1
|
Li J, Cao H, Li S, Dong X, Zhao Z, Jia Z, Yuan L. Genetic and molecular mechanisms underlying nitrogen use efficiency in maize. J Genet Genomics 2025; 52:276-286. [PMID: 39515641 DOI: 10.1016/j.jgg.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO3-) and ammonium (NH4+) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors, and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| | - Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Shuxin Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xiaonan Dong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Zheng Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Wu Y, Yuan J, Shen L, Li Q, Li Z, Cao H, Zhu L, Liu D, Sun Y, Jia Q, Chen H, Wang W, Kudla J, Zhang W, Gai J, Zhang Q. A phosphorylation-regulated NPF transporter determines salt tolerance by mediating chloride uptake in soybean plants. EMBO J 2025; 44:923-946. [PMID: 39753952 PMCID: PMC11790925 DOI: 10.1038/s44318-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
Chloride (Cl-) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl- uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.5, as the dominant gene locus influencing Cl- homeostasis in soybean (Glycine max). A natural SNP variation resulted in two haplotypes (GmNPF7.5HapA and GmNPF7.5HapB), which was associated with Cl- content. GmNPF7.5HapA mediated Cl- or nitrate (NO3-) uptake in a pH-dependent manner and exhibited higher permeability for Cl- over NO3-. The suppression of GmNPF7.5HapA expression decreased Cl- accumulation and salt damage in plants, whereas its overexpression showed the opposite effects. The elite haplotype GmNPF7.5HapB diminished Cl- transport activity independently from NO3- permeability, thus enhancing soybean salt tolerance. Furthermore, the protein kinase GmPI4Kγ4 could phosphorylate GmNPF7.5, which repressed Cl- uptake without affecting NO3- permeability. Our findings define a regulatory mechanism for Cl- control under NaCl stress, providing a strategy for the improvement of salt tolerance in soybean plants.
Collapse
Affiliation(s)
- Yunzhen Wu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Like Shen
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Qinxue Li
- Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, 314400, Hangzhou, China
| | - Zhuomeng Li
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongwei Cao
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lin Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Dan Liu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yalu Sun
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Wubin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Universität Münster, Münster, Germany
| | - Wenhua Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Junyi Gai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Qun Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
3
|
Nedelyaeva OI, Khramov DE, Balnokin YV, Volkov VS. Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily. Int J Mol Sci 2024; 25:13648. [PMID: 39769409 PMCID: PMC11677463 DOI: 10.3390/ijms252413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea. The phylogenetic analysis of the plant NPF family is based on the amino acid sequences present in databases; an analysis identified a separate NPF6 clade (subfamily) with the first plant nitrate transporters studied at the molecular level. The available information proves that proteins of the NPF6 clade play key roles not only in the supply of nitrate and its allocation within different parts of plants but also in the transport of chloride, amino acids, ammonium, and plant hormones such as auxins and ABA. Moreover, members of the NPF6 family participate in the perception of nitrate and ammonium, signaling, plant responses to different abiotic stresses, and the development of tolerance to these stresses and contribute to the structure of the root-soil microbiome composition. The available information allows us to conclude that NPF6 genes are among the promising targets for engineering/editing to increase the productivity of crops and their tolerance to stresses. The present review summarizes the available published data and our own results on members of the NPF6 clade of nitrate transporters, especially under salinity; we outline their molecular, structural, and functional characteristics and suggest potential lines for future research.
Collapse
Affiliation(s)
| | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.E.K.); (Y.V.B.)
| |
Collapse
|
4
|
Ma L, Wei A, Liu C, Liu N, Han Y, Chen Z, Wang N, Du S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes (Basel) 2024; 15:1505. [PMID: 39766773 PMCID: PMC11675882 DOI: 10.3390/genes15121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cucumber (Cucumis sativus L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks. Thus, enhancing nitrogen use efficiency (NUE) in cucumber is imperative. For the identification of genes associated with NUE in cucumber, roots of high NUE and low NUE lines were analyzed under high nitrogen conditions. Using transcriptome sequencing through WGCNA, a total of 15,180 genes were categorized into 35 co-expression modules, with 5 modules being highly correlated with NUE. Based on differential expression within the five modules and the results of GO and KEGG enrichment analyses, 25 genes were identified as potentially related to NUE. Among these, CsaV4_1G002492 (GLR22), CsaV4_2G003460 (GLR35), CsaV4_3G000307 (NRT1.1), and CsaV4_7G001709 (UPS2) were homologous to genes in Arabidopsis known to directly participate in NUE related process. These four genes were chosen as key genes for further analysis. qRT-PCR analysis revealed that CsaV4_3G000307 and CsaV4_7G001709 were more active during the early stages of the high nitrogen treatment in the high NUE line. Conversely, CsaV4_1G002492 and CsaV4_2G003460 were more active in the low NUE line. Using transcriptomic analysis, a frameshift INDEL mutation was observed in CsaV4_3G000307 in the low NUE line, which impacted the compactness of the protein structure, potentially altering its function. Analysis of protein interactions of these four key genes predicted some potential interaction networks. This research offers critical insights into the genetic factors influencing NUE in cucumber, presenting potential targets for genetic modification or breeding programs.
Collapse
Affiliation(s)
- Linhao Ma
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ningning Wang
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
5
|
Wu Q, Xu J, Zhao Y, Wang Y, Zhou L, Ning L, Shabala S, Zhao H. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. PLANT PHYSIOLOGY 2024; 196:535-550. [PMID: 38743701 PMCID: PMC11376383 DOI: 10.1093/plphys/kiae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Maize (Zea mays L.) has very strong requirements for nitrogen. However, the molecular mechanisms underlying the regulations of nitrogen uptake and translocation in this species are not fully understood. Here, we report that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ZmEREB97 functions as an important regulator in the N signaling network in maize. Predominantly expressed and accumulated in main root and lateral root primordia, ZmEREB97 rapidly responded to nitrate treatment. By overlapping the analyses of differentially expressed genes and conducting a DAP-seq assay, we identified 1,446 potential target genes of ZmEREB97. Among these, 764 genes were coregulated in 2 lines of zmereb97 mutants. Loss of function of ZmEREB97 substantially weakened plant growth under both hydroponic and soil conditions. Physiological characterization of zmereb97 mutant plants demonstrated that reduced biomass and grain yield were both associated with reduced nitrate influx, decreased nitrate content, and less N accumulation. We further demonstrated that ZmEREB97 directly targets and regulates the expression of 6 ZmNRT genes by binding to the GCC-box-related sequences in gene promoters. Collectively, these data suggest that ZmEREB97 is a major positive regulator of the nitrate response and that it plays an important role in optimizing nitrate uptake, offering a target for improvement of nitrogen use efficiency in crops.
Collapse
Affiliation(s)
- Qi Wu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Xu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingdi Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuancong Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ling Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Germplasm Innovation in Downstream of Huaihe River, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
6
|
Li S, Liu X, Yin L, Wang S, Deng X. Alteration in lipid metabolism is involved in nitrogen deficiency response in wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108883. [PMID: 38943879 DOI: 10.1016/j.plaphy.2024.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Changes of membrane lipid composition contribute to plant adaptation to various abiotic stresses. Here, a comparative study was undertaken to investigate the mechanisms of how lipid alteration affects plant growth and development under nitrogen (N) deficiency. Two wheat cultivars: the N deficiency-tolerant cultivar Xiaoyan 6 (XY) and the N deficiency-sensitive cultivar Aikang 58 (AK) were used to test if the high N-deficiency tolerance was related with lipid metabolism. The results showed that N deficiency inhibited the morpho-physiological parameters in both XY and AK cultivars, which showed a significant decrease in biomass, N content, photosynthetic efficiency, and lipid contents. However, these decreases were more pronounced in AK than XY. In addition, XY showed a notable increase in fatty acid unsaturation, relatively well-maintained chloroplast ultrastructure, and minimized damage of lipid peroxidation and enhanced PSII activity under N-deficient condition, as compared with AK. Transcription levels of many genes involved in lipid biosynthesis and fatty acid desaturation were up-regulated in response to N deficiency in two wheat cultivars, while the expressions were much higher in XY than AK under N deficiency. These results highlight the importance of alterations in lipid metabolism in N deficiency tolerance in wheat. High levels of lipid content and unsaturated fatty acids maintained the membrane structure and function, contributing to high photosynthesis and antioxidant capacities, thereby improved the tolerance to N deficiency.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China
| | - Xiaoxiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; School of Biological and Environmental Engineering, Xi'an University, Shaanxi, Xi'an, 710065, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| |
Collapse
|
7
|
Xing J, Zhang J, Wang Y, Wei X, Yin Z, Zhang Y, Pu A, Dong Z, Long Y, Wan X. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1148-1164. [PMID: 37967146 DOI: 10.1111/tpj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuqian Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| |
Collapse
|
8
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
11
|
Wang J, Wang L, Zhang X, Li S, Wang X, Yang L, Wu F, Su H. Genome-wide identification of nitrate transporter 1/peptide transporter family (NPF) genes reveals that PaNPF5.5 enhances nitrate uptake in sweet cherry under high nitrate condition. Gene 2023; 888:147797. [PMID: 37708922 DOI: 10.1016/j.gene.2023.147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Agriculture, Ludong University, Yantai 264025, China; College of Life Sciences, Ludong University, Yantai 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai 264025, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong 264025, China
| | - Songlin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
12
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
13
|
Nedelyaeva OI, Khramov DE, Khalilova LA, Konoshenkova AO, Ryabova AV, Popova LG, Volkov VS, Balnokin YV. Molecular Cloning, Expression and Transport Activity of SaNPF6.3/SaNRT1.1, a Novel Protein of the Low-Affinity Nitrate Transporter Family from the Euhalophyte Suaeda altissima (L.) Pall. MEMBRANES 2023; 13:845. [PMID: 37888016 PMCID: PMC10608580 DOI: 10.3390/membranes13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3-) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3-; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl- concentrations in the xylem exudate as the external Cl- concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants.
Collapse
Affiliation(s)
- Olga I. Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Dmitrii E. Khramov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Lyudmila A. Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Alena O. Konoshenkova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Anastasia V. Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia;
| | - Larissa G. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| | - Yurii V. Balnokin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (L.A.K.); (A.O.K.); (L.G.P.); (Y.V.B.)
| |
Collapse
|
14
|
Jia L, Hu D, Wang J, Liang Y, Li F, Wang Y, Han Y. Genome-Wide Identification and Functional Analysis of Nitrate Transporter Genes ( NPF, NRT2 and NRT3) in Maize. Int J Mol Sci 2023; 24:12941. [PMID: 37629121 PMCID: PMC10454388 DOI: 10.3390/ijms241612941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitrate is the primary form of nitrogen uptake in plants, mainly transported by nitrate transporters (NRTs), including NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY), NRT2 and NRT3. In this study, we identified a total of 78 NPF, seven NRT2, and two NRT3 genes in maize. Phylogenetic analysis divided the NPF family into eight subgroups (NPF1-NPF8), consistent with the results in Arabidopsis thaliana and rice. The NRT2 family appears to have evolved more conservatively than the NPF family, as NRT2 genes contain fewer introns. The promoters of all NRTs are rich in cis-acting elements responding to biotic and abiotic stresses. The expression of NRTs varies in different tissues and developmental stages, with some NRTs only expressed in specific tissues or developmental stages. RNA-seq analysis using Xu178 revealed differential expression of NRTs in response to nitrogen starvation and nitrate resupply. Moreover, the expression patterns of six key NRTs genes (NPF6.6, NPF6.8, NRT2.1, NRT2.5 and NRT3.1A/B) varied in response to alterations in nitrogen levels across distinct maize inbred lines with different nitrogen uptake rates. This work enhances our understanding of the structure and expression of NRTs genes, and their roles in nitrate response, paving the way for improving maize nitrogen efficiency through molecular breeding.
Collapse
Affiliation(s)
- Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Desheng Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Junbo Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yuanyuan Liang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Fang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| |
Collapse
|
15
|
Zhang C, Wang ST, Li JZ, Feng YL. Molecular bases for the stronger plastic response to high nitrate in the invasive plant Xanthium strumarium compared with its native congener. PLANTA 2023; 258:61. [PMID: 37542564 DOI: 10.1007/s00425-023-04220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
MAIN CONCLUSION High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.
Collapse
Affiliation(s)
- Chang Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shi-Ting Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jian-Zhi Li
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
16
|
Li J, Zhu Q, Jiao F, Yan Z, Zhang H, Zhang Y, Ding Z, Mu C, Liu X, Li Y, Chen J, Wang M. Research Progress on the Mechanism of Salt Tolerance in Maize: A Classic Field That Needs New Efforts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2356. [PMID: 37375981 DOI: 10.3390/plants12122356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Maize is the most important cereal crop globally. However, in recent years, maize production faced numerous challenges from environmental factors due to the changing climate. Salt stress is among the major environmental factors that negatively impact crop productivity worldwide. To cope with salt stress, plants developed various strategies, such as producing osmolytes, increasing antioxidant enzyme activity, maintaining reactive oxygen species homeostasis, and regulating ion transport. This review provides an overview of the intricate relationships between salt stress and several plant defense mechanisms, including osmolytes, antioxidant enzymes, reactive oxygen species, plant hormones, and ions (Na+, K+, Cl-), which are critical for salt tolerance in maize. It addresses the regulatory strategies and key factors involved in salt tolerance, aiming to foster a comprehensive understanding of the salt tolerance regulatory networks in maize. These new insights will also pave the way for further investigations into the significance of these regulations in elucidating how maize coordinates its defense system to resist salt stress.
Collapse
Affiliation(s)
- Jiawei Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinglin Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Dryland-Technology Key Laboratory of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenwei Yan
- Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Dryland-Technology Key Laboratory of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yumei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Dryland-Technology Key Laboratory of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Yan Li
- Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Dryland-Technology Key Laboratory of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Dryland-Technology Key Laboratory of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
17
|
Rahmat Z, Sohail MN, Perrine-Walker F, Kaiser BN. Balancing nitrate acquisition strategies in symbiotic legumes. PLANTA 2023; 258:12. [PMID: 37296318 PMCID: PMC10256645 DOI: 10.1007/s00425-023-04175-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Legumes manage both symbiotic (indirect) and non-symbiotic (direct) nitrogen acquisition pathways. Understanding and optimising the direct pathway for nitrate uptake will support greater legume growth and seed yields. Legumes have multiple pathways to acquire reduced nitrogen to grow and set seed. Apart from the symbiotic N2-fixation pathway involving soil-borne rhizobia bacteria, the acquisition of nitrate and ammonia from the soil can also be an important secondary nitrogen source to meet plant N demand. The balance in N delivery between symbiotic N (indirect) and inorganic N uptake (direct) remains less clear over the growing cycle and with the type of legume under cultivation. In fertile, pH balanced agricultural soils, NO3- is often the predominant form of reduced N available to crop plants and will be a major contributor to whole plant N supply if provided at sufficient levels. The transport processes for NO3- uptake into legume root cells and its transport between root and shoot tissues involves both high and low-affinity transport systems called HATS and LATS, respectively. These proteins are regulated by external NO3- availability and by the N status of the cell. Other proteins also play a role in NO3- transport, including the voltage dependent chloride/nitrate channel family (CLC) and the S-type anion channels of the SLAC/SLAH family. CLC's are linked to NO3- transport across the tonoplast of vacuoles and the SLAC/SLAH's with NO3- efflux across the plasma membrane and out of the cell. An important step in managing the N requirements of a plant are the mechanisms involved in root N uptake and the subsequent cellular distribution within the plant. In this review, we will present the current knowledge of these proteins and what is understood on how they function in key model legumes (Lotus japonicus, Medicago truncatula and Glycine sp.). The review will examine their regulation and role in N signalling, discuss how post-translational modification affects NO3- transport in roots and aerial tissues and its translocation to vegetative tissues and storage/remobilization in reproductive tissues. Lastly, we will present how NO3-influences the autoregulation of nodulation and nitrogen fixation and its role in mitigating salt and other abiotic stresses.
Collapse
Affiliation(s)
- Zainab Rahmat
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Muhammad N Sohail
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Francine Perrine-Walker
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The Faculty of Science, University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
18
|
Wei M, Zhang M, Sun J, Zhao Y, Pak S, Ma M, Chen Y, Lu H, Yang J, Wei H, Li Y, Li C. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:791-809. [PMID: 36226597 DOI: 10.1111/jipb.13389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is of great importance to better understand how trees regulate nitrogen (N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here, we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation. PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52 promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes (PuNRT1.1, PuNRT2.4, PuCLC-b, PuNIA2, PuNIR1, and PuNLP1), phosphate-responsive genes (PuPHL1A and PuPHL1B), and an iron transporter gene (PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and 'PuHox52-PuIRT1' regulatory relationships in poplar roots.
Collapse
Affiliation(s)
- Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Mengqiu Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Han Lu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
19
|
Peinado-Torrubia P, Álvarez R, Lucas M, Franco-Navarro JD, Durán-Gutiérrez FJ, Colmenero-Flores JM, Rosales MA. Nitrogen assimilation and photorespiration become more efficient under chloride nutrition as a beneficial macronutrient. FRONTIERS IN PLANT SCIENCE 2023; 13:1058774. [PMID: 36704154 PMCID: PMC9871469 DOI: 10.3389/fpls.2022.1058774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Chloride (Cl-) and nitrate ( NO 3 - ) are closely related anions involved in plant growth. Their similar physical and chemical properties make them to interact in cellular processes like electrical balance and osmoregulation. Since both anions share transport mechanisms, Cl- has been considered to antagonize NO 3 - uptake and accumulation in plants. However, we have recently demonstrated that Cl- provided at beneficial macronutrient levels improves nitrogen (N) use efficiency (NUE). Biochemical mechanisms by which beneficial Cl- nutrition improves NUE in plants are poorly understood. First, we determined that Cl- nutrition at beneficial macronutrient levels did not impair the NO 3 - uptake efficiency, maintaining similar NO 3 - content in the root and in the xylem sap. Second, leaf NO 3 - content was significantly reduced by the treatment of 6 mM Cl- in parallel with an increase in NO 3 - utilization and NUE. To verify whether Cl- nutrition reduces leaf NO 3 - accumulation by inducing its assimilation, we analysed the content of N forms and the activity of different enzymes and genes involved in N metabolism. Chloride supply increased transcript accumulation and activity of most enzymes involved in NO 3 - assimilation into amino acids, along with a greater accumulation of organic N (mostly proteins). A reduced glycine/serine ratio and a greater ammonium accumulation pointed to a higher activity of the photorespiration pathway in leaves of Cl--treated plants. Chloride, in turn, promoted higher transcript levels of genes encoding enzymes of the photorespiration pathway. Accordingly, microscopy observations suggested strong interactions between different cellular organelles involved in photorespiration. Therefore, in this work we demonstrate for the first time that the greater NO 3 - utilization and NUE induced by beneficial Cl- nutrition is mainly due to the stimulation of NO 3 - assimilation and photorespiration, possibly favouring the production of ammonia, reductants and intermediates that optimize C-N re-utilization and plant growth. This work demonstrates new Cl- functions and remarks on its relevance as a potential tool to manipulate NUE in plants.
Collapse
Affiliation(s)
- Procopio Peinado-Torrubia
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología Universidad de Sevilla, Sevilla, Spain
| | - Marta Lucas
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Juan D. Franco-Navarro
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Francisco J. Durán-Gutiérrez
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - José M. Colmenero-Flores
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Miguel A. Rosales
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| |
Collapse
|
20
|
Zou L, Qi D, Li S, Zhai M, Li Z, Guo X, Ruan M, Yu X, Zhao P, Li W, Zhang P, Ma Q, Peng M, Liao W. The cassava (Manihot-esculenta Crantz)'s nitrate transporter NPF4.5, expressed in seedling roots, involved in nitrate flux and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:122-133. [PMID: 36399913 DOI: 10.1016/j.plaphy.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
AtNPF4.5/AIT2, which was predicted to be a low-affinity transporter capable for nitrate uptake, was screened by ABA receptor complex in Arabidopsis ten years ago. However, the molecular and biochemical characterizations of AtNPF4.5 in plants remained largely unclear. In this study, the function of a plasma-membrane-localized and root-specifically-expressed gene MeNPF4.5 (Manihot-esculenta NITRATE TRANSPORTER 1 PTR FAMILY4.5), an ortholog of the Arabidopsis thaliana NPF4.5, was investigated in cassava roots as a nitrate efflux transporter on low nitrate medium and an influx transporter following exposure to high concentration of external nitrates. Moreover, RNA interference (RNAi) of MeNPF4.5 reduced the nitrate efflux capacity but the overexpressing cassava seedlings increased the ability of efflux from the elongation to the mature zone of root under low nitrate treatments. Besides, MeNPF4.5-RNAi expression reduced the nitrate influx capacity but enhanced nitrate absorption in parts of overexpressing plants from the meristem, elongation to mature zone of roots under high nitrate conditions. Furthermore, MeNPF4.5-RNAi seedlings survived owing to roots that could grow normally, but the MeNPF4.5-over-expressors showed adverse growth under 7% PEG6000 stress, suggesting that MeNPF4.5 negatively regulated the osmotic stress and was involved in nitrate flux through cassava seedlings.
Collapse
Affiliation(s)
- Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Min Zhai
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhuang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Guo
- College of Plant Science & Technology of HuaZhongAgricultural University, Wuhan, Hubei, 430070, China
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai, 200032, China.
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; China/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
21
|
Yang B, Wang J, Yu M, Zhang M, Zhong Y, Wang T, Liu P, Song W, Zhao H, Fastner A, Suter M, Rentsch D, Ludewig U, Jin W, Geiger D, Hedrich R, Braun DM, Koch KE, McCarty DR, Wu WH, Li X, Wang Y, Lai J. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. THE PLANT CELL 2022; 34:4232-4254. [PMID: 36047828 PMCID: PMC9614462 DOI: 10.1093/plcell/koac256] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/31/2022] [Indexed: 05/07/2023]
Abstract
Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Miao Yu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- The Key Laboratory of Plant–Soil Interactions (MOE), Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianyi Wang
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Astrid Fastner
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Marianne Suter
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology (340h), University of Hohenheim, Stuttgart 70593, Germany
| | - Weiwei Jin
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dietmar Geiger
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, Würzburg 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, University of Würzburg, Würzburg 97082, Germany
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, Missouri 65211, USA
| | - Karen E Koch
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xuexian Li
- The Key Laboratory of Plant–Soil Interactions (MOE), Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB) and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Zhang H, Li Z, Xu G, Bai G, Zhang P, Zhai N, Zheng Q, Chen Q, Liu P, Jin L, Zhou H. Genome-wide identification and characterization of NPF family reveals NtNPF6.13 involving in salt stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:999403. [PMID: 36311086 PMCID: PMC9608447 DOI: 10.3389/fpls.2022.999403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Proteins of the Nitrate Transporter 1/Peptide Transporter (NPF) family transport a diverse variety of substrates, such as nitrate, peptides, hormones and chloride. In this study, a systematic analysis of the tobacco (Nicotiana tabacum) NPF family was performed in the cultivated 'K326'. In total, 143 NtNPF genes were identified and phylogenetically classified into eight subfamilies, NPF1 to NPF8, based on the classification of NPF families in other plant species. The chromosomal locations and structures of the NtNPF genes were analyzed. The expression profiles of NtNPF genes under NaCl stress were analyzed to screen the possible NPF genes involving in chloride regulation in tobacco. Most NtNPF6 genes responded to salt stress in the roots and leaves. The expression of NtNPF6.13 was significantly down-regulated after salt stress for 12h. The chloride content was reduced in the roots of ntnpf6.13 mutant. These findings support the participation of NtNPF6.13 in chloride uptake. Several other NtNPF genes that play potential roles in chloride metabolism of tobacco require further study.
Collapse
Affiliation(s)
- Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Ge Bai
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Peipei Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
23
|
Gao Y, Qi S, Wang Y. Nitrate signaling and use efficiency in crops. PLANT COMMUNICATIONS 2022; 3:100353. [PMID: 35754172 PMCID: PMC9483113 DOI: 10.1016/j.xplc.2022.100353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) is not only an essential nutrient but also an important signaling molecule for plant growth. Low nitrogen use efficiency (NUE) of crops is causing increasingly serious environmental and ecological problems. Understanding the molecular mechanisms of NO3- regulation in crops is crucial for NUE improvement in agriculture. During the last several years, significant progress has been made in understanding the regulation of NO3- signaling in crops, and some key NO3- signaling factors have been shown to play important roles in NO3- utilization. However, no detailed reviews have yet summarized these advances. Here, we focus mainly on recent advances in crop NO3- signaling, including short-term signaling, long-term signaling, and the impact of environmental factors. We also review the regulation of crop NUE by crucial genes involved in NO3- signaling. This review provides useful information for further research on NO3- signaling in crops and a theoretical basis for breeding new crop varieties with high NUE, which has great significance for sustainable agriculture.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
24
|
Lv M, Dong T, Wang J, Zuo K. Genome-wide identification of nitrate transporter genes from Spirodela polyrhiza and characterization of SpNRT1.1 function in plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:945470. [PMID: 36061775 PMCID: PMC9436390 DOI: 10.3389/fpls.2022.945470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Nitrate transporter (NRT) genes that participate in nitrate transport and distribution are indispensable for plant growth, development, and stress tolerance. Spirodela polyrhiza has the smallest genome among monocotyledon plants, and it has strong nitrate absorbance and phytoremediation abilities. However, the evolutionary history, expression patterns, and functions of the NRT gene family in S. polyrhiza are not well understood. Here, we identified 29 NRT members in the S. polyrhiza genome. Gene structure and phylogeny analyses showed that S. polyrhiza nitrate transporter (SpNRTs) genes were divided into eight clades without gene expansion compared with that in Arabidopsis. Transcriptomic analysis showed that SpNRT genes have spatiotemporal expression patterns and respond to abiotic stress. Functional analysis revealed that in S. polyrhiza, SpNRT1.1 expression was strongly induced by treatment with nitrate and ammonium. Overexpression of SpNRT1.1 significantly repressed primary root length, and the number and total length of lateral roots. This was more pronounced in high ammonium concentration medium. Overexpressed SpNRT1.1 in Arabidopsis significantly improved biomass and delayed flowering time, indicating that the nitrate transport ability of SpNRT1.1 differs from AtNRT1.1. In conclusion, our results provide valuable information about the evolution of the NRT family in higher plants and the function of SpNRT1.1.
Collapse
Affiliation(s)
- Mengli Lv
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Dong
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Root nitrate uptake in sugarcane (Saccharum spp.) is modulated by transcriptional and presumably posttranscriptional regulation of the NRT2.1/NRT3.1 transport system. Mol Genet Genomics 2022; 297:1403-1421. [PMID: 35879567 DOI: 10.1007/s00438-022-01929-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
KEY MESSAGE Nitrate uptake in sugarcane roots is regulated at the transcriptional and posttranscriptional levels based on the physiological status of the plant and is likely a determinant mechanism for discrimination against nitrate. Sugarcane (Saccharum spp.) is one of the most suitable energy crops for biofuel feedstock, but the reduced recovery of nitrogen (N) fertilizer by sugarcane roots increases the crop carbon footprint. The low nitrogen use efficiency (NUE) of sugarcane has been associated with the significantly low nitrate uptake, which limits the utilization of the large amount of nitrate available in agricultural soils. To understand the regulation of nitrate uptake in sugarcane roots, we identified the major canonical nitrate transporter genes (NRTs-NITRATE TRANSPORTERS) and then determined their expression profiles in roots under contrasting N conditions. Correlation of gene expression with 15N-nitrate uptake revealed that under N deprivation or inorganic N (ammonium or nitrate) supply in N-sufficient roots, the regulation of ScNRT2.1 and ScNRT3.1 expression is the predominant mechanism for the modulation of the activity of the nitrate high-affinity transport system. Conversely, in N-deficient roots, the induction of ScNRT2.1 and ScNRT3.1 transcription is not correlated with the marked repression of nitrate uptake in response to nitrate resupply or high N provision, which suggested the existence of a posttranscriptional regulatory mechanism. Our findings suggested that high-affinity nitrate uptake is regulated at the transcriptional and presumably at the posttranscriptional levels based on the physiological N status and that the regulation of NRT2.1 and NRT3.1 activity is likely a determinant mechanism for the discrimination against nitrate uptake observed in sugarcane roots, which contributes to the low NUE in this crop species.
Collapse
|
26
|
Systematic Investigation and Expression Profiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant ( Camellia sinensis). Int J Mol Sci 2022; 23:ijms23126663. [PMID: 35743106 PMCID: PMC9223465 DOI: 10.3390/ijms23126663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
NRT1/PTR FAMILY (NPF) genes are characterized as nitrate and peptide transporters that played important roles in various substrates transport in plants. However, little is known about the NPF gene in tea plants. Here, a total of 109 CsNPF members were identified from the tea plant genome, and divided into 8 groups according to their sequence characteristics and phylogenetic relationship. Gene structure and conserved motif analysis supported the evolutionary conservation of CsNPFs. Many hormone and stress response cis-acting elements and transcription factor binding sites were found in CsNPF promoters. Syntenic analysis suggested that multiple duplication types contributed to the expansion of NPF gene family in tea plants. Selection pressure analysis showed that CsNPF genes experienced strong purifying selective during the evolution process. The distribution of NPF family genes revealed that 8 NPF subfamilies were formed before the divergence of eudicots and monocots. Transcriptome analysis showed that CsNPFs were expressed differently in different tissues of the tea plant. The expression of 20 CsNPF genes at different nitrate concentrations was analyzed, and most of those genes responded to nitrate resupply. Subcellular localization showed that both CsNPF2.3 and CsNPF6.1 were localized in the plasma membrane, which was consistent with the characteristics of transmembrane proteins involved in NO3- transport. This study provides a theoretical basis for further investigating the evolution and function of NPF genes.
Collapse
|
27
|
Wu Y, Henderson SW, Walker RR, Gilliham M. Root-Specific Expression of Vitis vinifera VviNPF2.2 Modulates Shoot Anion Concentration in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:863971. [PMID: 35693188 PMCID: PMC9174944 DOI: 10.3389/fpls.2022.863971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 06/02/2023]
Abstract
Grapevines (Vitis vinifera L., Vvi) on their roots are generally sensitive to salt-forming ions, particularly chloride (Cl-) when grown in saline environments. Grafting V. vinifera scions to Cl--excluding hybrid rootstocks reduces the impact of salinity. Molecular components underlying Cl--exclusion in Vitis species remain largely unknown, however, various anion channels and transporters represent good candidates for controlling this trait. Here, two nitrate/peptide transporter family (NPF) members VviNPF2.1 and VviNPF2.2 were isolated. Both highly homologous proteins localized to the plasma membrane of Arabidopsis (Arabidopsis thaliana) protoplasts. Both were expressed primarily in grapevine roots and leaves and were more abundant in a Cl--excluding rootstock compared to a Cl--includer. Quantitative PCR of grapevine roots revealed that VviNPF2.1 and 2.2 expression was downregulated by high [NO3 -] resupply post-starvation, but not affected by 25 mM Cl-. VviNPF2.2 was functionally characterized using an Arabidopsis enhancer trap line as a heterologous host which enabled cell-type-specific expression. Constitutive expression of VviNPF2.2 exclusively in the root epidermis and cortex reduced shoot [Cl-] after a 75 mM NaCl treatment. Higher expression levels of VviNPF2.2 correlated with reduced Arabidopsis xylem sap [NO3 -] when not salt stressed. We propose that when expressed in the root epidermis and cortex, VviNPF2.2 could function in passive anion efflux from root cells, which reduces the symplasmic Cl- available for root-to-shoot translocation. VviNPF2.2, through its role in the root epidermis and cortex, could, therefore, be beneficial to plants under salt stress by reducing net shoot Cl- accumulation.
Collapse
Affiliation(s)
- Yue Wu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sam W. Henderson
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Rob R. Walker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Glen Osmond, SA, Australia
| | - Matthew Gilliham
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre for Innovative Wine Production, School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
28
|
Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:523-551. [PMID: 35595292 DOI: 10.1146/annurev-arplant-070121-015752] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Green Revolution of the 1960s improved crop yields in part through the widespread cultivation of semidwarf plant varieties, which resist lodging but require a high-nitrogen (N) fertilizer input. Because environmentally degrading synthetic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced N use efficiency (NUE). Here, we summarize the current understanding of how plants sense, uptake, and respond to N availability in the model plants that can be used to improve sustainable productivity in agriculture. Recent progress in unlocking the genetic basis of NUE within the broader context of plant systems biology has provided insights into the coordination of plant growth and nutrient assimilation and inspired the implementation of a new breeding strategy to cut fertilizer use in high-yield cereal crops. We conclude that identifying fresh targets for N sensing and response in crops would simultaneously enable improved grain productivity and NUE to launch a new Green Revolution and promote future food security.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Nan Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW, Song CP. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. THE PLANT CELL 2022; 34:1890-1911. [PMID: 35166333 PMCID: PMC9048877 DOI: 10.1093/plcell/koac047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/28/2022] [Indexed: 05/26/2023]
Abstract
The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.
Collapse
Affiliation(s)
- Guiling Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Mingzhang Xia
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jieping Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wen Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Qingzeng Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jinjin Xie
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shenglong Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Shanshan Fang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Ting Sun
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xinlei Feng
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Guanghui Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yanli Niu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jingyi Hou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Wenling Ye
- School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Henan University, Kaifeng 475004, China
| | - Jianchao Ma
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hongliang Wang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Yu Long
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hui Zhou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Jiong Liu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Changsong Zou
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
| | - Hai Wang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinling Huang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|
30
|
Gu B, Chen Y, Xie F, Murray JD, Miller AJ. Inorganic Nitrogen Transport and Assimilation in Pea ( Pisum sativum). Genes (Basel) 2022; 13:158. [PMID: 35052498 PMCID: PMC8774688 DOI: 10.3390/genes13010158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
The genome sequences of several legume species are now available allowing the comparison of the nitrogen (N) transporter inventories with non-legume species. A survey of the genes encoding inorganic N transporters and the sensing and assimilatory families in pea, revealed similar numbers of genes encoding the primary N assimilatory enzymes to those in other types of plants. Interestingly, we find that pea and Medicago truncatula have fewer members of the NRT2 nitrate transporter family. We suggest that this difference may result from a decreased dependency on soil nitrate acquisition, as legumes have the capacity to derive N from a symbiotic relationship with diazotrophs. Comparison with M. truncatula, indicates that only one of three NRT2s in pea is likely to be functional, possibly indicating less N uptake before nodule formation and N-fixation starts. Pea seeds are large, containing generous amounts of N-rich storage proteins providing a reserve that helps seedling establishment and this may also explain why fewer high affinity nitrate transporters are required. The capacity for nitrate accumulation in the vacuole is another component of assimilation, as it can provide a storage reservoir that supplies the plant when soil N is depleted. Comparing published pea tissue nitrate concentrations with other plants, we find that there is less accumulation of nitrate, even in non-nodulated plants, and that suggests a lower capacity for vacuolar storage. The long-distance transported form of organic N in the phloem is known to be specialized in legumes, with increased amounts of organic N molecules transported, like ureides, allantoin, asparagine and amides in pea. We suggest that, in general, the lower tissue and phloem nitrate levels compared with non-legumes may also result in less requirement for high affinity nitrate transporters. The pattern of N transporter and assimilatory enzyme distribution in pea is discussed and compared with non-legumes with the aim of identifying future breeding targets.
Collapse
Affiliation(s)
- Benguo Gu
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Yi Chen
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Jeremy D. Murray
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Anthony J. Miller
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
31
|
Ye JY, Tian WH, Jin CW. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. STRESS BIOLOGY 2022; 2:4. [PMID: 37676383 PMCID: PMC10441927 DOI: 10.1007/s44154-021-00030-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 09/08/2023]
Abstract
Nitrogen is one of the most important nutrient for plant growth and development; it is strongly associated with a variety of abiotic stress responses. As sessile organisms, plants have evolved to develop efficient strategies to manage N to support growth when exposed to a diverse range of stressors. This review summarizes the recent progress in the field of plant nitrate (NO3-) and ammonium (NH4+) uptake, which are the two major forms of N that are absorbed by plants. We explore the intricate relationship between NO3-/NH4+ and abiotic stress responses in plants, focusing on stresses from nutrient deficiencies, unfavorable pH, ions, and drought. Although many molecular details remain unclear, research has revealed a number of core signaling regulators that are associated with N-mediated abiotic stress responses. An in-depth understanding and exploration of the molecular processes that underpin the interactions between N and abiotic stresses is useful in the design of effective strategies to improve crop growth, development, and productivity.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Hao Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
33
|
Xiao Q, Chen Y, Liu C, Robson F, Roy S, Cheng X, Wen J, Mysore K, Miller AJ, Murray JD. MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. EMBO J 2021; 40:e106847. [PMID: 34523752 PMCID: PMC8561640 DOI: 10.15252/embj.2020106847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
The preference for nitrate over chloride through regulation of transporters is a fundamental feature of plant ion homeostasis. We show that Medicago truncatula MtNPF6.5, an ortholog of Arabidopsis thaliana AtNPF6.3/NRT1.1, can mediate nitrate and chloride uptake in Xenopus oocytes but is chloride selective and that its close homologue, MtNPF6.7, can transport nitrate and chloride but is nitrate selective. The MtNPF6.5 mutant showed greatly reduced chloride content relative to wild type, and MtNPF6.5 expression was repressed by high chloride, indicating a primary role for MtNPF6.5 in root chloride uptake. MtNPF6.5 and MtNPF6.7 were repressed and induced by nitrate, respectively, and these responses required the transcription factor MtNLP1. Moreover, loss of MtNLP1 prevented the rapid switch from chloride to nitrate as the main anion in nitrate-starved plants after nitrate provision, providing insight into the underlying mechanism for nitrate preference. Sequence analysis revealed three sub-types of AtNPF6.3 orthologs based on their predicted substrate-binding residues: A (chloride selective), B (nitrate selective), and C (legume specific). The absence of B-type AtNPF6.3 homologues in early diverged plant lineages suggests that they evolved from a chloride-selective MtNPF6.5-like protein.
Collapse
Affiliation(s)
- Qiying Xiao
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Centre for Excellence in Molecular Plant Sciences (CEMPS)Shanghai Institute of Plant Physiology and Ecology (SIPPE)Chinese Academy of SciencesShanghaiChina
| | - Yi Chen
- John Innes CentreNorwich Research Park, NorwichUK
| | - Cheng‐Wu Liu
- John Innes CentreNorwich Research Park, NorwichUK
- Present address:
School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Fran Robson
- John Innes CentreNorwich Research Park, NorwichUK
| | - Sonali Roy
- John Innes CentreNorwich Research Park, NorwichUK
- Noble Research InstituteArdmoreOKUSA
| | | | | | | | | | - Jeremy D Murray
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Centre for Excellence in Molecular Plant Sciences (CEMPS)Shanghai Institute of Plant Physiology and Ecology (SIPPE)Chinese Academy of SciencesShanghaiChina
- John Innes CentreNorwich Research Park, NorwichUK
| |
Collapse
|
34
|
Ma P, Gao S, Zhang HY, Li BY, Zhong HX, Wang YK, Hu HM, Zhang HK, Luo BW, Zhang X, Liu D, Wu L, Gao DJ, Gao SQ, Zhang SZ, Gao SB. Identification and characterization of circRNAs in maize seedlings under deficient nitrogen. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:850-860. [PMID: 33932084 DOI: 10.1111/plb.13280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Here, deep sequencing results of the maize transcriptome in leaves and roots were compared under high-nitrogen (HN) and low-nitrogen (LN) conditions to identify differentially expressed circRNAs (DECs). Circular RNAs (circRNAs) are covalently closed non-coding RNA with widely regulatory potency that has been identified in animals and plants. However, the understanding of circRNAs involved in responsive nitrogen deficiency remains to be elucidated. A total of 24 and 22 DECs were obtained from the leaves and roots, respectively. Ten circRNAs were validated by divergent and convergent primers, and 6 DECs showed the same expression tendency validated by reverse transcriptase-quantitative PCR. Integrating the identified differentially expressed miRNAs, 34 circRNAs could act as miRNA decoys, which might play important roles in multiple biological processes, including organonitrogen compound biosynthesis and regulation of the metabolic process. A total of 51 circRNA-parent genes located in the genome-wide association study identified loci were assessed between HN and LN conditions and were associated with root growth and development. In summary, our results provide valuable information regarding further study of maize circRNAs under nitrogen deficiency and provide new insights into screening of candidate genes as well as the improvement of maize regarding nitrogen deficiency resistance. CircRNA-miRNA-mRNA co-expression networks were constructed to explore the circRNAs that participated in biological development and nitrogen metabolism.
Collapse
Affiliation(s)
- P Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Gao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - H Y Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - B Y Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H X Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Y K Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H M Hu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - H K Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - B W Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - X Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - D Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - L Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - D J Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Q Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S Z Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - S B Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
35
|
Fang XZ, Fang SQ, Ye ZQ, Liu D, Zhao KL, Jin CW. NRT1.1 Dual-Affinity Nitrate Transport/Signalling and its Roles in Plant Abiotic Stress Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:715694. [PMID: 34497626 PMCID: PMC8420879 DOI: 10.3389/fpls.2021.715694] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
NRT1.1 is the first nitrate transport protein cloned in plants and has both high- and low-affinity functions. It imports and senses nitrate, which is modulated by the phosphorylation on Thr101 (T101). Structural studies have revealed that the phosphorylation of T101 either induces dimer decoupling or increases structural flexibility within the membrane, thereby switching the NRT1.1 protein from a low- to high-affinity state. Further studies on the adaptive regulation of NRT1.1 in fluctuating nitrate conditions have shown that, at low nitrate concentrations, nitrate binding only at the high-affinity monomer initiates NRT1.1 dimer decoupling and priming of the T101 site for phosphorylation activated by CIPK23, which functions as a high-affinity nitrate transceptor. However, nitrate binding in both monomers retains the unmodified NRT1.1, maintaining the low-affinity mode. This NRT1.1-mediated nitrate signalling and transport may provide a key to improving the efficiency of plant nitrogen use. However, recent studies have revealed that NRT1.1 is extensively involved in plant tolerance of several adverse environmental conditions. In this context, we summarise the recent progress in the molecular mechanisms of NRT1.1 dual-affinity nitrate transport/signalling and focus on its expected and unexpected roles in plant abiotic stress resistance and their regulation processes.
Collapse
Affiliation(s)
- Xian Zhi Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Shu Qin Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Zheng Qian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Ke Li Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ye L, Yang P, Zeng Y, Li C, Jian N, Wang R, Huang S, Yang R, Wei L, Zhao H, Zheng Q, Gao H, Liu J. Rhizobium symbiosis modulates the accumulation of arsenic in Medicago truncatula via nitrogen and NRT3.1-like genes regulated by ABA and linalool. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125611. [PMID: 33725554 DOI: 10.1016/j.jhazmat.2021.125611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a worldwide problem and threatens human health. Here, we found that Rhizobium symbiosis can improve the tolerance to arsenate [As(V)], and a wild type R. meliloti Rm5038 symbiosis can significantly decrease the accumulation of As in Medicago truncatula shoots. The As content in plants could be decreased by nitrogen and the mutation of nitrate transporter NRT3.1. The expression of M. truncatula NRT3.1-like gene NRT3.1L1 could reverse the As(V)-tolerance phenotype of the Arabidopsis nrt3.1 mutant. Rm5038 symbiosis significantly increased the level of nitrogen in the shoot and reduced the expression of NRT3.1Ls in plants afflicted by As(V). The genetic analyses of aba2-1, pyr1/pyl1/2/4/5/8, and abi1-2/abi2-2/hab1-1/pp2ca-1 mutants revealed that abscisic acid (ABA) signaling regulates the tolerance of plants to As(V). ABA and linalool could promote the expression of NRT3.1Ls, however, their root biosynthesis was inhibited by ammonium, the first form of nitrogen fixed by Rhizobium symbiosis. Moreover, ABA and linalool may also control As and nitrate accumulation in Rhizobium symbionts via signaling pathways other than ammonia and NRT3.1Ls. Thus, Rhizobium symbiosis modulates the accumulation of As in plants via nitrogen and NRT3.1Ls regulated by ABA and linalool, which provides novel approaches to reduce As accumulation in legume crops.
Collapse
Affiliation(s)
- Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yinwei Zeng
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ni Jian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ruihua Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Siyuan Huang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Long Wei
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haiyan Zhao
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingsong Zheng
- College of Natural Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jinlong Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
37
|
Wei YM, Ren ZJ, Wang BH, Zhang L, Zhao YJ, Wu JW, Li LG, Zhang XS, Zhao XY. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110901. [PMID: 34034862 DOI: 10.1016/j.plantsci.2021.110901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential macronutrient for plants and regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen in plants. However, the role of nitrate uptake and allocation in seed development is not fully understood. Here, we identified the maize (Zea mays) small-kernel mutant zmnpf7.9 and characterized the candidate gene, ZmNPF7.9, which was the same gene as nitrate transport 1.5 (NRT1.5) in maize. This gene is specifically expressed in the basal endosperm transfer layer cells of maize endosperm. Dysfunction of ZmNPF7.9 resulted in delayed endosperm development, abnormal starch deposition and decreased hundred-grain weight. Functional analysis of cRNA-injected Xenopus oocytes showed that ZmNPF7.9 is a low-affinity, pH-dependent bidirectional nitrate transporter. Moreover, the amount of nitrate in mature seeds of the zmnpf7.9 mutant was reduced. These suggest that ZmNPF7.9 is involved in delivering nitrate from maternal tissues to the developing endosperm. Moreover, most of the key genes associated with glycolysis/gluconeogenesis, carbon fixation, carbon metabolism and biosynthesis of amino acids pathways in the zmnpf7.9 mutant were significantly down-regulated. Thus, our results demonstrate that ZmNPF7.9 plays a specific role in seed development and grain weight by regulating nutrition transport and metabolism, which might provide useful information for maize genetic improvement.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhi Jie Ren
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Le Gong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China; College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
38
|
Hussain T, Li J, Feng X, Asrar H, Gul B, Liu X. Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. JOURNAL OF PLANT RESEARCH 2021; 134:779-796. [PMID: 33768362 DOI: 10.1007/s10265-021-01285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Ion secretion facilitates recretohalophytes to tolerate saline and drought conditions but its relative contribution to the survival of many species remains poorly understood. Tamarix chinensis has high potential for restoration of saline deteriorated lands. The water management and high salt tolerance of the plant have highlighted the need to determine the strategies that govern these mechanisms. Here we report the selectivity of this halophyte to transport, utilize, and secrete different cations and anions under various NaCl (0, 100, 200 and 400 mM) concentrations. Plant growth, photosynthesis and antioxidant defense responses were also determined to relate them with the function of ion secretion. Results reflected two different sets of strategies adopted by plants to survive low and high salinities. Exposure to highly saline conditions caused reduction in photosynthesis due to stomatal and biochemical limitations. The decreased content of photosynthetic pigments exposed plants to excessive light energy that accelerated production of ROS (i.e., hydrogen peroxide H2O2) and caused damage to cellular membranes. The increased activities of anti-oxidative enzymes (superoxide-dismutase, catalase, ascorbate-peroxidase, and glutathione-reductase) were insufficient to detoxify H2O2. In contrast, plants treated with low salinity did not face stomatal limitations while the photosynthetic pigments increased. As no damage to membranes was detected, the increased content of H2O2 was postulated for its messenger role. The assimilation of essential nutrients was affected due to increased content of toxic ions (Na+ and Cl-) in the growing medium and within the plants. However, the ability to regulate K+ facilitated plants to improve water use efficiency under hyper-osmotic environment. The removal of toxic ions from the photosynthesizing tissues demands high energy, which was evident in the compromised growth of plants. This study offers a window to physiological mechanisms, e.g., potassium retention that ensure salt secretion as a beneficial strategy for prolonged survival of T. chinensis.
Collapse
Affiliation(s)
- Tabassum Hussain
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China.
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - Jingsong Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China
| | - Xiaohui Feng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Xiaojing Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China.
| |
Collapse
|
39
|
The Expression Characteristics of NPF Genes and Their Response to Vernalization and Nitrogen Deficiency in Rapeseed. Int J Mol Sci 2021; 22:ijms22094944. [PMID: 34066572 PMCID: PMC8125141 DOI: 10.3390/ijms22094944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.
Collapse
|
40
|
Liu Y, Bai L, Sun M, Wang J, Li S, Miao L, Yan Y, He C, Yu X, Li Y. Adaptation of cucumber seedlings to low temperature stress by reducing nitrate to ammonium during it's transportation. BMC PLANT BIOLOGY 2021; 21:189. [PMID: 33874888 PMCID: PMC8056598 DOI: 10.1186/s12870-021-02918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Low temperature severely depresses the uptake, translocation from the root to the shoot, and metabolism of nitrate and ammonium in thermophilic plants such as cucumber (Cucumis sativus). Plant growth is inhibited accordingly. However, the availability of information on the effects of low temperature on nitrogen transport remains limited. RESULTS Using non-invasive micro-test technology, the net nitrate (NO3-) and ammonium (NH4+) fluxes in the root hair zone and vascular bundles of the primary root, stem, petiole, midrib, lateral vein, and shoot tip of cucumber seedlings under normal temperature (NT; 26 °C) and low temperature (LT; 8 °C) treatment were analyzed. Under LT treatment, the net NO3- flux rate in the root hair zone and vascular bundles of cucumber seedlings decreased, whereas the net NH4+ flux rate in vascular bundles of the midrib, lateral vein, and shoot tip increased. Accordingly, the relative expression of CsNRT1.4a in the petiole and midrib was down-regulated, whereas the expression of CsAMT1.2a-1.2c in the midrib was up-regulated. The results of 15N isotope tracing showed that NO3--N and NH4+-N uptake of the seedlings under LT treatment decreased significantly compared with that under NT treatment, and the concentration and proportion of both NO3--N and NH4+-N distributed in the shoot decreased. Under LT treatment, the actual nitrate reductase activity (NRAact) in the root did not change significantly, whereas NRAact in the stem and petiole increased by 113.2 and 96.2%, respectively. CONCLUSIONS The higher net NH4+ flux rate in leaves and young tissues may reflect the higher NRAact in the stem and petiole, which may result in a higher proportion of NO3- being reduced to NH4+ during the upward transportation of NO3-. The results contribute to an improved understanding of the mechanism of changes in nitrate transportation in plants in response to low-temperature stress.
Collapse
Affiliation(s)
- Yumei Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agricultural and Biological Engineering, Heze University, Heze, 274000 Shandong China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Mintao Sun
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jun Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shuzhen Li
- College of Life Science, Gannan Normal University, Ganzhou, 341000 Jiangxi China
| | - Li Miao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chaoxing He
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xianchang Yu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yansu Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
41
|
Santin A, Caputi L, Longo A, Chiurazzi M, Ribera d'Alcalà M, Russo MT, Ferrante MI, Rogato A. Integrative omics identification, evolutionary and structural analysis of low affinity nitrate transporters in diatoms, diNPFs. Open Biol 2021; 11:200395. [PMID: 33823659 PMCID: PMC8025304 DOI: 10.1098/rsob.200395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Antonella Longo
- BioDiscovery Institute, Denton, TX, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
42
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
43
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 44:559-573. [PMID: 33215716 DOI: 10.1111/pce.13956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/11/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Wen J, Li PF, Ran F, Guo PC, Zhu JT, Yang J, Zhang LL, Chen P, Li JN, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics 2020; 21:871. [PMID: 33287703 PMCID: PMC7720588 DOI: 10.1186/s12864-020-07274-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. Results A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone−/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2–1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. Conclusion We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2–1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07274-7.
Collapse
Affiliation(s)
- Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Peng-Cheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Tian Zhu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Lan-Lan Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
45
|
Liu XX, Zhu YX, Fang XZ, Ye JY, Du WX, Zhu QY, Lin XY, Jin CW. Ammonium aggravates salt stress in plants by entrapping them in a chloride over-accumulation state in an NRT1.1-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141244. [PMID: 32768787 DOI: 10.1016/j.scitotenv.2020.141244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 05/21/2023]
Abstract
Global climate change has exacerbated flooding in coastal areas affected by soil salinization. Ammonium (NH4+) is the predominant form of nitrogen in flooded soils, but the role played by NH4+ in the plant response to salt stress has not been fully clarified. We investigated the responses of Arabidopsis thaliana, Oryza sativa, and Nicotiana benthamiana plants fed with NH4+. All species were hypersensitive to NaCl stress and accumulated more Cl- and less Na+ than those fed with NO3-. Further investigation of A. thaliana indicated that salt hypersensitivity induced by the presence of NH4+ was abolished by removing the Cl- but was not affected by the removal of Na+, suggesting that excess accumulation of Cl- rather than Na+ is involved in NH4+-conferred salt hypersensitivity. The expression of nitrate transporter NRT1.1 protein was also up-regulated by NH4+ treatment, which increased root Cl- uptake due to the Cl- uptake activity of NRT1.1 and the absence of uptake competition from NO3-. Knockout of NRT1.1 in plants decreased their root Cl- uptake and retracted the NH4+-conferred salt hypersensitivity. Our findings revealed that NH4+-aggravated salt stress in plants is associated with Cl- over-accumulation through the up-regulation of NRT1.1-mediated Cl- uptake. These findings suggest the significant impact of Cl- toxicity in flooded coastal areas, an issue of ecological significance.
Collapse
Affiliation(s)
- Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Zhi Fang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Yong Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Wang X, Wang HF, Chen Y, Sun MM, Wang Y, Chen YF. The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. THE PLANT CELL 2020; 32:3519-3534. [PMID: 32958562 PMCID: PMC7610294 DOI: 10.1105/tpc.20.00361] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Phosphorus and nitrogen are essential macronutrients for plant growth and crop production. During phosphate (Pi) starvation, plants enhanced Pi but reduced nitrate (NO3 -) uptake capacity, and the mechanism is unclear. Here, we show that a GARP-type transcription factor NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIOANL REPRESSOR1.2 (NIGT1.2) coordinately modulates Pi and NO3 - uptake in response to Pi starvation. Overexpression of NIGT1.2 increased Pi uptake capacity but decreased NO3 - uptake capacity in Arabidopsis (Arabidopsis thaliana). Furthermore, the nigt1.1 nigt1.2 double mutant displayed reduced Pi uptake but enhanced NO3 - uptake under low-Pi stress. During Pi starvation, NIGT1.2 directly up-regulated the transcription of the Pi transporter genes PHOSPHATE TRANSPORTER1;1 (PHT1;1) and PHOSPHATE TRANSPORTER1;4 (PHT1;4) and down-regulated expression of NO3 - transporter gene NITRATE TRANSPORTER1.1 (NRT1.1) by binding to cis-elements in their promoters. Further genetic assays demonstrated that PHT1;1, PHT1;4, and NRT1.1 were genetically epistatic to NIGT1.2 We also identified similar regulatory pathway in maize (Zea mays). These data demonstrate that the transcription factor NIGT1.2 plays a central role in modulating low-Pi-dependent uptake of Pi and NO3 -, tending toward maintenance of the phosphorus to nitrogen balance in plants during Pi starvation.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| | - Hai-Feng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| | - Yun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| | - Mi-Mi Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Center for Crop Functional Genomics and Molecular Breeding, Beijing 100193, China
| |
Collapse
|
47
|
Zhang X, Zörb C, Geilfus CM. The root as a sink for chloride under chloride-salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:161-168. [PMID: 32758997 DOI: 10.1016/j.plaphy.2020.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Maize has to avoid excess tissue accumulation of Cl- to withstand conditions of Cl--salinity. Restriction of loading of Cl- into the root xylem is one mechanism to keep shoot Cl--concentrations low. The proportion of Cl- that reaches the shoot has to be stored away from the primary site of photosynthesis and growth. We tested whether or not maize is able to re-translocate significant amounts of Cl- from shoot back to root and out into the rooting media. Ion analysis revealed that maize cannot re-translocate Cl-; however, it is stored in sheaths of the old leaves and, surprisingly, in roots. Sequestration of Cl- in the roots might be a strategy to keep concentrations low in young growing shoot tissues and in leaf blades where photosynthesis is running.
Collapse
Affiliation(s)
- Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Le Deunff E, Beauclair P, Lecourt J, Deleu C, Malagoli P. Combined Allosteric Responses Explain the Bifurcation in Non-Linear Dynamics of 15N Root Fluxes Under Nutritional Steady-State Conditions for Nitrate. FRONTIERS IN PLANT SCIENCE 2020; 11:1253. [PMID: 33384698 PMCID: PMC7770280 DOI: 10.3389/fpls.2020.01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/29/2020] [Indexed: 06/02/2023]
Abstract
With regard to thermodynamics out of equilibrium, seedlings are open systems that dissipate energy towards their environment. Accordingly, under nutritional steady-state conditions, changes in external concentrations of one single ion provokes instability and reorganization in the metabolic and structure/architecture of the seedling that is more favorable to the fluxes of energy and matter. This reorganization is called a bifurcation and is described in mathematics as a non-linear dynamic system. In this study, we investigate the non-linear dynamics of 15N fluxes among cellular compartments of B. napus seedlings in response to a wide range of external NO 3 - 15 concentrations (from 0.05 to 20 mM): this allows to determine whether any stationary states and bifurcations could be found. The biphasic behavior of the root NO 3 - 15 uptake rate (vin ) was explained by the combined cooperative properties between the vapp (N uptake, storage and assimilation rate) and vout (N translocation rate) 15N fluxes that revealed a unique and stable stationary state around 0.28 mM nitrate. The disappearance of this stationary state around 0.5 mM external nitrate concentrations provokes a dramatic bifurcation in 15N flux pattern. This bifurcation in the vin and vout 15N fluxes fits better with the increase of BnNPF6.3/NRT1.1 expression than BnNRT2.1 nitrate transporter genes, confirming the allosteric property of the BnNPF6/NRT1.1 transporter, as reported in the literature between low and high nitrate concentrations. Moreover, several statistically significant power-law equations were found between variations in the shoots tryptophan concentrations (i.e., IAA precursor) with changes in the vapp and vout 15N fluxes as well as a synthetic parameter of plant N status estimated from the root/shoot ratio of total free amino acids concentrations. These relationships designate IAA as one of the major biological parameters related to metabolic and structural-morphological reorganization coupled with the N and water fluxes induced by nitrate. The results seriously challenge the scientific grounds of the concept of high- and low-affinity of nitrate transporters and are therefore discussed in terms of the ecological significance and physiological implications on the basis of recent agronomic, physiological and molecular data of the literature.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Normandie Université, UNICAEN, Caen, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Beauclair
- INRA Unité Expérimentale Fourrages Environnement Ruminants (FERLUS) et Système d’Observation et d’Expérimentation pour la Recherche en Environnement (SOERE) Les Verrines CS 80006, Lusignan, France
| | - Julien Lecourt
- NIAB EMR, Crop Science and Production Systems, East Malling, United Kingdom
| | - Carole Deleu
- INRA—Agrocampus Ouest—Université de Rennes 1, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP) Université de Rennes 1, Rennes, France
| | | |
Collapse
|
49
|
Genome-Wide Systematic Characterization of the NPF Family Genes and Their Transcriptional Responses to Multiple Nutrient Stresses in Allotetraploid Rapeseed. Int J Mol Sci 2020; 21:ijms21175947. [PMID: 32824914 PMCID: PMC7504168 DOI: 10.3390/ijms21175947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) family (NPF) proteins can transport various substrates, and play crucial roles in governing plant nitrogen (N) uptake and distribution. However, little is known about the NPF genes in Brassica napus. Here, a comprehensive genome-wide systematic characterization of the NPF family led to the identification of 193 NPF genes in the whole genome of B. napus. The BnaNPF family exhibited high levels of genetic diversity among sub-families but this was conserved within each subfamily. Whole-genome duplication and segmental duplication played a major role in BnaNPF evolution. The expression analysis indicated that a broad range of expression patterns for individual gene occurred in response to multiple nutrient stresses, including N, phosphorus (P) and potassium (K) deficiencies, as well as ammonium toxicity. Furthermore, 10 core BnaNPF genes in response to N stress were identified. These genes contained 6–13 transmembrane domains, located in plasma membrane, that respond discrepantly to N deficiency in different tissues. Robust cis-regulatory elements were identified within the promoter regions of the core genes. Taken together, our results suggest that BnaNPFs are versatile transporters that might evolve new functions in B. napus. Our findings benefit future research on this gene family.
Collapse
|
50
|
Wang W, Hu B, Li A, Chu C. NRT1.1s in plants: functions beyond nitrate transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4373-4379. [PMID: 31832669 PMCID: PMC7382373 DOI: 10.1093/jxb/erz554] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 05/19/2023]
Abstract
Arabidopsis AtNRT1.1 (CHL1/AtNPF6.3) is the first nitrate transporter identified in plants and was initially found to play a role in nitrate uptake and transport. AtNRT1.1 also displays auxin transport activity and mediates nitrate-modulated root development, suggesting that it has transport capacity for multiple substrates. Subsequent work revealed that AtNRT1.1 can respond to environmental nitrate fluctuations by altering its nitrate transport activity, modulated by phosphorylation, leading to the critical finding that AtNRT1.1 acts as a transceptor for nitrate sensing. Recent studies have revealed how OsNRT1.1B, the functional homologue of AtNRT1.1 in rice, mediates nitrate signal transduction from the plasma membrane to the nucleus, and how OsNRT1.1B integrates the nitrate and phosphate signaling networks. OsNRT1.1B has also been shown to be involved in regulating the root microbiota to facilitate organic nitrogen mineralization in soil, thus mediating plant-microbe interactions. Furthermore, the divergent functions of OsNRT1.1A and OsNRT1.1B in regulating nitrogen use in rice suggest that the function of NRT1.1 is still far from fully understood. In this review, we focus on the most recent progress on the molecular mechanisms of NRT1.1s in plants, with the aim of providing an up-to-date view of the versatile functions of NRT1.1 in nitrogen utilization in plants.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|