1
|
Dikaya V, Rojas-Murcia N, Benstein RM, Eiserhardt WL, Schmid M. The Arabidopsis thaliana core splicing factor PORCUPINE/SmE1 requires intron-mediated expression. PLoS One 2025; 20:e0318163. [PMID: 40138296 PMCID: PMC11940714 DOI: 10.1371/journal.pone.0318163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/12/2025] [Indexed: 03/29/2025] Open
Abstract
Plants are prone to genome duplications and tend to preserve multiple gene copies. This is also the case for the genes encoding the Sm proteins of Arabidopsis thaliana (L). The Sm proteins are best known for their roles in RNA processing such as pre-mRNA splicing and nonsense-mediated mRNA decay. In this study, we have taken a closer look at the phylogeny and differential regulation of the SmE-coding genes found in A. thaliana, PCP/SmE1, best known for its cold-sensitive phenotype, and its paralog, PCPL/SmE2. The phylogeny of the PCP homologs in the green lineage shows that SmE duplications happened multiple times independently in different plant clades and that the duplication that gave rise to PCP and PCPL occurred only in the Brassicaceae family. Our analysis revealed that A. thaliana PCP and PCPL proteins, which only differ in two amino acids, exhibit a very high level of functional conservation and can perform the same function in the cell. However, our results indicate that PCP is the prevailing copy of the two SmE genes in A. thaliana as it is more highly expressed and that the main difference between PCP and PCPL resides in their transcriptional regulation, which is strongly linked to intronic sequences. Our results provide insight into the complex mechanisms that underlie the differentiation of the paralogous gene expression as an adaptation to stress.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Wolf L. Eiserhardt
- Department of Biology, Aarhus University, Aarhus, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Kim SI, Ma X, Kong L, Guo W, Xu L, Shan L, Zhang R, He P. Global profiling of CPL3-mediated alternative splicing reveals regulatory mechanisms of DGK5 in plant immunity and phosphatidic acid homeostasis. Genome Biol 2025; 26:65. [PMID: 40119401 PMCID: PMC11927175 DOI: 10.1186/s13059-025-03529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Alternative splicing of precursor mRNAs serves as a crucial mechanism to enhance gene expression plasticity for organismal adaptation. However, the precise regulation and function of alternative splicing in plant immune gene regulation remain elusive. RESULTS Here, by deploying in-depth transcriptome profiling with deep genome coverage coupled with differential expression, differential alternative splicing, and differential transcript usage analysis, we reveal profound and dynamic changes in alternative splicing following treatment with microbial pattern flg22 peptides in Arabidopsis. Our findings highlight RNA polymerase II C-terminal domain phosphatase-like 3 (CPL3) as a key regulator of alternative splicing, preferentially influencing the splicing patterns of defense genes rather than their expression levels. CPL3 mediates the production of a flg22-induced alternative splicing variant, diacylglycerol kinase 5α (DGK5α), which differs from the canonical DGK5β in its interaction with the upstream kinase BIK1 and subsequent phosphorylation, resulting in reduced flg22-triggered production of phosphatidic acid and reactive oxygen species. Furthermore, our functional analysis suggests that DGK5β, but not DGK5α, contributes to plant resistance against virulent and avirulent bacterial infections. CONCLUSIONS These findings underscore the role of CPL3 in modulating alternative splicing dynamics of defense genes and DGK5 isoform-mediated phosphatidic acid homeostasis, shedding light on the intricate mechanisms underlying plant immune gene regulation.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wenbin Guo
- Information and Computational Sciences Department, The James Hutton Institute, Dundee, UK
| | - Lahong Xu
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Runxuan Zhang
- Information and Computational Sciences Department, The James Hutton Institute, Dundee, UK.
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biochemistry & Biophysics, Texas a&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Takahashi H, Arae T, Ishibashi K, Sano R, Demura T, Ohtani M. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2025; 115:46. [PMID: 40089952 PMCID: PMC11911268 DOI: 10.1007/s11103-025-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Alternative pre-mRNA splicing (AS) is a crucial regulatory layer of gene expression in eukaryotes. AS patterns can change in response to abiotic and biotic stress, allowing cellular functions to adapt to environmental conditions. Here, we examined the effects of cellular stress-inducing chemicals on AS-mediated gene regulation in Arabidopsis thaliana by investigating the alternatively spliced forms of SERINE-ARGININE PROTEIN30 (SRp30) and U1-70 K, encoding splicing factors, as well as ASCORBATE PEROXIDASE3 (APX3) and FOLYLPOLYGLUTAMATE SYNTHASE3 (FPGS3), encoding enzymes important for stress responses. Disrupting key cellular activities, including nitric oxide metabolism, ATPase activity, plastid function, and genome stability, affected AS patterns in Arabidopsis. Stress treatment altered the abundance of uridine-rich small nuclear RNAs (UsnRNAs), especially U1 snRNAs, which are essential non-coding RNA components of U1 small nuclear ribonucleoproteins (U1 snRNPs), suggesting that abnormalities in AS are partially mediated by changes in U1 snRNA levels. The shoot redifferentiation defectice2-1 (srd2-1) mutant defective for snRNA transcription was hypersensitive for stress treatment, since it showed changes in AS patterns at lower concentrations of stress inducers to compare with the wild type. Together, our data suggest that cellular stress can influence gene expression in plants by regulating AS, which is partially regulated by UsnRNA levels through the SRD2-mediated snRNA transcription.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Kodai Ishibashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan.
| |
Collapse
|
4
|
Sun P, Hao R, Fan F, Wang Y, Zhu F. Adaptation of High-Altitude Plants to Plateau Abiotic Stresses: A Case Study of the Qinghai-Tibet Plateau. Int J Mol Sci 2025; 26:2292. [PMID: 40076909 PMCID: PMC11900590 DOI: 10.3390/ijms26052292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
High-altitude regions offer outstanding opportunities for investigating the impacts of combined abiotic stresses on plant physiological processes given their significant differences in terms of the ecological environment in high-elevation areas, low anthropogenic disturbance, and obvious distribution characteristics of plants along altitudinal gradients. Therefore, plants in high-altitude areas can be used as good targets for exploring plant adaptations to abiotic stress under extreme conditions. Plants that thrive in high-altitude environments such as the Qinghai-Tibet Plateau endure extreme abiotic stresses, including low temperatures, high UV radiation, and nutrient-poor soils. This study explores their adaptation mechanisms via phenotypic variation analyses and multiomics approaches. Key findings highlight traits such as increased photosynthetic efficiency, robust antioxidant systems, and morphological modifications tailored to high-altitude conditions. These insights advance our understanding of plant evolution in harsh environments and inform strategies to increase stress resistance in crops.
Collapse
Affiliation(s)
| | | | | | | | - Fuyuan Zhu
- Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (P.S.); (R.H.); (F.F.); (Y.W.)
| |
Collapse
|
5
|
Contreras E, Martinez M. Warm temperature and mild drought remodel transcriptome and alter Arabidopsis responses to mite herbivory. PHYSIOLOGIA PLANTARUM 2025; 177:e70219. [PMID: 40231963 DOI: 10.1111/ppl.70219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
In the context of climate change, increased temperature and decreased water availability are expected to have profound effects on plant-herbivore interactions. To gain further insight into this issue, this work focuses on the dissection of the response of the Arabidopsis thaliana plant to the mite pest Tetranychus urticae under environmental conditions that resemble climate change. Phenotypical and molecular changes were analyzed in plants grown under mild drought and/or warm temperatures. When the transcriptome results were compared in standard and altered climate conditions, a large number of genes were found to be differentially expressed. Mite infestations in these plants showed that basal alterations conditioned the subsequent response of the plant to a specific biotic stressor. Warm temperatures favored mite performance and decreased jasmonic acid accumulation. Reduced plant damage in mild drought conditions was correlated with a higher jasmonic acid accumulation and the up-regulation of many genes involved in the production of defensive compounds. In conclusion, the use of ambient conditions that resemble climate change highlighted the drastic alterations in gene expression that may occur in nature. Understanding how these changes affect specific plant-herbivore interactions is crucial to determining how global warming will affect crop production in the future.
Collapse
Affiliation(s)
- Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Fu D, Song Y, Wu S, Peng Y, Ming Y, Li Z, Zhang X, Song W, Su Z, Gong Z, Yang S, Shi Y. Regulation of alternative splicing by CBF-mediated protein condensation in plant response to cold stress. NATURE PLANTS 2025; 11:505-517. [PMID: 40044940 DOI: 10.1038/s41477-025-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2025] [Indexed: 03/23/2025]
Abstract
Cold acclimation is critical for the survival of plants in temperate regions under low temperatures, and C-REPEAT BINDING FACTORs (CBFs) are well established as key transcriptional factors that regulate this adaptive process by controlling the expression of cold-responsive genes. Here we demonstrate that CBFs are involved in modulating alternative splicing during cold acclimation through their interaction with subunits of the spliceosome complex. Under cold stress, CBF proteins accumulate and directly interact with SKI-INTERACTING PROTEIN (SKIP), a key component of the spliceosome, which positively regulates acquired freezing tolerance. This interaction facilitates the formation of SKIP nuclear condensates, which enhances the association between SKIP and specific cold-responsive transcripts, thereby increasing their splicing efficiency. Our findings uncover a regulatory role of CBFs in alternative splicing and highlight their pivotal involvement in the full development of cold acclimation, bridging transcriptional and post-transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Diyi Fu
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Song
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shifeng Wu
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Peng
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuhang Ming
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience and Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Su R, Chen Y, Zhu R, Ding G, Dong K, Feng M, Huang J. Transcriptomic Analysis Reveals Patterns of Expression of Stage-Specific Genes in Early Apis cerana Embryos. Genes (Basel) 2025; 16:187. [PMID: 40004516 PMCID: PMC11855871 DOI: 10.3390/genes16020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Apis cerana development is described as comprising four stages: embryo, larva, pupa, and adult. There are significant differences between workers and drones in terms of physiological functions and social roles, and the formation of the organ primordia occurs during the embryonic stage. Therefore, the objective of this study is to investigate the differential expression of and alternative splicing of genes in worker and drone embryos and to explain their unique developmental patterns. METHODS Long-read sequencing (PacBio Iso-Seq) and short-read sequencing (Illumina RNA-Seq) were used to investigate worker and drone embryo gene expression differences in A. cerana across five developmental points (12, 24, 36, 48, and 60 h). RESULTS The study identified 59,254 common isoforms, with 5744 and 5106 isoforms specific to worker and drone embryos, respectively. Additionally, a new transcript of the csd gene was identified. The number of differentially expressed genes (3391) and differential splicing events (470 genes) peaked at the 24-h embryonic stage. Differential splicing events of csd, dsx, and Y-y were observed in the worker and drone embryos. CONCLUSIONS The gene expression results indicated that the 24-h embryonic point is a critical period for the expression of genes related to developmental and behavioral differences between workers and drones. The findings provide a theoretical basis for future research on the developmental differences between workers and drones.
Collapse
Affiliation(s)
- Runlang Su
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuhui Chen
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Rui Zhu
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kun Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
| | - Mao Feng
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.S.)
- State Key Laboratory of Resource Insects, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (Y.C.); (R.Z.)
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
8
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626797. [PMID: 39677721 PMCID: PMC11643119 DOI: 10.1101/2024.12.04.626797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. At-RS31, a plant-specific splicing factor in the Serine/Arginine (SR)-rich protein family, responds to light and the Target of Rapamycin (TOR) signaling pathway, yet its downstream targets and regulatory impact remain unknown.To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing.iCLIP identified 4,034 At-RS31 binding sites across 1,421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the RS domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator.By regulating stress-response genes and genes in both TOR and abscisic acid (ABA) signaling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yamile Marquez
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Armin Fuchs
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Timothy Hughes
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Quaid Morris
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Computational Biology and Medicine, Weill-Cornell Graduate School, New York, NY, USA
| | - Andrea Barta
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
9
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
10
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
11
|
Rurek M, Smolibowski M. Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies. Acta Biochim Pol 2024; 71:13585. [PMID: 39524930 PMCID: PMC11543463 DOI: 10.3389/abp.2024.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plant transcriptomes are complex entities shaped spatially and temporally by a multitude of stressors. The aim of this review was to summarize the most relevant transcriptomic responses to selected abiotic (UV radiation, chemical compounds, drought, suboptimal temperature) and biotic (bacteria, fungi, viruses, viroids) stress conditions in a variety of plant species, including model species, crops, and medicinal plants. Selected basic and applicative studies employing RNA-seq from various sequencing platforms and single-cell RNA-seq were involved. The transcriptomic responsiveness of various plant species and the diversity of affected gene families were discussed. Under stress acclimation, plant transcriptomes respond particularly dynamically. Stress response involved both distinct, but also similar gene families, depending on the species, tissue, and the quality and dosage of the stressor. We also noted the over-representation of transcriptomic data for some plant organs. Studies on plant transcriptomes allow for a better understanding of response strategies to environmental conditions. Functional analyses reveal the multitude of stress-affected genes as well as acclimatory mechanisms and suggest metabolome diversity, particularly among medicinal species. Extensive characterization of transcriptomic responses to stress would result in the development of new cultivars that would cope with stress more efficiently. These actions would include modern methodological tools, including advanced genetic engineering, as well as gene editing, especially for the expression of selected stress proteins in planta and for metabolic modifications that allow more efficient synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
12
|
Zhang H, Chen W, Zhu D, Zhang B, Xu Q, Shi C, He H, Dai X, Li Y, He W, Lv Y, Yang L, Cao X, Cui Y, Leng Y, Wei H, Liu X, Zhang B, Wang X, Guo M, Zhang Z, Li X, Liu C, Yuan Q, Wang T, Yu X, Qian H, Zhang Q, Chen D, Hu G, Qian Q, Shang L. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. THE PLANT CELL 2024; 36:4372-4387. [PMID: 38916914 PMCID: PMC11449091 DOI: 10.1093/plcell/koae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one-fifth of the potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost, or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation-induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.
Collapse
Affiliation(s)
- Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yilin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya, Hainan 572024, China
| |
Collapse
|
13
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
14
|
Liu X, Li M, Chen T, Zhang R, Wang Y, Xiao J, Ding X, Zhang S, Li Q. A global survey of bicarbonate stress-induced pre-mRNA alternative splicing in soybean via integrative analysis of Iso-seq and RNA-seq. Int J Biol Macromol 2024; 278:135067. [PMID: 39191343 DOI: 10.1016/j.ijbiomac.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Alternative splicing (AS) plays important roles in modulating environmental stress responses in plants. However, little is known about the functions of bicarbonate-induced AS in cultivated soybean (Glycine max L. Merr.). In this study, we combined PacBio isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) to elucidate the bicarbonate-induced AS events in soybean root and leaf tissues. Compared to RNA-seq, Iso-seq identified more novel genes and transcripts, as well as more AS events, indicating that Iso-seq is more efficient in AS detection. Combining these two technologies, we found that intron retention (IR) is the most frequent AS event type. We identified a total of 913 and 1974 bicarbonate stress-responsive differentially alternative spliced genes (DAGs) in soybean leaves and roots respectively, from our RNA-seq results. Additionally, we determined a transcription factor (GmNTL9) and a splicing factor (GmRSZ22), and validated their roles in bicarbonate stress response by AS. Overall, our study opens an avenue for evaluating plant AS regulatory networks, and the obtained global landscape of alternative splicing provides valuable insights into the AS-mediated bicarbonate-responsive mechanisms in plant species.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuye Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
16
|
Hou Y, Li Q, Zhou H, Kafle S, Li W, Tan L, Liang J, Meng L, Xin H. SMRT sequencing of a full-length transcriptome reveals cold induced alternative splicing in Vitis amurensis root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108863. [PMID: 38917739 DOI: 10.1016/j.plaphy.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Alternative splicing enhances diversity at the transcriptional and protein levels that widely involved in plant response to biotic and abiotic stresses. V. amurensis is an extremely cold-tolerant wild grape variety, however, studies on alternative splicing (AS) in amur grape at low temperatures are currently poorly understood. In this study, we analyzed full-length transcriptome and RNA seq data at 0, 2, and 24 h after cold stress in V. amurensis roots. Following quality control and correction, 221,170 high-quality full-length non-concatemer (FLNC) reads were identified. A total of 16,181 loci and 30,733 isoforms were identified. These included 22,868 novel isoforms from annotated genes and 2815 isoforms from 2389 novel genes. Among the distinguished novel isoforms, 673 Long non-coding RNAs (LncRNAs) and 18,164 novel isoforms open reading frame (ORF) region were found. A total of 2958 genes produced 8797 AS events, of which 189 genes were involved in the low-temperature response. Twelve transcription factors show AS during cold treatment and VaMYB108 was selected for initial exploration. Two transcripts, Chr05.63.1 (VaMYB108short) and Chr05.63.2 (VaMYB108normal) of VaMYB108, display up-regulated expression after cold treatment in amur grape roots and are both localized in the nucleus. Only VaMYB108normal exhibits transcriptional activation activity. Overexpression of either VaMYB108short or VaMYB108normal in grape roots leads to increased expression of the other transcript and both increased chilling resistance of amur grape roots. The results improve and supplement the genome annotations and provide insights for further investigation into AS mechanisms during cold stress in V. amurensis.
Collapse
Affiliation(s)
- Yujun Hou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Kafle
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjuan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Lin Meng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haiping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
17
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
18
|
Yao H, Li G, Gao Z, Guo F, Feng J, Xiao G, Shen H, Li H. Alternative splicing responses to salt stress in Glycyrrhiza uralensis revealed by global profiling of transcriptome RNA-seq datasets. Front Genet 2024; 15:1397502. [PMID: 39045328 PMCID: PMC11263197 DOI: 10.3389/fgene.2024.1397502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.
Collapse
Affiliation(s)
- Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Guozhi Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhuanzhuan Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Fei Guo
- Zhuhai College of Science and Technology, Zhuhai, China
| | - Jianghua Feng
- Business School of Xinjiang Normal University, Urumqi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
19
|
Díez AR, Szakonyi D, Lozano-Juste J, Duque P. Alternative splicing as a driver of natural variation in abscisic acid response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:9-27. [PMID: 38659400 DOI: 10.1111/tpj.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Abscisic acid (ABA) is a crucial player in plant responses to the environment. It accumulates under stress, activating downstream signaling to implement molecular responses that restore homeostasis. Natural variance in ABA sensitivity remains barely understood, and the ABA pathway has been mainly studied at the transcriptional level, despite evidence that posttranscriptional regulation, namely, via alternative splicing, contributes to plant stress tolerance. Here, we identified the Arabidopsis accession Kn-0 as less sensitive to ABA than the reference Col-0, as shown by reduced effects of the hormone on seedling establishment, root branching, and stomatal closure, as well as by decreased induction of ABA marker genes. An in-depth comparative transcriptome analysis of the ABA response in the two variants revealed lower expression changes and fewer genes affected for the least ABA-sensitive ecotype. Notably, Kn-0 exhibited reduced levels of the ABA-signaling SnRK2 protein kinases and lower basal expression of ABA-reactivation genes, consistent with our finding that Kn-0 contains less endogenous ABA than Col-0. ABA also markedly affected alternative splicing, primarily intron retention, with Kn-0 being less responsive regarding both the number and magnitude of alternative splicing events, particularly exon skipping. We find that alternative splicing introduces a more ecotype-specific layer of ABA regulation and identify ABA-responsive splicing changes in key ABA pathway regulators that provide a functional and mechanistic link to the differential sensitivity of the two ecotypes. Our results offer new insight into the natural variation of ABA responses and corroborate a key role for alternative splicing in implementing ABA-mediated stress responses.
Collapse
Affiliation(s)
- Alba R Díez
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), 46022, Valencia, Spain
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| |
Collapse
|
20
|
Araguirang GE, Venn B, Kelber NM, Feil R, Lunn J, Kleine T, Leister D, Mühlhaus T, Richter AS. Spliceosomal complex components are critical for adjusting the C:N balance during high-light acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:153-175. [PMID: 38593295 DOI: 10.1111/tpj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.
Collapse
Affiliation(s)
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | | | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
21
|
Chenna S, Ivanov M, Nielsen TK, Chalenko K, Olsen E, Jørgensen K, Sandelin A, Marquardt S. A data-driven genome annotation approach for cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38831668 DOI: 10.1111/tpj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Genome annotation files play a critical role in dictating the quality of downstream analyses by providing essential predictions for gene positions and structures. These files are pivotal in decoding the complex information encoded within DNA sequences. Here, we generated experimental data resolving RNA 5'- and 3'-ends as well as full-length RNAs for cassava TME12 sticklings in ambient temperature and cold. We used these data to generate genome annotation files using the TranscriptomeReconstructoR (TR) tool. A careful comparison to high-quality genome annotations suggests that our new TR genome annotations identified additional genes, resolved the transcript boundaries more accurately and identified additional RNA isoforms. We enhanced existing cassava genome annotation files with the information from TR that maintained the different transcript models as RNA isoforms. The resultant merged annotation was subsequently utilized for comprehensive analysis. To examine the effects of genome annotation files on gene expression studies, we compared the detection of differentially expressed genes during cold using the same RNA-seq data but alternative genome annotation files. We found that our merged genome annotation that included cold-specific TR gene models identified about twice as many cold-induced genes. These data indicate that environmentally induced genes may be missing in off-the-shelf genome annotation files. In conclusion, TR offers the opportunity to enhance crop genome annotations with implications for the discovery of differentially expressed candidate genes during plant-environment interactions.
Collapse
Affiliation(s)
- Swetha Chenna
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Karina Chalenko
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Evy Olsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| |
Collapse
|
22
|
Xu D, Leister D, Kleine T. Identification of a highly drought-resistant pp7l hda6 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1341576. [PMID: 38887464 PMCID: PMC11180769 DOI: 10.3389/fpls.2024.1341576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Plants have developed efficient strategies to counteract drought stress, including stomata closure, significant changes in nuclear gene expression, and epigenetic mechanisms. Previously, we identified Arabidopsis thaliana PROTEIN PHOSPHATASE7-LIKE (PP7L) as an extrachloroplastic protein that promotes chloroplast development. In addition, it was shown that PP7L is involved in high light and salt tolerance. Here, we demonstrate that the pp7l mutant can withstand prolonged periods of drought stress. Interestingly, despite impaired growth under standard growth conditions, photosynthetic efficiency recovers in pp7l mutant plants experiencing drought conditions. To assess the (post)transcriptional changes occurring in the pp7l mutant under different durations of drought exposure, we used an RNA-sequencing technique that allows the simultaneous detection of organellar and nuclear transcripts. Compared with the previously reported drought-responsive changes in the wild type, the drought-responsive changes in organellar and nuclear transcripts detected in the pp7l mutant were negligible. Our analysis of the data generated in this study and review and analysis of previous literature motivated us to create a pp7l hda6 (histone deacetylase 6) mutant, which exhibits remarkable drought resistance. Notably, the growth penalty associated with pp7l was alleviated in the double mutant, ruling out a dwarf effect on the drought-tolerant trait of this genotype. Future studies may consider that multiple loci and factors are involved in stress resistance and explore combinations of these factors to create even more resilient plants.
Collapse
Affiliation(s)
| | | | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
23
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
24
|
Zhong Y, Luo Y, Sun J, Qin X, Gan P, Zhou Z, Qian Y, Zhao R, Zhao Z, Cai W, Luo J, Chen LL, Song JM. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. THE PLANT CELL 2024; 36:2117-2139. [PMID: 38345423 PMCID: PMC11132889 DOI: 10.1093/plcell/koae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinliang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuemei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ping Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zuwen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongqing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Rupeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiyuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
25
|
de Leone MJ, Yanovsky MJ. The circadian clock and thermal regulation in plants: novel insights into the role of positive circadian clock regulators in temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2809-2818. [PMID: 38373194 DOI: 10.1093/jxb/erae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Javier Yanovsky
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
26
|
Guo L, Wang S, Jiao X, Ye X, Deng D, Liu H, Li Y, Van de Peer Y, Wu W. Convergent and/or parallel evolution of RNA-binding proteins in angiosperms after polyploidization. THE NEW PHYTOLOGIST 2024; 242:1377-1393. [PMID: 38436132 DOI: 10.1111/nph.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB - UGent Center for Plant Systems Biology, Ghent University, B-9052, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
27
|
Faivre L, Kinscher NF, Kuhlmann AB, Xu X, Kaufmann K, Schubert D. Cold stress induces rapid gene-specific changes in the levels of H3K4me3 and H3K27me3 in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1390144. [PMID: 38685963 PMCID: PMC11056581 DOI: 10.3389/fpls.2024.1390144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
When exposed to low temperatures, plants undergo a drastic reprogramming of their transcriptome in order to adapt to their new environmental conditions, which primes them for potential freezing temperatures. While the involvement of transcription factors in this process, termed cold acclimation, has been deeply investigated, the potential contribution of chromatin regulation remains largely unclear. A large proportion of cold-inducible genes carries the repressive mark histone 3 lysine 27 trimethylation (H3K27me3), which has been hypothesized as maintaining them in a silenced state in the absence of stress, but which would need to be removed or counteracted upon stress perception. However, the fate of H3K27me3 during cold exposure has not been studied genome-wide. In this study, we offer an epigenome profiling of H3K27me3 and its antagonistic active mark H3K4me3 during short-term cold exposure. Both chromatin marks undergo rapid redistribution upon cold exposure, however, the gene sets undergoing H3K4me3 or H3K27me3 differential methylation are distinct, refuting the simplistic idea that gene activation relies on a switch from an H3K27me3 repressed chromatin to an active form enriched in H3K4me3. Coupling the ChIP-seq experiments with transcriptome profiling reveals that differential histone methylation only weakly correlates with changes in expression. Interestingly, only a subset of cold-regulated genes lose H3K27me3 during their induction, indicating that H3K27me3 is not an obstacle to transcriptional activation. In the H3K27me3 methyltransferase curly leaf (clf) mutant, many cold regulated genes display reduced H3K27me3 levels but their transcriptional activity is not altered prior or during a cold exposure, suggesting that H3K27me3 may serve a more intricate role in the cold response than simply repressing the cold-inducible genes in naïve conditions.
Collapse
Affiliation(s)
- Léa Faivre
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | | | | | - Xiaocai Xu
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
29
|
Fan C, Lyu M, Zeng B, He Q, Wang X, Lu MZ, Liu B, Liu J, Esteban E, Pasha A, Provart NJ, Wang H, Zhang J. Profiling of the gene expression and alternative splicing landscapes of Eucalyptus grandis. PLANT, CELL & ENVIRONMENT 2024; 47:1363-1378. [PMID: 38221855 DOI: 10.1111/pce.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).
Collapse
Affiliation(s)
- Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingjie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Bingshan Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qiang He
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bobin Liu
- Jiansu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eddi Esteban
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Robson JK, Tidy AC, Thomas SG, Wilson ZA. Environmental regulation of male fertility is mediated through Arabidopsis transcription factors bHLH89, 91, and 10. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1934-1947. [PMID: 38066689 PMCID: PMC10967248 DOI: 10.1093/jxb/erad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024]
Abstract
Formation of functional pollen and successful fertilization rely on the spatial and temporal regulation of anther and pollen development. This process responds to environmental cues to maintain optimal fertility despite climatic changes. Arabidopsis transcription factors basic helix-loop-helix (bHLH) 10, 89, and 91 were previously thought to be functionally redundant in their control of male reproductive development, however here we show that they play distinct roles in the integration of light signals to maintain pollen development under different environmental conditions. Combinations of the double and triple bHLH10,89,91 mutants were analysed under normal (200 μmol m-2 s-1) and low (50 μmol m-2 s-1) light conditions to determine the impact on fertility. Transcriptomic analysis of a new conditionally sterile bhlh89,91 double mutant shows differential regulation of genes related to sexual reproduction, hormone signal transduction, and lipid storage and metabolism under low light. Here we have shown that bHLH89 and bHLH91 play a role in regulating fertility in response to light, suggesting that they function in mitigating environmental variation to ensure fertility is maintained under environmental stress.
Collapse
Affiliation(s)
- Jordan K Robson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Alison C Tidy
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Stephen G Thomas
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Zoe A Wilson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| |
Collapse
|
31
|
Wang X, Liu Y, Ouyang L, Yao R, Yu T, Yan L, Chen Y, Huai D, Zhou X, Wang Z, Kang Y, Wang Q, Jiang H, Lei Y, Liao B. Full-length transcriptome sequencing provides insights into alternative splicing under cold stress in peanut. FRONTIERS IN PLANT SCIENCE 2024; 15:1362277. [PMID: 38516669 PMCID: PMC10954824 DOI: 10.3389/fpls.2024.1362277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Introduction Peanut (Arachis hypogaea L.), also called groundnut is an important oil and cash crop grown widely in the world. The annual global production of groundnuts has increased to approximately 50 million tons, which provides a rich source of vegetable oils and proteins for humans. Low temperature (non-freezing) is one of the major factors restricting peanut growth, yield, and geographic distribution. Since the complexity of cold-resistance trait, the molecular mechanism of cold tolerance and related gene networks were largely unknown in peanut. Methods In this study, comparative transcriptomic analysis of two peanut cultivars (SLH vs. ZH12) with differential cold tolerance under low temperature (10°C) was performed using Oxford Nanopore Technology (ONT) platform. Results and discussion As a result, we identified 8,949 novel gene loci and 95,291 new/novel isoforms compared with the reference database. More differentially expressed genes (DEGs) were discovered in cold-sensitive cultivar (ZH12) than cold-tolerant cultivar (SLH), while more alternative splicing events were found in SLH compared to ZH12. Gene Ontology (GO) analyses of the common DEGs showed that the "response to stress", "chloroplast part", and "transcription factor activity" were the most enriched GO terms, indicating that photosynthesis process and transcription factors play crucial roles in cold stress response in peanut. We also detected a total of 708 differential alternative splicing genes (DASGs) under cold stress compared to normal condition. Intron retention (IR) and exon skipping (ES) were the most prevalent alternative splicing (AS) events. In total, 4,993 transcription factors and 292 splicing factors were detected, many of them had differential expression levels and/or underwent AS events in response to cold stress. Overexpression of two candidate genes (encoding trehalose-6-phosphatephosphatases, AhTPPs) in yeast improves cold tolerance. This study not only provides valuable resources for the study of cold resistance in peanut but also lay a foundation for genetic modification of cold regulators to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ruonan Yao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Tingting Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qianqian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
32
|
Mi X, Tang M, Zhu J, Shu M, Wen H, Zhu J, Wei C. Alternative splicing of CsWRKY21 positively regulates cold response in tea plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108473. [PMID: 38430784 DOI: 10.1016/j.plaphy.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Alternative splicing (AS) was an important post-transcriptional mechanism that involved in plant resistance to adversity stress. WRKY transcription factors function as transcriptional activators or repressors to modulate plant growth, development and stress response. However, the role of alternate splicing of WRKY in cold tolerance is poorly understood in tea plants. In this study, we found that the CsWRKY21 transcription factor, a member of the WRKY IId subfamily, was induced by low temperature. Subcellular localization and transcriptional activity assays showed that CsWRKY21 localized to the nucleus and had no transcriptional activation activity. Y1H and dual-luciferase reporter assays showed that CsWRKY21 suppressed expression of CsABA8H and CsUGT by binding with their promoters. Transient overexpression of CsABA8H and CsUGT reduced abscisic acid (ABA) content in tobacco leaves. Furthermore, we discovered that CsWRKY21 undergoes AS in the 5'UTR region. The AS transcript CsWRKY21-b was induced at low temperature, up to 6 folds compared to the control, while the full-length CsWRKY21-a transcript did not significantly change. Western blot analysis showed that the retention of introns in the 5'UTR region of CsWRKY21-b led to higher CsWRKY21 protein content. These results revealed that alternative splicing of CsWRKY21 involved in cold tolerance of tea plant by regulating the protein expression level and then regulating the content of ABA, and provide insights into molecular mechanisms of low temperature defense mediated by AS in tea plant.
Collapse
Affiliation(s)
- Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China; Guizhou Tea Research Institute, 1 Jin'nong Road, Guiyang, Guizhou, 550006, People's Republic of China
| | - Mengsha Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China; Guizhou Tea Research Institute, 1 Jin'nong Road, Guiyang, Guizhou, 550006, People's Republic of China
| | - Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Mingtao Shu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
33
|
Wu ZH, He LL, Wang CC, Liang C, Li HY, Zhong DW, Dong ZX, Zhang LJ, Zhang XQ, Ge LF, Chen S. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1.0, a high-quality reference transcript dataset. PHYSIOLOGIA PLANTARUM 2024; 176:e14280. [PMID: 38644527 DOI: 10.1111/ppl.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Liang-Liang He
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cong-Cong Wang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Chen Liang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Han-Ying Li
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Dan-Wen Zhong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Zhao-Xia Dong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Li-Juan Zhang
- Shenzhen Tourism College of Jinan University, Shenzhen, Guangdong, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liang-Fa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
34
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
36
|
Lio CT, Düz T, Hoffmann M, Willruth LL, Baumbach J, List M, Tsoy O. Comprehensive benchmark of differential transcript usage analysis for static and dynamic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575548. [PMID: 38313260 PMCID: PMC10836064 DOI: 10.1101/2024.01.14.575548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
RNA sequencing offers unique insights into transcriptome diversity, and a plethora of tools have been developed to analyze alternative splicing. One important task is to detect changes in the relative transcript abundance in differential transcript usage (DTU) analysis. The choice of the right analysis tool is non-trivial and depends on experimental factors such as the availability of single- or paired-end and bulk or single-cell data. To help users select the most promising tool for their task, we performed a comprehensive benchmark of DTU detection tools. We cover a wide array of experimental settings, using simulated bulk and single-cell RNA-seq data as well as real transcriptomics datasets, including time-series data. Our results suggest that DEXSeq, edgeR, and LimmaDS are better choices for paired-end data, while DSGseq and DEXSeq can be used for single-end data. In single-cell simulation settings, we showed that satuRn performs better than DTUrtle. In addition, we showed that Spycone is optimal for time series DTU/IS analysis based on the evidence provided using GO terms enrichment analysis.
Collapse
Affiliation(s)
- Chit Tong Lio
- Data Science in Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tolga Düz
- Chair of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Markus Hoffmann
- Data Science in Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina-Liv Willruth
- Data Science in Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000 Odense, Denmark
| | - Markus List
- Data Science in Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Olga Tsoy
- Chair of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
37
|
Punzo P, Suede Cigliano R, Aversano R, Grillo S, Batelli G. Determination of Differential Alternative Splicing Under Stress Conditions. Methods Mol Biol 2024; 2832:67-79. [PMID: 38869788 DOI: 10.1007/978-1-0716-3973-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Alternative splicing (AS) is an important mechanism contributing to stress-induced regulation of gene expression and proteome diversity. Massive sequencing technologies allow the identification of transcripts generated via stress-responsive AS, potentially important for adaptation to stress conditions. Several bioinformatics tools have been developed to identify differentially expressed alternative splicing events/transcripts from RNA-sequencing results. This chapter describes a detailed protocol for differential alternative splicing analysis using the rMATS tool. In addition, we provide guidelines for validation of the detected splice variants by qRT-PCR based on the obtained output files.
Collapse
Affiliation(s)
- Paola Punzo
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Stefania Grillo
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy
| | - Giorgia Batelli
- CNR Institute of Biosciences and Bioresources, Research Division Portici, Portici, Italy.
| |
Collapse
|
38
|
Zhai M, Huang J, Yang S, Li N, Zeng J, Zheng Y, Sun W, Wu B. Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain. Mol Pain 2024; 20:17448069241249455. [PMID: 38597175 PMCID: PMC11084985 DOI: 10.1177/17448069241249455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Jun Zeng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Benqing Wu
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| |
Collapse
|
39
|
James AB, Sharples C, Laird J, Armstrong EM, Guo W, Tzioutziou N, Zhang R, Brown JWS, Nimmo HG, Jones MA. REVEILLE2 thermosensitive splicing: a molecular basis for the integration of nocturnal temperature information by the Arabidopsis circadian clock. THE NEW PHYTOLOGIST 2024; 241:283-297. [PMID: 37897048 DOI: 10.1111/nph.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.
Collapse
Affiliation(s)
- Allan B James
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chantal Sharples
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Janet Laird
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily May Armstrong
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Nikoleta Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Hugh G Nimmo
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew A Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
40
|
Thanapipatpong P, Vuttipongchaikij S, Chomtong T, Puangtame W, Napaumpaipond P, Gomez LD, Suttangkakul A. Alternative splicing regulates autophagy in response to environmental stresses in cucumber ( Cucumis sativus). ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2195987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Thitikorn Chomtong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wilasinee Puangtame
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
41
|
Yu Z, Huang X, Wen S, Cao H, Wang N, Shen S, Ding M. Alternative Splicing under Cold Stress in Paper Mulberry. PLANTS (BASEL, SWITZERLAND) 2023; 12:3950. [PMID: 38068587 PMCID: PMC10707748 DOI: 10.3390/plants12233950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 05/19/2024]
Abstract
The paper mulberry is a commonly found tree species with a long history of cultivation. It also serves as a crucial case study for understanding how woody plants adapt to low temperatures. Under cold treatment, we observed a substantial number of alternative splicing (AS) genes, showcasing the intricate landscape of AS events. We have detected all seven types of AS events, with the alternative 3' splice site (A3) having the most. We observed that many genes that underwent differential AS were significantly enriched in starch and sucrose metabolism and circadian rhythm pathways. Moreover, a considerable proportion of differentially spliced genes (DSGs) also showed differential expression, with 20.38% and 25.65% under 12 h and 24 h cold treatments, respectively. This suggests a coordinated regulation between gene AS and expression, playing a pivotal role in the paper mulberry's adaptation to cold stress. We further investigated the regulatory mechanisms of AS, identifying 41 serine/arginine-rich (SR) splicing factors, among which 11 showed differential expression under cold treatment, while 29 underwent alternative splicing. Additionally, genes undergoing AS displayed significantly higher DNA methylation levels under cold stress, while normal splicing (non-AS) genes exhibited relatively lower methylation levels. These findings suggest that methylation may play an important role in governing gene AS. Finally, our research will provide useful information on the role of AS in the cold acclimation tolerance of the paper mulberry.
Collapse
Affiliation(s)
- Zhipeng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Xia Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Shuhan Wen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Haijuan Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Nan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Shihua Shen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| |
Collapse
|
42
|
Shang L, Zhou Y, Wen S, Wang K, Li Y, Zhang M, Jian H, Lyu D. Construction of heat stress regulation networks based on Illumina and SMRT sequencing data in potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1271084. [PMID: 38023929 PMCID: PMC10651764 DOI: 10.3389/fpls.2023.1271084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Potato (Solanum tuberosum L.) is one of the most important tuber food crops in the world; however, the cultivated potatoes are susceptible to high temperature, by which potato production is adversely affected. Understanding the coping mechanism of potato to heat stress is essential to secure yield and expand adaptability under environmental conditions with rising temperature. However, the lack of heat-related information has significantly limited the identification and application of core genes. To gain deeper insights into heat tolerance genes, next-generation sequencing and single-molecule real-time sequencing were used to learn the transcriptional response of potato to heat stress and 13,159 differentially expressed genes (DEGs) were identified in this study. All DEGs were grouped into 12 clusters using the K-means clustering algorithm. Gene Ontology enrichment analysis revealed that they were involved in temperature signaling, phytohormone, and protein modification. Among them, there were 950 differentially expressed transcription factors (DETFs). According to the network analysis of DETFs at the sixth hour under heat stress, we found some genes that were previously reported to be associated with photoperiodic tuberization, StCO (CONSTANS), tuber formation, StBEL11 (BEL1-LIKE 11), and earliness in potato, StCDF1 (CYCLING DOF FACTOR 1) responding to temperature. Furthermore, we verified the relative expression levels using quantitative real-time polymerase chain reaction, and the results were consistent with the inferences from transcriptomes. In addition, there were 22,125 alternative splicing events and 2,048 long non-coding RNAs. The database and network established in this study will extend our understanding of potato response to heat stress. It ultimately provided valuable resources for molecular analysis of heat stress response in potato and cultivation of potato varieties with heat tolerance.
Collapse
Affiliation(s)
- Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghong Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ke Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Meihua Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Yang Q, Tan S, Wang HL, Wang T, Cao J, Liu H, Sha Y, Zhao Y, Xia X, Guo H, Li Z. Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1116-1133. [PMID: 37608617 DOI: 10.1111/nph.19198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9β rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hairong Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueqi Sha
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
44
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
45
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
46
|
Zhang Q, Cao L, Song H, Lin K, Pang E. MkcDBGAS: a reference-free approach to identify comprehensive alternative splicing events in a transcriptome. Brief Bioinform 2023; 24:bbad367. [PMID: 37833843 PMCID: PMC10576019 DOI: 10.1093/bib/bbad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS) is an essential post-transcriptional mechanism that regulates many biological processes. However, identifying comprehensive types of AS events without guidance from a reference genome is still a challenge. Here, we proposed a novel method, MkcDBGAS, to identify all seven types of AS events using transcriptome alone, without a reference genome. MkcDBGAS, modeled by full-length transcripts of human and Arabidopsis thaliana, consists of three modules. In the first module, MkcDBGAS, for the first time, uses a colored de Bruijn graph with dynamic- and mixed- kmers to identify bubbles generated by AS with precision higher than 98.17% and detect AS types overlooked by other tools. In the second module, to further classify types of AS, MkcDBGAS added the motifs of exons to construct the feature matrix followed by the XGBoost-based classifier with the accuracy of classification greater than 93.40%, which outperformed other widely used machine learning models and the state-of-the-art methods. Highly scalable, MkcDBGAS performed well when applied to Iso-Seq data of Amborella and transcriptome of mouse. In the third module, MkcDBGAS provides the analysis of differential splicing across multiple biological conditions when RNA-sequencing data is available. MkcDBGAS is the first accurate and scalable method for detecting all seven types of AS events using the transcriptome alone, which will greatly empower the studies of AS in a wider field.
Collapse
Affiliation(s)
- Quanbao Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Cao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongtao Song
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Rodriguez Gallo MC, Uhrig RG. Phosphorylation mediated regulation of RNA splicing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1249057. [PMID: 37780493 PMCID: PMC10539000 DOI: 10.3389/fpls.2023.1249057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
For the past two decades, the study of alternative splicing (AS) and its involvement in plant development and stress response has grown in popularity. Only recently however, has the focus shifted to the study of how AS regulation (or lack-thereof) affects downstream mRNA and protein landscapes and how these AS regulatory events impact plant development and stress tolerance. In humans, protein phosphorylation represents one of the predominant mechanisms by which AS is regulated and thus the protein kinases governing these phosphorylation events are of interest for further study. Large-scale phosphoproteomic studies in plants have consistently found that RNA splicing-related proteins are extensively phosphorylated, however, the signaling pathways involved in AS regulation have not been resolved. In this mini-review, we summarize our current knowledge of the three major splicing-related protein kinase families in plants that are suggested to mediate AS phospho-regulation and draw comparisons to their metazoan orthologs. We also summarize and contextualize the phosphorylation events identified as occurring on splicing-related protein families to illustrate the high degree to which splicing-related proteins are modified, placing a new focus on elucidating the impacts of AS at the protein and PTM-level.
Collapse
Affiliation(s)
| | - R. Glen Uhrig
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- University of Alberta, Department of Biochemistry, Edmonton, AB, Canada
| |
Collapse
|
48
|
Graham CA, Paajanen P, Edwards KJ, Dodd AN. Genome-wide circadian gating of a cold temperature response in bread wheat. PLoS Genet 2023; 19:e1010947. [PMID: 37721961 PMCID: PMC10538658 DOI: 10.1371/journal.pgen.1010947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.
Collapse
Affiliation(s)
- Calum A. Graham
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, Bristol, United Kingdom
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
49
|
Fan Y, Li M, Wu Y, Wang X, Wang P, Zhang L, Meng X, Meng F, Li Y. Characterization of thioredoxin gene TaTrxh9 associated with heading-time regulation in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107903. [PMID: 37499575 DOI: 10.1016/j.plaphy.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Thioredoxins (Trxs) are thiol-disulfide oxidoreductase proteins that play important roles in a spectrum of processes linking redox regulation and signaling in plants. However, little is known about Trxs and their biological functions in wheat, one of the most important food crops worldwide. This study reports the identification and functional characterization of an h-type Trx gene, TaTrxh9, in wheat. Three homoeologs of TaTrxh9 were identified and the sequences in the coding region were highly consistent among the homoeologs. Protein characterization showed that a conserved Trx_family domain, as well as a typical active site with a dithiol signature (WCGPC), was included in TaTrxh9. Structural modeling demonstrated that TaTrxh9 could fold into a canonical thioredoxin structure consisting of five-stranded antiparallel beta sheets sandwiched between four alpha helices. The insulin disulfide reduction assay demonstrated that TaTrxh9 was catalytically active in vitro. TaTrxh9 overexpression in the Arabidopsis mutant trxh9 complemented the abnormal growth phenotypes of the mutant, suggesting is functionality in vivo. The transcription level of TaTrxh9 was higher in leaf tissues and it was differentially expressed during the development of wheat plants. Interestingly, barley stripe mosaic virus-mediated suppression of TaTrxh9 shortened the seedling-heading period of wheat. Furthermore, CRISPR-Cas9 mediated gene knockout confirmed that the TaTrxh9 mutation resulted in early heading of wheat. To our knowledge, this study is the first to report that Trxh is associated with heading-time regulation, which lays a foundation for further exploring the biological function of TaTrxh9 and provides new ideas for molecular breeding focusing on early heading in wheat.
Collapse
Affiliation(s)
- Yadong Fan
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China; College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yujie Wu
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoteng Wang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Putong Wang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li Zhang
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaodan Meng
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fanrong Meng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China; College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongchun Li
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
50
|
Wang H, Guo Y, Hao X, Zhang W, Xu Y, He W, Li Y, Cai S, Zhao X, Song X. Alternative Splicing for Leucanthemella linearis NST1 Contributes to Variable Abiotic Stress Resistance in Transgenic Tobacco. Genes (Basel) 2023; 14:1549. [PMID: 37628601 PMCID: PMC10454811 DOI: 10.3390/genes14081549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Leucanthemella linearis is a marsh plant in the family Compositae. It has good water and moisture resistance and ornamental properties, which makes it one of the important materials for chrysanthemum breeding and genetic improvement. The NST1 (NAC secondary wall enhancement factor 1) gene is associated with the thickening of the secondary walls of fiber cells in the plant ducts and the secondary xylem and plays an important role in plant stress resistance. In this study, two variable spliceosomes of the NST1 gene were identified from a chrysanthemum plant by using bioinformatics, qRT-PCR, transgene, and paraffin section methods to explore the molecular mechanism of the variable splicing of NST1 under abiotic stress. The results show that only three amino acids were found to be different between the two LlNST1 variants. After being treated with salt, drought, and low temperatures, analysis of the expression levels of the LlNST1 and LlNST1.1 genes in Ll showed that LlNST1.1 could respond to low temperatures and salt stress and had a weak response to drought stress. However, the expression level of LlNST1 under the three treatments was lower than that of LlNST1.1. LlNST1 transgenic tobacco showed increased saline-alkali resistance and low-temperature resistance at the seedling stage. LlNST1.1 transgenic tobacco also showed enhanced saline-alkali resistance and drought resistance at the seedling stage. In conclusion, the functions of the two variable spliceosomes of the NST1 gene are very different under abiotic stress. Therefore, this study verified the function of the variable spliceosome of NST1 and improved the stress resistance of the chrysanthemum plant under examination by regulating the expression of the NST protein, which lays a material foundation for the improvement of plant stress resistance materials and has important significance for the study of the resistance of chrysanthemum plants to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Y.G.); (X.H.); (W.Z.); (Y.X.); (W.H.); (Y.L.); (S.C.); (X.Z.)
| |
Collapse
|