1
|
Feng Z, Li H, Sun Z, Cheng J, Hua D, Wang Y, Qi J, Yang S, Gong Z. ZmGCT1/2 negatively regulate drought tolerance in maize by inhibiting ZmSLAC1 to maintain guard cell turgor. Proc Natl Acad Sci U S A 2025; 122:e2423037122. [PMID: 40208945 PMCID: PMC12012462 DOI: 10.1073/pnas.2423037122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
Stomata, which are essential for the exchange of CO2 and water vapor between plant leaves and the atmosphere, are regulated by a variety of environmental and internal factors. In this study, we identified and characterized two genes, Guard Cell Turgor Maintaining 1 (GCT1) and its closest homolog GCT2, which encode rapidly accelerated fibrosarcoma (RAF)-like protein kinases that play a critical role in maintaining guard cell turgor in Zea mays. We found that overexpression of ZmGCT1 and ZmGCT2 confers resistance to abscisic acid (ABA)-promoted stomatal closure, whereas the zmgct1 zmgct2 double loss-of-function mutants exhibit a loss of guard cell turgor, resulting in nearly closed stomata even under favorable growth conditions. A dominant mutation, zmgct1-9D, which lacks nine amino acids including T80, retains its kinase activity and plasma membrane localization but displays insensitive to ABA-, CO2-, Ca2+-, or H2O2-promoted stomatal closure. ABA-activated ZmSnRK2.8/9 phosphorylates ZmGCT1 at T80, reducing its plasma membrane localization. Intriguingly, the ZmSnRK2.10 or ZmSLAC1 mutant can suppress the reduced turgor phenotype in guard cells of the zmgct1 mutant. Furthermore, ZmGCT1 phosphorylates the penultimate threonine residue (T573) of ZmSLAC1, inhibiting both the constitutively active ZmSLAC1 and ZmSnRK2.8-activated ZmSLAC1 in Xenopus laevis oocytes, a process dependent on ZmGCT1 kinase activity. These findings suggest that ZmGCT1 and ZmGCT2 directly inhibit ZmSLAC1 to maintain guard cell turgor under favorable growth conditions, while ABA treatment alleviates this inhibition primarily by reducing ZmGCT1's plasma membrane localization. This study provides mechanistic insights into the regulation of stomatal movement by ZmGCT1/2 kinases under both favorable and stress conditions.
Collapse
Affiliation(s)
- Zhenkai Feng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Huiying Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Zhihui Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Deping Hua
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
- Department of Biological Sciences, College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| |
Collapse
|
2
|
Singh N, Giri MK, Chattopadhyay D. Lighting the path: how light signaling regulates stomatal movement and plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:769-786. [PMID: 39673781 DOI: 10.1093/jxb/erae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.
Collapse
Affiliation(s)
- Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, Odisha,India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
3
|
Pesaresi P, Bono P, Corn S, Crosatti C, Daniotti S, Jensen JD, Frébort I, Groli E, Halpin C, Hansson M, Hensel G, Horner DS, Houston K, Jahoor A, Klíma M, Kollist H, Lacoste C, Laidoudi B, Larocca S, Marè C, Moigne NL, Mizzotti C, Morosinotto T, Oldach K, Rossini L, Raubach S, Sanchez‐Garcia M, Shaw PD, Sonnier R, Tondelli A, Waugh R, Weber AP, Yarmolinsky D, Zeni A, Cattivelli L. Boosting photosynthesis opens new opportunities for agriculture sustainability and circular economy: The BEST-CROP research and innovation action. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17264. [PMID: 39910851 PMCID: PMC11799749 DOI: 10.1111/tpj.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
There is a need for ground-breaking technologies to boost crop yield, both grains and biomass, and their processing into economically competitive materials. Novel cereals with enhanced photosynthesis and assimilation of greenhouse gasses, such as carbon dioxide and ozone, and tailored straw suitable for industrial manufacturing, open a new perspective for the circular economy. Here we describe the vision, strategies, and objectives of BEST-CROP, a Horizon-Europe and United Kingdom Research and Innovation (UKRI) funded project that relies on an alliance of academic plant scientists teaming up with plant breeding companies and straw processing companies to use the major advances in photosynthetic knowledge to improve barley biomass and to exploit the variability of barley straw quality and composition. We adopt the most promising strategies to improve the photosynthetic properties and ozone assimilation capacity of barley: (i) tuning leaf chlorophyll content and modifying canopy architecture; (ii) increasing the kinetics of photosynthetic responses to changes in irradiance; (iii) introducing photorespiration bypasses; (iv) modulating stomatal opening, thus increasing the rate of carbon dioxide fixation and ozone assimilation. We expect that by improving our targeted traits we will achieve increases in aboveground total biomass production without modification of the harvest index, with added benefits in sustainability via better resource-use efficiency of water and nitrogen. In parallel, the resulting barley straw is tailored to: (i) increase straw protein content to make it suitable for the development of alternative biolubricants and feed sources; (ii) control cellulose/lignin contents and lignin properties to develop straw-based construction panels and polymer composites. Overall, by exploiting natural- and induced-genetic variability as well as gene editing and transgenic engineering, BEST-CROP will lead to multi-purpose next generation barley cultivars supporting sustainable agriculture and capable of straw-based applications.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Department of BiosciencesUniversity of MilanMilan20133Italy
| | - Pierre Bono
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | - Stephane Corn
- LMGC, IMT Mines AlesUniv Montpellier, CNRSAlèsFrance
| | - Cristina Crosatti
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Sara Daniotti
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | | | - Ivo Frébort
- Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucŠlechtitelů 27Olomouc783 71Czech Republic
| | - Eder Groli
- S.I.S. Società Italiana Sementivia Mirandola di Sopra 5, 40068 S. Lazzaro di SBolognaItaly
| | - Claire Halpin
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | - Mats Hansson
- Department of BiologyLund UniversityLund22362Sweden
| | - Goetz Hensel
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Centre for Plant Genome EngineeringHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Kelly Houston
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | | | - Miloš Klíma
- Úsovsko a.s.Klopina 33Klopina789 73Czech Republic
| | - Hannes Kollist
- Institute of BioengineeringUniversity of TartuTartu50411Estonia
- Institute of Plant Sciences Paris‐Saclay (IPS2) Université Paris‐Saclay, CNRS, INRAEUniversité Evry, Université Paris CitéGif sur Yvette91190France
| | - Clément Lacoste
- Polymers, Composites and Hybrids (PCH)IMT Mines AlesAlesFrance
| | - Boubker Laidoudi
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | | | - Caterina Marè
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | | | | | | | | | - Laura Rossini
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy (DiSAA)University of MilanMilan20133Italy
| | - Sebastian Raubach
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Miguel Sanchez‐Garcia
- International Center for Agricultural Research in the Dry Areas (ICARDA)Rabat10100Morocco
| | - Paul D. Shaw
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | | | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Robbie Waugh
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | - Andreas P.M. Weber
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute for Plant BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alessandro Zeni
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| |
Collapse
|
4
|
Pankasem N, Hsu PK, Lopez BNK, Franks PJ, Schroeder JI. Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO 2 sensing, whereas higher temperatures induce a photosynthesis-uncoupled response. THE NEW PHYTOLOGIST 2024; 244:1847-1863. [PMID: 39353606 DOI: 10.1111/nph.20121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway.
Collapse
Affiliation(s)
- Nattiwong Pankasem
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Po-Kai Hsu
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Bryn N K Lopez
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Peter J Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| |
Collapse
|
5
|
Piechatzek A, Feng X, Sai N, Yi C, Hurgobin B, Lewsey M, Herrmann J, Dittrich M, Ache P, Müller T, Kromdijk J, Hedrich R, Xu B, Gilliham M. GABA does not regulate stomatal CO2 signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6856-6871. [PMID: 38628155 PMCID: PMC11565201 DOI: 10.1093/jxb/erae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 11/16/2024]
Abstract
Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard cell signal γ-aminobutyric acid (GABA) is produced from glutamate by glutamate decarboxylase (GAD) during a reaction that generates CO2 as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant Arabidopsis lines gad2-1, gad2-2, and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2-a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter renamed as gad2-1*. Guard cell-specific complementation of MPK12 in gad2-1* restored the wild-type CO2 phenotype, which confirms the proposed importance of MPK12 in CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening channel ALUMINIUM-ACTIVATED MALATE TRANSPORTER 9 (ALMT9). Our results demonstrate that GABA has a role in modulating the rate of stomatal opening and closing, but not in response to CO2per se.
Collapse
Affiliation(s)
- Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Changyu Yi
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mathew Lewsey
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- ARC Centre of Excellence in Plants for Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| |
Collapse
|
6
|
Xiao C, Guo H, Li R, Wang Y, Yin K, Ye P, Hu H. A module involving HIGH LEAF TEMPERATURE1 controls instantaneous water use efficiency. PLANT PHYSIOLOGY 2024; 196:1579-1594. [PMID: 39041424 DOI: 10.1093/plphys/kiae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
Drought stress inhibits plant growth and agricultural production. Improving plant instantaneous water use efficiency (iWUE), which is strictly regulated by stomata, is an effective way to cope with drought stress. However, the mechanisms of iWUE regulation are poorly understood. Through genetic screening for suppressors of mpk12-4, an Arabidopsis (Arabidopsis thaliana) mutant with a major iWUE quantitative trait locus gene MITOGEN-ACTIVATED PROTEIN KINASE12 deleted, we identified HIGH LEAF TEMPERATURE1 (HT1). Genetic interaction and physiological analyses showed that MPK12 controls iWUE through multiple modules in a high CO2-induced stomatal closing pathway that regulate SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1) activity. HT1 acts downstream of MPK12, whereas OPEN STOMATA1 (OST1) and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) function downstream of HT1 by activating SLAC1 in iWUE. Photosynthetic-CO2 response curves and biomass analyses under different water-supply conditions showed that HT1 dysfunction improved iWUE and also increased plant growth capacity, and products of HT1 putative orthologs from Brassica (Brassica napus) and rice (Oryza sativa) exhibited functions similar to that of Arabidopsis HT1 in iWUE and the CO2-signaling pathway. Our study revealed the mechanism of MPK12-mediated iWUE regulation in Arabidopsis and provided insight into the internal relationship between iWUE and CO2 signaling in guard cells and a potential target for improving crop iWUE and drought tolerance.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuehua Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Koolmeister K, Merilo E, Hõrak H, Kollist H. Stomatal CO2 responses at sub- and above-ambient CO2 levels employ different pathways in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:608-620. [PMID: 38833587 PMCID: PMC11376393 DOI: 10.1093/plphys/kiae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
Stomatal pores that control plant CO2 uptake and water loss affect global carbon and water cycles. In the era of increasing atmospheric CO2 levels and vapor pressure deficit (VPD), it is essential to understand how these stimuli affect stomatal behavior. Whether stomatal responses to sub-ambient and above-ambient CO2 levels are governed by the same regulators and depend on VPD remains unknown. We studied stomatal conductance responses in Arabidopsis (Arabidopsis thaliana) stomatal signaling mutants under conditions where CO2 levels were either increased from sub-ambient to ambient (400 ppm) or from ambient to above-ambient levels under normal or elevated VPD. We found that guard cell signaling components involved in CO2-induced stomatal closure have different roles in the sub-ambient and above-ambient CO2 levels. The CO2-specific regulators prominently affected sub-ambient CO2 responses, whereas the lack of guard cell slow-type anion channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) more strongly affected the speed of above-ambient CO2-induced stomatal closure. Elevated VPD caused lower stomatal conductance in all studied genotypes and CO2 transitions, as well as faster CO2-responsiveness in some studied genotypes and CO2 transitions. Our results highlight the importance of experimental setups in interpreting stomatal CO2-responsiveness, as stomatal movements under different CO2 concentration ranges are controlled by distinct mechanisms. Elevated CO2 and VPD responses may also interact. Hence, multi-factor treatments are needed to understand how plants integrate different environmental signals and translate them into stomatal responses.
Collapse
Affiliation(s)
- Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| |
Collapse
|
8
|
Meigas E, Uusküla B, Merilo E. Abscisic acid induces stomatal closure in horsetails. THE NEW PHYTOLOGIST 2024; 243:513-518. [PMID: 38263706 DOI: 10.1111/nph.19542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
See also the Commentary on this article by Chater, 243: 503–505.
Collapse
Affiliation(s)
- Egon Meigas
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Benelote Uusküla
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
9
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
10
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
11
|
Zeng D, Ford B, Doležel J, Karafiátová M, Hayden MJ, Rathjen TM, George TS, Brown LK, Ryan PR, Pettolino FA, Mathesius U, Delhaize E. A conditional mutation in a wheat (Triticum aestivum L.) gene regulating root morphology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:48. [PMID: 38345612 PMCID: PMC10861616 DOI: 10.1007/s00122-024-04555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
KEY MESSAGE Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.
Collapse
Affiliation(s)
- Deying Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Brett Ford
- Grains Research and Development Corporation, Barton, ACT, 2600, Australia
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslava Karafiátová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Mathew J Hayden
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Tina M Rathjen
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Lawrie K Brown
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter R Ryan
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Ulrike Mathesius
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Emmanuel Delhaize
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Zait Y, Joseph A, Assmann SM. Stomatal responses to VPD utilize guard cell intracellular signaling components. FRONTIERS IN PLANT SCIENCE 2024; 15:1351612. [PMID: 38375078 PMCID: PMC10875092 DOI: 10.3389/fpls.2024.1351612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Stomatal pores, vital for CO2 uptake and water loss regulation in plants, are formed by two specialized guard cells. Despite their importance, there is limited understanding of how guard cells sense and respond to changes in vapor pressure difference (VPD). This study leverages a selection of CO2 hyposensitive and abscisic acid (ABA) signaling mutants in Arabidopsis, including heterotrimeric G protein mutants and RLK (receptor-like kinase) mutants, along with a variety of canola cultivars to delve into the intracellular signaling mechanisms prompting stomatal closure in response to high VPD. Stomatal conductance response to step changes in VPD was measured using the LI-6800F gas exchange system. Our findings highlight that stomatal responses to VPD utilize intracellular signaling components. VPD hyposensitivity was particularly evident in mutants of the ht1 (HIGH LEAF TEMPERATURE1) gene, which encodes a protein kinase expressed mainly in guard cells, and in gpa1-3, a null mutant of the sole canonical heterotrimeric Gα subunit, previously implicated in stomatal signaling. Consequently, this research identifies a nexus in the intricate relationships between guard cell signal perception, stomatal conductance, environmental humidity, and CO2 levels.
Collapse
Affiliation(s)
- Yotam Zait
- Biology Department, Penn State University, Mueller Laboratory, University Park, PA, United States
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ariel Joseph
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sarah M. Assmann
- Biology Department, Penn State University, Mueller Laboratory, University Park, PA, United States
| |
Collapse
|
13
|
Waszczak C, Yarmolinsky D, Leal Gavarrón M, Vahisalu T, Sierla M, Zamora O, Carter R, Puukko T, Sipari N, Lamminmäki A, Durner J, Ernst D, Winkler JB, Paulin L, Auvinen P, Fleming AJ, Andersson MX, Kollist H, Kangasjärvi J. Synthesis and import of GDP-l-fucose into the Golgi affect plant-water relations. THE NEW PHYTOLOGIST 2024; 241:747-763. [PMID: 37964509 DOI: 10.1111/nph.19378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | | | - Marina Leal Gavarrón
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Olena Zamora
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, CB2 1LR, Cambridge, UK
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Airi Lamminmäki
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
14
|
Gahlowt P, Tripathi DK, Singh S, Gupta R, Singh VP. Does MPK4/12-HT1 function as a CO 2/bicarbonate sensor to regulate the stomatal conductance under high CO 2 levels? PLANT CELL REPORTS 2023; 42:2043-2045. [PMID: 37815540 DOI: 10.1007/s00299-023-03077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
KEY MESSAGE Recently, a HT1 protein has been identified which causes continuous opening of stomata because of its kinase activity. However, reversible interaction between MAP4/12 and HT1 protein acts as a CO2/bicarbonate sensor and causes the closing of stomata by inhibiting HT1 kinase activity.
Collapse
Affiliation(s)
- Priya Gahlowt
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity, Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
15
|
Wuyun T, Niinemets Ü, Hõrak H. Species-specific stomatal ABA responses in juvenile ferns grown from spores. THE NEW PHYTOLOGIST 2023; 240:1722-1728. [PMID: 37635267 DOI: 10.1111/nph.19215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Hanna Hõrak
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
16
|
Li Y, Hui S, Yuan Y, Ye Y, Ma X, Zhang X, Zhang S, Zhang C, Chen Y. PhyB-dependent phosphorylation of mitogen-activated protein kinase cascade MKK2-MPK2 positively regulates red light-induced stomatal opening. PLANT, CELL & ENVIRONMENT 2023; 46:3323-3336. [PMID: 37493364 DOI: 10.1111/pce.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/20/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023]
Abstract
Red light induces stomatal opening by affecting photosynthesis, metabolism and triggering signal transductions in guard cells. Phytochrome B (phyB) plays a positive role in mediating red light-induced stomatal opening. However, phyB-mediated red light guard cell signalling is poorly understood. Here, we found that phyB-mediated sequential phosphorylation of mitogen-activated protein kinase kinase 2 (MAPKK2, MKK2) and MPK2 in guard cells is essential for red light-induced stomatal opening. Mutations in MKK2 and MPK2 led to reduced stomatal opening in response to white light, and these phenotypes could be observed under red light, not blue light. MKK2 interacted with MPK2 in vitro and in plants. MPK2 was directly phosphorylated by MKK2 in vitro. Red light triggered the phosphorylation of MKK2 in guard cells, and MKK2 phosphorylation was greatly reduced in phyB mutant. Simultaneously, red light-stimulated MPK2 phosphorylation in guard cells was inhibited in mkk2 mutant. Furthermore, mkk2 and mpk2 mutants exhibit significantly smaller stomatal apertures than that of wild type during the stomatal opening stage in the diurnal stomatal movements. Our results indicate that red light-promoted phyB-dependent phosphorylation of MKK2-MPK2 cascade in guard cells is essential for stomatal opening, which contributes to the fine-tuning of stomatal opening apertures under light.
Collapse
Affiliation(s)
- Yuzhen Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Shimiao Hui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yaxin Yuan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yahong Ye
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaohan Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Xiaolu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chunguang Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yuling Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| |
Collapse
|
17
|
Liu R, Zhu M, Shi Y, Li J, Gong J, Xiao X, Chen Q, Yuan Y, Gong W. QTL Verification and Candidate Gene Screening of Fiber Quality and Lint Percentage in the Secondary Segregating Population of Gossypium hirsutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3737. [PMID: 37960093 PMCID: PMC10650182 DOI: 10.3390/plants12213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM), have been recognized as critical fiber attributes in the textile industry, while the lint percentage (LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and candidate gene validation provide an effective methodology to uncover the genetic and molecular basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci, harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40 (L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals on A01 (6.70-10.15 Mb), A07 (85.48-93.43 Mb), and D12 (0.40-1.43 Mb) were constructed, which span 12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion (Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2 and its derived F2:3 populations. The results validated the previous primary QTL identification of FL, FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20, and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and LP. This study provides an experimental foundation for further exploration of these functional genes to dissect the genetic mechanism of cotton fiber development.
Collapse
Affiliation(s)
- Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Minghui Zhu
- Agricultural Technology Extension Center of Kashi District, Kashi 844000, China;
| | - Yongqiang Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| |
Collapse
|
18
|
Chen L, Zhang B, Xia L, Yue D, Han B, Sun W, Wang F, Lindsey K, Zhang X, Yang X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J Adv Res 2023; 51:13-25. [PMID: 36414168 PMCID: PMC10491974 DOI: 10.1016/j.jare.2022.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
19
|
Yeh CY, Wang YS, Takahashi Y, Kuusk K, Paul K, Arjus T, Yadlos O, Schroeder JI, Ilves I, Garcia-Sosa AT, Kollist H. MPK12 in stomatal CO 2 signaling: function beyond its kinase activity. THE NEW PHYTOLOGIST 2023; 239:146-158. [PMID: 36978283 PMCID: PMC10247450 DOI: 10.1111/nph.18913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yohei Takahashi
- Institute of Transformative Bio-Molecules, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katarina Kuusk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Triinu Arjus
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Oleksii Yadlos
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
20
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
21
|
Bäurle I, Laplaze L, Martin A. Preparing for an uncertain future: molecular responses of plants facing climate change. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1297-1302. [PMID: 36516413 PMCID: PMC10010605 DOI: 10.1093/jxb/erac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 05/12/2023]
|
22
|
Guo Y, Shi Y, Wang Y, Liu F, Li Z, Qi J, Wang Y, Zhang J, Yang S, Wang Y, Gong Z. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. THE NEW PHYTOLOGIST 2023; 237:1728-1744. [PMID: 36444538 DOI: 10.1111/nph.18647] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.
Collapse
Affiliation(s)
- Yazhen Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yabo Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yalin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingbo Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
23
|
Takahashi Y, Bosmans KC, Hsu PK, Paul K, Seitz C, Yeh CY, Wang YS, Yarmolinsky D, Sierla M, Vahisalu T, McCammon JA, Kangasjärvi J, Zhang L, Kollist H, Trac T, Schroeder JI. Stomatal CO 2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4. SCIENCE ADVANCES 2022; 8:eabq6161. [PMID: 36475789 PMCID: PMC9728965 DOI: 10.1126/sciadv.abq6161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 05/12/2023]
Abstract
The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.
Collapse
Affiliation(s)
- Yohei Takahashi
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Krystal C. Bosmans
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Po-Kai Hsu
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Dmitry Yarmolinsky
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Li Zhang
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Thien Trac
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
24
|
Ando E, Kollist H, Fukatsu K, Kinoshita T, Terashima I. Elevated CO 2 induces rapid dephosphorylation of plasma membrane H + -ATPase in guard cells. THE NEW PHYTOLOGIST 2022; 236:2061-2074. [PMID: 36089821 PMCID: PMC9828774 DOI: 10.1111/nph.18472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Light induces stomatal opening, which is driven by plasma membrane (PM) H+ -ATPase in guard cells. The activation of guard-cell PM H+ -ATPase is mediated by phosphorylation of the penultimate C-terminal residue, threonine. The phosphorylation is induced by photosynthesis as well as blue light photoreceptor phototropin. Here, we investigated the effects of cessation of photosynthesis on the phosphorylation level of guard-cell PM H+ -ATPase in Arabidopsis thaliana. Immunodetection of guard-cell PM H+ -ATPase, time-resolved leaf gas-exchange analyses and stomatal aperture measurements were carried out. We found that light-dark transition of leaves induced dephosphorylation of the penultimate residue at 1 min post-transition. Gas-exchange analyses confirmed that the dephosphorylation is accompanied by an increase in the intercellular CO2 concentration, caused by the cessation of photosynthetic CO2 fixation. We discovered that CO2 induces guard-cell PM H+ -ATPase dephosphorylation as well as stomatal closure. Interestingly, reverse-genetic analyses using guard-cell CO2 signal transduction mutants suggested that the dephosphorylation is mediated by a mechanism distinct from the established CO2 signalling pathway. Moreover, type 2C protein phosphatases D6 and D9 were required for the dephosphorylation and promoted stomatal closure upon the light-dark transition. Our results indicate that CO2 -mediated dephosphorylation of guard-cell PM H+ -ATPase underlies stomatal closure.
Collapse
Affiliation(s)
- Eigo Ando
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Hannes Kollist
- Institute of TechnologyUniversity of TartuTartu50411Estonia
| | - Kohei Fukatsu
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
| |
Collapse
|
25
|
Sun P, Isner JC, Coupel-Ledru A, Zhang Q, Pridgeon AJ, He Y, Menguer PK, Miller AJ, Sanders D, Mcgrath SP, Noothong F, Liang YK, Hetherington AM. Countering elevated CO 2 induced Fe and Zn reduction in Arabidopsis seeds. THE NEW PHYTOLOGIST 2022; 235:1796-1806. [PMID: 35637611 DOI: 10.1111/nph.18290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .
Collapse
Affiliation(s)
- Peng Sun
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Aude Coupel-Ledru
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Institut Agro, LEPSE, INRAE, University of Montpellier, Montpellier, 75338 Cedex 07, France
| | - Qi Zhang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ashley J Pridgeon
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yaqian He
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Paloma K Menguer
- Centro de Biotechnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970, Brazil
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Dale Sanders
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steve P Mcgrath
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Fonthip Noothong
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
26
|
Pizzio GA, Rodriguez PL. Dual regulation of SnRK2 signaling by Raf-like MAPKKKs. MOLECULAR PLANT 2022; 15:1260-1262. [PMID: 35810328 DOI: 10.1016/j.molp.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Gaston A Pizzio
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, 46022 Valencia, Spain.
| |
Collapse
|
27
|
Mimata Y, Munemasa S, Akter F, Jahan I, Nakamura T, Nakamura Y, Murata Y. Malate induces stomatal closure via a receptor-like kinase GHR1- and reactive oxygen species-dependent pathway in Arabidopsis thaliana. Biosci Biotechnol Biochem 2022; 86:1362-1367. [PMID: 35867880 DOI: 10.1093/bbb/zbac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
A primary metabolite malate is secreted from guard cells in response to the phytohormone abscisic acid (ABA) and elevated CO2. The secreted malate subsequently facilitates stomatal closure in plants. Here, we investigated the molecular mechanism of malate-induced stomatal closure using inhibitors and ABA signaling component mutants of Arabidopsis thaliana. Malate-induced stomatal closure was impaired by a protein kinase inhibitor, K252a, and also by the disruption of a receptor-like kinase GHR1, which mediates activation of calcium ion (Ca2+) channel by reactive oxygen species (ROS) in guard cells. Malate induced ROS production in guard cells while the malate-induced stomatal closure was impaired by a peroxidase inhibitor, salicylhydroxamic acid, but not by the disruption of NAD(P)H oxidases, RBOHD and RBOHF. The malate-induced stomatal closure was impaired by Ca2+ channel blockers, verapamil and niflumic acid. These results demonstrate that the malate signaling is mediated by GHR1 and ROS in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Yoshiharu Mimata
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Fahmida Akter
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Israt Jahan
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
28
|
Pei D, Hua D, Deng J, Wang Z, Song C, Wang Y, Wang Y, Qi J, Kollist H, Yang S, Guo Y, Gong Z. Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. THE PLANT CELL 2022; 34:2708-2729. [PMID: 35404404 PMCID: PMC9252505 DOI: 10.1093/plcell/koac106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 05/13/2023]
Abstract
Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.
Collapse
Affiliation(s)
- Dan Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinping Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhifang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
29
|
Xu T, Niu J, Jiang Z. Sensing Mechanisms: Calcium Signaling Mediated Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:925863. [PMID: 35769297 PMCID: PMC9234572 DOI: 10.3389/fpls.2022.925863] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 05/12/2023]
Abstract
Plants are exposed to various environmental stresses. The sensing of environmental cues and the transduction of stress signals into intracellular signaling are initial events in the cellular signaling network. As a second messenger, Ca2+ links environmental stimuli to different biological processes, such as growth, physiology, and sensing of and response to stress. An increase in intracellular calcium concentrations ([Ca2+]i) is a common event in most stress-induced signal transduction pathways. In recent years, significant progress has been made in research related to the early events of stress signaling in plants, particularly in the identification of primary stress sensors. This review highlights current advances that are beginning to elucidate the mechanisms by which abiotic environmental cues are sensed via Ca2+ signals. Additionally, this review discusses important questions about the integration of the sensing of multiple stress conditions and subsequent signaling responses that need to be addressed in the future.
Collapse
Affiliation(s)
- Tongfei Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Junfeng Niu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
31
|
Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation. Nat Commun 2022; 13:2511. [PMID: 35523967 PMCID: PMC9076830 DOI: 10.1038/s41467-022-30253-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Stomata play a critical role in the regulation of gas exchange and photosynthesis in plants. Stomatal closure participates in multiple stress responses, and is regulated by a complex network including abscisic acid (ABA) signaling and ion-flux-induced turgor changes. The slow-type anion channel SLAC1 has been identified to be a central controller of stomatal closure and phosphoactivated by several kinases. Here, we report the structure of SLAC1 in Arabidopsis thaliana (AtSLAC1) in an inactivated, closed state. The cytosolic amino (N)-terminus and carboxyl (C)-terminus of AtSLAC1 are partially resolved and form a plug-like structure which packs against the transmembrane domain (TMD). Breaking the interactions between the cytosolic plug and transmembrane domain triggers channel activation. An inhibition-release model is proposed for SLAC1 activation by phosphorylation that the cytosolic plug dissociates from the transmembrane domain upon phosphorylation, and induces conformational changes to open the pore. These findings facilitate our understanding of the regulation of SLAC1 activity and stomatal aperture in plants. The anion channel SLAC1 controls stomatal closure upon phosphoactivation. Here via structural analysis and electrophysiology, the authors propose an inhibition-release model where phosphorylation causes dissociation of a cytosolic plug from the SLAC1 transmembrane domains to induce conformational change in the pore-forming helices.
Collapse
|
32
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
33
|
Ehonen S, Sierla M. Gas Exchange Measurements in Systemic Signaling Studies. Methods Mol Biol 2022; 2462:111-123. [PMID: 35152384 DOI: 10.1007/978-1-0716-2156-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Different parts of a plant can be simultaneously exposed to very different conditions, for example a leaf moving in and out of shadow. In addition to local responses, transmission of information between different tissues and organs is thought to affect the coordination of overall responses to changing environmental conditions. An important adaptive role is played by the stomata, which regulate the evaporation of water vapor and supply of CO2 for photosynthesis. Here, we describe a method to study the effect of distally triggered systemic signals on stomatal conductance. The experimental set up, consisting of a growth chamber and a leaf gas exchange measuring system, enables time-resolved measurements on an intact leaf while maintaining a full control over the environmental conditions of the measured leaf and the whole seedling. The method can be used as a powerful tool to study short- and long-term stomatal responses to changes in different environmental variables, such as light.
Collapse
Affiliation(s)
- Sanna Ehonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Karanam A, He D, Hsu PK, Schulze S, Dubeaux G, Karmakar R, Schroeder JI, Rappel WJ. Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. PLANT PHYSIOLOGY 2021; 187:2311-2322. [PMID: 34618035 PMCID: PMC8644243 DOI: 10.1093/plphys/kiab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 05/02/2023]
Abstract
Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.
Collapse
Affiliation(s)
- Aravind Karanam
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - David He
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Richa Karmakar
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
- Author for communication:
| |
Collapse
|
35
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
36
|
Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci U S A 2021; 118:e2107280118. [PMID: 34799443 PMCID: PMC8617523 DOI: 10.1073/pnas.2107280118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Alex Costa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Klara Kernig
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Katie H Lee
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
37
|
Arabidopsis group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proc Natl Acad Sci U S A 2021; 118:2100073118. [PMID: 34282011 PMCID: PMC8325330 DOI: 10.1073/pnas.2100073118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.
Collapse
|
38
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
39
|
Morales LO, Shapiguzov A, Safronov O, Leppälä J, Vaahtera L, Yarmolinsky D, Kollist H, Brosché M. Ozone responses in Arabidopsis: beyond stomatal conductance. PLANT PHYSIOLOGY 2021; 186:180-192. [PMID: 33624812 PMCID: PMC8154098 DOI: 10.1093/plphys/kiab097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O3 sensitivity. A key parameter in models for O3 damage is stomatal uptake. Here we show that the extent of O3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O3 uptake, pointing toward stomata-independent mechanisms for the development of O3 damage. We compared tolerant (Col-0) versus sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation. Acute O3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive accessions. In both Sha and Cvi-0, O3-induced lesions were associated with decreased maximal chlorophyll fluorescence and low quantum yield of electron transfer from Photosystem II to plastoquinone. However, O3-induced repression of photosynthesis in these two O3-sensitive accessions developed in different ways. We demonstrate that O3 sensitivity in Arabidopsis is influenced by genetic diversity given that Sha and Cvi-0 developed accession-specific transcriptional responses to O3. Our findings advance the understanding of plant responses to O3 and set a framework for future studies to characterize molecular and physiological mechanisms allowing plants to respond to high O3 levels in the atmosphere as a result of high air pollution and climate change.
Collapse
Affiliation(s)
- Luis O Morales
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
- School of Science & Technology, The Life Science Center-Biology, Örebro University, SE-70182 Örebro, Sweden
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Johanna Leppälä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
- Department of Ecology and Environmental Sciences, Umeå University, 90187 Umeå, Sweden
| | - Lauri Vaahtera
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
40
|
Ma X, Bai L. Elevated CO 2 and Reactive Oxygen Species in Stomatal Closure. PLANTS 2021; 10:plants10020410. [PMID: 33672284 PMCID: PMC7926597 DOI: 10.3390/plants10020410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/25/2023]
Abstract
Plant guard cell is essential for photosynthesis and transpiration. The aperture of stomata is sensitive to various environment factors. Carbon dioxide (CO2) is an important regulator of stomatal movement, and its signaling includes the perception, transduction and gene expression. The intersections with many other signal transduction pathways make the regulation of CO2 more complex. High levels of CO2 trigger stomata closure, and reactive oxygen species (ROS) as the key component has been demonstrated function in this regulation. Additional research is required to understand the underlying molecular mechanisms, especially for the detailed signal factors related with ROS in this response. This review focuses on Arabidopsis stomatal closure induced by high-level CO2, and summarizes current knowledge of the role of ROS involved in this process.
Collapse
Affiliation(s)
| | - Ling Bai
- Correspondence: ; Tel.: +86-13653782901
| |
Collapse
|
41
|
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:53-78. [PMID: 33399265 DOI: 10.1111/jipb.13061] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/19/2020] [Indexed: 05/20/2023]
Abstract
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review, we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1 (SNF1)-related protein kinases (SnRKs), mitogen-activated protein kinase (MAPK) cascades, calcium-dependent protein kinases (CDPKs/CPKs), and receptor-like kinases (RLKs). We also discuss future challenges in these research fields.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
42
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
43
|
Johansson KSL, El-Soda M, Pagel E, Meyer RC, Tõldsepp K, Nilsson AK, Brosché M, Kollist H, Uddling J, Andersson MX. Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana. ANNALS OF BOTANY 2020; 126:179-190. [PMID: 32296835 PMCID: PMC7304471 DOI: 10.1093/aob/mcaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic links between short-term (within minutes to hours) and long-term (within weeks to months) responses of gs to increased atmospheric CO2 have not been explored. METHODS We used Arabidopsis thaliana recombinant inbred lines originating from accessions Col-0 (strong CO2 response) and C24 (weak CO2 response) to study short- and long-term controls of gs. Quantitative trait locus (QTL) mapping was used to identify loci controlling short- and long-term gs responses to elevated CO2, as well as other stomata-related traits. KEY RESULTS Short- and long-term stomatal responses to elevated CO2 were significantly correlated. Both short- and long-term responses were associated with a QTL at the end of chromosome 2. The location of this QTL was confirmed using near-isogenic lines and it was fine-mapped to a 410-kb region. The QTL did not correspond to any known gene involved in stomatal closure and had no effect on the responsiveness to abscisic acid. Additionally, we identified numerous other loci associated with stomatal regulation. CONCLUSIONS We identified and confirmed the effect of a strong QTL corresponding to a yet unknown regulator of stomatal closure in response to elevated CO2 concentration. The correlation between short- and long-term stomatal CO2 responses and the genetic link between these traits highlight the importance of understanding guard cell CO2 signalling to predict and manipulate plant water use in a world with increasing atmospheric CO2 concentration. This study demonstrates the power of using natural variation to unravel the genetic regulation of complex traits.
Collapse
Affiliation(s)
- Karin S L Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Ellen Pagel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
He J, Zhang RX, Kim DS, Sun P, Liu H, Liu Z, Hetherington AM, Liang YK. ROS of Distinct Sources and Salicylic Acid Separate Elevated CO 2-Mediated Stomatal Movements in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:542. [PMID: 32457781 PMCID: PMC7225777 DOI: 10.3389/fpls.2020.00542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/09/2020] [Indexed: 05/12/2023]
Abstract
Elevated CO2 (eCO2) often reduces leaf stomatal aperture and density thus impacts plant physiology and productivity. We have previously demonstrated that the Arabidopsis BIG protein distinguishes between the processes of eCO2-induced stomatal closure and eCO2-inhibited stomatal opening. However, the mechanistic basis of this action is not fully understood. Here we show that eCO2-elicited reactive oxygen species (ROS) production in big mutants was compromised in stomatal closure induction but not in stomatal opening inhibition. Pharmacological and genetic studies show that ROS generated by both NADPH oxidases and cell wall peroxidases contribute to eCO2-induced stomatal closure, whereas inhibition of light-induced stomatal opening by eCO2 may rely on the ROS derived from NADPH oxidases but not from cell wall peroxidases. As with JA and ABA, SA is required for eCO2-induced ROS generation and stomatal closure. In contrast, none of these three signals has a significant role in eCO2-inhibited stomatal opening, unveiling the distinct roles of plant hormonal signaling pathways in the induction of stomatal closure and the inhibition of stomatal opening by eCO2. In conclusion, this study adds SA to a list of plant hormones that together with ROS from distinct sources distinguish two branches of eCO2-mediated stomatal movements.
Collapse
Affiliation(s)
- Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dae Sung Kim
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Honggang Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alistair M. Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:747-760. [PMID: 31863495 DOI: 10.1111/tpj.14660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play vital roles in regulating plant growth, development, and stress responses. MAPK-like (MPKL) proteins are a group of kinases containing the MAPK signature TxY motif and showing sequence similarity to MAPKs. However, the functions of plant MPKL proteins are currently unknown. The maize (Zea mays) genome contains four genes encoding MPKL proteins, here named ZmMPKL1 to ZmMPKL4. In this study, we show that ZmMPKL1 possesses kinase activity and that drought-induced ZmMPKL1 expression, ZmMPKL1 overexpression and knockout maize seedlings exhibited no visible morphological difference from wild-type B73 seedlings when grown under normal conditions. By contrast, under drought conditions, ZmMPKL1-overexpressing seedlings showed increased stomatal aperture, water loss, and leaf wilting and knockout seedlings showed the opposite phenotypes. Moreover, these drought-sensitive phenotypes in ZmMPKL1-overexpressing seedlings were restored by exogenous abscisic acid (ABA). ZmMPKL1 overexpression reduced drought-induced ABA production in seedlings and the knockout showed enhanced ABA production. Drought-induced transcription of ABA biosynthetic genes were suppressed and ABA catabolic genes were enhanced in ZmMPKL1-overexpressing seedlings, while their transcription were reversely regulated in knockout seedlings. These results suggest that ZmMPKL1 positively regulates seedlings drought sensitivity by altering the transcription of ABA biosynthetic and catabolic genes, and ABA homeostasis.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Ting Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
46
|
Abstract
Rising CO2 concentrations and their effects on plant productivity present challenging issues. Effects on the photosynthesis/photorespiration balance and changes in primary metabolism are known, caused by the competitive interaction of CO2 and O2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. However, impacts on stress resistance are less clear. Reactive oxygen species are key players in biotic and abiotic stress responses, but there is no consensus on whether elevated CO2 constitutes a stress. Although high CO2 increases yield in C3 plants, it can also increase cellular oxidation and activate phytohormone defense pathways. Reduction-oxidation processes play key roles in acclimation to high CO2, with specific enzymes acting in compartment-specific signaling. Traditionally, acclimation to high CO2 has been considered in terms of altered carbon gain, but emerging evidence suggests that CO2 is a signal as well as a substrate. Some CO2 effects on defense are likely mediated independently of primary metabolism. Nonetheless, primary photosynthetic metabolism is highly integrated with defense and stress signaling pathways, meaning that plants will be able to acclimate to the changing environment over the coming decades.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom;
| | - Graham Noctor
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France;
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
47
|
Zhang J, De-Oliveira-Ceciliato P, Takahashi Y, Schulze S, Dubeaux G, Hauser F, Azoulay-Shemer T, Tõldsepp K, Kollist H, Rappel WJ, Schroeder JI. Insights into the Molecular Mechanisms of CO 2-Mediated Regulation of Stomatal Movements. Curr Biol 2019; 28:R1356-R1363. [PMID: 30513335 DOI: 10.1016/j.cub.2018.10.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plants must continually balance the influx of CO2 for photosynthesis against the loss of water vapor through stomatal pores in their leaves. This balance can be achieved by controlling the aperture of the stomatal pores in response to several environmental stimuli. Elevation in atmospheric [CO2] induces stomatal closure and further impacts leaf temperatures, plant growth and water-use efficiency, and global crop productivity. Here, we review recent advances in understanding CO2-perception mechanisms and CO2-mediated signal transduction in the regulation of stomatal movements, and we explore how these mechanisms are integrated with other signaling pathways in guard cells.
Collapse
Affiliation(s)
- Jingbo Zhang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Paulo De-Oliveira-Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Yohei Takahashi
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA
| | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, CA 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG. Acquiring Control: The Evolution of Stomatal Signalling Pathways. TRENDS IN PLANT SCIENCE 2019; 24:342-351. [PMID: 30797685 DOI: 10.1016/j.tplants.2019.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 05/24/2023]
Abstract
In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Collapse
Affiliation(s)
- Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - M Rob G Roelfsema
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| |
Collapse
|
49
|
Ehonen S, Yarmolinsky D, Kollist H, Kangasjärvi J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid Redox Signal 2019; 30:1220-1237. [PMID: 29237281 DOI: 10.1089/ars.2017.7455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Stomata sense the intercellular carbon dioxide (CO2) concentration (Ci) and water availability under changing environmental conditions and adjust their apertures to maintain optimal cellular conditions for photosynthesis. Stomatal movements are regulated by a complex network of signaling cascades where reactive oxygen species (ROS) play a key role as signaling molecules. Recent Advances: Recent research has uncovered several new signaling components involved in CO2- and abscisic acid-triggered guard cell signaling pathways. In addition, we are beginning to understand the complex interactions between different signaling pathways. CRITICAL ISSUES Plants close their stomata in reaction to stress conditions, such as drought, and the subsequent decrease in Ci leads to ROS production through photorespiration and over-reduction of the chloroplast electron transport chain. This reduces plant growth and thus drought may cause severe yield losses for agriculture especially in arid areas. FUTURE DIRECTIONS The focus of future research should be drawn toward understanding the interplay between various signaling pathways and how ROS, redox, and hormonal balance changes in space and time. Translating this knowledge from model species to crop plants will help in the development of new drought-resistant crop species with high yields.
Collapse
Affiliation(s)
- Sanna Ehonen
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,2 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Hannes Kollist
- 3 Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaakko Kangasjärvi
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Vaattovaara A, Leppälä J, Salojärvi J, Wrzaczek M. High-throughput sequencing data and the impact of plant gene annotation quality. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1069-1076. [PMID: 30590678 PMCID: PMC6382340 DOI: 10.1093/jxb/ery434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 06/02/2023]
Abstract
The use of draft genomes of different species and re-sequencing of accessions and populations are now common tools for plant biology research. The de novo assembled draft genomes make it possible to identify pivotal divergence points in the plant lineage and provide an opportunity to investigate the genomic basis and timing of biological innovations by inferring orthologs between species. Furthermore, re-sequencing facilitates the mapping and subsequent molecular characterization of causative loci for traits, such as those for plant stress tolerance and development. In both cases high-quality gene annotation-the identification of protein-coding regions, gene promoters, and 5'- and 3'-untranslated regions-is critical for investigation of gene function. Annotations are constantly improving but automated gene annotations still require manual curation and experimental validation. This is particularly important for genes with large introns, genes located in regions rich with transposable elements or repeats, large gene families, and segmentally duplicated genes. In this opinion paper, we highlight the impact of annotation quality on evolutionary analyses, genome-wide association studies, and the identification of orthologous genes in plants. Furthermore, we predict that incorporating accurate information from manual curation into databases will dramatically improve the performance of automated gene predictors.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, Finland
| | - Johanna Leppälä
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå, Sweden
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, Finland
| |
Collapse
|