1
|
Feng Z, Li H, Sun Z, Cheng J, Hua D, Wang Y, Qi J, Yang S, Gong Z. ZmGCT1/2 negatively regulate drought tolerance in maize by inhibiting ZmSLAC1 to maintain guard cell turgor. Proc Natl Acad Sci U S A 2025; 122:e2423037122. [PMID: 40208945 PMCID: PMC12012462 DOI: 10.1073/pnas.2423037122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
Stomata, which are essential for the exchange of CO2 and water vapor between plant leaves and the atmosphere, are regulated by a variety of environmental and internal factors. In this study, we identified and characterized two genes, Guard Cell Turgor Maintaining 1 (GCT1) and its closest homolog GCT2, which encode rapidly accelerated fibrosarcoma (RAF)-like protein kinases that play a critical role in maintaining guard cell turgor in Zea mays. We found that overexpression of ZmGCT1 and ZmGCT2 confers resistance to abscisic acid (ABA)-promoted stomatal closure, whereas the zmgct1 zmgct2 double loss-of-function mutants exhibit a loss of guard cell turgor, resulting in nearly closed stomata even under favorable growth conditions. A dominant mutation, zmgct1-9D, which lacks nine amino acids including T80, retains its kinase activity and plasma membrane localization but displays insensitive to ABA-, CO2-, Ca2+-, or H2O2-promoted stomatal closure. ABA-activated ZmSnRK2.8/9 phosphorylates ZmGCT1 at T80, reducing its plasma membrane localization. Intriguingly, the ZmSnRK2.10 or ZmSLAC1 mutant can suppress the reduced turgor phenotype in guard cells of the zmgct1 mutant. Furthermore, ZmGCT1 phosphorylates the penultimate threonine residue (T573) of ZmSLAC1, inhibiting both the constitutively active ZmSLAC1 and ZmSnRK2.8-activated ZmSLAC1 in Xenopus laevis oocytes, a process dependent on ZmGCT1 kinase activity. These findings suggest that ZmGCT1 and ZmGCT2 directly inhibit ZmSLAC1 to maintain guard cell turgor under favorable growth conditions, while ABA treatment alleviates this inhibition primarily by reducing ZmGCT1's plasma membrane localization. This study provides mechanistic insights into the regulation of stomatal movement by ZmGCT1/2 kinases under both favorable and stress conditions.
Collapse
Affiliation(s)
- Zhenkai Feng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Huiying Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Zhihui Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Deping Hua
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing100193, China
- Department of Biological Sciences, College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding071002, China
| |
Collapse
|
2
|
Jiang S, Sun Z, Feng Z, Qi Y, Chen H, Wang Y, Qi J, Guo Y, Yang S, Gong Z. ZmCIPK33 and ZmSnRK2.10 mutually reinforce the abscisic acid signaling pathway for combating drought stress in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40226964 DOI: 10.1111/jipb.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) Ca²⁺ sensors play crucial roles in the plant's response to drought stress. However, there have been few reports on the synergistic regulation of drought stress by CBL-CIPK and abscisic acid (ABA) core signaling components. In this study, we discovered that ZmCIPK33 positively regulates drought resistance in maize. ZmCIPK33 physically interacts with and is enhanced by phosphorylation from ZmSnRK2.10. Drought stress can activate ZmCIPK33, which is partially dependent on ZmSnRK2.10. ZmCIPK33 in combination with ZmSnRK2.10 can activate the slow anion channel ZmSLAC1 in Xenopus laevis oocytes independently of CBLs, whereas ZmCIPK33 or ZmSnRK2.10 alone is unable to do so. Furthermore, ZmCIPK33 phosphorylates ZmPP2C11 at Ser60, which leads to a reduction in the interaction between ZmPP2C11 and ZmEAR1 (the ortholog of Arabidopsis Enhancer of ABA co-Receptor 1) and weakens the phosphatase activity of ZmPP2C11, consequently, enhancing the activity of ZmSnRK2.10 in an in vitro assay and in the in-gel assay of the zmcipk33 mutant. Our findings provide novel insights into the molecular mechanisms underlying the reciprocal enhancement of Ca²⁺ and ABA signaling under drought stress in maize.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhihui Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhenkai Feng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yuanpeng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, the China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
3
|
Zhang S, Shan H, Bo X, Li J, Liu Z, Li P, Liu Y, Yang X, Lu Q, Wan S, Peng R, Wei Y, Hu S. Identification of the STY13 gene family across the entire genome and an analysis of the essential function of GhSTY13-12 in cotton's response to abiotic stress. Funct Integr Genomics 2025; 25:74. [PMID: 40133530 DOI: 10.1007/s10142-025-01570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Cotton is an important cash crop, and its yield and quality were affected by abiotic stresses. The serine/threonine protein kinase STY13 gene, belonging to the protein kinase family, is one of the largest and most functionally diverse gene families, which is a critical regulatory molecule for cell function. In this study, we systematically identified and analyzed the STY13 gene family in two major cultivated cotton species (Gossypium hirsutum and Gossypium barbadense) and their two ancestors (Gossypium arboretum and Gossypium raimondii). A total of 46, 50, 26 and 24 STY13 genes were identified from these four species, respectively. Phylogeny analysis showed that cotton STY13 genes (cotton STY protein kinase genes) could be classified into five groups. This gene family was evenly distributed on each chromosome in cotton. STY13 genes contain light-responsive elements, stress-responsive elements, growth and developmental elements, and multiple gene and protein binding sites. Most motifs in the STY13 proteins were conserved and had similar distribution patterns. However, there were some differences in specific motifs in different subfamilies. Gene expression analysis based on RNA-seq and qRT-PCR showed that STY13 genes were responsive to abiotic stress. GhSTY13-12 gene was located in cytoplasm. Silencing of the GhSTY13-12 gene resulted in reduced leaf chlorosis, increased total antioxidant capacity, decreased malondialdehyde content, and enhanced drought and salt tolerance. These results provide a scientific basis for further research on the function of STY13 in cotton and its application on cotton trait improvement.
Collapse
Affiliation(s)
- Shaoliang Zhang
- College of Agriculture, Tarim University, Alar, 843300, China
- Anyang Institute of Technology, Anyang, 455000, China
| | - Huiyun Shan
- College of Agriculture, Tarim University, Alar, 843300, China
- Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaopei Bo
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jiahui Li
- Anyang Institute of Technology, Anyang, 455000, China
| | - Zili Liu
- Anyang Institute of Technology, Anyang, 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang, 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar, 843300, China
| | - Renhai Peng
- College of Agriculture, Tarim University, Alar, 843300, China.
- Anyang Institute of Technology, Anyang, 455000, China.
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, 455000, China.
| | - Shoulin Hu
- College of Agriculture, Tarim University, Alar, 843300, China.
| |
Collapse
|
4
|
Yang Z, Wang C, Zhu T, He J, Wang Y, Yang S, Liu Y, Zhao B, Zhu C, Ye S, Chen L, Liu S, Qin F. An LRR-RLK protein modulates drought- and salt-stress responses in maize. J Genet Genomics 2025; 52:388-399. [PMID: 39547547 DOI: 10.1016/j.jgg.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Maize (Zea mays), which is a vital source of food, feed, and energy feedstock globally, has significant potential for higher yields. However, environmental stress conditions, including drought and salt stress, severely restrict maize plant growth and development, leading to great yield losses. Leucine-rich repeat receptor-like kinases (LRR-RLKs) function in biotic and abiotic stress responses in the model plant Arabidopsis (Arabidopsis thaliana), but their roles in abiotic stress responses in maize are not entirely understood. In this study, we determine that the LRR-RLK ZmMIK2, a homolog of the Arabidopsis LRR-RK MALE DISCOVERER 1 (MDIS1)-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2), functions in resistance to both drought and salt stress in maize. Zmmik2 plants exhibit enhanced resistance to both stresses, whereas overexpressing ZmMIK2 confers the opposite phenotypes. Furthermore, we identify C2-DOMAIN-CONTAINING PROTEIN 1 (ZmC2DP1), which interacts with the intracellular region of ZmMIK2. Notably, that region of ZmMIK2 mediates the phosphorylation of ZmC2DP1, likely by increasing its stability. Both ZmMIK2 and ZmC2DP1 are mainly expressed in roots. As with ZmMIK2, knockout of ZmC2DP1 enhances resistance to both drought and salt stress. We conclude that ZmMIK2-ZmC2DP1 acts as a negative regulatory module in maize drought- and salt-stress responses.
Collapse
Affiliation(s)
- Zhirui Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tengfei Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiafan He
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yijie Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaohui Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuqing Ye
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shengxue Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Pesaresi P, Bono P, Corn S, Crosatti C, Daniotti S, Jensen JD, Frébort I, Groli E, Halpin C, Hansson M, Hensel G, Horner DS, Houston K, Jahoor A, Klíma M, Kollist H, Lacoste C, Laidoudi B, Larocca S, Marè C, Moigne NL, Mizzotti C, Morosinotto T, Oldach K, Rossini L, Raubach S, Sanchez‐Garcia M, Shaw PD, Sonnier R, Tondelli A, Waugh R, Weber AP, Yarmolinsky D, Zeni A, Cattivelli L. Boosting photosynthesis opens new opportunities for agriculture sustainability and circular economy: The BEST-CROP research and innovation action. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17264. [PMID: 39910851 PMCID: PMC11799749 DOI: 10.1111/tpj.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
There is a need for ground-breaking technologies to boost crop yield, both grains and biomass, and their processing into economically competitive materials. Novel cereals with enhanced photosynthesis and assimilation of greenhouse gasses, such as carbon dioxide and ozone, and tailored straw suitable for industrial manufacturing, open a new perspective for the circular economy. Here we describe the vision, strategies, and objectives of BEST-CROP, a Horizon-Europe and United Kingdom Research and Innovation (UKRI) funded project that relies on an alliance of academic plant scientists teaming up with plant breeding companies and straw processing companies to use the major advances in photosynthetic knowledge to improve barley biomass and to exploit the variability of barley straw quality and composition. We adopt the most promising strategies to improve the photosynthetic properties and ozone assimilation capacity of barley: (i) tuning leaf chlorophyll content and modifying canopy architecture; (ii) increasing the kinetics of photosynthetic responses to changes in irradiance; (iii) introducing photorespiration bypasses; (iv) modulating stomatal opening, thus increasing the rate of carbon dioxide fixation and ozone assimilation. We expect that by improving our targeted traits we will achieve increases in aboveground total biomass production without modification of the harvest index, with added benefits in sustainability via better resource-use efficiency of water and nitrogen. In parallel, the resulting barley straw is tailored to: (i) increase straw protein content to make it suitable for the development of alternative biolubricants and feed sources; (ii) control cellulose/lignin contents and lignin properties to develop straw-based construction panels and polymer composites. Overall, by exploiting natural- and induced-genetic variability as well as gene editing and transgenic engineering, BEST-CROP will lead to multi-purpose next generation barley cultivars supporting sustainable agriculture and capable of straw-based applications.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Department of BiosciencesUniversity of MilanMilan20133Italy
| | - Pierre Bono
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | - Stephane Corn
- LMGC, IMT Mines AlesUniv Montpellier, CNRSAlèsFrance
| | - Cristina Crosatti
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Sara Daniotti
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | | | - Ivo Frébort
- Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucŠlechtitelů 27Olomouc783 71Czech Republic
| | - Eder Groli
- S.I.S. Società Italiana Sementivia Mirandola di Sopra 5, 40068 S. Lazzaro di SBolognaItaly
| | - Claire Halpin
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | - Mats Hansson
- Department of BiologyLund UniversityLund22362Sweden
| | - Goetz Hensel
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Centre for Plant Genome EngineeringHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Kelly Houston
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | | | - Miloš Klíma
- Úsovsko a.s.Klopina 33Klopina789 73Czech Republic
| | - Hannes Kollist
- Institute of BioengineeringUniversity of TartuTartu50411Estonia
- Institute of Plant Sciences Paris‐Saclay (IPS2) Université Paris‐Saclay, CNRS, INRAEUniversité Evry, Université Paris CitéGif sur Yvette91190France
| | - Clément Lacoste
- Polymers, Composites and Hybrids (PCH)IMT Mines AlesAlesFrance
| | - Boubker Laidoudi
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | | | - Caterina Marè
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | | | | | | | | | - Laura Rossini
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy (DiSAA)University of MilanMilan20133Italy
| | - Sebastian Raubach
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Miguel Sanchez‐Garcia
- International Center for Agricultural Research in the Dry Areas (ICARDA)Rabat10100Morocco
| | - Paul D. Shaw
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | | | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Robbie Waugh
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | - Andreas P.M. Weber
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute for Plant BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alessandro Zeni
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| |
Collapse
|
6
|
Herold L, Choi S, He SY, Zipfel C. The conserved AvrE family of bacterial effectors: functions and targets during pathogenesis. Trends Microbiol 2025; 33:184-193. [PMID: 39278787 DOI: 10.1016/j.tim.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sera Choi
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
7
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
8
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
9
|
Piechatzek A, Feng X, Sai N, Yi C, Hurgobin B, Lewsey M, Herrmann J, Dittrich M, Ache P, Müller T, Kromdijk J, Hedrich R, Xu B, Gilliham M. GABA does not regulate stomatal CO2 signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6856-6871. [PMID: 38628155 PMCID: PMC11565201 DOI: 10.1093/jxb/erae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 11/16/2024]
Abstract
Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard cell signal γ-aminobutyric acid (GABA) is produced from glutamate by glutamate decarboxylase (GAD) during a reaction that generates CO2 as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant Arabidopsis lines gad2-1, gad2-2, and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2-a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter renamed as gad2-1*. Guard cell-specific complementation of MPK12 in gad2-1* restored the wild-type CO2 phenotype, which confirms the proposed importance of MPK12 in CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening channel ALUMINIUM-ACTIVATED MALATE TRANSPORTER 9 (ALMT9). Our results demonstrate that GABA has a role in modulating the rate of stomatal opening and closing, but not in response to CO2per se.
Collapse
Affiliation(s)
- Adriane Piechatzek
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Xueying Feng
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Changyu Yi
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mathew Lewsey
- La Trobe Institute for Agriculture and Food, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- ARC Centre of Excellence in Plants for Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Johannes Herrmann
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Tobias Müller
- Department of Bioinformatics, University of Würzburg, Würzburg 97078, Germany
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97078, Germany
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, Glen Osmond, SA 5064, Australia
| |
Collapse
|
10
|
Xiao C, Guo H, Li R, Wang Y, Yin K, Ye P, Hu H. A module involving HIGH LEAF TEMPERATURE1 controls instantaneous water use efficiency. PLANT PHYSIOLOGY 2024; 196:1579-1594. [PMID: 39041424 DOI: 10.1093/plphys/kiae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
Drought stress inhibits plant growth and agricultural production. Improving plant instantaneous water use efficiency (iWUE), which is strictly regulated by stomata, is an effective way to cope with drought stress. However, the mechanisms of iWUE regulation are poorly understood. Through genetic screening for suppressors of mpk12-4, an Arabidopsis (Arabidopsis thaliana) mutant with a major iWUE quantitative trait locus gene MITOGEN-ACTIVATED PROTEIN KINASE12 deleted, we identified HIGH LEAF TEMPERATURE1 (HT1). Genetic interaction and physiological analyses showed that MPK12 controls iWUE through multiple modules in a high CO2-induced stomatal closing pathway that regulate SLOW ANION CHANNEL-ASSOCIATED1 (SLAC1) activity. HT1 acts downstream of MPK12, whereas OPEN STOMATA1 (OST1) and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) function downstream of HT1 by activating SLAC1 in iWUE. Photosynthetic-CO2 response curves and biomass analyses under different water-supply conditions showed that HT1 dysfunction improved iWUE and also increased plant growth capacity, and products of HT1 putative orthologs from Brassica (Brassica napus) and rice (Oryza sativa) exhibited functions similar to that of Arabidopsis HT1 in iWUE and the CO2-signaling pathway. Our study revealed the mechanism of MPK12-mediated iWUE regulation in Arabidopsis and provided insight into the internal relationship between iWUE and CO2 signaling in guard cells and a potential target for improving crop iWUE and drought tolerance.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuehua Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Koolmeister K, Merilo E, Hõrak H, Kollist H. Stomatal CO2 responses at sub- and above-ambient CO2 levels employ different pathways in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:608-620. [PMID: 38833587 PMCID: PMC11376393 DOI: 10.1093/plphys/kiae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
Stomatal pores that control plant CO2 uptake and water loss affect global carbon and water cycles. In the era of increasing atmospheric CO2 levels and vapor pressure deficit (VPD), it is essential to understand how these stimuli affect stomatal behavior. Whether stomatal responses to sub-ambient and above-ambient CO2 levels are governed by the same regulators and depend on VPD remains unknown. We studied stomatal conductance responses in Arabidopsis (Arabidopsis thaliana) stomatal signaling mutants under conditions where CO2 levels were either increased from sub-ambient to ambient (400 ppm) or from ambient to above-ambient levels under normal or elevated VPD. We found that guard cell signaling components involved in CO2-induced stomatal closure have different roles in the sub-ambient and above-ambient CO2 levels. The CO2-specific regulators prominently affected sub-ambient CO2 responses, whereas the lack of guard cell slow-type anion channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) more strongly affected the speed of above-ambient CO2-induced stomatal closure. Elevated VPD caused lower stomatal conductance in all studied genotypes and CO2 transitions, as well as faster CO2-responsiveness in some studied genotypes and CO2 transitions. Our results highlight the importance of experimental setups in interpreting stomatal CO2-responsiveness, as stomatal movements under different CO2 concentration ranges are controlled by distinct mechanisms. Elevated CO2 and VPD responses may also interact. Hence, multi-factor treatments are needed to understand how plants integrate different environmental signals and translate them into stomatal responses.
Collapse
Affiliation(s)
- Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| |
Collapse
|
12
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
13
|
Sowders JM, Jewell JB, Tanaka K. CPK28 is a modulator of purinergic signaling in plant growth and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1086-1101. [PMID: 38308597 PMCID: PMC11096078 DOI: 10.1111/tpj.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Extracellular ATP (eATP) is a key signaling molecule that plays a pivotal role in plant growth and defense responses. The receptor P2K1 is responsible for perceiving eATP and initiating its signaling cascade. However, the signal transduction mechanisms downstream of P2K1 activation remain incompletely understood. We conducted a comprehensive analysis of the P2K1 interactome using co-immunoprecipitation-coupled tandem mass spectrometry, leading to the identification of 121 candidate proteins interacting with P2K1. In silico analysis narrowed down the candidates to 47 proteins, including Ca2+-binding proteins, ion transport-related proteins, and receptor kinases. To investigate their involvement in eATP signaling, we employed a screening strategy based on changes in gene expression in response to eATP in mutants of the identified interactors. This screening revealed several Ca2+-dependent protein kinases (CPKs) that significantly affected the expression of eATP-responsive genes, suggesting their potential roles in eATP signaling. Notably, CPK28 and CPK6 showed physical interactions with P2K1 both in yeast and plant systems. Calcium influx and gene expression studies demonstrated that CPK28 perturbed eATP-induced Ca2+ mobilization and some early transcriptional responses. Overexpression of CPK28 resulted in an antagonistic physiological response to P2K1-mediated eATP signaling during both plant growth and defense responses to the necrotrophic pathogen Botrytis cinerea. Our findings highlight CPK28, among other CPKs, as a modulator of P2K1-mediated eATP signaling, providing valuable insights into the coordination of eATP signaling in plant growth and immunity.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
14
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
15
|
Zhang J, Chen X, Song Y, Gong Z. Integrative regulatory mechanisms of stomatal movements under changing climate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:368-393. [PMID: 38319001 DOI: 10.1111/jipb.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2 , reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
16
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
17
|
Liu L, Ashraf MA, Morrow T, Facette M. Stomatal closure in maize is mediated by subsidiary cells and the PAN2 receptor. THE NEW PHYTOLOGIST 2024; 241:1130-1143. [PMID: 37936339 DOI: 10.1111/nph.19379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Stomata are epidermal pores that facilitate plant gas exchange. Grasses have fast stomatal movements, likely due to their dumbbell-shaped guard cells and lateral subsidiary cells. Subsidiary cells reciprocally exchange water and ions with guard cells. However, the relative contribution of subsidiary cells during stomatal closure is unresolved. We compared stomatal gas exchange and stomatal aperture dynamics in wild-type and pan1, pan2, and pan1;pan2 Zea mays (L.) (maize) mutants, which have varying percentages of aberrantly formed subsidiary cells. Stomata with 1 or 2 defective subsidiary cells cannot close properly, indicating that subsidiary cells are essential for stomatal function. Even though the percentage of aberrant stomata is similar in pan1 and pan2, pan2 showed a more severe defect in stomatal closure. In pan1, only stomata with abnormal subsidiary cells fail to close normally. In pan2, all stomata have stomatal closure defects, indicating that PAN2 has an additional role in stomatal closure. Maize Pan2 is orthologous to Arabidopsis GUARD CELL HYDROGEN PEROXIDE-RESISANT1 (GHR1), which is also required for stomatal closure. PAN2 acts downstream of Ca2+ in maize to promote stomatal closure. This is in contrast to GHR1, which acts upstream of Ca2+ , and suggests the pathways could be differently wired.
Collapse
Affiliation(s)
- Le Liu
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - M Arif Ashraf
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Taylor Morrow
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Michelle Facette
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
18
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Waszczak C, Yarmolinsky D, Leal Gavarrón M, Vahisalu T, Sierla M, Zamora O, Carter R, Puukko T, Sipari N, Lamminmäki A, Durner J, Ernst D, Winkler JB, Paulin L, Auvinen P, Fleming AJ, Andersson MX, Kollist H, Kangasjärvi J. Synthesis and import of GDP-l-fucose into the Golgi affect plant-water relations. THE NEW PHYTOLOGIST 2024; 241:747-763. [PMID: 37964509 DOI: 10.1111/nph.19378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | | | - Marina Leal Gavarrón
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Olena Zamora
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, CB2 1LR, Cambridge, UK
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Airi Lamminmäki
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
20
|
Samanta S, Seth CS, Roychoudhury A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108259. [PMID: 38154293 DOI: 10.1016/j.plaphy.2023.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Drought is undoubtedly a major environmental constraint that negatively affects agricultural yield and productivity throughout the globe. Plants are extremely vulnerable to drought which imposes several physiological, biochemical and molecular perturbations. Increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in different plant organs is one of the inevitable consequences of drought. ROS and RNS are toxic byproducts of metabolic reactions and poise oxidative stress and nitrosative stress that are detrimental for plants. In spite of toxic effects, these potentially active radicals also play a beneficial role in mediating several signal transduction events that lead to plant acclimation and enhanced survival under harsh environmental conditions. The precise understanding of ROS and RNS signaling and their molecular paradigm with different phytohormones, such as auxin, gibberellin, cytokinin, abscisic acid, ethylene, brassinosteroids, strigolactones, jasmonic acid, salicylic acid and melatonin play a pivotal role for maintaining plant fitness and resilience to counteract drought toxicity. Therefore, the present review provides an overview of integrated systemic signaling between ROS, RNS and phytohormones during drought stress based on past and recent advancements and their influential role in conferring protection against drought-induced damages in different plant species. Indeed, it would not be presumptuous to hope that the detailed knowledge provided in this review will be helpful for designing drought-tolerant crop cultivars in the forthcoming times.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | | | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
21
|
Tulva I, Välbe M, Merilo E. Plants lacking OST1 show conditional stomatal closure and wildtype-like growth sensitivity at high VPD. PHYSIOLOGIA PLANTARUM 2023; 175:e14030. [PMID: 37882302 DOI: 10.1111/ppl.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Climate change-associated rise in VPD (atmospheric vapor pressure deficit) results in increased plant transpiration and reduced stomatal conductance, photosynthesis, biomass, and yield. High VPD-induced stomatal closure of Arabidopsis is an active process regulated via the kinase SnRK2.6 (OPEN STOMATA 1, OST1). Here, we performed gas exchange, leaf water potential and rosette growth measurements to study, whether (1) high VPD-induced stomatal closure is detected in plants carrying loss-of-function mutations in OST1 (ost1-3) when they are grown at reduced soil water content or measured at increased air temperature; (2) ost1-3 plants expressing OST1 construct with no ABA-activation domain, but intact ABA-independent activation, show stronger stomatal VPD response compared with ost1-3 plants; and (3) rosette area and biomass of ost1-3 are more affected by growth at high VPD compared with Col-0. The stomata of well-watered ost1-3 plants were insensitive to high VPD regardless of air temperature, but in deficit-irrigated ost1-3, leaf water potential decreased the most and stomata closed at high VPD. Differences between VPD-induced stomatal closures of ost1-3 plants and ost1-3 plants expressing OST1 with no ABA-activation domain point at gradual VPD-induced ABA-independent activation of OST1. High VPD conditions led to similar reductions in rosette area and specific leaf area of well-watered Col-0 and ost1-3 plants. Rosette dry mass was unaffected by high VPD. Our results show that OST1 loss-of-function plants display conditional stomatal closure and no extra sensitivity of rosette area growth compared with Col-0 wildtype under high VPD conditions.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikk Välbe
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Yeh CY, Wang YS, Takahashi Y, Kuusk K, Paul K, Arjus T, Yadlos O, Schroeder JI, Ilves I, Garcia-Sosa AT, Kollist H. MPK12 in stomatal CO 2 signaling: function beyond its kinase activity. THE NEW PHYTOLOGIST 2023; 239:146-158. [PMID: 36978283 PMCID: PMC10247450 DOI: 10.1111/nph.18913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yohei Takahashi
- Institute of Transformative Bio-Molecules, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katarina Kuusk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Triinu Arjus
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Oleksii Yadlos
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | | | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
23
|
Bai Q, Niu Z, Chen Q, Gao C, Zhu M, Bai J, Liu M, He L, Liu J, Jiang Y, Wan D. The C 2 H 2 -type zinc finger transcription factor OSIC1 positively regulates stomatal closure under osmotic stress in poplar. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:943-960. [PMID: 36632734 PMCID: PMC10106854 DOI: 10.1111/pbi.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/23/2022] [Indexed: 05/04/2023]
Abstract
Salt and drought impair plant osmotic homeostasis and greatly limit plant growth and development. Plants decrease stomatal aperture to reduce water loss and maintain osmotic homeostasis, leading to improved stress tolerance. Herein, we identified the C2 H2 transcription factor gene OSMOTIC STRESS INDUCED C2 H2 1 (OSIC1) from Populus alba var. pyramidalis to be induced by salt, drought, polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA). Overexpression of OSIC1 conferred transgenic poplar more tolerance to high salinity, drought and PEG6000 treatment by reducing stomatal aperture, while its mutant generated by the CRISPR/Cas9 system showed the opposite phenotype. Furthermore, OSIC1 directly up-regulates PalCuAOζ in vitro and in vivo, encoding a copper-containing polyamine oxidase, to enhance H2 O2 accumulation in guard cells and thus modulates stomatal closure when stresses occur. Additionally, ABA-, drought- and salt-induced PalMPK3 phosphorylates OSIC1 to increase its transcriptional activity to PalCuAOζ. This regulation of OSIC1 at the transcriptional and protein levels guarantees rapid stomatal closure when poplar responds to osmotic stress. Our results revealed a novel transcriptional regulatory mechanism of H2 O2 production in guard cells mediated by the OSIC1-PalCuAOζ module. These findings deepen our understanding of how perennial woody plants, like poplar, respond to osmotic stress caused by salt and drought and provide potential targets for breeding.
Collapse
Affiliation(s)
- Qiuxian Bai
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Qingyuan Chen
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Chengyu Gao
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Jiexian Bai
- College of Computer Information Engineering,Shanxi Technology and Business CollegeTaiyuanChina
| | - Meijun Liu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Ling He
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Yuanzhong Jiang
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
24
|
Wang Q, Shen T, Ni L, Chen C, Jiang J, Cui Z, Wang S, Xu F, Yan R, Jiang M. Phosphorylation of OsRbohB by the protein kinase OsDMI3 promotes H 2O 2 production to potentiate ABA responses in rice. MOLECULAR PLANT 2023; 16:882-902. [PMID: 37029489 DOI: 10.1016/j.molp.2023.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
In rice, the Ca2+/calmodulin-dependent protein kinase OsDMI3 is an important positive regulator of abscisic acid (ABA) signaling. In ABA signaling, H2O2 is required for ABA-induced activation of OsDMI3, which in turn increase H2O2 production. However, how OsDMI3 regulates H2O2 production in ABA signaling remains unknown. Here we show that OsRbohB is the main NADPH oxidase involved in ABA-induced H2O2 production and ABA-mediated physiological responses. OsDMI3 directly interacts with and phosphorylates OsRbohB at Ser-191, which is OsDMI3-mediated site-specific phosphorylation in ABA signaling. Further analyses revealed that OsDMI3-mediated OsRbohB Ser-191 phosphorylation positively regulates the activity of NADPH oxidase and the production of H2O2 in ABA signaling, thereby enhancing the sensitivity of seed germination and root growth to ABA and plant tolerance to water stress and oxidative stress. Moreover, we discovered that the OsDMI3-mediated OsRbohB phosphorylation and H2O2 production is dependent on the sucrose non-fermenting 1-related protein kinases SAPK8/9/10, which phosphorylate OsRbohB at Ser-140 in ABA signaling. Taken together, these results not only reveal an important regulatory mechanism that directly activates Rboh for ABA-induced H2O2 production but also uncover the importance of this regulatory mechanism in ABA signaling.
Collapse
Affiliation(s)
- Qingwen Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenzhen Cui
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
26
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
27
|
Bäurle I, Laplaze L, Martin A. Preparing for an uncertain future: molecular responses of plants facing climate change. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1297-1302. [PMID: 36516413 PMCID: PMC10010605 DOI: 10.1093/jxb/erac493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 05/12/2023]
|
28
|
Guo Y, Shi Y, Wang Y, Liu F, Li Z, Qi J, Wang Y, Zhang J, Yang S, Wang Y, Gong Z. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. THE NEW PHYTOLOGIST 2023; 237:1728-1744. [PMID: 36444538 DOI: 10.1111/nph.18647] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.
Collapse
Affiliation(s)
- Yazhen Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yabo Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yalin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingbo Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
29
|
Quijada-Rivera M, Tiznado-Hernández ME, Hernández-Oñate MÁ, Vargas-Arispuro I, Astorga-Cienfuegos KR, Lazo-Javalera MF, Rivera-Domínguez M. Transcriptome assessment in 'Red Globe' grapevine zygotic embryos during the cooling and warming phase of the cryopreservation procedure. Cryobiology 2023; 110:56-68. [PMID: 36528080 DOI: 10.1016/j.cryobiol.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Cryopreservation has the potential for long-term germplasm storage. The metabolic pathways and gene regulation involved in cryopreservation procedures are still not well documented. Hence, the genetic expression profile was evaluated using RNA-Seq in zygotic embryos of grapevines subjected to cryopreservation by vitrification. Sequencing was performed on the Illumina NextSeq 500. The average alignment of reads was 96% against the reference genome. The expression profiles showed 229 genes differentially expressed (186 repressed and 46 induced). The main biological processes showing upregulated enrichment were related to nucleosome assembly, while downregulated processes were related to organ growth. The most highly repressed processes were associated with the organization of the cell wall and membrane components. The unnamed protein product and 17.3 kDa class II heat shock protein (HSP) were highly induced, while ATPase subunit 1 and expansin-A1 were repressed. The response to the cooling and warming process during cryopreservation probably indicates that the changes occurring in transcription may be related to epigenetics. In addition, the cell exhibits an increase in the reserve of nutrients while seeking to survive modestly using available energy and pausing the plant's development. Additionally, energy containment occurred to cope with the stress caused by the treatment where deactivation of components of the cell membrane was observed, possibly due to changes in fluidity caused by alterations in temperature.
Collapse
Affiliation(s)
- Mariana Quijada-Rivera
- Food Science Coordination, Research Center for Food and Development, Hermosillo, Sonora, 83000, Mexico
| | | | | | - Irasema Vargas-Arispuro
- Food Science Coordination, Research Center for Food and Development, Hermosillo, Sonora, 83000, Mexico
| | | | | | - Marisela Rivera-Domínguez
- Food Science Coordination, Research Center for Food and Development, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
30
|
Kong Y, Chen J, Jiang L, Chen H, Shen Y, Wang L, Yan Y, Zhou H, Zheng H, Yu F, Ming Z. Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation. PLANT COMMUNICATIONS 2023:100559. [PMID: 36774537 PMCID: PMC10363478 DOI: 10.1016/j.xplc.2023.100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence indicates that early and essential events for receptor-like kinase (RLK) function involve both autophosphorylation and substrate phosphorylation. However, the structural and biochemical basis for these events is largely unclear. Here, we used RLK FERONIA (FER) as a model and crystallized its core kinase domain (FER-KD) and two FER-KD mutants (K565R, S525A) in complexes with ATP/ADP and Mg2+ in the unphosphorylated state. Unphosphorylated FER-KD was found to adopt an unexpected active conformation in its crystal structure. Moreover, unphosphorylated FER-KD mutants with reduced (S525A) or no catalytic activity (K565R) also adopt similar active conformations. Biochemical studies revealed that FER-KD is a dual-specificity kinase, and its autophosphorylation is accomplished via an intermolecular mechanism. Further investigations confirmed that initiating substrate phosphorylation requires autophosphorylation of the activation segment on T696, S701, and Y704. This study reveals the structural and biochemical basis for the activation and regulatory mechanism of FER, providing a paradigm for the early steps in RLK signaling initiation.
Collapse
Affiliation(s)
- Yanqiong Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Lingli Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Hong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Yujie Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
31
|
Takahashi Y, Bosmans KC, Hsu PK, Paul K, Seitz C, Yeh CY, Wang YS, Yarmolinsky D, Sierla M, Vahisalu T, McCammon JA, Kangasjärvi J, Zhang L, Kollist H, Trac T, Schroeder JI. Stomatal CO 2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4. SCIENCE ADVANCES 2022; 8:eabq6161. [PMID: 36475789 PMCID: PMC9728965 DOI: 10.1126/sciadv.abq6161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 05/12/2023]
Abstract
The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.
Collapse
Affiliation(s)
- Yohei Takahashi
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Krystal C. Bosmans
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Po-Kai Hsu
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Dmitry Yarmolinsky
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Li Zhang
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Thien Trac
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
32
|
Liu H, Song S, Zhang H, Li Y, Niu L, Zhang J, Wang W. Signaling Transduction of ABA, ROS, and Ca 2+ in Plant Stomatal Closure in Response to Drought. Int J Mol Sci 2022; 23:ijms232314824. [PMID: 36499153 PMCID: PMC9736234 DOI: 10.3390/ijms232314824] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops.
Collapse
|
33
|
Brauer EK, Ahsan N, Popescu GV, Thelen JJ, Popescu SC. Back From the Dead: The Atypical Kinase Activity of a Pseudokinase Regulator of Cation Fluxes During Inducible Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:931324. [PMID: 36035673 PMCID: PMC9403797 DOI: 10.3389/fpls.2022.931324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Pseudokinases are thought to lack phosphotransfer activity due to altered canonical catalytic residues within their kinase domain. However, a subset of pseudokinases maintain activity through atypical phosphotransfer mechanisms. The Arabidopsis ILK1 is a pseudokinase from the Raf-like MAP3K family and is the only known plant pseudokinase with confirmed protein kinase activity. ILK1 activity promotes disease resistance and molecular pattern-induced root growth inhibition through its stabilization of the HAK5 potassium transporter with the calmodulin-like protein CML9. ILK1 also has a kinase-independent function in salt stress suggesting that it interacts with additional proteins. We determined that members of the ILK subfamily are the sole pseudokinases within the Raf-like MAP3K family and identified 179 novel putative ILK1 protein interactors. We also identified 70 novel peptide targets for ILK1, the majority of which were phosphorylated in the presence of Mn2+ instead of Mg2+ in line with modifications in ILK1's DFG cofactor binding domain. Overall, the ILK1-targeted or interacting proteins included diverse protein types including transporters (HAK5, STP1), protein kinases (MEKK1, MEKK3), and a cytokinin receptor (AHK2). The expression of 31 genes encoding putative ILK1-interacting or phosphorylated proteins, including AHK2, were altered in the root and shoot in response to molecular patterns suggesting a role for these genes in immunity. We describe a potential role for ILK1 interactors in the context of cation-dependent immune signaling, highlighting the importance of K+ in MAMP responses. This work further supports the notion that ILK1 is an atypical kinase with an unusual cofactor dependence that may interact with multiple proteins in the cell.
Collapse
Affiliation(s)
- Elizabeth K. Brauer
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Nagib Ahsan
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - George V. Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Jay J. Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Sorina C. Popescu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| |
Collapse
|
34
|
Li X, Zhang J, Shi H, Li B, Li J. Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1303-1309. [PMID: 35546272 DOI: 10.1111/jipb.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.
Collapse
Affiliation(s)
- Xiaopeng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
35
|
Xu T, Niu J, Jiang Z. Sensing Mechanisms: Calcium Signaling Mediated Abiotic Stress in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:925863. [PMID: 35769297 PMCID: PMC9234572 DOI: 10.3389/fpls.2022.925863] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 05/12/2023]
Abstract
Plants are exposed to various environmental stresses. The sensing of environmental cues and the transduction of stress signals into intracellular signaling are initial events in the cellular signaling network. As a second messenger, Ca2+ links environmental stimuli to different biological processes, such as growth, physiology, and sensing of and response to stress. An increase in intracellular calcium concentrations ([Ca2+]i) is a common event in most stress-induced signal transduction pathways. In recent years, significant progress has been made in research related to the early events of stress signaling in plants, particularly in the identification of primary stress sensors. This review highlights current advances that are beginning to elucidate the mechanisms by which abiotic environmental cues are sensed via Ca2+ signals. Additionally, this review discusses important questions about the integration of the sensing of multiple stress conditions and subsequent signaling responses that need to be addressed in the future.
Collapse
Affiliation(s)
- Tongfei Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Junfeng Niu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
37
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
38
|
Song Y, Niu R, Yu H, Guo J, Du C, Zhang Z, Wei Y, Li J, Zhang S. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1111-1127. [PMID: 35275421 DOI: 10.1111/tpj.15727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.
Collapse
Affiliation(s)
- Yajing Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruofan Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hongli Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chunhui Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zilun Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jiaxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Suqiao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
39
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
40
|
Rodrigues O, Shan L. Stomata in a state of emergency: H 2O 2 is the target locked. TRENDS IN PLANT SCIENCE 2022; 27:274-286. [PMID: 34756808 DOI: 10.1016/j.tplants.2021.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Stomatal movements are essential for plants to regulate photosynthesis rate, water status, and immunity. Upon stress stimulation, the production of hydrogen peroxide (H2O2) in the apoplasts and its accumulation within the guard cells are among key determinatives for stomatal closure. The regulatory mechanisms of H2O2 production and transport under plant-pathogen interaction and drought stress response in stomata are important fields of research. Specifically, the regulation of NADPH oxidases and aquaporins appears to be crucial in H2O2-controlled stomatal closure. In this review, we summarize how the calcium-dependent and calcium-independent mechanisms activate RESPIRATORY BURST OXIDASE HOMOLOG (RBOH)D/F NADPH oxidases and the aquaporin PIP2;1 to induce stomatal closure, and highlight how the H2O2 production is targeted by pathogen toxins and effectors to counteract plant immunity.
Collapse
Affiliation(s)
- Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, F-31076 Toulouse, France.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
41
|
Li X, Gao Y, Wu W, Chen L, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:143-157. [PMID: 34498364 PMCID: PMC8710898 DOI: 10.1111/pbi.13701] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Stomatal closure is an important process to prevent water loss in plants response to drought stress, which is finely modulated by ion channels together with their regulators in guard cells, especially the S-type anion channel AtSLAC1 in Arabidopsis. However, the functional characterization and regulation analyses of anion channels in gramineous crops, such as in maize guard cells are still limited. In this study, we identified an S-type anion channel ZmSLAC1 that was preferentially expressed in maize guard cells and involved in stomatal closure under drought stress. We found that two Ca2+ -dependent protein kinases ZmCPK35 and ZmCPK37 were expressed in maize guard cells and localized on the plasma membrane. Lesion of ZmCPK37 resulted in drought-sensitive phenotypes. Mutation of ZmSLAC1 and ZmCPK37 impaired ABA-activated S-type anion currents in maize guard cells, while the S-type anion currents were increased in the guard cells of ZmCPK35- and ZmCPK37-overexpression lines. Electrophysiological characterization in maize guard cells and Xenopus oocytes indicated that ZmCPK35 and ZmCPK37 could activate ZmSLAC1-mediated Cl- and NO3- currents. The maize inbred and hybrid lines overexpressing ZmCPK35 and ZmCPK37 exhibited enhanced tolerance and increased yield under drought conditions. In conclusion, our results demonstrate that ZmSLAC1 plays crucial roles in stomatal closure in maize, whose activity is regulated by ZmCPK35 and ZmCPK37. Elevation of ZmCPK35 and ZmCPK37 expression levels is a feasible way to improve maize drought tolerance as well as reduce yield loss under drought stress.
Collapse
Affiliation(s)
- Xi‐Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yong‐Qiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wei‐Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Li‐Mei Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
42
|
Xu Y, Shang K, Wang C, Yu Z, Zhao X, Song Y, Meng F, Zhu C. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. PLANT CELL REPORTS 2022; 41:249-261. [PMID: 34697685 DOI: 10.1007/s00299-021-02808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, People's Republic of China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xuechen Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
43
|
Wang Z, Gou X. The First Line of Defense: Receptor-like Protein Kinase-Mediated Stomatal Immunity. Int J Mol Sci 2021; 23:ijms23010343. [PMID: 35008769 PMCID: PMC8745683 DOI: 10.3390/ijms23010343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stomata regulate gas and water exchange between the plant and external atmosphere, which are vital for photosynthesis and transpiration. Stomata are also the natural entrance for pathogens invading into the apoplast. Therefore, stomata play an important role in plants against pathogens. The pattern recognition receptors (PRRs) locate in guard cells to perceive pathogen/microbe-associated molecular patterns (PAMPs) and trigger a series of plant innate immune responses, including rapid closure of stomata to limit bacterial invasion, which is termed stomatal immunity. Many PRRs involved in stomatal immunity are plasma membrane-located receptor-like protein kinases (RLKs). This review focuses on the current research progress of RLK-mediated signaling pathways involved in stomatal immunity, and discusses questions that need to be addressed in future research.
Collapse
|
44
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
45
|
Jalakas P, Nuhkat M, Vahisalu T, Merilo E, Brosché M, Kollist H. Combined action of guard cell plasma membrane rapid- and slow-type anion channels in stomatal regulation. PLANT PHYSIOLOGY 2021; 187:2126-2133. [PMID: 34009364 PMCID: PMC8644578 DOI: 10.1093/plphys/kiab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 05/15/2023]
Abstract
Initiation of stomatal closure by various stimuli requires activation of guard cell plasma membrane anion channels, which are defined as rapid (R)- and slow (S)-type. The single-gene loss-of-function mutants of these proteins are well characterized. However, the impact of suppressing both the S- and R-type channels has not been studied. Here, by generating and studying double and triple Arabidopsis thaliana mutants of SLOW ANION CHANNEL1 (SLAC1), SLAC1 HOMOLOG3 (SLAH3), and ALUMINUM-ACTIVATED MALATE TRANSPORTER 12/QUICK-ACTIVATING ANION CHANNEL 1 (QUAC1), we show that impairment of R- and S-type channels gradually increased whole-plant steady-state stomatal conductance. Ozone-induced cell death also increased gradually in higher-order mutants with the highest levels observed in the quac1 slac1 slah3 triple mutant. Strikingly, while single mutants retained stomatal responsiveness to abscisic acid, darkness, reduced air humidity, and elevated CO2, the double mutant lacking SLAC1 and QUAC1 was nearly insensitive to these stimuli, indicating the need for coordinated activation of both R- and S-type anion channels in stomatal closure.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Maris Nuhkat
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Author for communication:
| |
Collapse
|
46
|
Karanam A, He D, Hsu PK, Schulze S, Dubeaux G, Karmakar R, Schroeder JI, Rappel WJ. Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. PLANT PHYSIOLOGY 2021; 187:2311-2322. [PMID: 34618035 PMCID: PMC8644243 DOI: 10.1093/plphys/kiab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 05/02/2023]
Abstract
Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.
Collapse
Affiliation(s)
- Aravind Karanam
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - David He
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Richa Karmakar
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
- Author for communication:
| |
Collapse
|
47
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
48
|
Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci U S A 2021; 118:e2107280118. [PMID: 34799443 PMCID: PMC8617523 DOI: 10.1073/pnas.2107280118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Alex Costa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Klara Kernig
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Katie H Lee
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
49
|
Sun Z, Zang Y, Zhou L, Song Y, Chen D, Zhang Q, Liu C, Yi Y, Zhu B, Fu D, Zhu H, Qu G. A tomato receptor-like cytoplasmic kinase, SlZRK1, acts as a negative regulator in wound-induced jasmonic acid accumulation and insect resistance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7285-7300. [PMID: 34309647 DOI: 10.1093/jxb/erab350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates accumulate rapidly and act as key regulators in response to mechanical wounding, but few studies have linked receptor-like cytoplasmic kinases (RLCKs) to wound-induced jasmonic acid (JA) signaling cascades. Here, we identified a novel wounding-induced RLCK-XII-2 subfamily member (SlZRK1) in tomato (Solanum lycopersicum) that was closely related to Arabidopsis HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases 1 based on phylogenetic analysis. SlZRK1 was targeted to the plasma membrane of tobacco mesophyll protoplasts as determined by transient co-expression with the plasma membrane marker mCherry-H+-ATPase. Catalytic residue sequence analysis and an in vitro kinase assay indicated that SlZRK1 may act as a pseudokinase. To further analyse the function of SlZRK1, we developed two stable knock-out mutants by CRISPR/Cas9. Loss of SlZRK1 significantly altered the expression of genes involved in JA biosynthesis, salicylic acid biosynthesis, and ethylene response. Furthermore, after mechanical wounding treatment, slzrk1 mutants increased transcription of early wound-inducible genes involved in JA biosynthesis and signaling. In addition, JA accumulation after wounding and plant resistance to herbivorous insects also were enhanced. Our findings expand plant regulatory networks in the wound-induced JA production by adding RLCKs as a new component in the wound signal transduction pathway.
Collapse
Affiliation(s)
- Zongyan Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yudi Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanping Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Di Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaoli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chengxia Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuetong Yi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, Brosché M, Schroeder JI, Yarmolinsky D, Kollist H. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO 2 , abscisic acid, darkness, vapor pressure deficit and ozone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:134-150. [PMID: 34289193 PMCID: PMC8842987 DOI: 10.1111/tpj.15430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 05/08/2023]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2 , light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1, myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2 , light and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stomatal opening was initiated slowly after 1.5-2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues in Arabidopsis and Solanum lycopersicum (tomato).
Collapse
Affiliation(s)
- Olena Zamora
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), the Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, Israel, and
| | - Helen Parik
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Jaanika Unt
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Mikael Brosché
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki FI-00014, Finland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- For correspondence ()
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|