULTS The sequencing data of 868 cultivated and 140 wild rice accessions were used to study the domestication history and signatures of adaptation in the distinct rice ecotypes genome. The different populations had formed distinct rice ecotypes by phylogenetic analyses and were domesticated independently in the two subspecies of rice, especially deepwater and upland rice. The domestication history of distinct rice ecotypes was confirmed and the four predicted admixture events mainly involved gene flow between wild rice and cultivated rice. Importantly, we identified numerous selective sweeps that have occurred during the domestication of different rice ecotypes and one candidate gene (LOC_Os11g21804) for deepwater based on transcriptomic evidence. In addition, many regions of genomic differentiation between the different rice ecotypes were identified. Furthermore, the main reason for the increase in genetic diversity in the ecotypes of xian (indica) rice was the high proportion of alternative allele frequency in new mutations. Genome-wide association analysis revealed 28 QTLs associated with flood tolerance which contained 12 related cloned genes, and 20 candidate genes within 13 deepwater QTLs were identified by transcriptomic and haplotype analyses. CONCLUSIONS These results enhanced our understanding of domestication history in different rice ecotypes and provided valuable insights for genetic improvement and breeding of rice in the current changing environments.
Collapse
Affiliation(s)
- Xueqiang Wang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572025, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Conghui Jiang
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Libing Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, Guangxi, China
| | - Fengmei Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, People's Republic of China
| | - Yanhong Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, Guangxi, China.
| | - Tianzhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
42
|
Huang C, Wang D, Chen H, Deng W, Chen D, Chen P, Wang J. Genome-Wide Identification of DUF26 Domain-Containing Genes in Dongxiang Wild Rice and Analysis of Their Expression Responses under Submergence. Curr Issues Mol Biol 2022; 44:3351-3363. [PMID: 36005127 PMCID: PMC9406443 DOI: 10.3390/cimb44080231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The DUF26 domain-containing protein is an extracellular structural protein, which plays an important role in signal transduction. Dongxiang wild rice (Oryza rufipogon Griff.) is the northern-most common wild rice in China. Using domain analysis, 85 DUF26 domain-containing genes were identified in Dongxiang wild rice (DXWR) and further divided into four categories. The DUF26 domain-containing genes were unevenly distributed on chromosomes, and there were 18 pairs of tandem repeats. Gene sequence analysis showed that there were significant differences in the gene structure and motif distribution of the DUF26 domain in different categories. Motifs 3, 8, 9, 13, 14, 16, and 18 were highly conserved in all categories. It was also found that there were eight plasmodesmata localization proteins (PDLPs) with a unique motif 19. Collinearity analysis showed that DXWR had a large number of orthologous genes with wheat, maize, sorghum and zizania, of which 17 DUF26 domain-containing genes were conserved in five gramineous crops. Under the stress of anaerobic germination and seedling submergence treatment, 33 DUF26 domain-containing genes were differentially expressed in varying degrees. Further correlation analysis with the expression of known submergence tolerance genes showed that these DUF26 domain-containing genes may jointly regulate the submergence tolerance process with these known submergence tolerance genes in DXWR.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Chen
- Correspondence: (P.C.); (J.W.); Tel.: +86-185-7906-9996 (P.C.); +86-133-8753-2293 (J.W.)
| | - Jilin Wang
- Correspondence: (P.C.); (J.W.); Tel.: +86-185-7906-9996 (P.C.); +86-133-8753-2293 (J.W.)
| |
Collapse
|
43
|
Jalmi SK, Sinha AK. Ambiguities of PGPR-Induced Plant Signaling and Stress Management. Front Microbiol 2022; 13:899563. [PMID: 35633696 PMCID: PMC9136662 DOI: 10.3389/fmicb.2022.899563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The growth and stress responses developed by the plant in virtue of the action of PGPR are dictated by the changes in hormone levels and related signaling pathways. Each plant possesses its specific type of microbiota that is shaped by the composition of root exudates and the signal molecules produced by the plant and microbes. Plants convey signals through diverse and complex signaling pathways. The signaling pathways are also controlled by phytohormones wherein they regulate and coordinate various defense responses and developmental stages. On account of improved growth and stress tolerance provided by the PGPR to plants, there exist crosstalk of signaling events between phytohormones and other signaling molecules secreted by the plants and the PGPR. This review discusses some of the important aspects related to the ambiguities of signaling events occurring in plants, allowing the interaction of PGPR with plants and providing stress tolerance to the plant.
Collapse
|
44
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
45
|
Alpuerto JB, Fukuda M, Li S, Hussain RMF, Sakane K, Fukao T. The submergence tolerance regulator SUB1A differentially coordinates molecular adaptation to submergence in mature and growing leaves of rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:71-87. [PMID: 34978355 DOI: 10.1111/tpj.15654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A typical adaptive response to submergence regulated by SUB1A, the ethylene-responsive transcription factor gene, is the restricted elongation of the uppermost leaves. However, the molecular and physiological functions of SUB1A have been characterized using entire shoot tissues, most of which are mature leaves that do not elongate under submergence. We aimed to identify leaf-type-specific and overlapping adaptations coordinated in SUB1A-dependent and -independent manners. To this end, we compared the transcriptomic and hormonal responses to submergence between mature and growing leaves using rice genotypes with and without SUB1A. Monosaccharide, branched-chain amino acid, and nucleoside metabolism, associated with ATP synthesis, were commonly activated in both leaf types regardless of genotype. In both leaf types, pathways involved in carbohydrate and nitrogen metabolism were suppressed by SUB1A, with more severe restriction in growing leaves that have a greater energy demand if SUB1A is absent. In growing leaves, accumulation of and responsiveness to growth-regulating hormones were properly modulated by SUB1A, which correlated with restricted elongation. In mature leaves, submergence-induced auxin accumulation was suppressed by SUB1A. This study demonstrates that different sets of hormonal pathways, both of which are modulated by SUB1A, contribute to distinct adaptive responses to submergence in mature and growing rice leaves.
Collapse
Affiliation(s)
- Jasper B Alpuerto
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mika Fukuda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana M F Hussain
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kodai Sakane
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| | - Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
| |
Collapse
|
46
|
Bhagat PK, Verma D, Singh K, Badmi R, Sharma D, Sinha AK. Dynamic Phosphorylation of miRNA Biogenesis Factor HYL1 by MPK3 Involving Nuclear-Cytoplasmic Shuttling and Protein Stability in Arabidopsis. Int J Mol Sci 2022; 23:ijms23073787. [PMID: 35409147 PMCID: PMC8998556 DOI: 10.3390/ijms23073787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are one of the prime regulators of gene expression. The recruitment of hyponastic leaves 1 (HYL1), a double-stranded RNA binding protein also termed as DRB1, to the microprocessor complex is crucial for accurate primary-miRNA (pri-miRNA) processing and the accumulation of mature miRNA in Arabidopsis thaliana. In the present study, we investigated the role of the MAP kinase-mediated phosphorylation of AtHYL1 and its sub-cellular activity. AtMPK3 specifically phosphorylates AtHYL1 at the evolutionarily conserved serine-42 present at the N-terminal regions and plays an important role in its nuclear-cytosolic shuttling. Additionally, we identified that AtHYL1 is cleaved by trypsin-like proteases into an N-terminal fragment, which renders its subcellular activities. We, for the first time, report that the dimerization of AtHYL1 not only takes place in the nucleus, but also in the cytosol, and the C-terminal of AtHYL1 has a role in regulating its stability, as well as its subcellular localization. AtHYL1 is hyper-phosphorylated in mpk3 mutants, leading to higher stability and reduced degradation. Our data show that AtMPK3 is a negative regulator of AtHYL1 protein stability and that the AtMPK3-induced phosphorylation of AtHYL1 leads to its protein degradation.
Collapse
Affiliation(s)
- Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| | - Raghuram Badmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
- Raghu Ram Badmi, School of Biological, Earth and Environmental Sciences, University College Cork, T23TK30 Cork, Ireland
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110065, India
| |
Collapse
|
47
|
Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. THE PLANT CELL 2022; 34:889-909. [PMID: 34850198 PMCID: PMC8824597 DOI: 10.1093/plcell/koab289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 05/07/2023]
Abstract
Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Wei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hua Qi
- Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Shi Xiao
- Authors for correspondence: (S.X.) and (L.J.X.)
| |
Collapse
|
48
|
Mittal L, Tayyeba S, Sinha AK. Finding a breather for Oryza sativa: Understanding hormone signalling pathways involved in rice plants to submergence stress. PLANT, CELL & ENVIRONMENT 2022; 45:279-295. [PMID: 34971465 DOI: 10.1111/pce.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
During the course of evolution, different ecotypes of rice (Oryza sativa L.) have evolved distinct strategies to cope with submergence stress. Such contrasting responses are mediated by plant hormones that are principle regulators of growth, development and responses to various biotic and abiotic stresses. These hormones act cooperatively and show extensive crosstalk which is mediated by key regulatory genes that serve as nodes of molecular communication. The presence or absence of such genes leads to significant changes in hormone signalling pathways and hence, governs the type of response that the plant will exhibit. As flooding is one of the leading causes of crop loss across all the major rice-producing countries, it is crucial to deeply understand the molecular nexus governing the response to submergence to produce flood resilient varieties. This review focuses on the hormonal signalling pathways that mediate two contrasting responses of the rice plant to submergence stress namely, rapid internode elongation to escape flood waters and quiescence response that enables the plant to survive under complete submergence. The significance of several key genes such as Sub1A-1, SLR1, SD1 and SK1/SK2, in defining the ultimate response to submergence has also been discussed.
Collapse
Affiliation(s)
- Lavanya Mittal
- National Institute of Plant Genome Research, New Delhi, India
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, New Delhi, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
49
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
50
|
Liang J, Zhang Q, Liu Y, Zhang J, Wang W, Zhang Z. Chlorosis seedling lethality 1 encoding a MAP3K protein is essential for chloroplast development in rice. BMC PLANT BIOLOGY 2022; 22:20. [PMID: 34991480 PMCID: PMC8734211 DOI: 10.1186/s12870-021-03404-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in eukaryotic organisms and play essential roles in immunity and stress responses. However, the role of MAPKs in chloroplast development remains to be evidently established. RESULTS In this study, a rice chlorosis seedling lethality 1 (csl1) mutant with a Zhonghua11 (ZH11, japonica) background was isolated. Seedlings of the mutant were characterized by chlorotic leaves and death after the trefoil stage, and chloroplasts were observed to contain accumulated starch granules. Molecular cloning revealed that OsCSL1 encoded a MAPK kinase kinase22 (MKKK22) targeted to the endoplasmic reticulum (ER), and functional complementation of OsCSL1 was found to restore the normal phenotype in csl1 plants. The CRISPR/Cas9 technology was used for targeted disruption of OsCSL1, and the OsCSL1-Cas9 lines obtained therein exhibited yellow seedlings which phenocopied the csl1 mutant. CSL1/MKKK22 was observed to establish direct interaction with MKK4, and altered expression of MKK1 and MKK4 was detected in the csl1 mutant. Additionally, disruption of OsCSL1 led to reduced expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded RNA polymerases, nuclear-encoded RNA polymerase, and nuclear-encoded chloroplast genes. CONCLUSIONS The findings of this study revealed that OsCSL1 played roles in regulating the expression of multiple chloroplast synthesis-related genes, thereby affecting their functions, and leading to wide-ranging defects, including chlorotic seedlings and severely disrupted chloroplasts containing accumulated starch granules.
Collapse
Affiliation(s)
- Jiayan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuxin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiran Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|