1
|
Yun C, Ma W, Feng J, Li L. Branching angles in the modulation of plant architecture: Molecular mechanisms, dynamic regulation, and evolution. PLANT COMMUNICATIONS 2025; 6:101292. [PMID: 40007121 PMCID: PMC12010374 DOI: 10.1016/j.xplc.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants develop branches to expand areas for assimilation and reproduction. Branching angles coordinate with branching types, creating diverse plant shapes that are adapted to various environments. Two types of branching angle-the angle between shoots and the angle in relation to gravity or the gravitropic set-point angle (GSA) along shoots-determine the spacing between shoots and the shape of the aboveground plant parts. However, it remains unclear how these branching angles are modulated throughout shoot development and how they interact with other factors that contribute to plant architecture. In this review, we systematically focus on the molecular mechanisms that regulate branching angles across various species, including gravitropism, anti-gravitropic offset, phototropism, and other regulatory factors, which collectively highlight comprehensive mechanisms centered on auxin. We also discuss the dynamics of branching angles during development and their relationships with branching number, stress resistance, and crop yield. Finally, we provide an evolutionary perspective on the conserved role of auxin in the regulation of branching angles.
Collapse
Affiliation(s)
- Chen Yun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Wanzhuang Ma
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Jun Feng
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, China
| | - Lanxin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Fu X, Chen G, Ruan X, Kang G, Hou D, Xu H. Overexpression of OsPIN5b Alters Plant Architecture and Impairs Cold Tolerance in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1026. [PMID: 40219094 PMCID: PMC11990878 DOI: 10.3390/plants14071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Auxin plays a versatile role in regulating plant growth and development. The auxin efflux carrier PIN-FORMED (PIN) proteins dictate the distribution and maximum of auxin within various tissues. Despite extensive research on OsPINs in recent years, their functions in abiotic stress resistance, particularly cold tolerance, remain poorly understood. Here, we investigated the role of OsPIN5b in rice (Oryza sativa L.) growth and development, as well as its contribution to cold tolerance using overexpression technology. Overexpression of OsPIN5b (OE) resulted in reduced shoot height and a lower number of adventitious roots at the seedling stage. Transgenic rice plants exhibited an earlier heading date, stunted growth, and compromised agronomic traits, including shortened panicle length, decreased grain number per panicle, reduced seed size, and lower seed setting rate during the reproductive stage. Auxin content in the transgenic lines was significantly elevated, as indicated by the upregulation of the auxin-responsive gene OsIAA20 and increased auxin levels quantified using a newly developed method. Compared with wild-type plants, the cold tolerance of OE plants was markedly reduced, as evidenced by lower survival rates, higher levels of electrolyte leakage, and increased malondialdehyde (MDA) production following cold treatment. In line with this, the transgenic lines produced less soluble sugar and proline, while accumulating more hydrogen peroxide (H2O2) and superoxide anion radicals (O2-) after cold treatment. Furthermore, the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were notably decreased upon cold treatment compared with those in WT plants. Additionally, OsRBOHH, which plays a role in ROS production, was significantly upregulated in transgenic lines both before and after chilling stress, suggesting that OsRBOHH plays a potential role in regulating ROS production. Collectively, overexpression of OsPIN5b substantially disturbs auxin homeostasis, resulting in impaired plant architecture and agronomic traits. More importantly, the upregulation of OsPIN5b compromises rice cold tolerance by perturbing ROS homeostasis and adversely influencing the accumulation of soluble sugar and proline.
Collapse
Affiliation(s)
- Xiaoyu Fu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (X.F.); (G.C.); (X.R.); (D.H.)
| | - Guo Chen
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (X.F.); (G.C.); (X.R.); (D.H.)
| | - Xinya Ruan
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (X.F.); (G.C.); (X.R.); (D.H.)
| | - Guozhang Kang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China;
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (X.F.); (G.C.); (X.R.); (D.H.)
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China; (X.F.); (G.C.); (X.R.); (D.H.)
| |
Collapse
|
3
|
Shi H, Li P, Yun P, Zhu Y, Zhou H, Wang L, Wu B, Wang Y, Lou G, Huang Q, Gao G, Zhang Q, Chen J, Li J, Xiao J, You A, He Y. A DOF transcription factor GLW9/OsDOF25 regulates grain shape and tiller angle in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40120117 DOI: 10.1111/pbi.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Grain shape and tiller angle are two important agronomic traits influencing grain yield and quality in rice. Herein, we map-based cloned a grain shape gene GLW9 (Grain Length and Width on chromosome 9), which encodes a DNA binding with one finger (DOF) family transcription factor OsDOF25. GLW9 positively regulates grain length and negatively regulates grain width, consequently improving grain length-to-width ratio and appearance quality. GLW9 binds to the EXPA6 promotor to upregulate its expression, thereby positively regulating cell expansion and grain shape. On the other hand, GLW9 directly upregulates the expression of OsPIN1b to reduce tiller angle. This study elucidates the mechanism by which GLW9 coordinately regulates grain shape and tiller angle, providing theoretical reference and gene resources for the improvement of grain shape and tiller angle in rice.
Collapse
Affiliation(s)
- Huan Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Institute of Food Crop, Hubei Academy of Agricultural Science, Wuhan, China
| | - Pingbo Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Yun
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yun Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Bian Wu
- Institute of Food Crop, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qin Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Junxiao Chen
- Institute of Food Crop, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinbo Li
- Institute of Food Crop, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aiqing You
- Institute of Food Crop, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang F, Zhang L, Cui L, Zhao Y, Huang Y, Jiang M, Cai Q, Lian L, Zhu Y, Xie H, Chen L, Xiao Y, Xie H, Zhang J. The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals. PLANT COMMUNICATIONS 2025; 6:101236. [PMID: 39731290 PMCID: PMC11956091 DOI: 10.1016/j.xplc.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 12/29/2024]
Abstract
Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling. Phenotypic analysis showed that oswrky72 mutants have smaller leaf angles and exhibit insensitivity to exogenous BRs, whereas OsWRKY72 overexpression lines show enlarged leaf angles and are hypersensitive to exogenous BRs. Histological sections revealed that the change in leaf inclination is due to asymmetric cell proliferation and growth at the lamina joint. Further investigation showed that OsWRKY72 binds directly to the promoter region of BR receptor kinase (OsBRI1), a key gene in the BR signaling pathway, and activates its expression to positively regulate rice BR signaling. In addition, we discovered that OsWRKY72 interacts with and is phosphorylated by OsMAPK6, and this phosphorylation event can enhance OsWRKY72 activity in promoting OsBRI1 expression. Genetic evidence confirmed that OsMAPK6, OsWRKY72, and OsBRI1 function in a common pathway to regulate leaf angle. Collectively, our findings clarify the critical role of the OsWRKY72 transcription factor in regulating rice leaf angle. These results provide valuable insights into the molecular regulatory networks that govern plant architecture in rice.
Collapse
Affiliation(s)
- Fuxiang Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Yongchao Zhao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Huang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minrong Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Liping Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Hu Y, Xue D, Wang S, Zhang Q, Zhang X, Yang J, Lv Y, Yan B, Yin Y, Cui Z, Li T, Chen W, Wang X. An auxin response factor regulates tiller angle and shoot gravitropism by directly activating related gene expression in rice. J Adv Res 2025:S2090-1232(25)00124-9. [PMID: 40015454 DOI: 10.1016/j.jare.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION The angle of tillers is crucial for shaping plant architecture, which in turn affects grain yield of rice. The formation of tiller angle is associated with the asymmetrical distribution and polar transport of auxin. However, the roles of auxin signaling in regulating tiller angle in rice remain unclear. OBJECTIVE This study identifies Oryza sativa Auxin Response Factor 5 (OsARF5) as a key regulator of tiller angle development in rice. METHODS The osarf5-1 mutant was obtained through using chemical mutagenesis. The differentially expressed genes were identified through quantitative RT-PCR and high-throughput mRNA sequencing. The interactions between OsARF5 protein and its targeted-DNAs was analyzed by chromatin immunoprecipitation and dual-luciferase reporter assays. Protein-protein interactions were assessed using yeast two-hybrid and bimolecular fluorescence complementation methods. RESULTS The osarf5-1 mutation enlarges the tiller angle, weakens shoot gravitropism, and diminishes the response to auxin in rice. OsARF5 binds to the cis-acting elements in the promoters of genes related to tiller angle development and activates their expression. Genome-wide studies identify thousands of differentially expressed genes (DEGs), including auxin response genes, between wild-type and osarf5-1. Under gravistimulation, the number of DEGs in osarf5-1 decreases, indicating the involvement of OsARF5 in shoot gravitropism. The OsARF5 physically interact with three rice Indole Acetic Acid (OsIAA) repressors, forming complexes that facilitate their functions. Mutations in OsIAAs lead to a more compact plant architecture, and the expression of OsARF5-target genes is elevated in osiaa mutants, suggesting that the OsIAAs counteract OsARF5's effects on tiller angle control. CONCLUSION OsARF5 is associated with three OsIAAs to bind to the promoter of the target genes, regulating their expression to modulate shoot gravitropism and tiller angle in rice. These findings offer new insights into the principles governing tiller angle control in rice.
Collapse
Affiliation(s)
- Yanjuan Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Dan Xue
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shiyu Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Institute of Saline-Alkali and Utilization, Panjin 124010, China.
| | - Qi Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinfeng Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jingyan Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanpeng Lv
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Bowen Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| | - Yanbin Yin
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Agriculture, Northeast Agricultural University, Harbin 150038, China.
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tong Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Hou M, Zhang Y, Xu X, Ai H. Advances in auxin synthesis, transport, and signaling in rice: implications for stress resilience and crop improvement. FRONTIERS IN PLANT SCIENCE 2025; 15:1516884. [PMID: 39902208 PMCID: PMC11788282 DOI: 10.3389/fpls.2024.1516884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025]
Abstract
Auxin, a crucial plant hormone, plays a pivotal role in regulating various aspects of rice growth and development, including cell elongation, root formation, and responses to environmental stimuli. Recent breakthroughs in auxin research have revealed novel regulatory mechanisms, such as the identification of auxin-related genes like DNR1 and OsARF18, which enhance rice nitrogen use efficience and resistance to glufosinate. Additionally, advancements in understanding auxin transport and signaling pathways have highlighted their potential in optimizing tillering, root architecture, and grain yield. This review examines these molecular mechanisms and their interactions with other hormones, emphasizing their integration into breeding programs for improved rice productivity. By synthesizing these findings, we provide a comprehensive overview of how auxin research informs strategies for developing rice varieties with enhanced adaptability and optimized growth, contributing to food security and sustainable agriculture.
Collapse
Affiliation(s)
- Mengmeng Hou
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuanbo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyi Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
7
|
Dong X, Gao J, Jiang M, Tao Y, Chen X, Yang X, Wang L, Jiang D, Xiao Z, Bai X, He F. The Identification and Characterization of WOX Family Genes in Coffea arabica Reveals Their Potential Roles in Somatic Embryogenesis and the Cold-Stress Response. Int J Mol Sci 2024; 25:13031. [PMID: 39684742 DOI: 10.3390/ijms252313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of Coffea arabica, hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed WOX genes in three Coffea species. A total of 23 CaWOXs, 12 CcWOXs, and 10 CeWOXs were identified. Transcriptomic profile analysis indicated that about half of the CaWOX genes were actively expressed during somatic embryogenesis. The most represented CaWOXs were CaWOX2a, CaWOX2b, CaWOX8a, and CaWOX8b, which are suggested to promote the induction and development of the embryogenic callus, whereas CaWOX13a and CaWOX13b are suggested to negatively impact these processes. Co-expression analysis revealed that somatic embryogenesis-related CaWOXs were co-expressed with genes involved in embryo development, post-embryonic development, DNA repair, DNA metabolism, phenylpropanoid metabolism, secondary metabolite biosynthesis, and several epigenetic pathways. In addition, qRT-PCR showed that four WOX genes responded to cold stress. Overall, this study offers valuable insights into the functions of CaWOX genes during somatic embryogenesis and under cold stress. The results suggest that certain WOX genes play distinct regulatory roles during somatic embryogenesis, meriting further functional investigation. Moreover, the cold-responsive genes identified here are promising candidates for further molecular analysis to assess their potential to enhance cold tolerance.
Collapse
Affiliation(s)
- Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Jing Gao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Meng Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yuan Tao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xingbo Chen
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xiaoshuang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Linglin Wang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Dandan Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Ziwei Xiao
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
8
|
Mao J, Wang H, Li J, Yang J, Zhang Y, Wu H. Comparative transcriptome profiling suggests the role of phytohormones in leaf stalk-stem angle in melon ( Cucumis melo L.). PeerJ 2024; 12:e18467. [PMID: 39575174 PMCID: PMC11580662 DOI: 10.7717/peerj.18467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Leaf stalk-stem angle is an important agronomic trait influencing melon architecture, photosynthetic efficiency, and crop yield. However, the mechanisms governing leaf stalk-stem angle, particularly in melon, are not well understood. In this study, we explored the comparative transcriptome in the expanded architecture line Y164 and the compact plant architecture line Z151 at 30 days after pollination. Phytohormones were measured at the leaf stalk-angle site at the same time in these two lines using liquid chromatography (LC) tandem mass spectrometry (MS) (LC-MS/MS). The phytohormones and transcriptomes were jointly analyzed. Differential hormone profiling revealed that the levels of 1-aminocyclopropane-1-carboxylate (ACC) and 12-oxophytodienoic acid (OPDA) in the large-angled line Y164 were significantly higher than those in the small-angled line Z151. These differences were quantified as 2.1- and 2.8-fold increases, respectively. Conversely, the content of isopentenyl adenosine (IPA) was significantly elevated in Z151, with a 3.8-fold higher concentration relative to Y164. Transcriptome analysis identified a total of 1709 differently expressed genes (DEGs), with a predominant enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to photosynthesis and plant hormone signal transduction. Similarly, photosynthesis and the hormone metabolic process were predominantly enriched in the biological process of Gene Ontology (GO) terms. Further integration of transcriptome and hormone analyses substantiated the close relationship between melon leaf stalk-stem angle and phytohormones, especially ACC, OPDA and IPA. Selected DEGs from phytohormone signal transduction were validated. Detailed analysis of DEGs highlighted the potential role of genes such as GH3s (LOC103490488, LOC103490483), SUARs (LOC107991561, LOC103497281 and LOC103489067), ARFs (LOC103503893, LOC103493078) and five genes in abscisic acid pathway. In summary, our findings strongly suggest a direct correlation between phytohormones and the leaf stalk-stem angles in melon.
Collapse
Affiliation(s)
- Jiancai Mao
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junhua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junyan Yang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
9
|
Chen X, Lei T, Yan Y, Sun M, Zhong T, Wu B, Liu H, Zhang C, Sun F, Xi Y. Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:3237. [PMID: 39599446 PMCID: PMC11597981 DOI: 10.3390/plants13223237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Plant architecture is an important agronomic trait that impacts crop yield. The tiller angle is a critical aspect of the plant's structural organization, which is influenced by both internal and external factors. The genetic mechanisms underlying the tiller angle have been extensively investigated in other plants. However, research on wheat is relatively limited. Additionally, mechanics has emerged as a connection between biochemical signaling and the development of three-dimensional biological forms. It not only reveals how physical interactions at the cellular level influence overall morphogenesis but also elucidates the interplay between these mechanical processes and molecular signaling pathways that collectively determine plant morphology. This review examines the recent advancements in the study of tillering angle in wheat and other plants. It discusses progress in research ranging from observable characteristics to the regulation of genes, as well as the physiological and biochemical aspects, and the adaptability to environmental factors. In addition, this review also discusses the effects of mechanical on plant growth and development, and provides ideas for the study of mechanical regulation mechanism of tillering angle in wheat. Consequently, based on the research of other plants and combined with the genetic and mechanical principles, this approach offers novel insights and methodologies for studying tillering in wheat. This interdisciplinary research framework not only enhances our understanding of the mechanisms underlying wheat growth and development but may also uncover the critical factors that regulate tillering angle, thereby providing a scientific foundation for improving wheat yield and adaptability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yajun Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.C.)
| |
Collapse
|
10
|
He L, Yu C, Wang G, Su L, Xing X, Liu T, Huang Z, Xia H, Zhao S, Gao Z, Wang X, Zhao C, Han Z, Pan J. Transcriptome Analysis Deciphers the Underlying Molecular Mechanism of Peanut Lateral Branch Angle Formation Using Erect Branching Mutant. Genes (Basel) 2024; 15:1348. [PMID: 39457471 PMCID: PMC11507551 DOI: 10.3390/genes15101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background The growth habit (GH), also named the branching habit, is an important agronomic trait of peanut and mainly determined by the lateral branch angle (LBA). The branching habit is closely related to peanut mechanized farming, pegging, yield, and disease management. Objectives However, the molecular basis underlying peanut LBA needs to be uncovered. Methods In the present study, an erect branching peanut mutant, eg06g, was obtained via 60Co γ-ray-radiating mutagenesis of a spreading-type peanut cultivar, Georgia-06G (G06G). RNA-seq was performed to compare the transcriptome variation of the upper sides and lower sides of the lateral branch of eg06g and G06G. Results In total, 4908 differentially expressed genes (DEGs) and 5833 DEGs were identified between eg06g and G06G from the lower sides and upper sides of the lateral branch, respectively. GO, KEGG, and clustering enrichment analysis indicated that the carbohydrate metabolic process, cell wall organization or biogenesis, and plant hormone signal transduction were mainly enriched in eg06g. Conclusions Further analysis showed that the genes involved in starch biosynthesis were upregulated in eg06g, which contributed to amyloplast sedimentation and gravity perception. Auxin homeostasis and transport-related genes were found to be upregulated in eg06g, which altered the redistribution of auxin in eg06g and in turn triggered apoplastic acidification and activated cell wall modification-related enzymes, leading to tiller angle establishment through the promotion of cell elongation at the lower side of the lateral branch. In addition, cytokinin and GA also demonstrated synergistic action to finely regulate the formation of peanut lateral branch angles. Collectively, our findings provide new insights into the molecular regulation of peanut LBA and present genetic materials for breeding peanut cultivars with ideotypes.
Collapse
Affiliation(s)
- Liangqiong He
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Conghui Yu
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guanghao Wang
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Su
- Kenli District Agricultural Development Service Center, Dongying 257500, China
| | - Xin Xing
- Weihai City Agricultural and Rural Affairs Service Center, Weihai 264200, China
| | - Tiantian Liu
- Weihai City Agricultural and Rural Affairs Service Center, Weihai 264200, China
| | - Zhipeng Huang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Han Xia
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuzhen Zhao
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhongkui Gao
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xingjun Wang
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chuanzhi Zhao
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuqiang Han
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jiaowen Pan
- Shandong International Joint Laboratory of Agricultural Germplasm Resources Innovation, Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Wang W, Huang L, Song Y, Gui S, Cao J, Zhang H, Du M, Chen J, Wang Z, Zhou J, Meng X, Zeng D, Li J, Wang Y. LAZY4 acts additively with the starch-statolith-dependent gravity-sensing pathway to regulate shoot gravitropism and tiller angle in rice. PLANT COMMUNICATIONS 2024; 5:100943. [PMID: 38897199 PMCID: PMC11573920 DOI: 10.1016/j.xplc.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population. However, the molecular mechanism underlying the control of rice tiller angle remains to be clarified. Here, we characterized the novel tiller-angle gene LAZY4 (LA4) in rice through map-based cloning. LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus, and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity. We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation. Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3, which function in the starch-statolith-dependent pathway. Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation. Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism, providing new insights into the rice tiller-angle regulatory network.
Collapse
Affiliation(s)
- Wenguang Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Linzhou Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuqi Song
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Songtao Gui
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Jiajia Cao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Han Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Mengchen Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Jiaze Chen
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Zihao Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China
| | - Jie Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Yazhouwan National Laboratory, Sanya 572024, China
| | - Yonghong Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai' an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
12
|
Fan J, Ma X, Zou J, Li S, Liu Y, Guo D, Jiang W, Li X, Liu F, Tan L. LATA1, a RING E3 ligase, modulates the tiller angle by affecting auxin asymmetric distribution and content in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:429-444. [PMID: 39052425 DOI: 10.1111/tpj.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The tiller angle is an important agronomic trait that determines plant architecture and grain yield in rice (Oryza sativa L.). However, the molecular regulation mechanism of the rice tiller angle remains unclear. Here, we identified a rice tiller angle gene, LARGE TILLER ANGLE 1 (LATA1), using the MutMap approach. LATA1 encodes a C3H2C3-type RING zinc finger E3 ligase and the conserved region of the RING zinc finger is essential for its E3 activity. LATA1 was highly expressed in the root and tiller base and LATA1-GFP fusion protein was specifically localized to the nucleus. The mutation of LATA1 significantly reduced indole-3-acetic acid content and attenuated lateral auxin transport, thereby resulting in defective shoot gravitropism and spreading plant architecture in rice. Further investigations found that LATA1 may indirectly affect gravity perception by modulating the sedimentation rate of gravity-sensing amyloplasts upon gravistimulation. Our findings provide new insights into the molecular mechanism underlying the rice tiller angle and new genetic resource for the improvement of plant architecture in rice.
Collapse
Affiliation(s)
- Jinjian Fan
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Jun Zou
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangzhe Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuntao Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daokuan Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Wanxia Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xianyi Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Kumar SR, David EM, Pavithra GJ, Kumar GS, Lesharadevi K, Akshaya S, Basavaraddi C, Navyashree G, Arpitha PS, Sreedevi P, Zainuddin K, Firdous S, Babu BR, Prashanth MU, Ravikumar G, Basavaraj P, Chavana SK, Kumar VMLD, Parthasarathi T, Subbian E. Methane-derived microbial biostimulant reduces greenhouse gas emissions and improves rice yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1432460. [PMID: 39301158 PMCID: PMC11410644 DOI: 10.3389/fpls.2024.1432460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Introduction More than half of the world's population consumes rice as their primary food. The majority of rice production is concentrated in Asia, with the top 10 rice-growing countries accounting for 84% of the world's total rice cultivation. However, rice production is also strongly linked to environmental changes. Among all the global sources of greenhouse gas (GHG) emissions, paddy cultivation stands out as a significant contributor to global methane (CH4) and nitrous oxide (N2O) emissions. This contribution is expected to increase further with the projected increase of 28% in global rice output by 2050. Hence, modifications to rice management practices are necessary both to increase yield and mitigate GHG emissions. Methods We investigated the effect of seedling treatment, soil application, and foliar application of a methane-derived microbial biostimulant on grain yield and GHG emissions from rice fields over three seasons under 100% fertilizer conditions. Further, microbial biostimulant was also tested under 75% nitrogen (N) levels to demonstrate its effect on grain yield. To understand the mechanism of action of microbial biostimulant on crop physiology and yield, a series of physiological, transcript, and metabolite analyses were also performed. Results Our three-season open-field studies demonstrated a significant enhancement of grain yield, up to 39%, with a simultaneous reduction in CH4 (31%-60%) and N2O (34%-50%) emissions with the use of methane-derived microbial biostimulant. Under 75% N levels, a 34% increase in grain yield was observed with microbial biostimulant application. Based on the physiological, transcript, and metabolite analyses data, we were further able to outline the potential mechanisms for the diverse synergistic effects of methane-derived microbial biostimulant on paddy, including indole-3-acetic acid production, modulation of photosynthesis, tillering, and panicle development, ultimately translating to superior yield. Conclusion The reduction in GHG emission and enhanced yield observed under both recommended and reduced N conditions demonstrated that the methane-derived biostimulant can play a unique and necessary role in the paddy ecosystem. The consistent improvements seen across different field trials established that the methane-derived microbial biostimulant could be a scalable solution to intensify rice productivity with a lower GHG footprint, thus creating a win-win-win solution for farmers, customers, and the environment.
Collapse
Affiliation(s)
- Sarma Rajeev Kumar
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | - Einstein Mariya David
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | | | - Gopalakrishnan Sajith Kumar
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Kuppan Lesharadevi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Selvaraj Akshaya
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | | | | | | | - Padmanabhan Sreedevi
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| | | | - Saiyyeda Firdous
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | | | | | | | | | | | | | - Theivasigamani Parthasarathi
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | - Ezhilkani Subbian
- String Bio Private Limited, Bangalore, India
- String Bio Private Limited, Centre for Cellular and Molecular Platforms, Bangalore, India
| |
Collapse
|
14
|
Li Z, Ye J, Yuan Q, Zhang M, Wang X, Wang J, Wang T, Qian H, Wei X, Yang Y, Shang L, Feng Y. BTA2 regulates tiller angle and the shoot gravity response through controlling auxin content and distribution in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1966-1982. [PMID: 38940609 DOI: 10.1111/jipb.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Tiller angle is a key agricultural trait that establishes plant architecture, which in turn strongly affects grain yield by influencing planting density in rice. The shoot gravity response plays a crucial role in the regulation of tiller angle in rice, but the underlying molecular mechanism is largely unknown. Here, we report the identification of the BIG TILLER ANGLE2 (BTA2), which regulates tiller angle by controlling the shoot gravity response in rice. Loss-of-function mutation of BTA2 dramatically reduced auxin content and affected auxin distribution in rice shoot base, leading to impaired gravitropism and therefore a big tiller angle. BTA2 interacted with AUXIN RESPONSE FACTOR7 (ARF7) to modulate rice tiller angle through the gravity signaling pathway. The BTA2 protein was highly conserved during evolution. Sequence variation in the BTA2 promoter of indica cultivars harboring a less expressed BTA2 allele caused lower BTA2 expression in shoot base and thus wide tiller angle during rice domestication. Overexpression of BTA2 significantly increased grain yield in the elite rice cultivar Huanghuazhan under appropriate dense planting conditions. Our findings thus uncovered the BTA2-ARF7 module that regulates tiller angle by mediating the shoot gravity response. Our work offers a target for genetic manipulation of plant architecture and valuable information for crop improvement by producing the ideal plant type.
Collapse
Affiliation(s)
- Zhen Li
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junhua Ye
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Mengchen Zhang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Xingyu Wang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jing Wang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xinghua Wei
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yaolong Yang
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yue Feng
- China National Center for Rice Improvement, State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| |
Collapse
|
15
|
Yu Y, He RR, Yang L, Feng YZ, Xue J, Liu Q, Zhou YF, Lei MQ, Zhang YC, Lian JP, Chen YQ. A transthyretin-like protein acts downstream of miR397 and LACCASE to regulate grain yield in rice. THE PLANT CELL 2024; 36:2893-2907. [PMID: 38735686 PMCID: PMC11289628 DOI: 10.1093/plcell/koae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
16
|
Zhou B, Sheng Q, Yao X, Li T, Lu L. Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice. PLANT DIRECT 2024; 8:e618. [PMID: 38962172 PMCID: PMC11220506 DOI: 10.1002/pld3.618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Tea plant (Camellia sinensis [L.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it CsBRC. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of CsBRC transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that CsBRC affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of CsBRC in rice could increase tiller number, grain length and width, and 1,000-grain weight.
Collapse
Affiliation(s)
- Bokun Zhou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Qi Sheng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Tong Li
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| | - Litang Lu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life ScienceGuizhou UniversityGuiyangChina
- College of Tea Science, Institute of Plant Health and MedicineGuizhou UniversityGuiyangChina
| |
Collapse
|
17
|
Wang K, Li J, Fan Y, Yang J. Temperature Effect on Rhizome Development in Perennial rice. RICE (NEW YORK, N.Y.) 2024; 17:32. [PMID: 38717687 PMCID: PMC11078906 DOI: 10.1186/s12284-024-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Traditional agriculture is becoming increasingly not adapted to global climate change. Compared with annual rice, perennial rice has strong environmental adaptation and needs fewer natural resources and labor inputs. Rhizome, a kind of underground stem for rice to achieve perenniallity, can grow underground horizontally and then bend upward, developing into aerial stems. The temperature has a great influence on plant development. To date, the effect of temperature on rhizome development is still unknown. Fine temperature treatment of Oryza longistaminata (OL) proved that compared with higher temperatures (28-30 ℃), lower temperature (17-19 ℃) could promote the sprouting of axillary buds and enhance negative gravitropism of branches, resulting in shorter rhizomes. The upward growth of branches was earlier at low temperature than that at high temperature, leading to a high frequency of shorter rhizomes and smaller branch angles. Comparative transcriptome showed that plant hormones played an essential role in the response of OL to temperature. The expressions of ARF17, ARF25 and FucT were up-regulated at low temperature, resulting in prospectively asymmetric auxin distribution, which subsequently induced asymmetric expression of IAA20 and WOX11 between the upper and lower side of the rhizome, further leading to upward growth of the rhizome. Cytokinin and auxin are phytohormones that can promote and inhibit bud outgrowth, respectively. The auxin biosynthesis gene YUCCA1 and cytokinin oxidase/dehydrogenase gene CKX4 and CKX9 were up-regulated, while cytokinin biosynthesis gene IPT4 was down-regulated at high temperature. Moreover, the D3 and D14 in strigolactones pathways, negatively regulating bud outgrowth, were up-regulated at high temperature. These results indicated that cytokinin, auxins, and strigolactones jointly control bud outgrowth at different temperatures. Our research revealed that the outgrowth of axillary bud and the upward growth of OL rhizome were earlier at lower temperature, providing clues for understanding the rhizome growth habit under different temperatures, which would be helpful for cultivating perennial rice.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Sun L, Xu H, Song J, Yang X, Wang X, Liu H, Pang M, Hu Y, Yang Q, Ning X, Liang S, Zhang S, Luan W. OsNAC103, a NAC Transcription Factor, Positively Regulates Leaf Senescence and Plant Architecture in Rice. RICE (NEW YORK, N.Y.) 2024; 17:15. [PMID: 38358523 PMCID: PMC10869678 DOI: 10.1186/s12284-024-00690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Leaf senescence, the last stage of leaf development, is essential for crop yield by promoting nutrition relocation from senescence leaves to new leaves and seeds. NAC (NAM/ATAF1/ATAF2/CUC2) proteins, one of the plant-specific transcription factors, widely distribute in plants and play important roles in plant growth and development. Here, we identified a new NAC member OsNAC103 and found that it plays critical roles in leaf senescence and plant architecture in rice. OsNAC103 mRNA levels were dramatically induced by leaf senescence as well as different phytohormones such as ABA, MeJA and ACC and abiotic stresses including dark, drought and high salinity. OsNAC103 acts as a transcription factor with nuclear localization signals at the N terminal and a transcriptional activation signal at the C terminal. Overexpression of OsNAC103 promoted leaf senescence while osnac103 mutants delayed leaf senescence under natural condition and dark-induced condition, meanwhile, senescence-associated genes (SAGs) were up-regulated in OsNAC103 overexpression (OsNAC103-OE) lines, indicating that OsNAC103 positively regulates leaf senescence in rice. Moreover, OsNAC103-OE lines exhibited loose plant architecture with larger tiller angles while tiller angles of osnac103 mutants decreased during the vegetative and reproductive growth stages due to the response of shoot gravitropism, suggesting that OsNAC103 can regulate the plant architecture in rice. Taken together, our results reveal that OsNAC103 plays crucial roles in the regulation of leaf senescence and plant architecture in rice.
Collapse
Affiliation(s)
- Lina Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Hanqin Xu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Juan Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoying Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - XinYi Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Haiyan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Mengzhen Pang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Qi Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaotong Ning
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
19
|
Kumar A, Verma K, Kashyap R, Joshi VJ, Sircar D, Yadav SR. Auxin-responsive ROS homeostasis genes display dynamic expression pattern during rice crown root primordia morphogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108307. [PMID: 38159549 DOI: 10.1016/j.plaphy.2023.108307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Reactive oxygen species (ROS) are generated continuously as a by-product of aerobic metabolism in plants. While excessive ROS cause oxidative stresses in cells, they act as signaling molecules when maintained at an optimum concentration through the dynamic equilibrium of ROS metabolizing mechanisms to regulate growth, development and response to environmental stress. Auxin and its crosstalk with other signaling cascades are crucial for maintaining ROS homeostasis and orchestrating root architecture but dissecting the underlying mechanism requires detailed investigation at the molecular level. Rice fibrous root system is primarily composed of shoot-derived adventitious roots (also called crown roots). Here, we uncover auxin-ROS cross-talk during initiation and growth of rice roots. Potassium iodide treatment changes ROS levels that results in an altered rice root architecture. We reveal that auxin induction recover root growth and development defects by recouping level of hydrogen peroxide. By comparing global datasets previously generated by auxin induction and laser capture microdissection-RNA sequencing, we identify the redox-related antioxidants genes from peroxidase, glutathione reductase, glutathione S-transferase, and thioredoxin reductase families whose expression is regulated by the auxin signaling and also display dynamic expression patterns during crown root primordia morphogenesis. The auxin-mediated differential transcriptome data were validated by quantifying expression levels of a set of genes upon auxin induction. Further, in-depth spatio-temporal expression pattern analysis by RNA in situ hybridization shows the spatially restricted expression of selected genes in the developing crown root primordia. Together, our findings uncover molecular components of auxin-ROS crosstalk involved in root organogenesis.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Komal Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rohan Kashyap
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Vedika Jayant Joshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
20
|
Tokuyama Y, Omachi M, Kushida S, Hikichi K, Okada S, Onishi K, Ishii T, Kishima Y, Koide Y. Different contributions of PROG1 and TAC1 to the angular kinematics of the main culm and tillers of wild rice (Oryza rufipogon). PLANTA 2023; 259:19. [PMID: 38085356 DOI: 10.1007/s00425-023-04300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION PROG1 is necessary but insufficient for the main culm inclination while TAC1 partially takes part in it, and both genes promote tiller inclination in Asian wild rice. Asian wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), has a prostrate architecture, with tillers branching from near the ground. The main culm of each plant grows upward and then tilts during the vegetative stage. Genes controlling tiller angle have been reported; however, their genetic contributions to the culm movement have not been quantified. Here, we quantified their genetic contributions to angular kinematics in the main culm and tillers. For the main culm inclination, one major QTL surrounding the PROG1 region was found. In cultivated rice, tillers firstly inclined and lately rose, while it kept inclining in wild rice. It was suggested that PROG1 affected the tiller elevation angle in the later kinematics, whereas TAC1 was weakly associated with the tiller angle in the whole vegetative stage. Micro-computed tomography (micro-CT) suggested that these angular changes are produced by the bending of culm bases. Because near-isogenic lines (NILs) of wild rice-type Prog1 and Tac1 alleles in the genetic background of cultivated rice did not show the prostrate architecture, the involvement of another gene(s) for inclination of the main culm was suggested. Our findings will not only contribute to the understanding of the morphological transition during domestication but also be used in plant breeding to precisely reproduce the ideal plant architecture by combining the effects of multiple genes.
Collapse
Affiliation(s)
- Yoshiki Tokuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Miku Omachi
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Shiori Kushida
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Kiwamu Hikichi
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Shuhei Okada
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Kazumitsu Onishi
- Research Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro-Shi, Hokkaido, 080-8555, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Kobe-Shi, Hyogo, 657-8501, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo-Shi, Hokkaido, 060-8589, Japan.
| |
Collapse
|
21
|
Zheng R, Peng Y, Chen J, Zhu X, Xie K, Ahmad S, Zhao K, Peng D, Liu ZJ, Zhou Y. The Genome-Level Survey of the WOX Gene Family in Melastoma dodecandrum Lour. Int J Mol Sci 2023; 24:17349. [PMID: 38139178 PMCID: PMC10743900 DOI: 10.3390/ijms242417349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Though conserved in higher plants, the WOX transcription factors play crucial roles in plant growth and development of Melastoma dodecandrum Lour., which shows pioneer position in land ecosystem formation and produces nutritional fruits. Identifying the WOX family genes in M. dodecandrum is imperative for elucidating its growth and development mechanisms. However, the WOX genes in M. dodecandrum have not yet been characterized. In this study, by identification 22 WOX genes in M. dodecandrum based on current genome data, we classified family genes into three clades and nine types with homeodomains. We highlighted gene duplications of MedWOX4, which offered evidences of whole-genome duplication events. Promoter analysis illustrated that cis-regulatory elements related to light and stress responses and plant growth were enriched. Expression pattern and RT-qPCR results demonstrated that the majority of WOX genes exhibited expression in the stem. MedWOX13s displayed highest expression across various tissues. MedWOX4s displayed a specific expression in the stem. Collectively, our study provided foundations for elucidating WOX gene functions and further molecular design breeding in M. dodecandrum.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (S.A.); (D.P.)
| |
Collapse
|
22
|
Wang W, Gui S, Wang Y. Uncover the mystery of pleiotropic effects of PROG1 during rice domestication. MOLECULAR PLANT 2023; 16:1722-1723. [PMID: 37766431 DOI: 10.1016/j.molp.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Wenguang Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Songtao Gui
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yonghong Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Xu A, Yang J, Wang S, Zheng L, Wang J, Zhang Y, Bi X, Wang H. Characterization and expression profiles of WUSCHEL-related homeobox (WOX) gene family in cultivated alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2023; 23:471. [PMID: 37803258 PMCID: PMC10557229 DOI: 10.1186/s12870-023-04476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023]
Abstract
The WUSCHEL-related homeobox (WOX) family members are plant-specific transcriptional factors, which function in meristem maintenance, embryogenesis, lateral organ development, as well as abiotic stress tolerance. In this study, 14 MsWOX transcription factors were identified and comprehensively analyzed in the cultivated alfalfa cv. Zhongmu No.1. Overall, 14 putative MsWOX members containing conserved structural regions were clustered into three clades according to phylogenetic analysis. Specific expression patterns of MsWOXs in different tissues at different levels indicated that the MsWOX genes play various roles in alfalfa. MsWUS, MsWOX3, MsWOX9, and MsWOX13-1 from the three subclades were localized in the nucleus, among which, MsWUS and MsWOX13-1 exhibited strong self-activations in yeast. In addition, various cis-acting elements related to hormone responses, plant growth, and stress responses were identified in the 3.0 kb promoter regions of MsWOXs. Expression detection of separated shoots and roots under hormones including auxin, cytokinin, GA, and ABA, as well as drought and cold stresses, showed that MsWOX genes respond to different hormones and abiotic stress treatments. Furthermore, transcript abundance of MsWOX3, and MsWOX13-2 were significantly increased after rhizobia inoculation. This study presented comprehensive data on MsWOX transcription factors and provided valuable insights into further studies of their roles in developmental processes and abiotic stress responses in alfalfa.
Collapse
Affiliation(s)
- Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jiaqi Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Siqi Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Jing Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
24
|
Li J, Sheng Y, Xu H, Li Q, Lin X, Zhou Y, Zhao Y, Song X, Wang J. Transcriptome and hormone metabolome reveal the mechanism of stem bending in water lily ( Nymphaea tetragona) cut-flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1195389. [PMID: 37746018 PMCID: PMC10515221 DOI: 10.3389/fpls.2023.1195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Water lilies are popular ornamental cut-flowers with significant economic and cultural value. However, stem bending affects the preservation of cut-flowers during their vase life. To gain further insights into the molecular mechanisms of stem bending, transcriptome profiling, hormone measurement, and morphological analysis were performed using the stems of the 'Blue Bird' water lily. Transcriptome analysis revealed that 607 differentially expressed genes (DEGs) were associated with the dorsal and ventral stems of the water lily, of which 247 were up-regulated and 360 were down-regulated. Significant differences in genes associated with plant hormones, calcium ions, glucose metabolism, and photosynthesis pathways genes involved in the dorsal and ventral areas of the curved stem. In particular, DEGs were associated with the hormone synthesis, gravity response, starch granules, Ca2+ ions, and photosynthesis. The results of qRT-PCR were consistent with that of the transcriptome sequence analysis. A total of 12 hormones were detected, of which abscisic acid, indole-3-carboxaldehyde, indole-3-carboxaldehyde and jasmonic acid were significantly differentially expressed in the dorsal and ventral stems, and were significantly higher in the dorsal stem than in the ventral stem. The cell morphology in the dorsal and ventral areas of the curved stem clearly changed during vase life. The direction of starch granule settlement was consistent with the bending direction of the water lily stem, as well as the direction of gravity. In conclusion, stem bending in water lily cut-flowers is regulated by multiple factors and genes. This study provides an important theoretical basis for understanding the complex regulatory mechanism of water lily stem bending.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yuhui Sheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
- College of Agricultural, Hengxing University, Qingdao, Shandong, China
| | - Huixian Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Qinxue Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiuya Lin
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yang Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Ying Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Jian Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| |
Collapse
|
25
|
Wang J, Huang J, Bao J, Li X, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY 1 and OsGIGANTEA, respectively. MOLECULAR PLANT 2023; 16:1413-1426. [PMID: 37621089 DOI: 10.1016/j.molp.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Plant architecture and panicle architecture are two critical agronomic traits that greatly affect the yield of rice (Oryza sativa). PROSTRATE GROWTH 1 (PROG1) encodes a key C2H2-type zinc-finger transcription factor and has pleiotropic effects on the regulation of both plant and panicle architecture, thereby influencing the grain yield. However, the molecular mechanisms through which PROG1 controls plant and panicle architecture remain unclear. In this study, we showed that PROG1 directly binds the LAZY 1 (LA1) promoter and acts as a repressor to inhibit LA1 expression. Conversely, LA1 acts as a repressor of PROG1 by directly binding to the PROG1 promoter. These two genes play antagonistic roles in shaping plant architecture by regulating both tiller angle and tiller number. Interestingly, our data showed that PROG1 controls panicle architecture through direct binding to the intragenic regulatory regions of OsGIGANTEA (OsGI) and subsequent activation of its expression. Collectively, we have identified two crucial targets of PROG1, LA1 and OsGI, shedding light on the molecular mechanisms underlying plant and panicle architecture control by PROG1. Our study provides valuable insights into the regulation of key domestication-related traits in rice and identifies potential targets for future high-yield rice breeding.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinlin Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xizhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
26
|
Garg T, Yadav M, Mushahary KKK, Kumar A, Pal V, Singh H, Jain M, Yadav SR. Spatially activated conserved auxin-transcription factor regulatory module controls de novo root organogenesis in rice. PLANTA 2023; 258:52. [PMID: 37491477 DOI: 10.1007/s00425-023-04210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
MAIN CONCLUSION This study reveals that the process of crown root development and auxin-induced de novo root organogenesis during in vitro plantlet regeneration share a common auxin-OsWOX10 regulatory module in rice. In the fibrous-type root system of rice, the crown roots (CR) are developed naturally from the shoot tissues. Generation of robust auxin response, followed by activation of downstream cell fate determinants and signaling pathways at the onset of crown root primordia (CRP) establishment is essential for new root initiation. During rice tissue culture, embryonic calli are induced to regenerate shoots in vitro which undergo de novo root organogenesis on an exogenous auxin-supplemented medium, but the mechanism underlying spatially restricted root organogenesis remains unknown. Here, we reveal the dynamics of progressive activation of genes involved in auxin homeostasis and signaling during initiation and outgrowth of rice crown root primordia. By comparative global dataset analysis, we identify the crown root primordia-expressed genes whose expression is also regulated by auxin signaling. In-depth spatio-temporal expression pattern analysis shows that the exogenous application of auxin induces a set of key transcription factors exclusively in the spatially positioned CRP. Further, functional analysis of rice WUSCHEL-RELATED HOMEOBOX 10 (OsWOX10) during in vitro plantlet regeneration from embryogenic calli shows that it promotes de novo root organogenesis from regenerated shoots. Expression of rice OsWOX10 also induces adventitious roots (AR) in Arabidopsis, independent of homologous endogenous Arabidopsis genes. Together, our findings reveal that a common auxin-transcription factor regulatory module is involved in root organogenesis under different conditions.
Collapse
Affiliation(s)
- Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Manoj Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Department of Biochemistry, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, India
| | | | - Akshay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Vivek Pal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
- Center for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
27
|
Wang H, Tu R, Ruan Z, Chen C, Peng Z, Zhou X, Sun L, Hong Y, Chen D, Liu Q, Wu W, Zhan X, Shen X, Zhou Z, Cao L, Zhang Y, Cheng S. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:160. [PMID: 37347301 DOI: 10.1007/s00122-023-04404-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
KEY MESSAGE TAC1 is involved in photoperiodic and gravitropic responses to modulate rice dynamic plant architecture likely by affecting endogenous auxin distribution, which could explain TAC1 widespread distribution in indica rice. Plants experience a changing environment throughout their growth, which requires dynamic adjustments of plant architecture in response to these environmental cues. Our previous study demonstrated that Tiller Angle Control 1 (TAC1) modulates dynamic changes in plant architecture in rice; however, the underlying regulatory mechanisms remain largely unknown. In this study, we show that TAC1 regulates plant architecture in an expression dose-dependent manner, is highly expressed in stems, and exhibits dynamic expression in tiller bases during the growth period. Photoperiodic treatments revealed that TAC1 expression shows circadian rhythm and is more abundant during the dark period than during the light period and under short-day conditions than under long-day conditions. Therefore, it contributes to dynamic plant architecture under long-day conditions and loose plant architecture under short-day conditions. Gravity treatments showed that TAC1 is induced by gravistimulation and negatively regulates shoot gravitropism, likely by affecting auxin distribution. Notably, the tested indica rice containing TAC1 displayed dynamic plant architecture under natural long-day conditions, likely explaining the widespread distribution of TAC1 in indica rice. Our results provide new insights into TAC1-mediated regulatory mechanisms for dynamic changes in rice plant architecture.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Chi Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Zhengping Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|
28
|
Zhong Q, Jia Q, Yin W, Wang Y, Rao Y, Mao Y. Advances in cloning functional genes for rice yield traits and molecular design breeding in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1206165. [PMID: 37404533 PMCID: PMC10317195 DOI: 10.3389/fpls.2023.1206165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Rice, a major food crop in China, contributes significantly to international food stability. Advances in rice genome sequencing, bioinformatics, and transgenic techniques have catalyzed Chinese researchers' discovery of novel genes that control rice yield. These breakthroughs in research also encompass the analysis of genetic regulatory networks and the establishment of a new framework for molecular design breeding, leading to numerous transformative findings in this field. In this review, some breakthroughs in rice yield traits and a series of achievements in molecular design breeding in China in recent years are presented; the identification and cloning of functional genes related to yield traits and the development of molecular markers of rice functional genes are summarized, with the intention of playing a reference role in the following molecular design breeding work and how to further improve rice yield.
Collapse
Affiliation(s)
- Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Qiwei Jia
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yijian Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
29
|
Kuya N, Nishijima R, Kitomi Y, Kawakatsu T, Uga Y. Transcriptome profiles of rice roots under simulated microgravity conditions and following gravistimulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1193042. [PMID: 37360733 PMCID: PMC10288856 DOI: 10.3389/fpls.2023.1193042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Root system architecture affects the efficient uptake of water and nutrients in plants. The root growth angle, which is a critical component in determining root system architecture, is affected by root gravitropism; however, the mechanism of root gravitropism in rice remains largely unknown. In this study, we conducted a time-course transcriptome analysis of rice roots under conditions of simulated microgravity using a three-dimensional clinostat and following gravistimulation to detect candidate genes associated with the gravitropic response. We found that HEAT SHOCK PROTEIN (HSP) genes, which are involved in the regulation of auxin transport, were preferentially up-regulated during simulated microgravity conditions and rapidly down-regulated by gravistimulation. We also found that the transcription factor HEAT STRESS TRANSCRIPTION FACTOR A2s (HSFA2s) and HSFB2s, showed the similar expression patterns with the HSPs. A co-expression network analysis and an in silico motif search within the upstream regions of the co-expressed genes revealed possible transcriptional control of HSPs by HSFs. Because HSFA2s are transcriptional activators, whereas HSFB2s are transcriptional repressors, the results suggest that the gene regulatory networks governed by HSFs modulate the gravitropic response through transcriptional control of HSPs in rice roots.
Collapse
Affiliation(s)
- Noriyuki Kuya
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryo Nishijima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
30
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
31
|
Cai Y, Huang L, Song Y, Yuan Y, Xu S, Wang X, Liang Y, Zhou J, Liu G, Li J, Wang W, Wang Y. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1217-1228. [PMID: 36789453 DOI: 10.1111/pbi.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 05/27/2023]
Abstract
Starch biosynthesis in gravity-sensing tissues of rice shoot determines the magnitude of rice shoot gravitropism and thus tiller angle. However, the molecular mechanism underlying starch biosynthesis in rice gravity-sensing tissues is still unclear. We characterized a novel tiller angle gene LAZY3 (LA3) in rice through map-based cloning. Biochemical, molecular and genetic studies further demonstrated the essential roles of LA3 in gravity perception of rice shoot and tiller angle control. The shoot gravitropism and lateral auxin transport were defective in la3 mutant upon gravistimulation. We showed that LA3 encodes a chloroplast-localized tryptophan-rich protein associated with starch granules via Tryptophan-rich region (TRR) domain. Moreover, LA3 could interact with the starch biosynthesis regulator LA2, determining starch granule formation in shoot gravity-sensing tissues. LA3 and LA2 negatively regulate tiller angle in the same pathway acting upstream of LA1 to mediate asymmetric distribution of auxin. Our study defined LA3 as an indispensable factor of starch biosynthesis in rice gravity-sensing tissues that greatly broadens current understanding in the molecular mechanisms underlying the starch granule formation in gravity-sensing tissues, and provides new insights into the regulatory mechanism of shoot gravitropism and rice tiller angle.
Collapse
Affiliation(s)
- Yueyue Cai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linzhou Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuqi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yundong Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shuo Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jie Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guifu Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
32
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
33
|
Identification and co-expression network analysis of plumule-preferentially expressed genes in Oryza sativa. Genes Genomics 2023; 45:319-336. [PMID: 36708499 DOI: 10.1007/s13258-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND The seedling establishment is controlled by the programmed expression of sets of genes at the specific tissues of seed, abundance and environment. Plumule is an important part of the seed embryo and expresses the suits of genes to exert distinct functions during seed germination. Although rice genomic resources are available and developed rapidly, thousands of transcripts have not previously been located in the plumule of rice. OBJECTIVE This study was performed to identify plumule-preferentially expressed (OsPluP) genes in rice and determine the expression profiles and functions of OsPluP genes. METHODS We identified the OsPluP genes through Affymetrix microarray data. Meanwhile, qRT-PCR was performed to validate the expression pattern, also found that OsPluP genes were regulated by dark/light treatment. The cis-acting regulatory elements were analyzed in the promoters' regions of OsPluP genes. The T-DNA mutant of the OsPluP seed was used to reveal the function in seed germination. RESULTS In this study, a genomic survey of OsPluP genes was performed, and we identified 88 OsPluP genes based on Affymetrix microarray data. The expression profiles of 88 OsPluP members in 24 representative tissues covering rice whole life cycle can be roughly classified into three major groups, suggesting functional divergence of OsPluP genes in seed germination. The microarray data, qRT-PCR, and promoter analysis results demonstrated that transcripts of more than half OsPluPs (54 genes) could be enhanced in the darkness and respond to phytohormone. Gene Ontology (GO)and Kyoto encyclopedia of genes and genomes (KEGG) analysis demonstrated that OsPluP and their co-expressed genes were highly enriched in fatty acid metabolism. Moreover, OsPluP82 T-DNA mutant seeds displayed short plumule length and storage lipid accumulation. CONCLUSION This study would enable the functions of OsPluP genes during seed germination and contribute to the goal of molecular regulatory networks that lay the foundation for further studies of seedling growth.
Collapse
|
34
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
35
|
Zhang R, Zheng D, Feng N, Qiu QS, Zhou H, Liu M, Li Y, Meng F, Huang X, Huang A, Li Y. Prohexadione calcium enhances rice growth and tillering under NaCl stress. PeerJ 2023; 11:e14804. [PMID: 36778152 PMCID: PMC9910188 DOI: 10.7717/peerj.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.
Collapse
Affiliation(s)
- Rongjun Zhang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Dianfeng Zheng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Naijie Feng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Quan-Sheng Qiu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,School of Life Sciences, Lanzhou University, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - Hang Zhou
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Meiling Liu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yao Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Fengyan Meng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - XiXin Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Anqi Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yixiang Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
36
|
Yang Y, Wang W, Hu Q, Raman H, Liu J. Genome-wide association and RNA-seq analyses identify loci for pod orientation in rapeseed ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 13:1097534. [PMID: 36714779 PMCID: PMC9880488 DOI: 10.3389/fpls.2022.1097534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Spatial distribution and orientation of pods on the main raceme (stem) and branches could affect rapeseed yield. However, genomic regions underlying the pod orientation were not described in Brassica species. Here, we determined the extent of genetic variation in pod orientation, described as the angles of pedicel on raceme (APR) and angles of the pod on pedicel (APP) among 136 rapeseed accessions grown across three environments of the upper, middle and lower Yangtze River in China. The APR ranged from 59° to 109°, while the APP varied from 142° to 178°. Statistical analysis showed that phenotypic variation was due to genotypic (G) and environmental (E) effects. Using the genome-wide association analysis (GWAS) approach, two QTLs for APR (qBnAPR.A02 and qBnAPR.C02) and two for APP (qBnAPP.A05 and qBnAPP.C05), having minor to moderate allelic effects (4.30% to 19.47%) were identified. RNA-seq analysis revealed 606 differentially expressed genes (DEGs) in two rapeseed accessions representing the extreme phenotypes for pod orientation and different alleles at the QTLs of APR. Three DEGs (BnLAZY4.A02, BnSAUR32.A02, and BnSAUR32.C02) were identified as the most likely candidates responsible for variation in pod orientation (APR). This study elucidates the genomic regions and putative candidate genes underlying pod orientation in B. napus.
Collapse
Affiliation(s)
- Yuting Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Shenzhen Graduate School, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenxiang Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Harsh Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
37
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
Affiliation(s)
- Qihui Wan
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Ning Zhai
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Dixiang Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Wu Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Lin Xu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
38
|
Zhao L, Zheng Y, Wang Y, Wang S, Wang T, Wang C, Chen Y, Zhang K, Zhang N, Dong Z, Chen F. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:122-135. [PMID: 36128872 PMCID: PMC9829390 DOI: 10.1111/pbi.13930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 05/29/2023]
Abstract
Tiller angle is one of the most important agronomic traits and one key factor for wheat ideal plant architecture, which can both increase photosynthetic efficiency and greatly enhance grain yield. Here, a deacetylase HST1-like (TaHST1L) gene controlling wheat tiller angle was identified by the combination of a genome-wide association study (GWAS) and bulked segregant analysis (BSA). Ethyl methane sulfonate (EMS)-mutagenized tetraploid wheat lines with the premature stop codon of TaHST1L exhibited significantly smaller tiller angles than the wild type. TaHST1L-overexpressing (OE) plants exhibited significantly larger tiller angles and increased tiller numbers in both winter and spring wheat, while TaHST1L-silenced RNAi plants displayed significantly smaller tiller angles and decreased tiller numbers. Moreover, TaHST1L strongly interacted with TaIAA17 and inhibited its expression at the protein level, and thus possibly improved the content of endogenous auxin in the basal tissue of tillers. The transcriptomics and metabolomics results indicated that TaHST1L might change plant architecture by mediating auxin signal transduction and regulating endogenous auxin levels. In addition, a 242-bp insertion/deletion (InDel) in the TaHST1L-A1 promoter altered transcriptional activity and TaHST1L-A1b allele with the 242-bp insertion widened the tiller angle of TaHST1L-OE transgenic rice plants. Wheat varieties with TaHST1L-A1b allele possessed the increased tiller angle and grain yield. Further analysis in wheat and its progenitors indicated that the 242-bp InDel possibly originated from wild emmer and was strongly domesticated in the current varieties. Therefore, TaHST1L involved in the auxin signalling pathway showed the big potential to improve wheat yield by controlling plant architecture.
Collapse
Affiliation(s)
- Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ying Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Shasha Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Tongzhu Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Canguan Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yue Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Kunpu Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
39
|
Peng L, Zhang Y, Druzhinina IS, Kubicek CP, Wang Y, Zhu Z, Zhang Y, Wang K, Liu Z, Zhang X, Martin F, Yuan Z. A facultative ectomycorrhizal association is triggered by organic nitrogen. Curr Biol 2022; 32:5235-5249.e7. [PMID: 36402137 DOI: 10.1016/j.cub.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of 15N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example, several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the interaction, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely, the nutritional mutualism is dampened in the presence of ammonium (NH4+) or nitrate (NO3-). Increasing levels of NH4+ led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen peroxide production in roots, whereas the presence of NO3- resulted in toxin production. In summary, our results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the abundance of pectin-degrading enzymes with distinct expression patterns during functional divergence after exposure to NH4+ or organic N is likely to be central to the transition from parasitism to mutualism.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | | | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna A1060, Austria
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhiyong Zhu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Kexuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 "Interactions Arbres/Microorganismes," Centre INRAE Grand Est - Nancy, Champenoux 54280, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China.
| |
Collapse
|
40
|
Pan J, Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A, Zhang X, He L, Ma J, Li X, Tian R, Ma C, Pandey MK, Varshney RK, Wang X, Zhao C. BSA‑seq and genetic mapping identified candidate genes for branching habit in peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4457-4468. [PMID: 36181525 DOI: 10.1007/s00122-022-04231-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The candidate gene AhLBA1 controlling lateral branch angel of peanut was fine-mapped to a 136.65-kb physical region on chromosome 15 using the BSA-seq and QTL mapping. Lateral branch angel (LBA) is an important plant architecture trait of peanut, which plays key role in lodging, peg soil penetration and pod yield. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for LBA in peanut. In this project, a mapping population was constructed using a spreading variety Tifrunner and the erect variety Fuhuasheng. Through bulked segregant analysis sequencing (BSA-seq), a major gene related to LBA, named as AhLBA1, was preliminarily mapped at the region of Chr.15: 150-160 Mb. Then, using traditional QTL approach, AhLBA1 was narrowed to a 1.12 cM region, corresponding to a 136.65-kb physical interval of the reference genome. Of the nine genes housed in this region, three of them were involved in hormone metabolism and regulation, including one "F-box protein" and two "2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase (2OG oxygenase)" encoding genes. In addition, we found that the level of some classes of cytokinin (CK), auxin and ethylene showed significant differences between spreading and erect peanuts at the junction of main stem and lateral branch. These findings will aid further elucidation of the genetic mechanism of LBA in peanut and facilitating marker-assisted selection (MAS) in the future breeding program.
Collapse
Affiliation(s)
- Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Ronghua Tang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jing Jiang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mengdi Tian
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, People's Republic of China
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Aiqin Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Xianying Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaojie Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
41
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
43
|
Shao P, Peng Y, Wu Y, Wang J, Pan Z, Yang Y, Aini N, Guo C, Shui G, Chao L, Tian X, An Q, Yang Q, You C, Lu L, Zhang X, Wang M, Nie X. Genome-wide association study and transcriptome analysis reveal key genes controlling fruit branch angle in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:988647. [PMID: 36212380 PMCID: PMC9532966 DOI: 10.3389/fpls.2022.988647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Fruit branch angle (FBA), a pivotal component of cotton plant architecture, is vital for field and mechanical harvesting. However, the molecular mechanism of FBA formation is poorly understood in cotton. To uncover the genetic basis for FBA formation in cotton, we performed a genome-wide association study (GWAS) of 163 cotton accessions with re-sequencing data. A total of 55 SNPs and 18 candidate genes were significantly associated with FBA trait. By combining GWAS and transcriptome analysis, four genes underlying FBA were identified. An FBA-associated candidate gene Ghi_A09G08736, which is homologous to SAUR46 in Arabidopsis thaliana, was detected in our study. In addition, transcriptomic evidence was provided to show that gravity and light were implicated in the FBA formation. This study provides new insights into the genetic architecture of FBA that informs architecture breeding in cotton.
Collapse
Affiliation(s)
- Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanlong Wu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Jing Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Yang
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Nurimanguli Aini
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Chunping Guo
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Guangling Shui
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Chao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaomin Tian
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Qingyong Yang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi, Xinjiang, China
| | - Lu Lu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
44
|
Blocking Rice Shoot Gravitropism by Altering One Amino Acid in LAZY1. Int J Mol Sci 2022; 23:ijms23169452. [PMID: 36012716 PMCID: PMC9409014 DOI: 10.3390/ijms23169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tiller angle is an important trait that determines plant architecture and yield in cereal crops. Tiller angle is partially controlled during gravistimulation by the dynamic re-allocation of LAZY1 (LA1) protein between the nucleus and plasma membrane, but the underlying mechanism remains unclear. In this study, we identified and characterized a new allele of LA1 based on analysis of a rice (Oryza sativa L.) spreading-tiller mutant la1G74V, which harbors a non-synonymous mutation in the predicted transmembrane (TM) domain-encoding region of this gene. The mutation causes complete loss of shoot gravitropism, leading to prostrate growth of plants. Our results showed that LA1 localizes not only to the nucleus and plasma membrane but also to the endoplasmic reticulum. Removal of the TM domain in LA1 showed spreading-tiller phenotype of plants similar to la1G74V but did not affect the plasma membrane localization; thus, making it distinct from its ortholog ZmLA1 in Zea mays. Therefore, we propose that the TM domain is indispensable for the biological function of LA1, but this domain does not determine the localization of the protein to the plasma membrane. Our study provides new insights into the LA1-mediated regulation of shoot gravitropism.
Collapse
|
45
|
Bai S, Hong J, Su S, Li Z, Wang W, Shi J, Liang W, Zhang D. Genetic basis underlying tiller angle in rice (Oryza sativa L.) by genome-wide association study. PLANT CELL REPORTS 2022; 41:1707-1720. [PMID: 35776138 DOI: 10.1007/s00299-022-02873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Novel alleles of two reported tiller angle genes and eleven candidate genes for rice tiller angle were identified by combining GWAS with transcriptomic, qRT-PCR and haplotype analysis. Rice tiller angle is a key agronomic trait determining rice grain yield. Several quantitative trait loci (QTLs) affecting rice tiller angle have been mapped in the past decades. Little is known about the genetic base of tiller angle in rice, because rice tiller angle is a complex polygenic trait. In this study, we performed genome-wide association study (GWAS) on tiller angle in rice using a population of 164 japonica varieties derived from the 3 K Rice Genomes Project (3 K RGP). We detected a total of 18 QTLs using 1135519 single-nucleotide polymorphisms (SNP) based on three GWAS models (GLM, FastLMM and FarmCPU). Among them, two identified QTLs, qTA8.3 and qTA8.4, overlapped with PAY1 and TIG1, respectively, and additional 16 QTLs were identified for the first time. Combined with haplotype and expression analyses, we further revealed that PAY1 harbors one non-synonymous variation at its coding region, likely leading to variable tiller angle in the population, and that nature variations in the promoter of TIG1 significantly affect its expression, closely correlating with tiller angle phenotypes observed. Similarly, using qRT-PCR and haplotype analysis, we identified 1 and 7 candidate genes in qTA6.1 and qTA8.1 that were commonly detected by two GWAS models, respectively. In addition, we identified 3 more candidate genes in the remaining 14 novel QTLs after filtering by transcriptome analysis and qRT-PCR. In summary, this study provides new insights into the genetic architecture of rice tiller angle and candidate genes for rice breeding.
Collapse
Affiliation(s)
- Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, 5064, Australia.
| |
Collapse
|
46
|
Wang Z, Cai Q, Xia H, Han B, Li M, Wang Y, Zhu M, Jiao C, Wang D, Zhu J, Yuan W, Zhu D, Xu C, Wang H, Zhou M, Zhang X, Shi J, Chen J. Genome-Wide Identification and Comparative Analysis of WOX Genes in Four Euphorbiaceae Species and Their Expression Patterns in Jatropha curcas. Front Genet 2022; 13:878554. [PMID: 35846114 PMCID: PMC9280045 DOI: 10.3389/fgene.2022.878554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The WUSCHEL-related homeobox (WOX) proteins are widely distributed in plants and play important regulatory roles in growth and development processes such as embryonic development and organ development. Here, series of bioinformatics methods were utilized to unravel the structural basis and genetic hierarchy of WOX genes, followed by regulation of the WOX genes in four Euphorbiaceae species. A genome-wide survey identified 59 WOX genes in Hevea brasiliensis (H. brasiliensis: 20 genes), Jatropha curcas (J. curcas: 10 genes), Manihot esculenta (M. esculenta: 18 genes), and Ricinus communis (R. communis: 11 genes). The phylogenetic analysis revealed that these WOX members could be clustered into three close proximal clades, such as namely ancient, intermediate and modern/WUS clades. In addition, gene structures and conserved motif analyses further validated that the WOX genes were conserved within each phylogenetic clade. These results suggested the relationships among WOX members in the four Euphorbiaceae species. We found that WOX genes in H. brasiliensis and M. esculenta exhibit close genetic relationship with J. curcas and R. communis. Additionally, the presence of various cis-acting regulatory elements in the promoter of J. curcas WOX genes (JcWOXs) reflected distinct functions. These speculations were further validated with the differential expression profiles of various JcWOXs in seeds, reflecting the importance of two JcWOX genes (JcWOX6 and JcWOX13) during plant growth and development. Our quantitative real-time PCR (qRT-PCR) analysis demonstrated that the JcWOX11 gene plays an indispensable role in regulating plant callus. Taken together, the present study reports the comprehensive characteristics and relationships of WOX genes in four Euphorbiaceae species, providing new insights into their characterization.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Haimeng Xia
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Bingqing Han
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Dandan Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Junjie Zhu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Di Zhu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minghui Zhou
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Xie Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jinhui Chen,
| |
Collapse
|
47
|
Ahmad N, Hou L, Ma J, Zhou X, Xia H, Wang M, Leal-Bertioli S, Zhao S, Tian R, Pan J, Li C, Li A, Bertioli D, Wang X, Zhao C. Bulk RNA-Seq Analysis Reveals Differentially Expressed Genes Associated with Lateral Branch Angle in Peanut. Genes (Basel) 2022; 13:genes13050841. [PMID: 35627225 PMCID: PMC9140427 DOI: 10.3390/genes13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lateral branch angle (LBA), or branch habit, is one of the most important agronomic traits in peanut. To date, the underlying molecular mechanisms of LBA have not been elucidated in peanut. To acquire the differentially expressed genes (DEGs) related to LBA, a TI population was constructed through the hybridization of a bunch-type peanut variety Tifrunner and prostrate-type Ipadur. We report the identification of DEGs related to LBA by sequencing two RNA pools, which were composed of 45 F3 lines showing an extreme opposite bunch and prostrate phenotype. We propose to name this approach Bulk RNA-sequencing (BR-seq) as applied to several plant species. Through BR-seq analysis, a total of 3083 differentially expressed genes (DEGs) were identified, including 13 gravitropism-related DEGs, 22 plant hormone-related DEGs, and 55 transcription factors-encoding DEGs. Furthermore, we also identified commonly expressed alternatively spliced (AS) transcripts, of which skipped exon (SE) and retained intron (RI) were most abundant in the prostrate and bunch-type peanut. AS isoforms between prostrate and bunch peanut highlighted important clues to further understand the post-transcriptional regulatory mechanisms of branch angle regulation. Our findings provide not only important insights into the landscape of the regulatory pathway involved in branch angle formation but also present practical information for peanut molecular breeding in the future.
Collapse
Affiliation(s)
- Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.Z.); (M.W.)
| | - Junjie Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Ximeng Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.Z.); (M.W.)
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Mingxiao Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.Z.); (M.W.)
| | - Soraya Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA; (S.L.-B.); (D.B.)
- Department of Plant Pathology, University of Georgia, Athens, GA 31793, USA
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - Aiqin Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
| | - David Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA; (S.L.-B.); (D.B.)
- Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.Z.); (M.W.)
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (N.A.); (L.H.); (J.M.); (H.X.); (S.Z.); (R.T.); (J.P.); (C.L.); (A.L.); (X.W.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.Z.); (M.W.)
- Correspondence:
| |
Collapse
|
48
|
Zhao DD, Jang YH, Farooq M, Park JR, Kim EG, Du XX, Jan R, Kim KH, Lee SI, Lee GS, Kim KM. Identification of a Major QTL and Validation of Related Genes for Tiller Angle in Rice Based on QTL Analysis. Int J Mol Sci 2022; 23:ijms23095192. [PMID: 35563584 PMCID: PMC9105483 DOI: 10.3390/ijms23095192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023] Open
Abstract
An ideal plant architecture is an important condition to achieve high crop yields. The tiller angle is an important and complex polygenic trait of rice (Oryza sativa L.) plant architecture. Therefore, the discovery and identification of tiller angle-related genes can aid in the improvement of crop architecture and yield. In the present study, 222 SSR markers were used to establish a high-density genetic map of rice doubled haploid population, and a total of 8 quantitative trait loci (QTLs) were detected based on the phenotypic data of the tiller angle and tiller crown width over 2 years. Among them, four QTLs (qTA9, qCW9, qTA9-1, and qCW9-1) were overlapped at marker interval RM6235-RM24288 on chromosome 9 with a large effect value regarded as a stable major QTL. The selected promising related genes were further identified by relative gene expression analysis, which gives us a basis for the future cloning of these genes. Finally, OsSAURq9, which belongs to the SMALL AUXIN UP RNA (SAUR), an auxin-responsive protein family, was selected as a target gene. Overall, this work will help broaden our knowledge of the genetic control of tiller angle and tiller crown width, and this study provides both a good theoretical basis and a new genetic resource for the breeding of ideal-type rice.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
| | - Xiao-Xuan Du
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (X.-X.D.); (K.-H.K.); (S.I.L.)
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea; (D.-D.Z.); (Y.-H.J.); (M.F.); (E.-G.K.); (R.J.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (G.-S.L.); (K.-M.K.); Tel.: +82-63-238-4714 (G.-S.L.); +82-53-950-5711 (K.-M.K.)
| |
Collapse
|
49
|
Tiller Angle Control 1 Is Essential for the Dynamic Changes in Plant Architecture in Rice. Int J Mol Sci 2022; 23:ijms23094997. [PMID: 35563391 PMCID: PMC9105778 DOI: 10.3390/ijms23094997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Plant architecture is dynamic as plants develop. Although many genes associated with specific plant architecture components have been identified in rice, genes related to underlying dynamic changes in plant architecture remain largely unknown. Here, we identified two highly similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and RIL-Compact (C). The dynamic plant architecture of RIL-D is characterized by ‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem (maturing stage)’ under natural long-day (NLD) conditions, and ‘loosetiller angle (tillering and heading stages)–loosetiller angle and curved stem (maturing stage)’ under natural short-day (NSD) conditions, while RIL-C exhibits a compact plant architecture both under NLD and NSD conditions throughout growth. The candidate locus was mapped to the chromosome 9 tail via the rice 8K chip assay and map-based cloning. Sequencing, complementary tests, and gene knockout tests demonstrated that Tiller Angle Control 1 (TAC1) is responsible for dynamic plant architecture in RIL-D. Moreover, TAC1 positively regulates loose plant architecture, and high TAC1 expression cannot influence the expression of tested tiller-angle-related genes. Our results reveal that TAC1 is necessary for the dynamic changes in plant architecture, which can guide improvements in plant architecture during the modern super rice breeding.
Collapse
|
50
|
Zeng Z, Zhang S, Li W, Chen B, Li W. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. BMC Genomics 2022; 23:251. [PMID: 35365095 PMCID: PMC8974213 DOI: 10.1186/s12864-022-08438-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available. Results To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism. Conclusion Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08438-3.
Collapse
Affiliation(s)
- Zhichi Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Sichen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Agriculture, Guangxi University, Nanning, China.
| | - Wenlan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|